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a b s t r a c t

Change point analysis aims to detect structural changes in a data sequence. It has
always been an active research area since it was introduced in the 1950s. In modern
statistical applications, however, high-throughput data with increasing dimensions are
ubiquitous in fields ranging from economics, finance to genetics and engineering. For
those problems, the earlier works are typically no longer applicable. As a result, the
problem of testing a change point for high dimensional data sequences has been an
important yet challenging task. In this paper, we first focus on models for at most one
change point, and review recent state-of-art techniques for change point testing of high
dimensional mean vectors and compare their theoretical properties. Based on that, we
provide a survey of some extensions to general high dimensional parameters beyond
mean vectors as well as strategies for testing multiple change points in high dimensions.
Finally, we discuss some open problems for possible future research directions.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Change point analysis has a long history since the seminal work of [50,51]. Since then, it has become an active research
rea in various scientific fields including finance, genetics, climatology, engineering, and astronomy. Generally speaking,
uppose we have a sequence of ordered observations such as a time series. Change point analysis aims to answer the
ollowing two questions: [i] whether there is a change for the parameter of the underlying data distribution during the
bservations; [ii] If a change is detected, where is the position of the change point? The above two questions are referred
o as the change point testing and estimation problems, which are two indispensable pillars in change point analysis.
n this paper, we mainly focus on the former question. Classical methods for change point testing assume that the data
imension is fixed. In the last few decades, a rich literature has been developed in addressing different specific problems
nder various model settings. See the book in [11,22] for a summary of the classical methods and a recent review paper
n [32] for some extensions.

With the rapid development of data collection and storage capacity, high dimensional data are ubiquitous, where
he data dimension can be tens of thousands and are typically much larger than the sample size. In this case, the data
enerating mechanism can be complicated and heterogeneity often exists. Hence, for high dimensional data analysis,
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eterogeneity detection or change point detection is an important issue. While there are many earlier works obtained
ith good theoretical results, in high dimensions, the classical methods are often no longer applicable. As a result, it is
esirable to design new methods suitable for modern statistical applications. Driven by this demand, rapid developments
ave been made in the literature over the last 5–10 years for change point analysis. In this paper, focusing on change
oint testing, we first review recent developments on single change point detection of high dimensional mean vectors.
e believe this can reflect the distinctive challenges for high dimensional change point analysis. In addition, it can serve

s a foundation for developing new methodologies for some other complex change point problems. With the concept
f high dimensional efficiency, we compare different methods in terms of size and power, and show their optimality
n terms of the minimax optimality separation rate. The latter one is more technically involved in high dimensions and
sually exhibits a phase transition according to the change point alternative patterns. Beyond mean vectors, in the second
art of this paper, we review some recent extensions to other high dimensional parameters such as variance, covariance
atrices, or non-parametric testing of distributional changes. Lastly, based on the existing literature, we point out several
ossible research directions for more complex model settings and problems.
Note that there are two related problems in high dimensional change point analysis. The first one is change point

stimation [17,49,56]. For this problem, it is usually assumed there are K0 ≥ 1 change points that exist in the model
nd the goal is to simultaneously estimate both the number and locations of the change points. This problem is also
alled data segmentation. Although change point testing and estimation are related, they are fundamentally different.
or example, the former is concerned with proposing tests for controlling the type I and type II errors, while the latter
ne mainly focuses on developing algorithms for estimation consistency of numbers and locations. The second type of
roblem is called online or sequential change point detection [48], where data are observed sequentially. The goal is to
etect a change point as soon as possible while controlling the false alarms. This is very different from our considered
ffline setting that we have observed all historical data at once. Although the above two problems are interesting and
ctively studied to date, it is not possible for us to review all related works in this paper. Hence, in this review, we only
ocus our attention on the problem of offline change point testing.

Throughout this paper, for x = (x1, . . . , xd)⊤ ∈ Rd, define its ℓp-norm as ∥x∥p = (
∑d

j=1 |xj|
p)1/p for 1 ≤ p ≤ ∞. For

= ∞, define ∥x∥∞ = max1≤j≤d |xj|. For any set S , denote its cardinality by |S|. For two real numbered sequences an and
n, we set an = O(bn) if there exists a constant C such that |an| ≤ C |bn| for a sufficiently large n; an = o(bn) if an/bn → 0
s n → ∞; an ≍ bn if there exist constants c and C such that c|bn| ≤ |an| ≤ C |bn| for a sufficiently large n. For a sequence
f random variables (r.v.s) {ξ1, ξ2, . . .}, we set ξn

P
−→ ξ (or ξn

d
−→ ξ ) if ξn converges to ξ in probability (or in distribution)

s n → ∞. We also denote ξn = op(1) if ξn
P
−→ 0. For a positive number x, we use ⌊x⌋ to denote the largest integer less

han or equal to x.
The rest of this paper is organized as follows. Section 2 introduces the formulations of high dimensional change point

inference and its distinctive challenges from the low dimensional problems. Sections 3–4 review recent methods for
hange point inference of high dimensional mean vectors. Section 5 discussed their theoretical properties. Sections 6–7
rovide some extensions to high dimensional change point inference for general parameters as well as techniques for
esting multiple change points. We conclude this paper in Section 8.

. High dimensional change point inference

Let X = (X1, . . . , Xd)⊤ ∼ F (x) and µ := EX = (µ1, . . . , µd)⊤ be its mean vector. Suppose we have n ordered but
ndependent observations X1, . . . ,Xn with X i = (X i1, . . . ,X id)⊤ being its ith observation. Typically, a change point model
or mean vectors has the following form: for i = 1, . . . , n,

X i = µ + δk01{i ≥ k0} + ϵi, (1)

here µ ∈ Rd is the mean vector before change point, k0 ∈ {1, . . . , n − 1} is the possible but unknown change point
ocation, δk0 = (δ1, . . . , δd)⊤ is the mean shift after the change point k0 (if it exists), and ϵi := (ϵi1, . . . , ϵid)⊤ are i.i.d error
erms with Eϵi = 0 and Cov(ϵi) = Σ . Model (1) is usually called at most one change point (AMOC) model. A typical
uestion for Model (1) is to test whether there is a change point. In other words, for Model (1), we have the following
ypothesis:

H0 : δk0 = 0 and k0 = n vs. H1 : ∃k0 ∈ {1, . . . , n− 1} such that δk0 ̸= 0. (2)

ore specifically, the data are homogeneous across the observations in terms of the mean vectors under H0, while there
s a mean shift δk0 at the unknown location k0 under H1. For the simplicity of notations, we use δ directly when it is
ppropriate. In the traditional low dimensional setting with fixed d and d < n, the cumulative sum (CUSUM) statistic [22]
s typically adopted for Problem (2). In particular, for each candidate search location k ∈ {1, . . . , n−1}, the CUSUM statistic
s defined as:

C (k) =

√
k(n− k)

n

( 1
n− k

n∑
X i −

1
k

k∑
X i

)
. (3)
i=k+1 i=1

2
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hen based on (3), we can construct the following test statistic:

Tn = max
1≤k≤n−1

C (k)⊤Σ−1C (k). (4)

Intuitively, Tn searches through all possible locations k for comparing the mean differences before and after k. Hence, a
arge value of Tn triggers the rejection of H0. It is worth mentioning that Tn is related to the log-ratio of the maximum
ikelihood based statistic. To see this, consider the one dimensional case with d = 1. Suppose ϵi

i.i.d
∼ N(0, σ 2) with known

2. For each fixed k, the log-ratio of the maximum likelihood statistic is defined as

Hk = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏k

i=1
1

√
2πσ 2

exp
(
−

(
Xi − X̄(k)

)2
2σ 2

)∏n
i=k+1

1
√
2πσ 2

exp
(
−

(
Xi − X̄(n− k)

)2
2σ 2

)
∏n

i=1
1

√
2πσ 2

exp
(
−

(
Xi − X̄

)2
2σ 2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

=
1

2σ 2

{√
n− k
nk

k∑
i=1

Xi −

√
k

n(n− k)

n∑
i=k+1

Xi

}2

=
1

2σ 2 C
2(k),

(5)

where X̄(k) := k−1 ∑k
i=1 Xi, X̄(n − k) := (n − k)−1 ∑n

i=k+1 Xi, and X̄ := n−1 ∑n
i=1 Xi. Hence, based on (5), the maximum

likelihood ratio based test statistic for testing (2) is defined as:

max
1≤k≤n−1

2Hk = max
1≤k≤n−1

1
σ 2 C

2(k),

which is equivalent to the use of (4). In the low dimensional case, the CUSUM statistic in (3) or (5) has been extensively
studied for change point detection. See [3,22,28–30,47,52]. Typically, under some regular conditions, we have, as n → ∞,

max
1≤k≤n−1

k
n
n− k
n

C (k)⊤Σ−1C (k) d
−→ sup

0≤t≤1

d∑
j=1

B2
j (t),

where {B1(t), . . . , Bd(t)} are independent Brownian bridges with mean zero and covariance structure E(B1(t), B1(s)) =

