

Running head: GROUNDWATER CONCEPTUAL CHANGE

1
2
3
4
5

6 Engaging Students' Prior Knowledge during Instruction Improves Their Learning of

7 Groundwater and Aquifers

8
9
10

11 Leilani A. Arthurs & Chelsie M. Kowalski

12 University of Colorado at Boulder

13

14

15 Author Note

16 Leilani A. Arthurs, Department of Geological Sciences, University of Colorado at
17 Boulder; and Chelsie M. Kowalski, Department of Geological Sciences, University of Colorado
18 at Boulder.

19 Correspondence concerning this article should be addressed to Leilani Arthurs,
20 Department of Geological Sciences, University of Colorado at Boulder, Boulder, CO 80309.

21 Contact: Leilani.Arthurs@Colorado.EDU

22
23
24
25

GROUNDWATER CONCEPTUAL CHANGE

26 ABSTRACT

27 Water sciences education is paramount to sustainable groundwater resource management,
28 especially of drinking water, but misunderstandings about groundwater among non-experts
29 remain widespread. Groundwater residence is an especially challenging concept to learn because
30 it is not directly visible in typical circumstances. The present study uses a quasi-experimental
31 research design to compare the impacts that two instructional sequences have on improving
32 students' conceptual understanding of groundwater residence and aquifers. Both instructional
33 sequences are designed to use active learning, but only one solicits and engages students'
34 preconceptions. The theoretical framework for this study is the knowledge integration
35 perspective of conceptual change. As such, this study considers cognitive, temporal, and social
36 dimensions of learning. To assess students' learning, concept sketches were analyzed using
37 diagrammatic and textual content analyses, normalized learning gains were calculated, multiple-
38 choice items were scored dichotomously (i.e., scored as either correct or incorrect), free-response
39 items were scored for partial credit, and classroom observations tracked social interactions. We
40 found significantly larger learning gains when students' preconceptions were explicitly
41 incorporated into the instructional sequence compared to when they were not taken into account.
42 We also found the prior-knowledge instructional sequence (PKIS) positively impacted both
43 Caucasian and non-Caucasian students as well as male and female students. Our findings
44 indicate that actively engaging students' prior knowledge in the ways that were researched herein
45 can be a high impact teaching practice and is worthy of future research in other specific domains
46 beyond groundwater residence and aquifers.

47

GROUNDWATER CONCEPTUAL CHANGE

48 **Key words:** Groundwater, aquifers, conceptual change, alternate conceptions,
49 misconceptions

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

GROUNDWATER CONCEPTUAL CHANGE

71 INTRODUCTION

72 Conceptions about Groundwater Residence

73 The term *groundwater residence* in the context of this study is used to describe where
74 groundwater resides, is located, exists, or occurs in the subsurface in aquifers. Groundwater
75 flows at different rates; thus, the term *residence time* is the length of time groundwater resides, is
76 located, exists, or occurs in a specific subsurface reservoir or aquifer. This study is concerned
77 with groundwater residence, not residence time.

78 Despite the recognized need in the US to teach students about groundwater, especially as
79 a source of drinking water, misunderstandings and alternate conceptions about groundwater are
80 widespread among non-experts (Agelidou et al., 2011; Arthurs & Elwonger, 2018; Pan & Liu,
81 2018, Unterbrunner et al., 2108). An *alternate conception* is defined as an “idea or thought held
82 ... at any point in time relative to the instructional period of interest, formed by direct or inferred
83 experience, and one that is more or less scientifically accurate and complete” (Arthurs, 2011, p.
84 137). Similarly, “[m]ental models are what people really have in their heads” (Norman, 1983, p.
85 12); they are mental representations of complex situations or problems (Derry, 1996). In this
86 study, the terms *conception* and *mental model* are used synonymously. Mental models that are
87 incongruent with expert-defined mental models are referred to in the literature as alternate
88 frameworks (Diver, 1981; Dal, 2007); misconceptions (Helm, 1980); and preconceptions
89 (Novak, 1977; Clement, 1993).

90 The most ubiquitous pattern of mental models about groundwater that students hold is the
91 “separate pattern” (Arthurs & Elwonger, 2018, p. 60). This pattern of mental models is one in
92 which students conceptualize groundwater as being separate from rock, such that water
93 underground exists as large continuous bodies of water (e.g., underground river, underground

GROUNDWATER CONCEPTUAL CHANGE

94 lake, etc.). Studies reveal the separate pattern is held among 7-9th graders in Israel (Ben-zvi-
95 Asarf & Orion, 2005); 8th graders in North Carolina, US (Dickerson & Dawkins, 2004); junior
96 high school students in Taiwan (Pan & Liu, 2018); 7th graders and college students in Austria
97 (Unterbrunner et al., 2016); college students in Germany (Reinfried, 2006); and college students
98 in Nebraska and Georgia, US (Arthurs & Elwonger, 2018).

99 Although some general education researchers and educators consider the separate pattern
100 an inappropriate way for students to conceptualize groundwater (Dickerson et al., 2005;
101 Unterbrunner et al., 2016), water-filled underground caves and tunnels are common features in
102 karst aquifers that form when soluble rock such as limestone dissolves (Ford & Williams, 2013;
103 Kiraly, 2003; National Park Service, 2020; Palmer, 2007). Thus, students are not incorrect in
104 conceptualizing groundwater residence as the separate pattern. Instead, the misunderstanding
105 occurs in assuming that *all* groundwater resides this way. Thus, the separate pattern for
106 conceptualizing groundwater is neither wrong nor scientifically inappropriate; however, it is
107 scientifically incomplete because karst aquifers are only one type of aquifer. Karst landscapes
108 cover about 20% of the U.S. (Weary & Doctor, 2014). About 40% of the US population and
109 about 25% of the world population obtain drinking water from karst aquifers (Kalhor et al.,
110 2019; Ghasemizadeh et al., 2012).

