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mean vectors as well as strategies for testing multiple change points in high dimensions.
Finally, we discuss some open problems for possible future research directions.
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1. Introduction

Change point analysis has a long history since the seminal work of [50,51]. Since then, it has become an active research
area in various scientific fields including finance, genetics, climatology, engineering, and astronomy. Generally speaking,
suppose we have a sequence of ordered observations such as a time series. Change point analysis aims to answer the
following two questions: [i] whether there is a change for the parameter of the underlying data distribution during the
observations; [ii] If a change is detected, where is the position of the change point? The above two questions are referred
to as the change point testing and estimation problems, which are two indispensable pillars in change point analysis.
In this paper, we mainly focus on the former question. Classical methods for change point testing assume that the data
dimension is fixed. In the last few decades, a rich literature has been developed in addressing different specific problems
under various model settings. See the book in [11,22] for a summary of the classical methods and a recent review paper
in [32] for some extensions.

With the rapid development of data collection and storage capacity, high dimensional data are ubiquitous, where
the data dimension can be tens of thousands and are typically much larger than the sample size. In this case, the data
generating mechanism can be complicated and heterogeneity often exists. Hence, for high dimensional data analysis,

* Correspondence to: Department of Statistics and Operations Research, 354 Hanes Hall, CB 3260, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599, USA.
E-mail address: yfliu@email.unc.edu (Y. Liu).

https://doi.org/10.1016/j.jmva.2021.104833
0047-259X/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmva.2021.104833
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2021.104833&domain=pdf
mailto:yfliu@email.unc.edu
https://doi.org/10.1016/j.jmva.2021.104833

B. Liu, X. Zhang and Y. Liu Journal of Multivariate Analysis 188 (2022) 104833

heterogeneity detection or change point detection is an important issue. While there are many earlier works obtained
with good theoretical results, in high dimensions, the classical methods are often no longer applicable. As a result, it is
desirable to design new methods suitable for modern statistical applications. Driven by this demand, rapid developments
have been made in the literature over the last 5-10 years for change point analysis. In this paper, focusing on change
point testing, we first review recent developments on single change point detection of high dimensional mean vectors.
We believe this can reflect the distinctive challenges for high dimensional change point analysis. In addition, it can serve
as a foundation for developing new methodologies for some other complex change point problems. With the concept
of high dimensional efficiency, we compare different methods in terms of size and power, and show their optimality
in terms of the minimax optimality separation rate. The latter one is more technically involved in high dimensions and
usually exhibits a phase transition according to the change point alternative patterns. Beyond mean vectors, in the second
part of this paper, we review some recent extensions to other high dimensional parameters such as variance, covariance
matrices, or non-parametric testing of distributional changes. Lastly, based on the existing literature, we point out several
possible research directions for more complex model settings and problems.

Note that there are two related problems in high dimensional change point analysis. The first one is change point
estimation [17,49,56]. For this problem, it is usually assumed there are Ky > 1 change points that exist in the model
and the goal is to simultaneously estimate both the number and locations of the change points. This problem is also
called data segmentation. Although change point testing and estimation are related, they are fundamentally different.
For example, the former is concerned with proposing tests for controlling the type I and type II errors, while the latter
one mainly focuses on developing algorithms for estimation consistency of numbers and locations. The second type of
problem is called online or sequential change point detection [48], where data are observed sequentially. The goal is to
detect a change point as soon as possible while controlling the false alarms. This is very different from our considered
offline setting that we have observed all historical data at once. Although the above two problems are interesting and
actively studied to date, it is not possible for us to review all related works in this paper. Hence, in this review, we only
focus our attention on the problem of offline change point testing.

Throughout this paper, for ¥ = (x1,...,X5)" € RY define its £,-norm as ||x, = (Z}Ll |x|P)VP for 1 < p < oo. For
p = oo, define ||X||oc = mMaxi<j<q |X;|. For any set S, denote its cardinality by |S|. For two real numbered sequences a, and
b,, we set a, = O(b,) if there exists a constant C such that |a,| < C|b,| for a sufficiently large n; a, = o(b,) if a,/b, — 0
as n — o0; a, =< b, if there exist constants ¢ and C such that c|b,| < |a,| < C|b,| for a sufficiently large n. For a sequence

of random variables (r.v.s) {&1, &, ...}, we set &, N & (or &, LY &) if &, converges to £ in probability (or in distribution)

as n — oo. We also denote &, = 0,(1) if &, L 0.Fora positive number x, we use |x| to denote the largest integer less
than or equal to x.

The rest of this paper is organized as follows. Section 2 introduces the formulations of high dimensional change point
inference and its distinctive challenges from the low dimensional problems. Sections 3-4 review recent methods for
change point inference of high dimensional mean vectors. Section 5 discussed their theoretical properties. Sections 6-7
provide some extensions to high dimensional change point inference for general parameters as well as techniques for
testing multiple change points. We conclude this paper in Section 8.

2. High dimensional change point inference

Let X = (Xq,...,Xq)" ~ F(x)and p := EX = (u1,...,4q)" be its mean vector. Suppose we have n ordered but
independent observations X, ..., X, with X; = (X1, ..., Xis)" being its ith observation. Typically, a change point model
for mean vectors has the following form: fori=1,...,n,

Xi = p+ &, 1{i = ko} + €, (1)
where u € R? is the mean vector before change point, ky € {1,...,n — 1} is the possible but unknown change point
location, &, = (1, ..., 84)" is the mean shift after the change point ko (if it exists), and €; := (€1, .. ., €iq) | are i.i.d error

terms with E¢; = 0 and Cov(e;) = X. Model (1) is usually called at most one change point (AMOC) model. A typical
question for Model (1) is to test whether there is a change point. In other words, for Model (1), we have the following
hypothesis:

Ho: 0, =0 and ko =n vs. H;:3ko €{1,...,n— 1} such that §, # 0. (2)

More specifically, the data are homogeneous across the observations in terms of the mean vectors under Hy, while there
is a mean shift dy, at the unknown location ko under Hj. For the simplicity of notations, we use § directly when it is
appropriate. In the traditional low dimensional setting with fixed d and d < n, the cumulative sum (CUSUM) statistic [22]
is typically adopted for Problem (2). In particular, for each candidate search location k € {1, ..., n—1}, the CUSUM statistic
is defined as:

Kkn—k,;, 1 < 1<
Clk) = n (n—k in_E;X")' (3)

i=k+1
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Then based on (3), we can construct the following test statistic:
T, = max C(k)"XC(k). (4)
1<k<n-—1

Intuitively, T, searches through all possible locations k for comparing the mean differences before and after k. Hence, a
large value of T, triggers the rejection of Hy. It is worth mentioning that T, is related to the log-ratio of the maximum

I . . . . . . iid .
likelihood based statistic. To see this, consider the one dimensional case with d = 1. Suppose ¢; £ N(0, o) with known
o2. For each fixed k, the log-ratio of the maximum likelihood statistic is defined as

01 (X — X))\ 1 (X — X(n — k)’
N e S SRR LU, K GRS TR

H, =log
‘1 .
exp( —
v2ﬂaz p( 20?
2
1T o
E X =ﬁc (k),

k
1 n—k
M[\/nk 2%
i=1 i=k+1

where X(k) := k™! Z; 1 Xi X(n—k) == (n— k)™ > i1 Xi and X :=n"1Y"1, X Hence, based on (5), the maximum
likelihood ratio based test statistic for testing (2) is defined as:

[T
n(n — k

1
max 2Hy = max —C2(k),
1<k<n-—1 1<k<n— 102

which is equivalent to the use of (4). In the low dimensional case, the CUSUM statistic in (3) or (5) has been extensively
studied for change point detection. See [3,22,28-30,47,52]. Typically, under some regular conditions, we have, as n — oo,

kn—k
max - k)" X 'c(k —>su B(t
1<k<n—-1Nn n ( ) 0<t<plZ
where {B(t), ..., By(t)} are independent Brownian bridges with mean zero and covariance structure E(B;(t), B1(s)) =

(min(t, s) — ts). Formulas and critical values for the above limiting distribution can be found in [36].