(min(t, s)− ts). Formulas and critical values for the above limiting distribution can be found in [36].
In the high dimensional setting, however, the data dimension d can grow with the sample size n (d → ∞) and even be

much larger than n (d ≫ n). For example, in finance, if we are interested in testing a change point for returns of companies
in the S&P 500 index over a given period, we need to deal with data with the dimension of 500, see [35]. In genetics, we
can use change point testing to detect chromosomal copy number abnormality which involves thousands of genes [58].
Other modern statistical applications include the detection of Denial of Service in internet traffic [39], functional Magnetic
Resonance Imaging (fMRI) data studies, see [69] as well as the detection of distant galaxies in astronomy [25]. For
those real applications, the high dimensionality of data brings great challenges in both implementation and theoretical
studies [34]. More specifically, the methods designed for low dimensional cases are no longer applicable. One direct
difficulty comes from the estimation of the covariance matrix Σ or its inverse Σ−1 in the construction of the CUSUM
statistic. It is well known that the standard sample covariance matrix estimator performs poorly and can lead to invalid
conclusions in high-dimensional settings with relatively low sample sizes. Thus, estimation of Σ or Σ−1 can be nontrivial
in such high dimensional problems. To obtain estimation consistency, some structural assumptions are typically imposed
in the literature in order to estimateΣ orΣ−1. These include banding [61], thresholding [7], or penalized likelihood based
estimation [8,64]. See [9] for a recent development for this topic. In addition, using the above methods for constructing
the CUSUM statistics as in (4) usually imposes strong structural assumptions for Σ (or Σ−1) and involves the selection
f tuning parameters [45]. This makes the use of (4) very difficult. Hence, new change point testing statistics for high
imensional data are needed. More importantly, since the dimension d can grow with the sample size n, it becomes more
hallenging to derive the limiting null distribution in high dimensions to make the corresponding testing procedure under
given significance level α ∈ (0, 1).
Another distinctive difficulty for high dimensional change point testing is the power analysis. Recall the mean jump
= (δ1, . . . , δd)⊤. Let Π = {j : δj ̸= 0} be the set of coordinates having a change point and s := |Π | be its cardinality.
ccording to various structures of δ, high dimensional change point models can be typically summarized into the following
wo cases:

• Case 1: Sparse patterns with only a few number of non-zero elements in δ and the corresponding magnitudes of
changes are large.

• Case 2: Dense patterns where a large number of entries in δ are non-zero and each with a small magnitude.

The above two cases are called alternative structures or patterns. For the sparse pattern, we usually require s ≪
√
p

hile for the dense pattern we have s ≫
√
p [25,41]. As shown later, the detection boundary on the signal strength δ

sually exhibits a phase transition according to s. Note that in high dimensions, both p and s scale with the sample size
. This is essentially different from the traditional setting with a fixed d. More specifically, for high dimensional data
3
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nalysis, the standard norms such as ℓ2 or ℓ∞-norms are no longer equivalent. In other words, a test statistic designed
or the sparse pattern may lose its power under the dense pattern, and vice versa. Hence, for high dimensional change
oint detection, the main question is how to propose a powerful test statistic that effectively utilizes the underlying
lternative structures. The above aspects make high dimensional change point inference a challenging problem and not
uch developments have been made until recently. Recall the d-dimensional CUSUM statistic C (k) =

(
C1(k), . . . , Cd(k)

)⊤,
here

Cj(k) =

√
k(n− k)

n

( 1
n− k

n∑
i=k+1

Xij −
1
k

k∑
i=1

Xij

)
(6)

is the CUSUM statistic for each coordinate j ∈ {1, . . . , d}. Hence, we can construct the CUSUM statistic-based d× (n− 1)
dimensional matrix C :=

(
C (1), . . . , C (n− 1)

)
:

C =

⎛⎜⎜⎜⎝
C1
(
1
)

· · · C1
(
n− 1

)
C2
(
1
)

. . . C2
(
n− 1

)
...

. . .
...

Cd
(
1
)

. . . Cd
(
n− 1

)
⎞⎟⎟⎟⎠ . (7)

By definition, the columns of C contain information about the change point location, while the rows reflect the alternative
structures. Note that for the AMOC model in (1), all coordinates in Π share a common change point at k0. Hence, similar
o the low dimensional setting, we can construct a test statistic such as:

T = max
1≤k≤n−1

∥C (k)∥p.

The biggest question for using T is how to adopt a proper ℓp-norm to take into account the underlying alternative patterns
and benefit from the cross-sectional nature of the change-point that is shared across different coordinates. Furthermore,
from a theoretical viewpoint, high dimensional change point inference is related to the concept of high dimensional
efficiency (HDE) proposed in [2] as well as the minimax optimality studied in [25,41].

We first introduce the high dimensional efficiency.

Definition 2.1 (High Dimensional Efficiency [2]). Suppose d → ∞ as n → ∞. Let T (X1, . . . ,Xn) be a testing statistic for
he problem in (2). Let E(δ) be a mapping from Rd to R+ := (0,∞). We say the (absolute) high dimensional efficiency of
(X1, . . . ,Xn) is E(δ) if it satisfies:

(i) T (X1, . . . ,Xn)
d
−→ L for some non-degenerate limiting distribution L under H0;

(ii) T (X1, . . . ,Xn)
P
−→ ∞ if

√
nE(δ) → ∞;

(iii) T (X1, . . . ,Xn)
d
−→ L if

√
nE(δ) → 0.

By definition, high dimensional efficiency characterizes the rate at which the cross-sectional size of change is allowed
to converge to zero (e.g., ∥δ∥p → 0) as n → ∞ such that the power of the change-point test T (X1, . . . ,Xn) is strictly
etween the size and one. Hence, using high dimensional efficiency, we can compare different tests’ efficiency (or relative
fficiency) in terms of their power. For example, if we have a change point test T (1) with efficiency E (1)(δ) = ∥δ∥2 and
nother T (2) having efficiency E (2)(δ) = ∥δ∥2/ log(n), then the relative high dimensional efficiency between T (1) and T (2)

s E (1)(δ)/E (2)(δ) = log(n). In other words, for detecting a change point with power one, compared with T (1), we require
stronger signal condition with an additional order log n for T (2).
In addition to HDE, minimax optimality is also a way to show the optimality of a change point testing method. Before

ntroducing that, some notations are needed. For Problem (2), let θ = (µ⊤, δ⊤k0 )
⊤ be the parameters of interest. Under H0,

efine the parameter space of signals by

Θ0(d, n) =
{
(µ, δk0 ) : µ ∈ Rd, δk0 = 0, k0 ∈ {1, . . . , n− 1}

}
.

ext, we define the parameter space of signals under the alternative that a change point occurs at a known location
0 ∈ {1, . . . , n− 1} with a known sparsity level s by:

Θ (k0)(d, n, s, ρ) =
{
(µ, δk0 ) : µ ∈ Rd, δk0 ∈ Rd, ∥δ∥0 = s,

k0(n− k0)
n

δ
2
2 ≥ ρ2

}
. (8)

he alternative Θ (k0)(d, n, s, ρ) says that Model (1) has a change point at k0 ∈ {1, . . . , n−1} with a signal jump δk0 which

as s non-zero entries and a magnitude
k0(n− k0)

n

δ
2
2 ≥ ρ2. Note that ρ := ρ(n, d, s, k0) may depend on n, d, s, and k0.

ince both k0 and s are unknown, for Model (1), we define the final parameter space under the alternative as:

Θ1(d, n, ρ) :=
n−1⋃ d⋃

Θ (k0)(d, n, s, ρ).

k0=1 s=1

4
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ith the above notations, the testing problem in (2) is equivalent to:

H0 : θ ∈ Θ0(d, n) vs. H1 : θ ∈ Θ1(d, n, ρ). (9)

We are now ready to introduce the concept of minimax optimality for high dimensional change point inference.

Definition 2.2 (Minimax Optimality). For Problem (9), let Ψ denote the class of possible test statistics, i.e., measurable
unctions ψ(X) taking values in {0, 1}, where X := (X1, . . . ,Xn). We say there is a change point if ψ(X) = 1. For any test
ψ(X), we also define its testing error by

R(ψ, ρ) := sup
θ∈Θ0(d,n)

Eθ

[
ψ(X)

]
+ sup

θ∈Θ1(d,n,ρ)
Eθ

[
1− ψ(X)

]
.

We say ρ∗ = ρ(n, d, s, k) is the minimax rate of change point testing if the following two conditions are satisfied:

1. For any ϵ ∈ (0, 1), there exist a constant Cϵ > 0 depending only on ϵ and a test ψ∗ such that R(ψ∗, Cρ∗) ≤ ϵ for
all C > Cϵ (or asymptotically lim supn→∞ R(ψ∗, Cρ∗) ≤ ϵ).

2. For any ϵ ∈ (0, 1), there exists a constant cϵ > 0 depending only on ϵ such that ∀ 0 < c < cϵ and for any test
ψ ∈ Ψ , the following holds:

R(ψ, cρ∗) ≥ 1− ϵ
(
or asymptotically lim inf

n→∞
R(ψ, cρ∗) ≥ 1− ϵ

)
.

emark 1. By definition, ρ∗ = ρ(n, d, s, k) is the minimax rate of change point testing in the sense that there is no test
hat can control the overall errors (type I and type II errors) under 1 − ϵ if the signal strength ρ < cϵρ∗. Moreover, if
e restrict our attention to the class of all α level tests Ψα = {ψ : supθ∈Θ0(d,n) Eθ[ψ(X)] ≤ α}, then ρ∗ = ρ(n, d, s, k) is
aid to obtain the minimax rate of testing in the sense that no α level test can detect a change point with overwhelming
robability if the signal jump satisfies ρ < cϵρ∗.

Next we give a comprehensive review on recent developments of high dimensional change point inference and
ompare their theoretical properties in terms of HDE or minimax optimality. Recall that the goal is to develop an
fficient test via aggregating the CUSUM matrix (7) to account for the alternative structures. In the high dimensional

setting, these tests are mainly classified into two categories: one class knows and utilizes the sparse or dense alternative
patterns [4,16,31,35,58,59,63,67], and another class aims to construct a method that accounts for the unknown alternative
structures in a data-driven way [2,15,25,41,43,53,68], which is also called the data-adaptive method. In what follows, we
assume that the variance in each coordinate of X , e.g., Var(Xj) = σ 2

j , is known and without loss of generality, we assume
σ 2
j = 1 for 1 ≤ j ≤ d. Moreover, we require all coordinates with a change point have the same order in the sense that

0 < c ≤ lim inf
n→∞

δmin

δmax
≤ lim sup

n→∞

δmax

δmin
≤ C <∞, (10)

here δmin = minj∈Π |δj| and δmax = maxj∈Π |δj|. This helps us to make a comparison between different methods under
relatively unified framework.

emark 2. In change point analysis, variance estimation is an important problem. As shown in [54], inappropriate variance
stimation may lead to non-monotonic power performance. In this review paper, to avoid unnecessary notations, we
ssume σ 2

j = 1 for 1 ≤ j ≤ d for discussing the main ideas of different methods and theoretical properties.

. High dimensional change point inference with known alternative structures

.1. ℓ∞-norm based methods in [35,63] for sparse alternatives

For high sparse change point alternatives, [35] proposed the following ℓ∞-norm based test statistic:

TJirak = max
1≤k≤n−1

max
1≤j≤d

√
k
n
n− k
n

⏐⏐Cj(k)
⏐⏐ = max

1≤k≤n−1
max
1≤j≤d

√
k
n
n− k
n

C (k)
∞
. (11)

hey proved that under some temporal conditions (Assumption 2.1 therein) for data observations and spatial conditions
mong coordinates (Assumption 2.2 therein), the test statistic has the following limiting null Gumbel distribution:

lim
n→∞

P
(√

2 log(2d)(TJirak − fd) ≤ x
)
= exp(−e−x), (12)

here fd =
1
2
√
2 log(2d) − log(3 log(2d))/

√
2 log(2d). Hence, a critical value cα = − log(− log(1 − α)) can be used to

mplement an α level test. This result can be regarded as an extension of the low dimensional counterpart (Theorem
.3.1 in [22]) to high dimensions. Note that [35] requires d grows with the sample size n with at most a polynomial
ate (d ≪ nC for some C > 0). It is well-known that the convergence to an extreme distribution in (12) is slow and
5
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ypically requires strong conditions on the covariance structures among coordinates (see Assumption 2.2 therein), which
eems unreasonable in practice. To overcome this problem, [35] also proposed to use a parametric method as well as
multiplier bootstrap method respectively, to approximate the limiting null distribution of Tjirak. In terms of the power
nalysis, it is proved that if min1≤j≤d |δj| ≫

√
log(n)/n holds, with probability tending to one, TJirak can detect and identify

change point.
Note that the method in [35] requires strong assumptions on the covariance structure Σ , and the bootstrap method

in [35] also requires a consistent estimator for the relative change point location k0/n to mimic the data under H0. This
results in strong conditions for the signal strength. To relax the assumptions on Σ as well as the signal condition on
δ, [63] proposed the following test statistic for detecting sparse alternatives:

TYu = max
k≤k≤n−k

max
1≤j≤d

⏐⏐Cj(k)
⏐⏐ = max

k≤k≤n−k

C (k)
∞
, (13)

here k and n−k are the lower and upper bounds for the candidate search location. Note that the main difference between
TJirak and TYu is that the former places higher weights on search locations closer to the centre of data observations, which
is easier to detect a change point if it is located around the centre in the data sequence. Instead of deriving the limiting
distribution directly, TYu considered a multiplier bootstrap method to approximate the limiting null distribution of TYu,
hich proceeds as follows. Let e1, . . . , en

i.i.d
∼ N(0, 1). Define the bootstrap based CUSUM statistic as:

C∗(k) =

√
k(n− k)

n

( 1
n− k

n∑
i=k+1

ei
(
X i − X̄(n− k)

)
−

1
k

k∑
i=1

ei
(
X i − X̄(k)

))
, (14)

where X̄(k) = k−1 ∑k
i=1 X i, X̄(n − k) = (n − k)−1 ∑n

i=k+1 X i. Based on C∗(k), the bootstrap based test statistic for TYu is
defined as:

T ∗

Yu = max
k≤k≤n−k

max
1≤j≤d

⏐⏐C∗

j (k)
⏐⏐ = max

k≤k≤n−k

C∗(k)

∞
. (15)

he main question for bootstrap is whether the conditional distribution of T ∗

Yu given X can approximate the distribution
of TYu? Let cT∗Yu|X(1− α) be the 1− α quantile of T ∗

Yu given X. [63] proved that for sub-exponential distributions of ϵ with
some other regularity conditions, under H0, we have, as n → ∞,

sup
α∈(0,1)

⏐⏐P(TYu ≤ cT∗Yu|X(1− α)
)
− α

⏐⏐ → 0,

as long as log7(dn) = o(k) holds. Hence, [63] allows the data dimension d to grow exponentially with the sample size n
n the sense that d = O(en

c
) for some 0 < c < 1/7. For the power results, [63] proved that under H1, for any ζ ∈ (0, 1),

e have

P
(
TYu ≥ cT∗Yu|X(1− α)

)
≥ 1− (nd)−C1 − C2

( log7(dn)
k

)1/6
− ζ

as long as the signal jump satisfies:

δ

∞

:= max
1≤j≤d

|δj| ≥ C3

√ log(ζ−1) log(dn)+ log(nd/α)

n
k0
n

(
1−

k0
n

) , (16)

here C1, C2, C3 are some universal positive constants. Note that the above results also apply to data with uniform
olynomial moments (see Assumption D therein), where some technical conditions need to be modified.

emark 3. For detecting a change point with overwhelming probability, [35] requires δmin ≫
√
log(n)/n and [63] requires

δmin > C
√
log(d)/n for some big enough constant C > 0. From the aspect of HDE, we see that the efficiency of [35] is

δmin
√
log(n)

while the efficiency of [63] is
δmax

√
log(d)

. Moreover, we show in Section 5.4 that the signal strength requirement

of [63] reaches the minimax optimality for detecting sparse change points.

3.2. ℓ2-norm based methods in [31,59,67] for dense alternatives

It is known that for detecting dense change point alternatives with a large number of coordinates in δ experiencing a
change of a small signal jump, the ℓ2-norm based test statistic typically has good performance than the ℓ∞-norm based
one. The intuition is that in high dimensions, the ℓ2-norm is not equivalent to the ℓ∞-norm. Once the signal jump for
∥δ∥∞ is a smaller order than

√
log(d)/n, the ℓ∞-norm based method fails to capture such signal information while the ℓ2

orm succeeds by adding up all the weak signals.
6
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Assuming the errors {ϵij}, i ∈ {1, . . . , n}, j ∈ {1, . . . , d} in Mode (1) are i.i.d N(0, 1), [67] proposed the following test
statistic for detecting dense change point patterns:

TZhang = max
⌊c1n⌋≤k≤⌊c2n⌋

d∑
j=1

C2
j (k) = max

⌊c1n⌋≤k≤⌊c2n⌋

C (j)2
2,

where 0 < c1 < c2 < 0.5 are some prespecified constants. Under H0, ∥C (j)∥22 follows a chi-squared distribution with a
egree of freedom of d. To obtain the critical value that determines a change point, [67] derived an explicit approximation
o the tail probability of TZhang under the null hypothesis. This leads to an approximation to the theoretical p-value. The
uthors showed that the approximation is very accurate at moderate to small p-values. Note that the derivation in [67]
s non-asymptotic in the sense that the dimension d can be large but fixed.

In a similar way, [31] proposed a test statistic like:

THH = max
1≤k≤n−1

k
n
n− k
n

⏐⏐⏐ 1
√
d

d∑
j=1

(
C2
j (k)− 1

)⏐⏐⏐ = max
1≤k≤n−1

k
n
n− k
n

⏐⏐⏐∥C (k)∥22 − d
√
d

⏐⏐⏐. (17)

or the above test statistic, [31] proved that under H0, the following holds, as n → ∞,

THH
d
−→ sup

0≤t≤1
|Γ (t)|, (18)

here {Γ (t), 0 ≤ t ≤ 1} is a Gaussian process with E[Γ (t)] = 0 and E[Γ (t)Γ (s)] = 2t2(1 − s2) for 0 ≤ t ≤ s ≤ 1.
Hence, a critical value can be obtained via Monte Carlo simulations for the limiting distribution. Note that [31] mainly
requires d = o(

√
n), which can be regarded as a low dimensional problem. Moreover, the derivation in (18) requires all

oordinates in ϵ are independent with Σ = Id. For the power analysis, [31] proved that if ∥δ∥2 ≫
d1/4
√
n
, with probability

tending to one, we can detect a change point. Hence, the HDE for [31] is d−1/4
∥δ∥2.

Note that in the dense case, the ℓ2-norm of the signal jump ∥δ∥2 matters. Hence, a natural question is: is it possible to
give an unbiased estimator for ∥δ∥22 and construct a change point test statistic based on that? [59] answered this question.
Recall δ = EX k0 − EX k0−1 is the mean difference before and after the change point k0. Let x1, x2, y1, y2 ∈ Rd. Define
h((x1, x2), (y1, y2)) = (x1 − y1)⊤(x2 − y2). Let (X1,Y 1) and (X2,Y 2) be independent copies of (X k0−1,X k0 ), respectively. It
is shown in [12] that

E
[
h
(
(X1,X2), (Y 1,Y 2)

)]
=

EX k0 − EX k0−1
2
2 =

δ
2
2.