In the high dimensional setting, however, the data dimension d can grow with the sample size n (d — oco) and even be
much larger than n (d >> n). For example, in finance, if we are interested in testing a change point for returns of companies
in the S&P 500 index over a given period, we need to deal with data with the dimension of 500, see [35]. In genetics, we
can use change point testing to detect chromosomal copy number abnormality which involves thousands of genes [58].
Other modern statistical applications include the detection of Denial of Service in internet traffic [39], functional Magnetic
Resonance Imaging (fMRI) data studies, see [69] as well as the detection of distant galaxies in astronomy [25]. For
those real applications, the high dimensionality of data brings great challenges in both implementation and theoretical
studies [34]. More specifically, the methods designed for low dimensional cases are no longer applicable. One direct
difficulty comes from the estimation of the covariance matrix X or its inverse X ~! in the construction of the CUSUM
statistic. It is well known that the standard sample covariance matrix estimator performs poorly and can lead to invalid
conclusions in high-dimensional settings with relatively low sample sizes. Thus, estimation of X or X ~' can be nontrivial
in such high dimensional problems. To obtain estimation consistency, some structural assumptions are typically imposed
in the literature in order to estimate X or X~ . These include banding [61], thresholding [7], or penalized likelihood based
estimation [8,64]. See [9] for a recent development for this topic. In addition, using the above methods for constructing
the CUSUM statistics as in (4) usually imposes strong structural assumptions for X (or X ~!) and involves the selection
of tuning parameters [45]. This makes the use of (4) very difficult. Hence, new change point testing statistics for high
dimensional data are needed. More importantly, since the dimension d can grow with the sample size n, it becomes more
challenging to derive the limiting null distribution in high dimensions to make the corresponding testing procedure under
a given significance level @ € (0, 1).

Another distinctive difficulty for high dimensional change point testing is the power analysis. Recall the mean jump
§=(81,...,84) . Let IT = {j : 8;j # 0} be the set of coordinates having a change point and s := [I7| be its cardinality.
According to various structures of §, high dimensional change point models can be typically summarized into the following
two cases:

e Case 1: Sparse patterns with only a few number of non-zero elements in é and the corresponding magnitudes of
changes are large.
e Case 2: Dense patterns where a large number of entries in § are non-zero and each with a small magnitude.

The above two cases are called alternative structures or patterns. For the sparse pattern, we usually require s < ./p
while for the dense pattern we have s 3> ,/p [25,41]. As shown later, the detection boundary on the signal strength &
usually exhibits a phase transition according to s. Note that in high dimensions, both p and s scale with the sample size
n. This is essentially different from the traditional setting with a fixed d. More specifically, for high dimensional data
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analysis, the standard norms such as ¢, or £,,-norms are no longer equivalent. In other words, a test statistic designed
for the sparse pattern may lose its power under the dense pattern, and vice versa. Hence, for high dimensional change
point detection, the main question is how to propose a powerful test statistic that effectively utilizes the underlying
alternative structures. The above aspects make high dimensional change point inference a challenging problem and not

much developments have been made until recently. Recall the d-dimensional CUSUM statistic C(k) = (Cl(k), . Cd(k))T,
where
k(n — k) 1
Gl = (— ;xu . qu) ©)
is the CUSUM statistic for each coordinate j € {1, ..., d}. Hence, we can construct the CUSUM statistic-based d x (n — 1)
dimensional matrix ¢ := (C(1), ..., C(n — 1)):
G(1) - Gm-1)
Cz 1 e Cz n—1
M) el (7)
G(1) ... Cn—1)

By definition, the columns of C contain information about the change point location, while the rows reflect the alternative
structures. Note that for the AMOC model in (1), all coordinates in /7 share a common change point at ky. Hence, similar
to the low dimensional setting, we can construct a test statistic such as:

T= max [C(K)p.
1<k<n-—1

The biggest question for using T is how to adopt a proper £,-norm to take into account the underlying alternative patterns
and benefit from the cross-sectional nature of the change-point that is shared across different coordinates. Furthermore,
from a theoretical viewpoint, high dimensional change point inference is related to the concept of high dimensional
efficiency (HDE) proposed in [2] as well as the minimax optimality studied in [25,41].

We first introduce the high dimensional efficiency.

Definition 2.1 (High Dimensional Efficiency [2]). Suppose d — oo as n — oo. Let 7(X1, ..., X,) be a testing statistic for
the problem in (2). Let £(§) be a mapping from R? to R := (0, co). We say the (absolute) high dimensional efficiency of
T(X1, ..., Xy) is £(8) if it satisfies:

(1) 7T(Xq, ..., Xn) 4 L for some non-degenerate limiting distribution L under Hp;
(i) T(X1, ..., Xn) = 00 if /AE(S) — o00:
(iil) T(X1,...,Xn) > Lif /nE@S) — 0.

By definition, high dimensional efficiency characterizes the rate at which the cross-sectional size of change is allowed
to converge to zero (e.g., ||8]l, — 0) as n — oo such that the power of the change-point test 7(Xy, ..., X;) is strictly
between the size and one. Hence, using high dimensional efficiency, we can compare different tests’ efficiency (or relative
efficiency) in terms of their power. For example, if we have a change point test 71 with efficiency £(8) = ||6]|, and
another 7 having efficiency £2)(8) = |8,/ log(n), then the relative high dimensional efficiency between 7(" and
is £1)(8)/£2)(8) = log(n). In other words, for detecting a change point with power one, compared with 7", we require
a stronger signal condition with an additional order logn for 7.

In addition to HDE, minimax optimality is also a way to show the optimality of a change point testing method. Before
introducing that, some notations are needed. For Problem (2), let @ = (n ", 8,?0 )T be the parameters of interest. Under Hy,
define the parameter space of signals by

Oold, n) = {([L, 8i) i ERY 8, =0, ko€ {1,....n— 1}}.
Next, we define the parameter space of signals under the alternative that a change point occurs at a known location

ko € {1,...,n — 1} with a known sparsity level s by:

ko(n ko

Oh0)(d, n,5, p) = (. 81g) : b € B, 8y € B, 3 =5, o2 2 o). (8)

The alternative @%0)(d, n, s, p) says that Model (1) has a change point at ko € {1, ..., n— 1} with a signal jump dk, which

ko(n — ko)|
n

has s non-zero entries and a magnitude |8H§ > p?. Note that p := p(n, d, s, ko) may depend on n, d, s, and k.

Since both ko and s are unknown, for Model (1), we define the final parameter space under the alternative as:

©4(d, n, p): UUO"OdnSp)

ko=1s=1
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With the above notations, the testing problem in (2) is equivalent to:
Hp : 0 € ©g(d,n) vs. Hy : 0 € ®¢(d, n, p). (9)

We are now ready to introduce the concept of minimax optimality for high dimensional change point inference.

Definition 2.2 (Minimax Optimality). For Problem (9), let & denote the class of possible test statistics, i.e., measurable
functions ¥ (X) taking values in {0, 1}, where X := (X1, ..., X,). We say there is a change point if ¥/(X) = 1. For any test
¥ (X), we also define its testing error by

R(Y.p):= sup Eg[¢(X)]+ sup Eo[1—y(X)]
0cOp(d,n) 0cO1(d,n,p)

We say p* = p(n, d, s, k) is the minimax rate of change point testing if the following two conditions are satisfied:

1. For any € € (0, 1), there exist a constant C. > 0 depending only on € and a test {* such that R(y*, Cp*) < € for
all C > C, (or asymptotically lim sup,_, o, R(¥*, Cp*) < €).

2. For any € € (0, 1), there exists a constant ¢, > 0 depending only on € such that V 0 < ¢ < ¢, and for any test
¥ € W, the following holds:

R(Y,cp*) > 1—€ (or asymptotically liminfR(y, cp*) > 1 —¢).
n—oo

Remark 1. By definition, p* = p(n, d, s, k) is the minimax rate of change point testing in the sense that there is no test
that can control the overall errors (type I and type Il errors) under 1 — ¢ if the signal strength p < c.p*. Moreover, if
we restrict our attention to the class of all « level tests ¥, = {{/ : supgeg,an Eol¥(X)] < a}, then p* = p(n, d, s, k) is
said to obtain the minimax rate of testing in the sense that no « level test can detect a change point with overwhelming
probability if the signal jump satisfies p < c.p*.

Next we give a comprehensive review on recent developments of high dimensional change point inference and
compare their theoretical properties in terms of HDE or minimax optimality. Recall that the goal is to develop an
efficient test via aggregating the CUSUM matrix (7) to account for the alternative structures. In the high dimensional
setting, these tests are mainly classified into two categories: one class knows and utilizes the sparse or dense alternative
patterns [4,16,31,35,58,59,63,67], and another class aims to construct a method that accounts for the unknown alternative
structures in a data-driven way [2,15,25,41,43,53,68], which is also called the data-adaptive method. In what follows, we

assume that the variance in each coordinate of X, e.g., Var(X;) = ajz, is known and without loss of generality, we assume
2 _

o; 1 for 1 < j < d. Moreover, we require all coordinates with a change point have the same order in the sense that
. Smin . (Smax =
0 < ¢ <liminf <limsup — =< C < o0, (10)
=00 Omax n—oo  Omin

where Smin = minjery 8j| and dmax = Maxjery |§;]. This helps us to make a comparison between different methods under
a relatively unified framework.