Motivated by this observation, in a recent work, [59] proposed the following U-statistic based process as:

Gn(k) =
1

k(k− 1)
1

(n− k)(n− k− 1)

∑
1≤i1,i2≤k

i1 ̸=i2

∑
(k+1)≤j1,j2≤n

j1 ̸=j2

(X i1 − X j1 )
⊤(X i2 − X j2 ). (19)

Based on Gn(k), [59] proposed the following self-normalized based test statistic:

TWang = sup
2≤k≤n−3

G2
n(k)

Wn(k)
,

where

Wn(k) =
1
n

k−2∑
t=2

[ ∑
1≤i1,i2≤t

i1 ̸=i2

∑
t+1≤j1,j2≤k

j1 ̸=j2

(X i1 − X j1 )
⊤(X i2 − X j2 )

]2
+

1
n

n−2∑
t=k+2

[ ∑
k≤i1,i2≤t

i1 ̸=i2

∑
t+1≤j1,j2≤n

j1 ̸=j2

(X i1 − X j1 )
⊤(X i2 − X j2 )

]2
.

ote that Wn(k) in the denominator of TWang is to cancel out the asymptotical variance in the limiting distribution of G2
n(k),

aking the limit of TWang pivotal. This method is called self-normalization, which can avoid the problem of estimating
he variance. In particular, it is shown in [59] that under H0, we have

TWang
d
−→ T ∗, as n → ∞, (20)

here T ∗ is a distribution not depending on any unknown parameters (see Theorem 3.4 therein), and the critical value
an be obtained via Monte Carlo simulations. Note that the derivation of (20) requires some uniform bounds on moments
f ϵ and some ‘‘short-range’’ dependence type conditions on the entries of ϵ = (ϵ1, . . . , ϵd)⊤.
In terms of the power analysis, [59] showed that under H1, as n → ∞, the following results hold:

(i) If
√
n∥δ∥2

1/2 → 0, then TWang
d
−→ T ∗;
∥Σ∥F

7
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(ii) If
√
n∥δ∥2

∥Σ∥
1/2
F

→ ∞, then TWang
P
−→ ∞;

(iii) If
√
n∥δ∥2

∥Σ∥
1/2
F

→ γ ∈ (0,∞), then TWang
d
−→ T ∗∗,

where ∥Σ∥F is the Frobenius norm of Σ = Cov(ϵ) and T ∗∗ is some distribution with an additive shift. Recall the high
dimensional efficiency in Definition 2.1. The HDE of TWang for detecting dense signals is ∥δ∥2/∥Σ∥

1/2
F . Considering the

special case with Σ = Id, the HDE reduces to d−1/4
∥δ∥2, which is equivalent to [31].

4. High dimensional change point inference without knowing the alternative structures

So far, we have given a discussion about methods designed for high dimensional change point inference with known
alternative patterns. In practice, however, the alternative patterns may be unknown. Methods with wrong pattern
assumptions may result in inefficient power performance and lead to wrong conclusions. Hence, a natural question is:
how to propose a change point test method that enjoys simultaneous high powers for any given unknown alternative
patterns. These are called data-adaptive tests. Next, we give a detailed discussion on this research direction.

4.1. Projection based methods in [2,58]

Essentially, for making a powerful change point test, it is important to increase the signal to noise ratio for the test
method. One way is to project the data into a low dimensional subspace (such as one dimension), which maximizes the
signal to noise ratio after projection. For example, [2] proposed to project the data into a one-dimensional subspace. In
particular, let v ∈ Rd be a projection vector. Then, we can use v to project the data X1, . . . ,Xn into a one-dimensional
data sequence v⊤X1, . . . , v

⊤Xn with the model:

v⊤X i = v⊤µ + v⊤δ1{i ≥ k0} + v⊤ϵi, i ∈ {1, . . . , n}. (21)

Let Zi = v⊤X i, i ∈ {1, . . . , n}. For the projected Model (21), we can use the low dimensional CUSUM based method for
constructing a test statistic as:

TPro = max
1≤k≤n−1

|U(k)|,

where

U(k) =
√
n
k
n
n− k
n

1
τ (v)

( 1
n− k

n∑
i=k+1

Zi −
1
k

k∑
i=1

Zi
)

is the CUSUM statistic and τ 2(v) = v⊤Σv is the variance for errors after projection. For any given projection v ∈ Rd, it is
shown in [2] that, under H0, with some regular spatial and temporal conditions, the following holds, as n → ∞,

TPro
d
−→ sup

0≤t≤1
|B(t)|,

where B(·) is a standard Brownian bridge. Under H1, [2] showed that the test statistic TPro has a high dimensional efficiency
as:

E(δ, v) =
|v⊤δ|

τ (v)
=

Σ−1/2δ

2 cos

(
αΣ−1/2δ,Σ1/2v

)
, (22)

here αΣ−1/2δ,Σ1/2v
denotes the angle between Σ−1/2δ and Σ 1/2v. Hence, the last step for the projection based method

s to find v which maximizes E(δ, v). One can see that the best projection is v∗ = Σ−1δ, which is also called the oracle
rojection. Using v∗, the HDE for TPro is

Σ−1/2δ

2. As a special case, when the covariance structure of ϵ is identity with

Σ = Id, the HDE of TPro reduces to ∥δ∥2.
According to [2], if we know Σ−1 and δ, we can construct an oracle projection based test, which does not rely on

ny pre-knowledge about the alternative patterns. As a result, it has the highest efficiency, which can be regarded as an
pper benchmark for the existing methods theoretically. In practice, however, it is of great difficulty to estimate δ and

Σ−1 simultaneously and construct efficient tests based on them. To address this issue, [58] proposed new algorithms for
estimating δ and used projection based ideas for estimating change point locations. In particular, suppose H1 holds and
assume ϵi

i.i.d
∼ N(0, Id). [58] observed that δ can be approximated by the s-sparse leading left singular vector of the CUSUM

matrix C in (7), and the corresponding optimization problem can be solved efficiently using convex relaxation. Once the
oracle projection’s estimator δ̂ is obtained, [58] projected the data matrix X along the direction δ̂, and applied the existing
one-dimensional change point localization technique on the projected data for estimating the change point location k0.
Note that [58] mainly focused on change point estimation instead of testing.
8
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.2. Thresholded ℓ1-norm based method in [16]

In addition to projection, another possible way is to find an appropriate norm for extracting the signals as much as
ossible. Recall Π = {j : δj ̸= 0} is the set of coordinates with a change point and s := |Π | is its cardinality. Let

|δ(1)| ≥ |δ(2)| ≥ · · · |δ(s)| ≥ |δ(s+1)| ≥ · · · ≥ |δ(d)|  
0s

(23)

e the ordered statistics of the true signals δ = (δ1, . . . , δd)⊤. For high dimensional change point inference, it is the first
largest entries in δ that distinguish H1 from H0. In other words, we are more primarily interested in coordinates with
tronger signal jumps than those with smaller ones or zero. Motivated by this observation, [16] proposed the following
hresholded ℓ1-norm based test statistic:

TCho = max
1≤k≤n−1

d∑
j=1

⏐⏐Cj(k)
⏐⏐1{|Cj(k)| ≥ πn

}
,

here πn is some user prespecified threshold parameter.
Using πn, we see that the individual CUSUM statistics with values larger than πn reflect contributions in detecting and

ocalizing the change points and are summed up to the final statistics TCho. This method is also called a sparsified step
ince the coordinates with small contributions are disregarded. Note that πn is derived such that max1≤k≤n−1

⏐⏐Cj(k)
⏐⏐ ≥ πn

for all k ∈ Π and max1≤k≤n−1
⏐⏐Cj(k)

⏐⏐ < πn for all k ∈ Π c hold with probability tending to one. Assuming at least one
change point occurs in the data sequence, [16] proved that coupled with the binary segmentation algorithm, TCho can
correctly identify the number and locations of multiple change points (see Theorem 1 therein) with assumptions that
δmin ≥ c∗ for some c∗ > 0 and dn− log n

→ 0 as n → ∞.

4.3. Double CUSUM based method in [15]

Note that the implementation of [16] involves a selection of the threshold parameter πn, whose value depends on
the unknown underlying data generation mechanism such as the number and locations of change points. Hence, from
a practical viewpoint, the selection of πn is not an easy task. To overcome this limitation, [15] proposed a Double
CUSUM (DC) based testing procedure that aims to select πn in a data-driven way. In particular, recall the CUSUM statistic
C (k) = (C1(k), . . . , Cd(k))⊤ as defined in (3). Let

|C(1)(k)| ≥ C(2)(k) ≥ · · · ≥ |C(d)(k)| (24)

e the ordered CUSUM statistics at each candidate search location k ∈ {1, . . . , n− 1}. For each fixed m ∈ {1, . . . , d} and
k ∈ {1, . . . , n− 1}, [16] proposed the DC based test statistic as:

CϕDC(m, k) =
{m(2d−m)

2d

}ϕ( 1
m

m∑
j=1

⏐⏐C(j)(k)
⏐⏐− 1

2d−m

d∑
j=m+1

⏐⏐C(j)(k)
⏐⏐),

where ϕ ∈ [0, 1] is some user pre-specified parameter to account for the alternative patterns which is discussed later.
Note that when ϕ = 1/2, it reduces to the classical CUSUM statistic except that the data are ordered CUSUM statistics
|C(1)(k)|, . . . , |C(d)(k)|. This is why it is called Double CUSUM. Then, for a fixed ϕ ∈ [0, 1], the final test statistic in [15] is

TϕDC = max
1≤k≤n−1

max
1≤m≤d

CϕDC(m, k). (25)

The main idea for TϕDC is that if there are s non-zero elements in δ having a change point, there is a big gap between the
average for the first s largest CUSUM statistics and the last d− s ones. Since s is typically unknown, it is natural to search
ll candidate s ∈ {1, . . . , d} maximizing the gap. Based on TϕDC , a change point is detected if TϕDC ≥ π

ϕ
n , where πϕn is a

est criterion. According to [15], under some regular conditions, if we choose πϕn properly in theory, under H0, we have
(TϕDC ≥ π

ϕ
n ) → 0 as n → ∞. This controls the type I error asymptotically. As for the power analysis, suppose k0 ≍ n and

et δ̄ := s−1 ∑
j∈Π |δj| be the average of non-zero elements with a change point. According to [15], if the signal strength

atisfies:
√
nδ̄(d

s

)ϕ
log n

→ ∞, (26)

ith probability tending to one, a change point is detected.
According to (26), we see that the HDE for TϕDC is sϕ δ̄/(dϕ log n). As for the choice of ϕ, it is shown that ϕ = 0 corresponds

to a test which is powerful for sparse alternatives while ϕ > 0 is sensitive to dense alternatives. To see this, consider the
special case with high sparsity with s = 1. The HDE of T 0 is δ̄/ log(n), which has an efficiency loss of log n compared to
DC

9
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he oracle projection based method [2] having an efficiency of ∥δ∥2. For the high dense case with s ≍ dβ with β ∈ (1/2, 1],
he HDE of TϕDC is

δ̄

dϕ(1−β) log n
, for any ϕ > 0.

In this case, combining (10) and ∥δ∥2 ≍
√
sδ̄, we see that there is an efficiency loss of an order of dϕ−(ϕ−1/2)β log n,

compared to the oracle case with an efficiency of ∥δ∥2.

4.4. The (s0, p)-norm based data-adaptive test in [43]

Note that [16] and [15] essentially used a thresholded ℓ1-norm for aggregating the CUSUM statistics, which aims
t selecting coordinates δ(1), . . . , δ(s) in (23) that are more relevant to change points. Using a similar but more general

framework, [43] proposed a class of the (s0, p)-norm based testing statistics. In particular, for a vector v = (v1, . . . , vd)⊤ ∈

Rd, with |v(1)| ≥ · · · ≥ |v(d)| being the ordered statistic for |v1|, . . . , |vd|, define its (s0, p)-norm as follows:v

(s0,p)

:=

( s0∑
j=1

|v(j)|
p
)1/p

, (27)

where s0 ∈ {1, . . . , d} and 1 ≤ p ≤ ∞. Essentially, the (s0, p)-norm is the ℓp-norm for the first s largest entries (in absolute
value) for v. Hence, it can be regarded as an adjusted ℓp-norm since it uses the ordered statistics of |v(1)|, . . . , |v(d)|. Note
that by choosing a proper combination of s0 and p, ∥v∥(s0,p) reduces to some classical ℓp-norm adopted in the literature.
For example, for p = 2, if we choose s0 = d, it reduces to the traditional ℓ2-norm adopted in [31,67]. For any given s0,
if we choose p = ∞, it reduces to the ℓ∞-norm used in [35,63]. Moreover, for a given s0 with p = 1, it can be regarded
as the thresholded ℓ1-norm proposed in [16]. Hence, the (s0, p)-norm is a flexible generalization of the existing methods.
Using (27), for a user-prespecified s0 ∈ {1, . . . , d}, [43] proposed a class of testing statistics with respect to different p as
follows:

T(s0,p) = max
k≤k≤n−k

√
k
n
n− k
n

C (k)(s0,p)
, with 1 ≤ p ≤ ∞, (28)

where k and n− k are the lower and upper search locations, respectively. Note that for a given s0, the statistic T(s0,p) with
a small p (e.g., p = 1, 2) is more sensitive to dense alternatives while that with a large p (e.g., p = ∞) is more powerful
under sparse alternatives. Hence, for any unknown alternative pattern, there exists at least one test in {T(s0,p), 1 ≤ p ≤ ∞}

enjoying a powerful performance, which is called individual test statistics. For each T(s0,p), it is very difficult to directly
derive its limiting null distribution. Therefore, [43] proposed to use a multiplier bootstrap based procedure for obtaining a
good approximation. In particular, for the bth bootstrap, b ∈ {1, . . . , B}, let eb1, . . . , e

b
n

i.i.d
∼ N(0, 1). Define the bth bootstrap

version of the CUSUM statistic as:

Cb(k) =

√
k(n− k)

n

( 1
n− k

n∑
i=k+1

ebi
(
X i − X̄(n− k)

)
−

1
k

k∑
i=1

ebi
(
X i − X̄(k)

))
. (29)

Then, for each T(s0,p), conditional on X = (X1, . . . ,Xn), define its bth bootstrap based version as:

T b
(s0,p) = max

k≤k≤n−k

√
k
n
n− k
n

Cb(k)

(s0,p)

, with 1 ≤ p ≤ ∞. (30)

iu et al. [43] proved that under H0, with some regular conditions, we can use T b
(s0,p)

to approximate T(s0,p):

sup
z∈(0,∞)

⏐⏐P(T(s0,p) ≤ z)− P(T b
(s0,p) ≤ z|X)

⏐⏐ = op(1), as n, d → ∞. (31)

Note that the derivation of (31) allows the data dimension d grows exponentially with the sample size n in the sense
that s20 log(dn) = O(nδ) for some 0 < δ < 1/7. Based on the bootstrap samples {T 1

(s0,p)
, . . . , T B

(s0,p)
}, we can obtain a 1− α

critical value ĉα,(s0,p) and construct a test as Ψα,(s0,p) := 1{Ts0,p ≥ ĉα,(s0,p)}. The result in (31) guarantees that the individual
test Ψα,(s0,p) has the asymptotic level α.

In terms of the power analysis, [43] requires the signal strength satisfies:
√
n
(k0

n
n− k0

n

)
δ


(s0,p)

≥ C0s0(1+ ϵn)
(√

2 log(d(n− 2k))+
√
2 log(α−1)

)
, (32)

where ϵn = o(1) with ϵn
√
log nd → ∞, α ∈ (0, 1) is the significance level, and C0 is some big enough constant. Under H1,

if (32) holds, [43] proved that with probability tending to one, a change point is detected:

P(Ψα,(s0,p) = 1) → 1, as n, d, B → ∞.
10
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emark 4. [43] requires the signal strength satisfies ∥δ∥(s0,p) ≥ C0s0

√
log d
n

. Hence, the HDE of T(s0,p) is
∥δ∥(s0,p)

s0
√
log d

. Moreover,

e show in Section 5.4 that for sparse alternatives, T(s0,p) obtains the minimax optimality separation rate for a given but
ixed s0.

Once the individual test statistics {T(s0,p), 1 ≤ p ≤ ∞} are constructed, the remaining step is how to combine them
o yield a powerful test that adapts to the unknown alternative patterns. Note that a small p-value leads to a rejection
f H0. For a user prespecified s0, [43] proposed a data-adaptive test statistic by taking the minimum p value among the
ndividual tests:

Tad = min
p∈P

P̂(s0,p), (33)

here P̂(s0,p) is the approximated p-value for each T(s0,p), which is obtained using the bootstrap samples, and P is a
andidate subset of p satisfying |P| < ∞. In practice, it is recommended to choose P = {1, 2, 3, 4, 5,∞} for enjoying
imultaneous high powers across various alternative patterns. Moreover, note that P̂(s0,p) is typically correlated and the
istribution of Tad is very difficult to derive. Hence, [43] proposed a low cost bootstrap based procedure for obtaining the
-value for the data-adaptive test Tad, see Algorithm 2 therein.

emark 5. As discussed by [43], the data-adaptive test Tad is robust against the choice of s0, given s0 is not too small. In
ractice, it is recommended to use s0 = d/2, even though it is theoretically required to be s0 = logδ2 d for some δ2 > 0
nder H1.

.5. The ℓp-norm based data-adaptive test in [68]

We have discussed that the ℓ2-norm is powerful for dense alternatives. Moreover, it is known that ℓp → ℓ∞ as p → ∞.
ence, for the general ℓp-norm, a larger value of p may yield powerful performance for sparse alternatives. Motivated by
his observation, [68] proposed a class of the ℓp-norm based individual test statistics and combine them to construct a
ata-adaptive method. Specifically, for each fixed even number p ∈ {2, 4, . . . , }, define the two-sample U-statistic based
rocess

Up(k) =
d∑
ℓ=1

∑
1≤i1,...,ip≤k

∑
k+1≤j1,...,jp≤n

(Xi1ℓ − Xj1ℓ)× (Xi2ℓ − Xj2ℓ)× · · · × (Xipℓ − Xjpℓ)  
p

,

with k ∈ {2p, 2p+ 1, . . . , n− 2p}. (34)

ote that under H1, choosing k = k0, we have

E
[ Up(k)
Ap
kA

p
n−k

]
=

δ
p
p, for p ∈ {2, 4, . . .},

where Ap
k =

k!
(k− p)!

and Ap
n−k =

(n− k)!
(n− k− p)!

. Hence, Up(k) can be regarded as an estimation for ∥δ∥pp. For p = 2, it

educes to (19) up to some constants. Then, for a user prespecified p ∈ 2N , [68] proposed the following individual test
statistic with respect to different p:

Tn,p = max
2p≤k≤n−2p

U2
p (k)

Wp(k)
,

here

Wp(k) =
1
n

k−p∑
t=p

U2
p (t; 1, k)+

1
n

n−p∑
t=k+p

U2
p (t; k+ 1, n),

and

Up(t; s,m) =
d∑
ℓ=1

∑
s≤i1,...,ip≤t

∑
t+1≤j1,...,jp≤m

(Xi1ℓ − Xj1ℓ)× (Xi2ℓ − Xj2ℓ)× · · · × (Xipℓ − Xjpℓ).