Remark 2. In change point analysis, variance estimation is an important problem. As shown in [54], inappropriate variance
estimation may lead to non-monotonic power performance. In this review paper, to avoid unnecessary notations, we
assume of =1 for 1 <j < d for discussing the main ideas of different methods and theoretical properties.
3. High dimensional change point inference with known alternative structures
3.1. £o.-norm based methods in [35,63] for sparse alternatives

For high sparse change point alternatives, [35] proposed the following ¢.,-norm based test statistic:

kn—k kn—k
Tirak = - Ci(k)| = = C(k . (11)
k= max max fo ——[Gk)| = max max,/——]ch],

They proved that under some temporal conditions (Assumption 2.1 therein) for data observations and spatial conditions
among coordinates (Assumption 2.2 therein), the test statistic has the following limiting null Gumbel distribution:

lim P(y/2 log(2d)(Tyak — ) < x) = exp(—e ™), (12)

1
where f; = 5«/210g(2d) — log(3log(2d))/+/2 log(2d). Hence, a critical value ¢, = —log(—log(1 — «)) can be used to

implement an « level test. This result can be regarded as an extension of the low dimensional counterpart (Theorem
1.3.1 in [22]) to high dimensions. Note that [35] requires d grows with the sample size n with at most a polynomial
rate (d < n® for some C > 0). It is well-known that the convergence to an extreme distribution in (12) is slow and
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typically requires strong conditions on the covariance structures among coordinates (see Assumption 2.2 therein), which
seems unreasonable in practice. To overcome this problem, [35] also proposed to use a parametric method as well as
a multiplier bootstrap method respectively, to approximate the limiting null distribution of Tjiax. In terms of the power
analysis, it is proved that if min;<jq |5;] 3> +/log(n)/n holds, with probability tending to one, T}k can detect and identify
a change point.

Note that the method in [35] requires strong assumptions on the covariance structure ', and the bootstrap method
in [35] also requires a consistent estimator for the relative change point location kg/n to mimic the data under Hy. This
results in strong conditions for the signal strength. To relax the assumptions on X' as well as the signal condition on
8, [63] proposed the following test statistic for detecting sparse alternatives:

T = max, max 600 = max, JeWl. (13)
where k and n—k are the lower and upper bounds for the candidate search location. Note that the main difference between
Tjirak and Ty, is that the former places higher weights on search locations closer to the centre of data observations, which
is easier to detect a change point if it is located around the centre in the data sequence. Instead of deriving the limiting
distribution directly, Ty, considered a multiplier bootstrap method to approximate the limiting null distribution of Ty,,

which proceeds as follows. Let eq, ..., e, td N(0, 1). Define the bootstrap based CUSUM statistic as:

(nik Z ei(xi—)_((n—k))_,%ZE,'(X,'—)_((I())>, (14)
i=k+1 i=1

k(n — k)
n

C*(k) =

where X(k) = k™' YK X;, X(n — k) = (n — k)™ > i ki1 Xi. Based on C*(k), the bootstrap based test statistic for Ty, is
defined as:
* _ * _ *

Mo = o, me Gl = e, |0l 1)
The main question for bootstrap is whether the conditional distribution of Ty, given X can approximate the distribution
of Ty,? Let CT%‘X(] —a) be the 1 — o quantile of T§, given X. [63] proved that for sub-exponential distributions of € with
some other regularity conditions, under Hy, we have, as n — oo,

sup |P(Tyy < cr x(1— a)) —a| =0,
ae(0,1)
as long as log’(dn) = o(k) holds. Hence, [63] allows the data dimension d to grow exponentially with the sample size n

in the sense that d = O(e"E) for some 0 < ¢ < 1/7. For the power results, [63] proved that under Hy, for any ¢ € (0, 1),
we have

log7(dn)>1/6

P(Tyy > ez x(1—a)) > 1 (nd)= — Cz( X

as long as the signal jump satisfies:

log(¢ ") log(dn) + log(nd/«)

k() ko
n;(l — F)

I8, = g@;}éwﬂ > G , (16)

where Cy, C3, C3 are some universal positive constants. Note that the above results also apply to data with uniform
polynomial moments (see Assumption D therein), where some technical conditions need to be modified.

Remark 3. For detecting a change point with overwhelming probability, [35] requires Smin >> +/log(n)/n and [63] requires
Smin > C+/log(d)/n for some big enough constant C > 0. From the aspect of HDE, we see that the efficiency of [35] is

min_ \vhile the efficiency of [63] is ——mx
JTog(n) y of (3]s —2 @

of [63] reaches the minimax optimality for detecting sparse change points.

. Moreover, we show in Section 5.4 that the signal strength requirement

3.2. ¢,-norm based methods in [31,59,67] for dense alternatives

It is known that for detecting dense change point alternatives with a large number of coordinates in § experiencing a
change of a small signal jump, the £,-norm based test statistic typically has good performance than the ¢,,-norm based
one. The intuition is that in high dimensions, the ¢,-norm is not equivalent to the £,,-norm. Once the signal jump for
I6]l is a smaller order than +/log(d)/n, the £,,-norm based method fails to capture such signal information while the £,
norm succeeds by adding up all the weak signals.
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Assuming the errors {e;},i € {1,...,n},j € {1,...,d} in Mode (1) are i.i.d N(0, 1), [67] proposed the following test
statistic for detecting dense change pomt patterns:
T =  max C3(k)=  max ci)l?,
Zhang = lcin]<k<lcyn] 4 Z Lclnjfkf Lcan] ” (]) |2

where 0 < ¢; < ¢; < 0.5 are some prespecified constants. Under Hg, ||C(j)||§ follows a chi-squared distribution with a
degree of freedom of d. To obtain the critical value that determines a change point, [67] derived an explicit approximation
to the tail probability of Tzhane under the null hypothesis. This leads to an approximation to the theoretical p-value. The
authors showed that the approximation is very accurate at moderate to small p-values. Note that the derivation in [67]
is non-asymptotic in the sense that the dimension d can be large but fixed.

In a similar way, [31] proposed a test statistic like:

T = max <M= k‘ (G (k) 1)‘ max KM=k ICk 5 - ‘ 17
HH 1<k<n 1n f 1<k<n—-1n «/E ) ( )
For the above test statistic, [31] proved that under Hy, the following holds, as n — oo,
d
Tyn — sup |I(2)], (18)

0<t<1

where {I"(t),0 < t < 1} is a Gaussian process with E[I"(t)] = 0 and E[I"(t)["(s)] = 2t3(1 —s?)for0 <t < s < 1.

Hence, a critical value can be obtained via Monte Carlo simulations for the limiting distribution. Note that [31] mainly

requires d = o(+/n), which can be regarded as a low dimensional problem. Moreover, the derivation/ﬂn (18) requires all
1

Jn
tending to one, we can detect a change point. Hence, the HDE for [31] is d~1/4|§]|,.