Note that the test statistic Tp is a self-normalized test statistic using Wp in the denominator to cancel out the asymptotical
variance in the limiting distribution of U2

p (k). This makes the limiting distribution of Tp becomes pivotal without any
unknown parameters. Moreover, Tn,p with a smaller value of p is more powerful for the dense case and that with a larger
one is sensitive to sparse alternatives.

It is shown in [68] that under H0, for any given p ∈ 2N , we have, as n → ∞, Tn,p
d
−→ T̃p, where T̃p is the corresponding

limiting null distribution whose critical value can be obtained using Monte Carlo simulations. More importantly, as shown
11
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n [68], for any p1 ̸= p2, the two limiting distributions T̃p1 and T̃p2 are asymptotically independent. Hence, in theory, it is
possible to construct a family of asymptotically independent individual test statistics {Tn,p, p ∈ 2N}.

As for the power performance, for each Tn,p, [68] showed that under H1, as n → ∞, the following results hold:

(i) If
√
n∥δ∥p

∥Σ∥
1/2
p

→ 0, then Tn,p
d
−→ T̃p;

(ii) If
√
n∥δ∥p

∥Σ∥
1/2
p

→ ∞, then Tn,p
P
−→ ∞;

(iii) If
√
n∥δ∥p

∥Σ∥
1/2
p

→ γ ∈ (0,∞), then Tn,p
d
−→

˜̃T p,

where ∥Σ∥p denotes the element-wise ℓp-norm for Σ , and ˜̃T p is a pivotal limit with an additive shift compared to T̃p.
ence, from the above results, we know that the HDE for each Tn,p is ∥δ∥p/∥Σ∥

1/2
p . When p = 2 with Σ = Id, it reduces

to d−1/4
∥δ∥2, which is equivalent to [31,59].

Once the individual tests are constructed, it is desirable to construct a data-adaptive method. Similar to the idea
of [43,68] proposed a data-adaptive test statistic using the minimum p-value:

Wad = min
p∈P

Pp,

where Pp is the theoretical p-value for Tn,p, which can be obtained using Monte Carlo simulations, and P is a candidate
subset of p satisfying |P| < ∞. Since the individual tests are asymptotically independent, the p-value for Wad can be
calculated directly as 1 − (1 − Wad)|P|. According to [68], choosing P = {2, 6} enjoys good size and power performance
across various alternative patterns.

Remark 6. Both [43] and [68] constructed a data-adaptive method by combining the individual tests using the minimum
p-value. There are some essential differences between them. First, [43] adopted the (s0, p)-norm for the sample mean
difference C (k). Typically, ∥C (k0)∥(s0,p) is not an unbiased estimator for ∥δ∥(s0,p). In contrast, [68] directly estimated the
ℓp-norm of δ using the two-sample U-statistic based process Up(k) as in (34). Second, the individual tests in [43] are not
independent while those in [68] are asymptotically independent. Hence, the former introduced a low-cost bootstrap to
obtain the data-adaptive test’s p-value while the p-value in [68] can be calculated directly. Third, the proposed individual
tests in [43] include the ℓ∞-norm as a special case, while those in [68] include the ℓ2-norm based method. The two
special cases obtain the minimax optimality, under the sparse and dense cases, respectively. Lastly, the data-adaptive
method in [43] can be extended to other high dimensional parameters such as variance, covariance matrix, or Kendall’s
tau correlation matrix (see Section 6). It appears unclear on how to use the idea of [68] for those general applications.

5. Minimax optimality for high dimensional change point inference

For high dimensional change point inference, one may be interested in whether the proposed method is optimal. In
other words, it needs to show that the requirement on δ for detecting a change point with overwhelming probability is
the weakest. Formally, this question is equivalent to the concept of minimax optimality as introduced in Definition 2.2.
Different from the traditional focus on the size and power performance, minimax optimality is a more refined result. Not
much development on this topic has been made in the literature until recently under some special cases. To introduce
these results, in this section, we assume the errors in Model (1) satisfy ϵi

i.i.d
∼ N(0, Id).

.1. Minimax lower bound in [25]

Recall s =: |Π | is the sparsity level of δ and ρ(n, d, s, k0) is the scaled signal strength for Model (1) defined in (8).
uppose s ≍ d1−β for β ∈ [0, 1). Note that β ∈ [0, 1/2) corresponds to the moderate sparse or dense level studied
n [31,59], while β ∈ (1/2, 1) corresponds to the highly sparse level studied in [35,63].

For Problem (9), [25] derived the minimax lower bound. In particular, [25] proved that for any ϵ ∈ (0, 1), if the signal
trength ρ := ρ(n, d, s, k0) satisfies:

lim sup
n→∞

ρ2(n, d, s, k0)
√
d

≤

√
2 log(1+ 4(1− ϵ)2), for β ∈ [0, 1/2), (35)

nd

lim sup
n→∞

ρ2(n, d, s, k0)
s log(d/s)

< 2−
1
β
, for β ∈ (1/2, 1), (36)

hen for any test ψ , we have lim infn→∞ R(ψ, ρ) ≥ 1− ϵ. In other words, no tests can control the overall type I and type
I errors with vanishing probability if (35) holds for dense alternatives and if (36) holds for sparse alternatives.
12
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.2. Minimax upper bound in [25]

To show the upper bounds, [25] proposed a linear and scan test statistic, which corresponds to the dense and sparse
ase, respectively. Specifically, recall the CUSUM statistic C (k) in (3). Then, for the moderate sparse or dense case with
∈ [0, 1/2), the linear statistic is defined as:

TLinear = max
1≤k≤n−1

∥C (k)∥22 − d
√
2d

. (37)

ased on (37), [25] proposed a linear type test ψLinear = 1{TLinear ≥ H}, where H is some critical value. For the highly
parse case with β ∈ (1/2, 1), [25] proposed a scan type test statistic as:

TScan = max
1≤k≤n−1

max
1≤m≤d

1
Hm

max
ℓ∈M(d,m)

{ΠℓC (k)
2
2 −m

√
2m

}
= max

1≤k≤n−1
max
1≤m≤d

1
Hm

∑m
j=1 C

2
(j)(k)−m

√
2m

,

(38)

here M(d,m) denotes the collection of all subsets of {1, . . . , d} of cardinality m, Πℓv is the projection of a vector v ∈ Rd

onto a subspace indexed by ℓ ∈ M(d,m), Hm is some critical value to account for different sparsity m, and C(j)(k) is the
ordered CUSUM statistic in (24). Based on (38), a scan type test is proposed as ψLinear = 1{TScan ≥ 1}. Moreover, to account
or the unknown alternative patterns, [25] proposed a combined test as:

ψadaptive = max
(
ψLinear, ψScan

)
.

For the above data-adaptive test ψadaptive, it is proved by [25] that if ρ := ρ(n, d, s, k0) satisfies

lim inf
n→∞

min
1≤k0≤n−1

ρ2(n, d, s, k0)
√
d log(d log n)

≥
√
2, for β ∈ [0, 1/2), (39)

r

lim inf
n→∞

min
1≤k0≤n−1

min
1≤s≤d

ρ2(n, d, s, k0)
s log(d/s)

≥ 2, for β ∈ (1/2, 1), (40)

hen for any 0 < ϵ < 1, we have lim supn→∞ R(ψadptive, ρ) ≤ ϵ. In other words, if the signal strength is large enough
uch that (39) or (40) holds, the combined test has vanishing type I and type II errors.

emark 7. For the highly sparse case, we see that the lower bound (36) matches the upper bound (40). Hence, the
inimax optimal rate is ρ2(n, d, s, k0) ≍ s log(d/s). For the moderate sparse or dense case, we see that the change point

s not detectable if ρ2(n, d, s, k0) ≍
√
d, and can be detected with overwhelming probability for the linear type test in

(37) if ρ2(n, d, s, k0) ≍
√
d log(d log n). Hence, there is a gap of an order of

√
log(d log n) between the lower and upper

bounds derived in [25].

5.3. Exact asymptotic constants for the minimax optimality separation rate in [41]

As an extension of [25,41] further proved the exact minimax separation rate for the dense case. In particular, according
to [41], we have the following results:

• Dense case: Assume s2/(d log log n) → ∞ as n → ∞. Suppose ρ2(n, d, s, k0) = ξ
√
d log log n. Then, there exists a

test ψ∗ such that limn→∞ R(ψ∗, ρ) → 0 if ξ > 2, and for any test ψ , limn→∞ R(ψ, ρ) → 1 holds if ξ < 2.

• Sparse case: Assume s2/d → 0 and s/(log log n) → ∞. Suppose ρ2(n, d, s, k0) = ξ s log
(d log log n

s2
)
. Then, there

exists a test ψ∗ such that limn→∞ R(ψ∗, ρ) → 0 if ξ > 2, and for any test ψ , limn→∞ R(ψ, ρ) → 1 holds if ξ < 1.

Remark 8. According to [41], the minimax optimality separation rate for the dense regime is ρ2(n, d, s, k0) ≍
√
d log log n

with a sharpest constant 2. Moreover, for the sparse regime, both [25] and [41] derived the minimax separation rate with
an order of ρ2(n, d, s, k0) ≍ s log(d/s).

5.4. Minixmax optimality for the existing methods

In this section, we show that the rates derived in [43,63] are minimax for detecting sparse change point alternatives,

and those in [59,68] are optimal for the dense alternatives (up to a logarithmic factor). Recall ρ2(n, d, s, k) ≍
k(n− k)δ

2.

n 2

13
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ignal requirements and main model assumptions of the existing methods for detecting a change point with power tending to one. The change
oint location k0 is assumed to be c1n ≤ k0 ≤ c2n for some constants 0 < c1 < c2 < 1.
Method δ ϵ Σ Allow temporal

dependence?
d and n

ℓ∞-norm based [35]
δ

∞

≫

√
log n
n

Uniform Polynomial Moment Strong Yes d ≪ nc

ℓ∞-norm based [63]
δ

∞

≥ C0

√
log d
n

Sub-exponential Distribution Mild No d ≍ exp(nc )

(or Uniform Polynomial Moment)

Scan type test [25]
δ

2 ≥

√
2
s log(d/s)

n
Gaussian Distribution Strong No

log n
s log(d/s)

→ 0

ℓ2-norm based [31]
δ

2 ≫

d1/4
√
n

Uniform Polynomial Moment Strong Yes d = o(
√
n)

ℓ2-norm based [59]
δ

2 ≫

∥Σ∥
1/2
F

√
n

Uniform Polynomial Moment Mild Yes d → ∞

Linear type test [25]
δ

2 ≥

(2d log(d log n))1/4
√
n

Gaussian Distribution Strong No
log n

s log(d/s)
→ 0

Oracle projection based [2]
δ

2 ≫

1
√
n

Uniform Polynomial Moment Mild No d → ∞

Double CUSUM [15] δ̄ ≫

( d
s

)ϕ
log n

√
n

, ϕ ∈ [0, 1] Sub-exponential Distribution Mild Yes d ≍ nc

(δ̄ := s−1 ∑
j∈Π |δj|)

Thresholded ℓ1-norm [16]
δ

∞

≥ C0 Chi-squared distribution Mild Yes
d

nlog n → 0

(s0, p)-norm based [43]
δ

(s0,p)

≥ C0s0

√
log d
n

Sub-exponential Distribution Mild No d ≍ exp(nc )

ℓp-norm based method [68]
δ

p ≫

∥Σ∥
1/2
p

√
n

, p ∈ {2, 4, . . . , } Uniform Polynomial Moment Mild Yes d → ∞

For δ, suppose (10) holds. Then, we have ρ2(n, d, s, k0) ≍
k0(n− k0)

n

δ
2
2 ≍

k0(n− k0)
n

sδ2max. According to [25], we know

hat the detection boundary for the sparse alternative is an order of

δmax ≍

√
log d
nh(k0)

, with h(k0) =
k0
n

(
1−

k0
n

)
.

Combining the above results with (16) and (32), we see that the ℓ∞-norm based method in [63] and the (s0, p)-norm
based individual test (with a fixed given s0) in [43] are optimal for detecting sparse alternatives.

For the dense case, according to [41], the optimal rate is an order ofδ

2 ≍

(d log log n)1/4

n1/2h(k0)
.

Hence, for the ℓ2-norm based methods in [31,59], they are rate optimal up to the logarithmic factor.
To end this section, for the existing state-of-art techniques, we summarize the signal conditions for detecting a change

point in Model (1) with probability tending to one. The results are provided in Table 1. In addition to that, we also report
the corresponding model assumptions in terms of the moment condition on the underlying errors ϵ = (ϵ1, . . . , ϵd)⊤,
he spatial condition Σ among coordinates of X = (X1, . . . , Xd)⊤ (strong or mild), the temporal condition between
bservations, as well as the scaling relationship between d and n.

. High dimensional change point inference for general parameters

In addition to change point inference for high dimensional mean vectors as in Problem (2), change point detection
an be extended to other high dimensional parameters. In particular, let Fi(x) be the cumulative distribution function
or a high dimensional vector X i = (Xi1, . . . , Xid)⊤ ∈ Rd at time point i ∈ {1, . . . , n}. Let Γ be a function mapping the
robability distribution Fi(x) to some parameter space V . Then, we can consider a general hypothesis problem:

H0 : Γ (F1) = · · · = Γ (Fn) vs. the alternative that

H1 : ∃k0 ∈ {1, . . . , n− 1} such that Γ (F1) = · · · = Γ (Fk0 ) ̸= Γ (Fk0+1) = · · · = Γ (Fn).
(41)

or Problem (41), we can take Γ (Fi) = EX i := µi for detecting high dimensional mean vectors and set Γ (Fi) =

(X − EX )(X − EX )⊤ := Σ for detecting high dimensional covariance matrix, etc. Change point testing for general
i i i i i

14
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igh dimensional parameters is more technically involved and has gained increasing interest in some real applications.
n recent years, there has been some developments for Problem (41) by taking a special function Γ . Here, we give a brief
eview on this topic.

For high dimensional variance vectors with Γ (Fi) := (σ 2
i1, . . . , σ

2
id)

⊤
∈ Rd with σ 2

ij = Var[Xij], [16] proposed a sparsified
binary segmentation algorithm, which aggregates the cumulative sum statistics using the thresholded ℓ1-norm. For high
imensional covariance matrix with Γ (Fi) = Σ i ∈ Rd×d, [59] proposed an ℓ2-norm based self-normalized test statistic; [4]
sed an ℓ∞-norm based test statistic for testing sparse changes in Σ , and their method is based on the CUSUM matrix

obtained from a de-biased lasso estimator. [55] adopted a projection based technique for testing and estimating change
points in the covariance structure of a high-dimensional linear time series, including vector autoregressive moving average
(VARMA) models and spiked covariance models as special cases. Dette et al. [23] applied a dimension reduction technique
for estimating the single change point (suppose H1 holds) and [60] used the matrix ℓ2-norm for localizing multiple change
points (suppose H1 holds). Furthermore, [6,40] considered change point detection for large contemporaneous covariance
matrices of high dimensional time series satisfying an approximate factor model.

In addition to mean vectors or covariance structures, another recent research development is to consider change point
inference for more general parameters in the sense that Γ (F ) = (θ1, . . . , θq)⊤ with θs = E[Φs(X ′

1, . . ., X
′

m)], where
Φs(x′1, . . . , x

′
m) : R

d
×· · ·×Rd

→ R is a measurable, symmetric (or anti-symmetric) kernel with order m, and X ′

1, . . . ,X
′

m
are independent copies with the same distribution as X . This problem is known as U-statistic based change point
inference since the parameter θs can be estimated using U-statistic. Note that by choosing a special kernel Φs(·), the high
dimensional parameter Γ (F ) reduces to some specific problems. This includes the mean vectors, the covariance matrix, the
Kendall’s tau correlation matrix, and the Wilcoxon–Mann–Whitney based change point tests as special cases, where the
latter two cases are known as robust change point testing methods. For testing the changes ofΓ (F ) = (θ1, . . . , θq)⊤, similar
to mean vectors, there are still some concerns about the alternative patterns (sparse or dense) of Γ (Fk0+1)−Γ (Fk0 ) in the
high dimensional setting. Recently, several papers made progress on this issue. For example, based on U-statistics, [62]
proposed an ℓ∞-norm based change point test for location parameters; Constructing U-statistic based CUSUM, [43]
considered the (s0, p)-norm based method for detecting general parameters and a data-adaptive test statistic as in (33)
was also proposed.

For high dimensional change point inference, another interesting problem is to consider the following non-parametric
test:

H0 : F1(x) = · · · = Fn(x) for all x ∈ Rd vs. the alternative that

H1 : ∃k0 ∈ {1, . . . , n− 1} such that F1(x) = · · · = Fk0 (x) ̸= Fk0+1(x) = · · · = Fn(x),
(42)

where Fk0 (x) and Fk0+1(x) differ on sets of non-zero measures.
Note that Problem (42) does not rely on any distributional assumption or is limited to a particular parameter such as

mean vectors or covariance matrices. Hence, it can detect general types of changes in the data generating distribution. In
the low dimensional setting with a fixed d, there are some works based on the empirical cumulative functions [21], the
empirical characteristic functions [33], the energy distance [44], or some kernel based procedures [1] for testing (42). In
high dimensions with d ≫ n, the traditional methods are neither no longer applicable nor lack theoretical justifications.
Developing non-parametric change point tests in high dimensions is a challenging task. Several papers appeared in the
literature and we name a few here. Chen et al. [14] proposed a graph based scan test statistic for detecting a single change-
point or two change points. Their method can be applied to non-Euclidean data. Chu and Chen [18] improved [14] for
detecting changes of scale alternatives while maintaining high powers for changes in the middle of data observations.
In a recent work, [10] observed that in high dimensions, the energy distance as used in [44] is only able to capture
the information of the differences of the first two moments (mean and variance) between two distributions. Hence,
the method in [44] fails to detect general distributional changes beyond the first two moments in high dimensions. To
overcome this problem, using a generalized homogeneity metric, [10] proposed a nonparametric change point test for
the homogeneity of two high-dimensional distributions. Their method is based on a cumulative sum based process in an
embedded Hilbert space, which can be regarded as an extension of [44] to the high dimensional settings.

7. Extensions to multiple change points inference

So far, we have reviewed methods for change point inference for AMOC in (1) and discussed their theoretical properties.
One natural extension for Model (1) is to investigate inference for high dimensional multiple change points. Specifically,
by letting µi = EX i, i ∈ {1, . . . , n}, we can consider the following hypothesis:

H0 : µ1 = · · · = µn vs. the alternative that

H1 : ∃ 1 < k1 < · · · < km∗ < n such that µ1 = · · · = µk1−1 ̸= µk1 = · · · = µkm∗−1 ̸= µkm∗
= · · · = µn.