Note that in the dense case, the £;-norm of the signal jump ||§||, matters. Hence, a natural question is: is it possible to
give an unbiased estimator for ||§ ||§ and construct a change point test statistic based on that? [59] answered this question.
Recall § = EXy, — EXy,_; is the mean difference before and after the change point ko. Let X1, X5,¥¢,¥, € RY. Define
h((%1, %2), ¥1.¥5)) = (%1 —¥;) " (%2 — ). Let (X1, Y1) and (X3, Y>) be independent copies of (Xky—1, Xk, )» respectively. It
is shown in [12] that

coordinates in € are independent with X' = 1. For the power analysis, [31] proved that if |||, > , with probability

E[h((X1. X2). (Y1, ¥2))] = |EX, ~ EXig1 [ = 3]

Motivated by this observation, in a recent work, [59] proposed the following U-statistic based process as:

1
Gn(k) = (Xi, — Xj,) (Xi, — Xj,). 19
n(k) k(k — 1) (n — k)(n —k — 1) Z Z = X5 (K = X,) (19)
111#12 k (k+1_7]é1jz n
171 N7

Based on G,(k), [59] proposed the following self-normalized based test statistic:

G2(k)
Twang = sup .
g ’
2<k<n-3 Wn(k)
where
2
wO=15[ ¥ % o xymox Y[ Y Y o x)
t=2 1<11 12<r t+141 ]2<k t k+2 k<11 12<t t+141 J2<H
171y #2 i1#iy I1#92

Note that W, (k) in the denominator of Twang is to cancel out the asymptotical variance in the limiting distribution of G2(k),
making the limit of Twang pivotal. This method is called self-normalization, which can avoid the problem of estimating
the variance. In particular, it is shown in [59] that under Hyp, we have

Twang L T*, as n— oo, (20)

where T* is a distribution not depending on any unknown parameters (see Theorem 3.4 therein), and the critical value
can be obtained via Monte Carlo simulations. Note that the derivation of (20) requires some uniform bounds on moments

of € and some “short-range” dependence type conditions on the entries of € = (1, ..., &).
In terms of the power analysis, [59] showed that under H;, as n — oo, the following results hold:
Vnll8ll2

— 0, then Twang Lo

(i) If

1/2
1210,
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n||é
(ii) If ‘”g':lluzz — 00, then Tyang — 00;
F
n||é
(iii) 1f ”g:“Uj — ¥ € (0, 00), then Tyang — T*,
F

where || ¥'||f is the Frobenius norm of X' = Cov(e) and T** is some distribution with an additive shift. Recall the high
dimensional efficiency in Definition 2.1. The HDE of Twang for detecting dense signals is ||8||2/||E||;/2. Considering the
special case with X = I, the HDE reduces to d~'/4||§||,, which is equivalent to [31].

4. High dimensional change point inference without knowing the alternative structures

So far, we have given a discussion about methods designed for high dimensional change point inference with known
alternative patterns. In practice, however, the alternative patterns may be unknown. Methods with wrong pattern
assumptions may result in inefficient power performance and lead to wrong conclusions. Hence, a natural question is:
how to propose a change point test method that enjoys simultaneous high powers for any given unknown alternative
patterns. These are called data-adaptive tests. Next, we give a detailed discussion on this research direction.

4.1. Projection based methods in [2,58]
Essentially, for making a powerful change point test, it is important to increase the signal to noise ratio for the test

method. One way is to project the data into a low dimensional subspace (such as one dimension), which maximizes the
signal to noise ratio after projection. For example, [2] proposed to project the data into a one-dimensional subspace. In

particular, let v € R be a projection vector. Then, we can use v to project the data X, ..., X, into a one-dimensional
data sequence v" X1, ..., v' X, with the model:

vV X;=v w4+ 81>k} +v'eic{l,...,n}. (21)
Let Z, = v'X;, i € {1,...,n). For the projected Model (21), we can use the low dimensional CUSUM based method for

constructing a test statistic as:

Tpo = max |U(k),

1<k<n-1

where

kn—k 1 ;1 < 1
Uk = Vit (o Y z- > )
(k) \/ﬁn n tw)\n—k i:%;l k ;

is the CUSUM statistic and 7%(v) = v' Xv is the variance for errors after projection. For any given projection v € R, it is
shown in [2] that, under Hyp, with some regular spatial and temporal conditions, the following holds, as n — oo,

d
TPro - SUP |B(t)|7
0<t<1
where B(+) is a standard Brownian bridge. Under Hy, [2] showed that the test statistic Tp;, has a high dimensional efficiency
as:

X
R
where a5, 125 172, denotes the angle between X~ '/2§ and X'"/?v. Hence, the last step for the projection based method
is to find v which maximizes £(8, v). One can see that the best projection is v* = X ~'§, which is also called the oracle
projection. Using v*, the HDE for Tpr, is | X ~"/?5|,. As a special case, when the covariance structure of € is identity with
Y =1, the HDE of Tp,, reduces to ||§]|,.

According to [2], if we know X ™! and §, we can construct an oracle projection based test, which does not rely on
any pre-knowledge about the alternative patterns. As a result, it has the highest efficiency, which can be regarded as an
upper benchmark for the existing methods theoretically. In practice, however, it is of great difficulty to estimate § and

¥~ simultaneously and construct efficient tests based on them. To address this issue, [58] proposed new algorithms for
estimating & and used projection based ideas for estimating change point locations. In particular, suppose H; holds and

£(5.v) = | 5728, cos(eg-12 g1r,). (22)

assume ¢; e~ N(0, I;). [58] observed that § can be approximated by the s-sparse leading left singular vector of the CUSUM
matrix C in (7), and the corresponding optimization problem can be solved efficiently using convex relaxation. Once the
oracle projection’s estimator § is obtained, [58] projected the data matrix X along the direction §, and applied the existing
one-dimensional change point localization technique on the projected data for estimating the change point location ko.
Note that [58] mainly focused on change point estimation instead of testing.

8
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4.2. Thresholded ¢,-norm based method in [16]

In addition to projection, another possible way is to find an appropriate norm for extracting the signals as much as
possible. Recall IT = {j : §; # 0} is the set of coordinates with a change point and s := [IT] is its cardinality. Let

1Byl = 182)l = -+ 18s)l = 18541yl = -+ = |8yl (23)

Os

be the ordered statistics of the true signals § = (81, ..., 84)'. For high dimensional change point inference, it is the first
s largest entries in § that distinguish H; from Hy. In other words, we are more primarily interested in coordinates with
stronger signal jumps than those with smaller ones or zero. Motivated by this observation, [16] proposed the following
thresholded ¢;-norm based test statistic:

Teno =  Max Z|c () [1{IGK)| = 7},

1<k<n-—1

where 7, is some user prespecified threshold parameter.

Using 7, we see that the individual CUSUM statistics with values larger than 7, reflect contributions in detecting and
localizing the change points and are summed up to the final statistics Tcpo. This method is also called a sparsified step
since the coordinates with small contributions are disregarded. Note that m, is derived such that max;<x<p—1 |Q(I<)| > 7T,
for all k € IT and maxj<k<n—1 |Cj(k)‘ < 7, for all k € IT¢ hold with probability tending to one. Assuming at least one
change point occurs in the data sequence, [16] proved that coupled with the binary segmentation algorithm, Tcp, can
correctly identify the number and locations of multiple change points (see Theorem 1 therein) with assumptions that
Smin > €. for some ¢, > 0 and dn—1°¢" — 0 as n — oo.

4.3. Double CUSUM based method in [15]

Note that the implementation of [16] involves a selection of the threshold parameter 7,, whose value depends on
the unknown underlying data generation mechanism such as the number and locations of change points. Hence, from
a practical viewpoint, the selection of m, is not an easy task. To overcome this limitation, [15] proposed a Double
CUSUM (DC) based testing procedure that aims to select 7, in a data-driven way. In particular, recall the CUSUM statistic
C(k) = (Cy(k), ..., Cq(k))T as defined in (3). Let

[Cy(k)l = Cy(k) = -+ - = [Cay(K)] (24)
be the ordered CUSUM statistics at each candidate search location k € {1,...,n — 1}. For each fixed m € {1, ..., d} and
ke {1,...,n—1},[16] proposed the DC based test statistic as:

G = [P (03 el - 551 3 el

where ¢ € [0, 1] is some user pre—spec1f1ed parameter to account for the alternative patterns which is discussed later.
Note that when ¢ = 1/2, it reduces to the classical CUSUM statistic except that the data are ordered CUSUM statistics
[Cy(KI, - - -, |Cay(k)I. This is why it is called Double CUSUM. Then, for a fixed ¢ € [0, 1], the final test statistic in [15] is

Tyo = max max Ch(m, k). (25)

1<k<n—11<m=d
The main idea for T} is that if there are s non-zero elements in § having a change point, there is a big gap between the
average for the first s largest CUSUM statistics and the last d — s ones. Since s is typically unknown it is natural to search
all candidate s € {1, ..., d} maximizing the gap. Based on T, DC, a change pomt is detected if T, DC > m!, where 7/ is a
test criterion. According to [15], under some regular conditions, if we choose 7! properly in theory, under Hy, we have
IP’(T,‘D" > /) — 0as n — oo. This controls the type I error asymptotically. As for the power analysis, suppose ko =< n and

let § := 57! jelt |8;] be the average of non-zero elements with a change point. According to [15], if the signal strength
satisfies:
ns
d{ B =
<7> logn
s

with probability tending to one, a change point is detected.