(43)

In other words, there are m∗ unknown change points k1 < · · · < km∗ that divide the data into m∗
+ 1 segments with

different constant mean vectors across the segments. Note that for multiple change point models, both the number of
change points m∗ and the locations {k , . . . , k ∗} are typically unknown. This is essentially different from AMOC in (1)
1 m
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here m∗
≤ 1 is assumed. Moreover, as discussed in the previous sections, the high dimensionality also brings great

hallenges for change point inference. The above two aspects make the testing of (43) a non-trivial task. For detecting
igh dimensional multiple change points, the common strategy for the existing techniques is to combine the test statistic
esigned for a single change point as in Sections 3–4, with the binary segmentation (BS) algorithm in [57], the wild binary
egmentation (WBS) algorithm in [26], the moving sum (MOSUM) based procedure in [19,24], or the scan based method
n [66]. Next, we give a summary for this research direction.

The binary segmentation algorithm is one of the most commonly adopted methods for (43). Let (s, e) ⊂ {1, . . . , n− 1}
e a candidate search interval. Let

C (s, k, e) =
√

(k− s+ 1)(e− k)
e− s+ 1

( 1
e− k

e∑
i=k+1

X i −
1

k− s+ 1

k∑
i=s

X i

)
, (44)

be the CUSUM statistic calculated using the samples {X s, . . . ,X e}. Suppose T(s,e) is a test statistic with T(s,e) = maxs≤k≤e H(
C (s, k, e)

)
, where H(·) denotes a general aggregation for C (s, k, e). The choice of H(·) may depend on the alternative

pattern. For example, we can take H(·) = ∥ · ∥∞ as in [35], H(·) = ∥ · ∥2 in [31], or H(·) = ∥ · ∥(s0,p) in [43]. Suppose
c(s,e) is a critical value (either obtained from a limiting null distribution or using bootstrap). The main idea of BS is that
for the candidate search interval (s, e), we use T(s,e) and c(s,e) to detect the existence of a change point. If H0 is rejected,
we identify a new change point b by taking the location at which H

(
C (s, k, e)

)
maximizes. Then the interval (s, e) is split

into two subintervals (s, b) and (b, e) and we conduct the above procedure on (s, b) and (b, e) separately. This algorithm
is stopped until no subinterval can detect a change point. At the beginning of BS, we may choose (s, e) = (1, n − 1). In
high dimensions, several papers used BS for solving (43) [15,16,43,63].

Note that along with the iteration of the BS algorithm, a search interval that contains more than one change point may
e used. Hence, it is sub-optimal under some unfavourable settings where changes between different segments exhibit
non-monotonic pattern. In that case, BS based method may lose its power. To enhance the performance of BS, [26]

ntroduced the wild binary segmentation algorithm. The main idea of WBS is that suppose (s, e) is the current candidate
earch interval. Instead of using the whole samples (s, e) for calculating a single test statistic T(s,e), WBS generates many
andom subintervals {(sm, em) ⊂ (s, e)}Mm=1, to allow at least one of them contains only one single change point (with high
robability). Then, WBS mainly proceeds as follows:

(1) Compute the CUSUM statistic C (sm, k, em) on each subinterval (sm, em), then maximize each CUSUM by calculating
T(sm,em) = maxk∈(sm,em) H

(
C (sm, k, em)

)
, for m = 1, . . . ,M .

(2) Find (m∗, b∗) such that m∗
= argmax1≤m≤M T(sm,em) and b∗ = argmaxk∈(sm∗ ,em∗ ) H

(
C (sm∗ , k, em∗ )

)
.

(3) Use the critical value c(sm∗ ,em∗ ) and T(sm∗ ,em∗ ) to decide whether we can identify b∗ as a new change point. If b∗ is
considered to be significant, then split the interval (s, e) into two subintervals (s, b∗) and (b∗, e).

(4) Conduct the above procedure on (s, b∗) and (b∗, e) separately until some stopping rule is reached.

t is proved [26] that WBS enjoys better performance than BS both in theory and application. In high dimensions, several
apers used WBS for multiple change point detection. See [10,58,68] for mean vectors as well as [60] for the covariance
atrix.
It is worth mentioning that both BS and WBS are heuristic algorithms since the next iteration depends on the results

rom the previous step. Hence, it is very difficult to control the overall significance level for the whole procedure. Different
rom BS or WBS, the moving sum (MOSUM) based procedure is another popular way that directly constructs a test statistic
or multiple change points. In particular, let Gn denote some user pre-specified bandwidth. For each candidate search
ocation Gn ≤ k ≤ n− Gn, using the samples {X k−Gn , . . . ,X k+Gn}, calculate the CUSUM statistics C (k− Gn, k, k+ Gn) as in
44). Then, we can construct a MOSUM based test statistic as:

TGn = max
Gn≤k≤n−Gn

H
(
C (k− Gn, k, k+ Gn)

)
. (45)

y construction, we know that the main idea of MOSUM is to search subintervals with a length of 2Gn + 1 in a moving
rocedure. Hence, it can detect the existence of multiple change points if one chooses Gn properly. Moreover, in the low
imensional setting, the limiting null distribution of TGn can be typically obtained [24]. This results in a test of (43) under
ny prespecified significance level. In high dimensions, deriving the limiting null distribution for TGn is a challenging task,
nd not much research exists. In a recent work, by choosing H(·) = ∥ · ∥∞, [13] studied the ℓ∞-norm based MOSUM test
tatistic for testing multiple change points with sparse alternatives. They used the Gaussian approximation technique for
pproximating the limiting null distribution of the corresponding test statistic. Along this research direction, it is still an
pen question to investigate the theoretical properties of TGn for other types of aggregation methods such as H(·) = ∥ · ∥2
r H(·) = ∥ · ∥(s0,p).
In addition to the above mentioned techniques, we note that there are some recent extensions of methods for multiple

hange points detection, especially in the low dimensional setting. These are the multiple scale MOSUM [46] procedure,
he narrowest-over-threshold method [5], the tail-greedy unbalanced Haar (TGUH) transform based technique [27],
he seeded binary segmentation based method [37], among others. We believe that it is meaningful to combine these
ethods with the high dimension based techniques for solving multiple change point detection arising from modern
igh-throughput data sequences.
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. Concluding remarks

Focused on mean vectors, this paper provides a comprehensive review on recent developments of high dimensional
hange point inference. This includes the motivations and challenges for high dimensional change point analysis, the
ethodologies designed for known alternative patterns, or those in a data-driven fashion. Using the concept of high
imensional efficiency, we compare theoretical properties of different methods. We also demonstrate the detection
oundary for this problem in terms of the minimax optimality separation rates. In addition, we list several recent
xtensions from high dimensional mean vectors to more complex problems such as change point inference for variances,
ovariance matrices, U-statistic based parameters, as well as non-parametric change point tests for distributional changes.
oreover, we provide some commonly adopted techniques for high dimensional multiple change point inference and
ome possible research generalizations.
In spite of recent rapid developments on this topic, there are many interesting and open research directions. One

roblem is to consider change point inference for more complex statistical models with {(Yi,X i)}, i ∈ {1, . . . , n} being
bserved, where Yi ∈ R1 is the dependent variable and X i ∈ Rd is the independent vector. The goal is to test whether
he underlying data generating mechanism between Y and X has a change point. Typically, in high dimensions, we can
onsider the following conditional linear regression model

θ (Yi|X i) = X⊤

i β(1)
+ X⊤

i β(2)1{i ≥ k0}, i ∈ {1, . . . , n}, (46)

here θ (Yi|X i) is the parameter of Yi conditional on X i that is of interest, β(1),β(2)
∈ Rd are the underlying regression

oefficients, and k0 ∈ {1, . . . , n− 1} is the possible change point location. For example, if we choose θ (Yi|X i) = E(Yi|X i),
odel (46) reduces to the classical linear regression model. To test a change point in (46), we can consider the hypothesis:

H0 : β(1)
= β(2) vs. H1 : There exists k0 ∈ {1, . . . , n− 1} s.t. β(1)

̸= β(2). (47)

For linear regression models with a fixed dimension d, Problem (47) has been extensively studied. See [20,32] for a
ummary of classical methods. In high dimensions with d ≫ n, a few papers exist in the literature and the majority of the
xisting techniques such as [38,65] mainly focuses on the estimation of k0. In contrast, there are limited developments for
he testing of (47). The challenge comes from two aspects. One difficulty is the fact that, unlike mean vectors, there is no
atural testing statistic such as CUSUM as in (3) for high dimensional regression coefficients. Essential modifications are
eeded in terms of the construction of a testing statistic. Another difficulty is how to derive or approximate the limiting
ull distribution of the testing statistic once it is constructed. In a recent paper, [42] used the debiased-lasso technique
or constructing an ℓ∞-norm based Wald-type statistic for testing a single change point. They used a novel Gaussian
ultiplier bootstrap procedure to approximate the limiting null distribution. Hence, along this research direction, we
an consider multiple change point inference for high dimensional linear regression models. Moreover, beyond linear
odels, it is possible to investigate more complicated models such as high dimensional generalized linear models by
etting θ (Yi|X i) = g

(
E(Yi|X i)

)
, where g(·) is the link function, or consider the quantile regression models by setting

(Yi|X i) = Quantτ (Yi|X i). To our knowledge, change point inference for the latter two cases has not been considered yet
n high dimensions.

Another open problem is the issue of robustness. Since the CUSUM statistics in (3) is constructed using the sample
eans, it is not robust against outliers or data with heavy-tailed distributions. In other words, the CUSUM based method

ails to control the size under H0 or cannot detect a change point under H1 because of the outliers. Therefore, it is
ecessary to consider robust change point inference in high dimensions. In a recent paper, [62] proposed a rank based ℓ∞-
orm typed testing statistic to detect sparse changes of mean vectors. Along this research direction, it can be interesting
o construct robust tests for dense alternatives or tests that are both robust to outliers and adaptive to the unknown
lternative patterns.
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