According to (26), we see that the HDE for Tj. is s%5/(d* log n). As for the choice of ¢, it is shown that ¢ = 0 corresponds
to a test which is powerful for sparse alternatives while ¢ > 0 is sensitive to dense alternatives. To see this, consider the
special case with high sparsity with s = 1. The HDE of Tgc is 8/ log(n), which has an efficiency loss of log n compared to

9
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the oracle projection based method [2] having an efficiency of ||§||,. For the high dense case with s < df with 8 € (1/2, 1],
the HDE of T} is
8
de(1=A)logn

In this case, combining (10) and ||8]|, =< +/s8, we see that there is an efficiency loss of an order of d?~(#~1/2% Jogn,
compared to the oracle case with an efficiency of ||§]|,.

, forany ¢ > 0.

4.4. The (So, p)-norm based data-adaptive test in [43]

Note that [16] and [15] essentially used a thresholded ¢;-norm for aggregating the CUSUM statistics, which aims

at selecting coordinates &1y, ..., d) in (23) that are more relevant to change points. Using a similar but more general
framework, [43] proposed a class of the (s, p)-norm based testing statistics. In particular, for a vector v = (vy, ..., vq)" €
RY, with vyl = - -+ > |vg)| being the ordered statistic for |vq], ..., |vq4|, define its (so, p)-norm as follows:
S0
1/p
— N
||”H(so,p> = (Z|vu>| ) ; (27)
i=1
where sg € {1,...,d}and 1 < p < oc. Essentially, the (so, p)-norm is the £,-norm for the first s largest entries (in absolute
value) for v. Hence, it can be regarded as an adjusted £,-norm since it uses the ordered statistics of |v(y)l, ..., |vq)|. Note

that by choosing a proper combination of sp and p, ||v||(s,,») reduces to some classical £,-norm adopted in the literature.
For example, for p = 2, if we choose sy = d, it reduces to the traditional ¢;-norm adopted in [31,67]. For any given sy,
if we choose p = oo, it reduces to the £,,-norm used in [35,63]. Moreover, for a given sq with p = 1, it can be regarded
as the thresholded £;-norm proposed in [16]. Hence, the (so, p)-norm is a flexible generalization of the existing methods.
Using (27), for a user-prespecified so € {1, ..., d}, [43] proposed a class of testing statistics with respect to different p as
follows:

T kn— ”
= max ,/-—
(s0-p) kken—k

”(so,p)’ with 1 < p < oo, (28)
where k and n — k are the lower and upper search locations, respectively. Note that for a given sy, the statistic T(s, ) with
a small p (e.g., p = 1, 2) is more sensitive to dense alternatives while that with a large p (e.g., p = c0) is more powerful
under sparse alternatives. Hence, for any unknown alternative pattern, there exists at least one test in {T(s, 5), 1 < p < oo}
enjoying a powerful performance, which is called individual test statistics. For each T, p), it is very difficult to directly
derive its limiting null distribution. Therefore, [43] proposed to use a multiplier bootstrap based procedure for obtaining a

good approximation. In particular, for the bth bootstrap, b € {1, ..., B}, let el, R en P N(O 1). Define the bth bootstrap
version of the CUSUM statistic as:
k
kn—k) ; 1 1
(k) = ( —X(n—k) - ) 29
(k) n n—k,Z ( (n ( kZe (29)
i=k+1 i=1
Then, for each T, p), conditional on X = (X1, ..., X;), define its bth bootstrap based version as:

kn- || Ch(k with 1 < p < cc. (30)

b P —
T(So.p) = max

k<k<n—k V n H (s0.p)’

Liu et al. [43] proved that under Hy, with some regular conditions, we can use T(’;O’p) to approximate Ty, ;):

sup }P(T(Soﬂp)sz) IP’(T

< z|X) | =0y(1), asn,d — oo. (31)
z€(0,00)

(s0.p) =
Note that the derivation of (31) allows the data dimension d grows exponentially with the sample size n in the sense
that sé log(dn) 0(n®) for some 0 < 8 < 1/7. Based on the bootstrap samples {T}! (o) " Tgo )} we can obtaina 1 — «
critical value ¢, ( (so.p) @nd construct a test as Wy (s,.p) = HT5pp = Ty (s0,p))- The result in (31) guarantees that the individual
test ¥, (s,,p) has the asymptotic level a.

In terms of the power analysis, [43] requires the signal strength satisfies:

|20 o coso(1 -+ ) (2 Togtdln — 2K) + V2 Togta ). (32)
n n (s0.p)

where €, = o(1) with €,+/lognd — o0, « € (0, 1) is the significance level, and Cy is some big enough constant. Under Hy,
if (32) holds, [43] proved that with probability tending to one, a change point is detected:

P(Wa,(so,p) = ]) — 1, asn, d, B — o0.

10
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) . i logd 181l (s0.p)
Remark 4. [43] requires the signal strength satisfies ||§ > (pS0,/ ——. Hence, the HDE of T is ——222 Moreover,
[43] req g g 18ll(so.p) = CoSo,/ . N T,
we show in Section 5.4 that for sparse alternatives, Ty, ;) obtains the minimax optimality separation rate for a given but
fixed so.

Once the individual test statistics {Ts,,;), 1 < p < oo} are constructed, the remaining step is how to combine them
to yield a powerful test that adapts to the unknown alternative patterns. Note that a small p-value leads to a rejection
of Hy. For a user prespecified sq, [43] proposed a data-adaptive test statistic by taking the minimum p value among the
individual tests:

Taa = 11217[;] P(so,p), (33)

where 75(50,,,) is the approximated p-value for each T, ;), which is obtained using the bootstrap samples, and P is a
candidate subset of p satisfying |P| < oo. In practice, it is recommended to choose P = {1, 2, 3, 4, 5, oo} for enjoying
simultaneous high powers across various alternative patterns. Moreover, note that P, y is typically correlated and the
distribution of T,q4 is very difficult to derive. Hence, [43] proposed a low cost bootstrap based procedure for obtaining the
p-value for the data-adaptive test T.4, see Algorithm 2 therein.

Remark 5. As discussed by [43], the data-adaptive test T,q is robust against the choice of sy, given sy is not too small. In
practice, it is recommended to use s, = d/2, even though it is theoretically required to be s, = log® d for some &, > 0
under H;.

4.5. The £p-norm based data-adaptive test in [68]

We have discussed that the £,-norm is powerful for dense alternatives. Moreover, it is known that £, — £, asp — 0.
Hence, for the general £,-norm, a larger value of p may yield powerful performance for sparse alternatives. Motivated by
this observation, [68] proposed a class of the £,-norm based individual test statistics and combine them to construct a
data-adaptive method. Specifically, for each fixed even number p € {2, 4, ..., }, define the two-sample U-statistic based
process

d
= Z Z Z Kiye — Xjpe) X (Xiye — Xjpe) X -+ X (Xipe — Xjpe)s

=1 1<iy,....ip<k k+1<jq,....jp<n

P
with k€ {2p,2p+1,...,n—2p}. (34)
Note that under Hy, choosing k = kg, we have
Uy (h
o] il =18}, for pei2a...
AkAn—k
p k! b (n—k)! o » .
where A, = = k—p) and A,_, = m Hence, Up(k) can be regarded as an estimation for ||§|,. For p = 2, it

reduces to (19) up to some constants. Then, for a user prespecified p € 2N, [68] proposed the following individual test
statistic with respect to different p:

U2(k)

Thp = max s
mp 2p<k<n—2p Wp(k)
where
k—p
(k) > U1 k) + ZUtk—i—ln)
t=p t k+p

and

b(t; s, m) Z Z Z Kiye — Xjpe) X Kige — Xijpe) x -+ X (Xipe — Xjpe)-
€=1 s<iq,...,ip<t t+1<jq,....jp<m
Note that the test statistic T, is a self-normalized test statistic using W, in the denominator to cancel out the asymptotical
variance in the limiting distribution of Ug(k). This makes the limiting distribution of T, becomes pivotal without any
unknown parameters. Moreover, T, , with a smaller value of p is more powerful for the dense case and that with a larger
one is sensitive to sparse alternatives.
. . . d . .

It is shown in [68] that under Hy, for any given p € 2N, we have, as n — oo, T, , — T,, where T, is the corresponding

limiting null distribution whose critical value can be obtained using Monte Carlo simulations. More importantly, as shown

11
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in [68], for any p; # py, the two limiting distributions i,l and ?pz are asymptotically independent. Hence, in theory, it is
possible to construct a family of asymptotically independent individual test statistics {T,,, p € 2N}.
As for the power performance, for each T; ,, [68] showed that under H;, as n — oo, the following results hold:

8 N
() If Vsl 0, then T, , > T:
1=, o
p
n||é
(i) If Vil ]U;’ — 00, then Ty, L o
(P21
«/ﬁ||3||p

(iii) If

d =~
2 V€ (0,00), then T, , — Tp,
121,

where || X[, denotes the element-wise £,-norm for X, and Tp is a pivotal limit with an additive shift compared to Tp.
Hence, from the above results, we know that the HDE for each T, j, is ||6||p/||2'||;/2. When p = 2 with X' = I, it reduces
to d~'/4||8||,, which is equivalent to [31,59].

Once the individual tests are constructed, it is desirable to construct a data-adaptive method. Similar to the idea

of [43,68] proposed a data-adaptive test statistic using the minimum p-value:

Wya = min Py,
peP

where P, is the theoretical p-value for T, ,, which can be obtained using Monte Carlo simulations, and P is a candidate
subset of p satisfying |P| < oo. Since the individual tests are asymptotically independent, the p-value for W.q can be
calculated directly as 1 — (1 — W,q)”!. According to [68], choosing P = {2, 6} enjoys good size and power performance
across various alternative patterns.

Remark 6. Both [43] and [68] constructed a data-adaptive method by combining the individual tests using the minimum
p-value. There are some essential differences between them. First, [43] adopted the (sp, p)-norm for the sample mean
difference C(k). Typically, [|C(ko)ll(s,,p) is not an unbiased estimator for ||8]|s, p). In contrast, [68] directly estimated the
£,-norm of § using the two-sample U-statistic based process U,(k) as in (34). Second, the individual tests in [43] are not
independent while those in [68] are asymptotically independent. Hence, the former introduced a low-cost bootstrap to
obtain the data-adaptive test’s p-value while the p-value in [68] can be calculated directly. Third, the proposed individual
tests in [43] include the ¢,,-norm as a special case, while those in [68] include the ¢;-norm based method. The two
special cases obtain the minimax optimality, under the sparse and dense cases, respectively. Lastly, the data-adaptive
method in [43] can be extended to other high dimensional parameters such as variance, covariance matrix, or Kendall’s
tau correlation matrix (see Section 6). It appears unclear on how to use the idea of [68] for those general applications.

5. Minimax optimality for high dimensional change point inference

For high dimensional change point inference, one may be interested in whether the proposed method is optimal. In
other words, it needs to show that the requirement on § for detecting a change point with overwhelming probability is
the weakest. Formally, this question is equivalent to the concept of minimax optimality as introduced in Definition 2.2.
Different from the traditional focus on the size and power performance, minimax optimality is a more refined result. Not
much development on this topic has been made in the literature until recently under some special cases. To introduce

. . . . . iid
these results, in this section, we assume the errors in Model (1) satisfy ¢; B N(0, Iy).
5.1. Minimax lower bound in [25]

Recall s =: |IT] is the sparsity level of § and p(n, d, s, ko) is the scaled signal strength for Model (1) defined in (8).
Suppose s =< d'~# for B € [0, 1). Note that 8 e [0, 1/2) corresponds to the moderate sparse or dense level studied
in [31,59], while 8 € (1/2, 1) corresponds to the highly sparse level studied in [35,63].

For Problem (9), [25] derived the minimax lower bound. In particular, [25] proved that for any € € (0, 1), if the signal
strength p := p(n, d, s, ko) satisfies:

2(n, d, s, ko

lim sup 2 N ) < V2log(1+ 4(1 — €)?), for B € [0, 1/2), (35)

and
2(n,d,s, k 1
limsupM <2——, for g e(1/2,1), (36)
s 00 slog(d/s) B

then for any test ¥, we have liminf,_, .o R(¥, p) > 1 — €. In other words, no tests can control the overall type I and type
Il errors with vanishing probability if (35) holds for dense alternatives and if (36) holds for sparse alternatives.
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5.2. Minimax upper bound in [25]

To show the upper bounds, [25] proposed a linear and scan test statistic, which corresponds to the dense and sparse
case, respectively. Specifically, recall the CUSUM statistic C(k) in (3). Then, for the moderate sparse or dense case with
B € [0, 1/2), the linear statistic is defined as:

max Ictkl; —d
1<k<n-1 2d ’

Based on (37), [25] proposed a linear type test Viinear = 1{TLinear = H}, where H is some critical value. For the highly
sparse case with 8 € (1/2, 1), [25] proposed a scan type test statistic as:

1 { | ek - m}

Tscan = Max max — max
AN T i <k<n—11<m=d Hyp, teM(d.m) J2m

1 Zj";l Cé)(k) —-m
= max max — ——,
1<k<n—11<m=<d Hp, m
where M(d, m) denotes the collection of all subsets of {1, ..., d} of cardinality m, IT,v is the projection of a vector v € R¢
onto a subspace indexed by £ € M(d, m), Hy, is some critical value to account for different sparsity m, and Cy(k) is the
ordered CUSUM statistic in (24). Based on (38), a scan type test is proposed as Y inear = 1{Tscan > 1}. Moreover, to account
for the unknown alternative patterns, [25] proposed a combined test as:

(37)

Tiinear =

(38)

Ipadaptive = max(‘/’Linean wScan)'

For the above data-adaptive test Yadaptive, it is proved by [25] that if p := p(n, d, s, ko) satisfies

2
p*(n,d,s, ko) 1

liminf min ————= for B € [0, 1/2), 39
n—oo 1s<ko=n-1./dlog(dlogn) ~— pelo.1/2) (39)
or
2(n,d, s, k
liminf min pnds ko) o g e (1/2.1), (40)

n—oo 1<kg<n-11s<s=d slog(d/s)

then for any 0 < € < 1, we have limsup,_, .. R(Vadptive. ) < €. In other words, if the signal strength is large enough
such that (39) or (40) holds, the combined test has vanishing type I and type II errors.

Remark 7. For the highly sparse case, we see that the lower bound (36) matches the upper bound (40). Hence, the
minimax optimal rate is p2(n, d, s, ko) < slog(d/s). For the moderate sparse or dense case, we see that the change point
is not detectable if p2(n, d, s, kg) = ~/d, and can be detected with overwhelming probability for the linear type test in

(37) if p?(n, d, s, ko) =< +/dlog(dlogn). Hence, there is a gap of an order of /log(dlogn) between the lower and upper
bounds derived in [25].

5.3. Exact asymptotic constants for the minimax optimality separation rate in [41]

As an extension of [25,41] further proved the exact minimax separation rate for the dense case. In particular, according
to [41], we have the following results:
e Dense case: Assume s?/(dloglogn) — oo as n — oo. Suppose p?(n, d, s, ko) = £+/dloglogn. Then, there exists a
test ¥* such that lim,_, o, R(¥*, p) — 0if & > 2, and for any test ¢, lim,_ . R(V¥, p) — ldhloldls if& <2.
oglogn
e Sparse case: Assume s/d — 0 and s/(loglogn) — oo. Suppose p%(n,d,s, ko) = sslog(#). Then, there

exists a test ¥* such that lim,_, .. R(¢*, p) = 0if & > 2, and for any test v, lim,_ o, R(Y¥, p) — 1 holds if § < 1.

Remark 8. According to [41], the minimax optimality separation rate for the dense regime is p%(n, d, s, ko) < «/dloglogn
with a sharpest constant 2. Moreover, for the sparse regime, both [25] and [41] derived the minimax separation rate with
an order of p2(n, d, s, kg) < slog(d/s).

5.4. Minixmax optimality for the existing methods
In this section, we show that the rates derived in [43,63] are minimax for detecting sparse change point alternatives,

k(n — k)
“ysp2

and those in [59,68] are optimal for the dense alternatives (up to a logarithmic factor). Recall p(n, d, s, k) =
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Table 1
Signal requirements and main model assumptions of the existing methods for detecting a change point with power tending to one. The change
point location kg is assumed to be cin < ko < cyn for some constants 0 < ¢y <¢; < 1.

Method ) € X Allow temporal d and n
dependence?
logn . .
£o-norm based [35] [, > — Uniform Polynomial Moment Strong  Yes d<nt
n
logd . e .
£o-norm based [63] 3], = Coy/ —— Sub-exponential Distribution Mild No d < exp(n®)
n
(or Uniform Polynomial Moment)
log(d 1
Scan type test [25] ”8” /2 s og /s) Gaussian Distribution Strong No _osn 0
slog(d/s)
d1/4
¢5-norm based [31] 8], > NG Uniform Polynomial Moment Strong  Yes d = o(/n)
n
1= , : .
£,-norm based [59] 8], > — Uniform Polynomial Moment Mild  Yes d— oo
2dlog(dlog n))/4 logn
Linear type test [25] 8], = (2dlog(dlogn)) ™ Gaussian Distribution Strong  No _%8n o
Jn slog(d/s)
1
Oracle projection based [2] 3], > 7 Uniform Polynomial Moment Mild  No d — 00
n
d\¢
~ (—) logn
Double CUSUM [15] §» 5L pel0,1] Sub-exponential Distribution Mild Yes d=n‘
n
8 =S Zjel'l |8 |) d
Thresholded ¢;-norm [16] 8], = Co Chi-squared distribution Mild Yes T
logd
(S0, p)-norm based [43] ”8” oy = CoS0 g Sub-exponential Distribution Mild No d = exp(n®)
¢,-norm based method [68] HSHP > I \/”f ,pe{2,4,...,} Uniform Polynomial Moment Mild  Yes d— oo
ko(n — ko) — ko) .
For 8, suppose (10) holds. Then, we have p%(n, d, s, ko) = ||6||2 s82 ... According to [25], we know
that the detection boundary for the sparse alternative is an order of
logd ko ko
Smax X< , with h(kg) = 1-—
e nh(ko) ( n )

Combining the above results with (16) and (32), we see that the £,,-norm based method in [63] and the (sg, p)-norm
based individual test (with a fixed given sg) in [43] are optimal for detecting sparse alternatives.
For the dense case, according to [41], the optimal rate is an order of

e (dloglogn)'/4
27 n2h(kg)

Hence, for the ¢,-norm based methods in [31,59], they are rate optimal up to the logarithmic factor.

To end this section, for the existing state-of-art techniques, we summarize the signal conditions for detecting a change
point in Model (1) with probability tending to one. The results are provided in Table 1. In addition to that, we also report
the corresponding model assumptions in terms of the moment condition on the underlying errors € = (eq,...,€q)",
the spatial condition ¥ among coordinates of X = (Xy,...,Xs)" (strong or mild), the temporal condition between
observations, as well as the scaling relationship between d and n.

6. High dimensional change point inference for general parameters

In addition to change point inference for high dimensional mean vectors as in Problem (2), change point detection
can be extended to other high dimensional parameters. In particular, let F;(x) be the cumulative distribution function
for a high dimensional vector X; = (Xi1, ..., Xiq)" € R? at time point i € {1,...,n}. Let I" be a function mapping the
probability distribution F;(x) to some parameter space V. Then, we can consider a general hypothesis problem:

Hy : I'(F;) = --- = I'(F,;) vs. the alternative that
(41)
1:3ko € {1,...,n— 1} such that I'(F}) = - - - = I'(F)) # I'(Fyy+1) = - - = T'(F,).

For Problem (41), we can take I'(F;) = EX; := u; for detecting high dimensional mean vectors and set I'(F;) =
E(X; — EX;)(X; — EX;)" := X, for detecting high dimensional covariance matrix, etc. Change point testing for general
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high dimensional parameters is more technically involved and has gained increasing interest in some real applications.
In recent years, there has been some developments for Problem (41) by taking a special function I". Here, we give a brief
review on this topic.

For high dimensional variance vectors with I'(F;) := (aizl, e aiﬁ)T e R with ng = Var[X;], [16] proposed a sparsified
binary segmentation algorithm, which aggregates the cumulative sum statistics using the thresholded ¢;-norm. For high
dimensional covariance matrix with I'(F;) = X; € R% [59] proposed an £,-norm based self-normalized test statistic; [4]
used an £,,-norm based test statistic for testing sparse changes in X, and their method is based on the CUSUM matrix
obtained from a de-biased lasso estimator. [55] adopted a projection based technique for testing and estimating change
points in the covariance structure of a high-dimensional linear time series, including vector autoregressive moving average
(VARMA) models and spiked covariance models as special cases. Dette et al. [23] applied a dimension reduction technique
for estimating the single change point (suppose H; holds) and [60] used the matrix £,-norm for localizing multiple change
points (suppose H; holds). Furthermore, [6,40] considered change point detection for large contemporaneous covariance
matrices of high dimensional time series satisfying an approximate factor model.

In addition to mean vectors or covariance structures, another recent research development is to consider change point
inference for more general parameters in the sense that I'(F) = (6q,..., Hq)T with 6, = E[&«(X], ..., X/,)], where
Dy(X,, ..., X)) : RIx .- x RY — R is a measurable, symmetric (or anti-symmetric) kernel with order m, and X/, ..., X/,
are independent copies with the same distribution as X. This problem is known as U-statistic based change point
inference since the parameter 65 can be estimated using U-statistic. Note that by choosing a special kernel &(-), the high
dimensional parameter I'(F) reduces to some specific problems. This includes the mean vectors, the covariance matrix, the
Kendall’s tau correlation matrix, and the Wilcoxon-Mann-Whitney based change point tests as special cases, where the
latter two cases are known as robust change point testing methods. For testing the changes of I'(F) = (61, ..., 6,)", similar
to mean vectors, there are still some concerns about the alternative patterns (sparse or dense) of I'(Fy,;1) — I'(Fy,) in the
high dimensional setting. Recently, several papers made progress on this issue. For example, based on U-statistics, [62]
proposed an £..-norm based change point test for location parameters; Constructing U-statistic based CUSUM, [43]
considered the (sg, p)-norm based method for detecting general parameters and a data-adaptive test statistic as in (33)
was also proposed.

For high dimensional change point inference, another interesting problem is to consider the following non-parametric
test:

Hp : Fi(x) = --- = Fy(x) for all x € R? vs. the alternative that
(42)
Hy : 3k € {1,...,n — 1} such that Fi(x) = - - - = Fy;(X) # Fy1(X) = - - - = Fq(),

where Fy,(x) and Fy,1(x) differ on sets of non-zero measures.

Note that Problem (42) does not rely on any distributional assumption or is limited to a particular parameter such as
mean vectors or covariance matrices. Hence, it can detect general types of changes in the data generating distribution. In
the low dimensional setting with a fixed d, there are some works based on the empirical cumulative functions [21], the
empirical characteristic functions [33], the energy distance [44], or some kernel based procedures [1] for testing (42). In
high dimensions with d >> n, the traditional methods are neither no longer applicable nor lack theoretical justifications.
Developing non-parametric change point tests in high dimensions is a challenging task. Several papers appeared in the
literature and we name a few here. Chen et al. [ 14] proposed a graph based scan test statistic for detecting a single change-
point or two change points. Their method can be applied to non-Euclidean data. Chu and Chen [18] improved [14] for
detecting changes of scale alternatives while maintaining high powers for changes in the middle of data observations.
In a recent work, [10] observed that in high dimensions, the energy distance as used in [44] is only able to capture
the information of the differences of the first two moments (mean and variance) between two distributions. Hence,
the method in [44] fails to detect general distributional changes beyond the first two moments in high dimensions. To
overcome this problem, using a generalized homogeneity metric, [10] proposed a nonparametric change point test for
the homogeneity of two high-dimensional distributions. Their method is based on a cumulative sum based process in an
embedded Hilbert space, which can be regarded as an extension of [44] to the high dimensional settings.

7. Extensions to multiple change points inference

So far, we have reviewed methods for change point inference for AMOC in (1) and discussed their theoretical properties.
One natural extension for Model (1) is to investigate inference for high dimensional multiple change points. Specifically,
by letting u; = EX;, i € {1, ..., n}, we can consider the following hypothesis:

Hp:p;=---=m, vs. the alternative that
(43)
Hi:31<ky < - <kmp <nsuchthat py ==y, 1 F Wy, = = Ry, 1 F Rig e = = Ry
In other words, there are m* unknown change points k; < --- < kg« that divide the data into m* + 1 segments with

different constant mean vectors across the segments. Note that for multiple change point models, both the number of
change points m* and the locations {ki, ..., kn+} are typically unknown. This is essentially different from AMOC in (1)
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where m* < 1 is assumed. Moreover, as discussed in the previous sections, the high dimensionality also brings great
challenges for change point inference. The above two aspects make the testing of (43) a non-trivial task. For detecting
high dimensional multiple change points, the common strategy for the existing techniques is to combine the test statistic
designed for a single change point as in Sections 3-4, with the binary segmentation (BS) algorithm in [57], the wild binary
segmentation (WBS) algorithm in [26], the moving sum (MOSUM) based procedure in [19,24], or the scan based method
in [66]. Next, we give a summary for this research direction.

The binary segmentation algorithm is one of the most commonly adopted methods for (43). Let (s,e) C {1,...,n—1}
be a candidate search interval. Let
k
k—=s+De—k,; 1 <« 1
C(s, k, e) = ( Xi— —— Xl), 44
( ) e—s+1 e—k%}l ! k—s+l§ ! (44)

be the CUSUM statistic calculated using the samples {Xj, ..., X.}. Suppose T is a test statistic with T ) = maxXs<x<e H
(C(s, k, e)), where H(-) denotes a general aggregation for C(s, k, e). The choice of H(-) may depend on the alternative
pattern. For example, we can take H(-) = || - |l as in [35], H(-) = || - [l2 in [31], or H(-) = || - ll¢sp.p) IN [43]. Suppose
Cis.e) 1s a critical value (either obtained from a limiting null distribution or using bootstrap). The main idea of BS is that
for the candidate search interval (s, e), we use Tis ) and cs¢) to detect the existence of a change point. If Hy is rejected,
we identify a new change point b by taking the location at which H (C (s, k, e)) maximizes. Then the interval (s, e) is split
into two subintervals (s, b) and (b, e) and we conduct the above procedure on (s, b) and (b, e) separately. This algorithm
is stopped until no subinterval can detect a change point. At the beginning of BS, we may choose (s,e) = (1,n — 1). In
high dimensions, several papers used BS for solving (43) [15,16,43,63].

Note that along with the iteration of the BS algorithm, a search interval that contains more than one change point may
be used. Hence, it is sub-optimal under some unfavourable settings where changes between different segments exhibit
a non-monotonic pattern. In that case, BS based method may lose its power. To enhance the performance of BS, [26]
introduced the wild binary segmentation algorithm. The main idea of WBS is that suppose (s, e) is the current candidate
search interval. Instead of using the whole samples (s, e) for calculating a single test statistic T(s ), WBS generates many
random subintervals {(s;;, en) C (5, e)}“rgzl, to allow at least one of them contains only one single change point (with high

probability). Then, WBS mainly proceeds as follows:

(1) Compute the CUSUM statistic C(sy;, k, e;) on each subinterval (sp,, e;;), then maximize each CUSUM by calculating
Tismoem) = MaXie(sy.em) H(C(Sm. k, €m)), form =1,... M.

(2) Find (m*, b*) such that m* = argmax; <y Tisp.en) aNd b* = argmaxyes , o .y H(C(Sm+, K, €nr)).

(3) Use the critical value ¢, . e,) and Tis , e..) to decide whether we can identify b* as a new change point. If b* is
considered to be significant, then split the interval (s, e) into two subintervals (s, b*) and (b*, e).

(4) Conduct the above procedure on (s, b*) and (b*, e) separately until some stopping rule is reached.

It is proved [26] that WBS enjoys better performance than BS both in theory and application. In high dimensions, several
papers used WBS for multiple change point detection. See [10,58,68] for mean vectors as well as [60] for the covariance
matrix.

It is worth mentioning that both BS and WBS are heuristic algorithms since the next iteration depends on the results
from the previous step. Hence, it is very difficult to control the overall significance level for the whole procedure. Different
from BS or WBS, the moving sum (MOSUM) based procedure is another popular way that directly constructs a test statistic
for multiple change points. In particular, let G, denote some user pre-specified bandwidth. For each candidate search
location G, < k < n — Gy, using the samples {X\_¢,, ..., Xi+g,}, calculate the CUSUM statistics C(k — G, k, k + G,) as in
(44). Then, we can construct a MOSUM based test statistic as:

Tg, =  max  H(C(k— Gy k. k+ Gp)). (45)

Gn<k<n—Gp

By construction, we know that the main idea of MOSUM is to search subintervals with a length of 2G,, + 1 in a moving
procedure. Hence, it can detect the existence of multiple change points if one chooses G, properly. Moreover, in the low
dimensional setting, the limiting null distribution of Tg, can be typically obtained [24]. This results in a test of (43) under
any prespecified significance level. In high dimensions, deriving the limiting null distribution for T, is a challenging task,
and not much research exists. In a recent work, by choosing H(-) = || - |leo, [ 13] studied the £,,-norm based MOSUM test
statistic for testing multiple change points with sparse alternatives. They used the Gaussian approximation technique for
approximating the limiting null distribution of the corresponding test statistic. Along this research direction, it is still an
open question to investigate the theoretical properties of T¢, for other types of aggregation methods such as H(:) = || - [|2
or HC) = | - lliso.p-

In addition(t?)pt)he above mentioned techniques, we note that there are some recent extensions of methods for multiple
change points detection, especially in the low dimensional setting. These are the multiple scale MOSUM [46] procedure,
the narrowest-over-threshold method [5], the tail-greedy unbalanced Haar (TGUH) transform based technique [27],
the seeded binary segmentation based method [37], among others. We believe that it is meaningful to combine these
methods with the high dimension based techniques for solving multiple change point detection arising from modern
high-throughput data sequences.
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8. Concluding remarks

Focused on mean vectors, this paper provides a comprehensive review on recent developments of high dimensional
change point inference. This includes the motivations and challenges for high dimensional change point analysis, the
methodologies designed for known alternative patterns, or those in a data-driven fashion. Using the concept of high
dimensional efficiency, we compare theoretical properties of different methods. We also demonstrate the detection
boundary for this problem in terms of the minimax optimality separation rates. In addition, we list several recent
extensions from high dimensional mean vectors to more complex problems such as change point inference for variances,
covariance matrices, U-statistic based parameters, as well as non-parametric change point tests for distributional changes.
Moreover, we provide some commonly adopted techniques for high dimensional multiple change point inference and
some possible research generalizations.

In spite of recent rapid developments on this topic, there are many interesting and open research directions. One
problem is to consider change point inference for more complex statistical models with {(Y;, X;)},i € {1, ..., n} being
observed, where Y; € R! is the dependent variable and X; € RY is the independent vector. The goal is to test whether
the underlying data generating mechanism between Y and X has a change point. Typically, in high dimensions, we can
consider the following conditional linear regression model

0(YiIX:) = X; BV + X[ BP1{i = ko}, i € {1,...,n}, (46)

where 0(Y;|X;) is the parameter of Y; conditional on X; that is of interest, 8", B*) € R? are the underlying regression
coefficients, and ko € {1, ..., n — 1} is the possible change point location. For example, if we choose 6(Y;|X;) = E(Y;|X;),
Model (46) reduces to the classical linear regression model. To test a change point in (46), we can consider the hypothesis:

Ho: BV =B8? vs. Hy:Thereexists ko € {1,...,n—1} st. gV £ g2, (47)

For linear regression models with a fixed dimension d, Problem (47) has been extensively studied. See [20,32] for a
summary of classical methods. In high dimensions with d >> n, a few papers exist in the literature and the majority of the
existing techniques such as [38,65] mainly focuses on the estimation of kq. In contrast, there are limited developments for
the testing of (47). The challenge comes from two aspects. One difficulty is the fact that, unlike mean vectors, there is no
natural testing statistic such as CUSUM as in (3) for high dimensional regression coefficients. Essential modifications are
needed in terms of the construction of a testing statistic. Another difficulty is how to derive or approximate the limiting
null distribution of the testing statistic once it is constructed. In a recent paper, [42] used the debiased-lasso technique
for constructing an £,,-norm based Wald-type statistic for testing a single change point. They used a novel Gaussian
multiplier bootstrap procedure to approximate the limiting null distribution. Hence, along this research direction, we
can consider multiple change point inference for high dimensional linear regression models. Moreover, beyond linear
models, it is possible to investigate more complicated models such as high dimensional generalized linear models by
setting 0(Y;|X;) =g(]E(Y,-|X,<)), where g(-) is the link function, or consider the quantile regression models by setting
0(Y;|X;) = Quant,(Y;|X;). To our knowledge, change point inference for the latter two cases has not been considered yet
in high dimensions.

Another open problem is the issue of robustness. Since the CUSUM statistics in (3) is constructed using the sample
means, it is not robust against outliers or data with heavy-tailed distributions. In other words, the CUSUM based method
fails to control the size under Hy or cannot detect a change point under H; because of the outliers. Therefore, it is
necessary to consider robust change point inference in high dimensions. In a recent paper, [62] proposed a rank based £,-
norm typed testing statistic to detect sparse changes of mean vectors. Along this research direction, it can be interesting
to construct robust tests for dense alternatives or tests that are both robust to outliers and adaptive to the unknown
alternative patterns.
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