111 In the context of this study, we operationalize the term *non-karst aquifer* to mean an
112 aquifer that does not conform to the separate pattern. For the purposes of this study on one-
113 week-long lessons about aquifers and groundwater resources in general education introductory-
114 level geoscience courses, it is perhaps worth noting that the level of content-specific details is not
115 as advanced as would be for courses dedicated to hydrogeology. Instead, the level of content-
116 specific details is constrained to introducing students to basic and typical examples of non-karst

GROUNDWATER CONCEPTUAL CHANGE

117 aquifers: unconfined aquifer, confined aquifer, and perched aquifer (Fetter, 2001; Freeze &
118 Cherry, 1979; Reichard, 2011; US Geological Survey, 2020). Groundwater in these aquifers is
119 held (a) within the fractures and pore spaces of consolidated rock or (b) between the clasts of
120 buried and/or lithified sediments. Arthurs and Elwonger (2018) characterized the former as the
121 ‘composite internal pattern’ and the latter as the ‘composite external pattern’ of mental models.
122 Thus, the goal of instruction should not be dispelling the ‘separate pattern’ but, rather, supporting
123 students’ incorporation of the ‘composite internal pattern’ and the ‘composite external pattern’
124 into student mental models of groundwater residence and aquifers as sources of drinking water.

125 Despite decades of research describing evidence-based best practices for general
126 instruction, the question of how to translate *general* best practices into instruction on *domain-*
127 *specific* concepts, such as groundwater, remains relevant in grade levels up to and including the
128 college level. Indeed, ‘the translation process often remains elusive’ (National Research
129 Council, 2012, p. 180). Aligned with constructivist theories of teaching and learning (Ausubel &
130 Ausubel, 2000; Driver & Erickson, 1983; Powell & Kalina, 2009), Bar (1989) and Meyer (1987)
131 called for student-held preconceptions about groundwater to be used as teaching tools. They,
132 however, were uncertain about *how* to use students’ preconceptions as instructional tools. About
133 three decades later, responding to the still unanswered calls, Arthurs (2019) developed a week-
134 long instructional sequence designed to explicitly solicit and actively engage students’
135 preconceptions about groundwater as resources for teaching about aquifers. In this study, we
136 focus on students’ prior knowledge in the form of their preconceptions. The research question
137 driving the present study is: To what extent does this prior-knowledge instructional sequence
138 (PKIS) aid college students in developing more expert-like ways of conceptualizing groundwater
139 residence relative to a similar instructional sequence that does not utilize students’ prior

GROUNDWATER CONCEPTUAL CHANGE

140 knowledge (non-PKIS)? We answer this question by addressing the cognitive, temporal, and
141 social dimensions of students' conceptual change.

142 Theoretical Framework

143 Aligned with constructivist theories of teaching and learning (Ausubel & Ausubel, 2000;
144 Driver & Erickson, 1983; Powell & Kalina, 2009), the present study is framed with the
145 knowledge integration perspective of conceptual change. This perspective factors in cognitive,
146 temporal, and social dimensions to provide a more holistic understanding of conceptual change
147 (Linn, 2008). It also emphasizes that four practices should be a part of classroom instruction to
148 facilitate conceptual change: (i) utilize personally relevant problems; (ii) create opportunities to
149 make individual student thinking visible; (iii) provide students opportunities to learn from each
150 other by sharing, discussing, and evaluating each other's ideas; and (iv) create opportunities for
151 students to reflect on and monitor their performance (Linn, 2008).

152 The knowledge integration perspective suggests learning is gradual because students need
153 time to grapple with their own confusing and conflicting ideas (Linn, 2008). Additionally, it
154 argues the 'variability in student ideas is fundamentally a valuable feature and that instruction
155 designed to capitalize on the variability ... has [the] potential for facilitating conceptual change'
156 (Linn, 2008; p. 715). This perspective is utilized in the present study to (i) inform the choice of
157 the PKIS as a subject of study, (ii) inform the choice of data to collect and analyze, and (3) frame
158 the discussion of the results.

159 In this study, we focus on students' prior knowledge in the form of their preconceptions.
160 We adopt the definition of preconceptions as pre-instructional conceptions (Arthurs, 2011) that
161 are naïve (Clement, 1993; Kinchin et al., 2000) and abstract knowledge structures associated
162 with deep ontological commitments about how individuals make sense of the world (Vosniadou,

GROUNDWATER CONCEPTUAL CHANGE

163 2014). Individuals with preconceptions are often resistant to change (Sinatra, 2005) because
164 their preconceptions contain elements that are reinforced by individuals' experiences with the
165 world around them (Lakoff & Johnson, 1980).

166 Thus, viewed through a constructivist lens, science learning cannot be achieved by the
167 deceptively simple replacement of apparently incorrect ideas with correct ideas (Vosniadou,
168 2014). Instead, science learning involves confronting one's own potentially confusing and
169 conflicting ideas (Linn, 2008) and developing a more nuanced understanding of scientific
170 concepts in which one's preconceptions find an explicit connection to more scientifically
171 accurate conceptions. It is with these theoretical underpinnings in mind that we strive to answer
172 the previously stated research question.

173 MATERIALS AND METHODS

174 Methodology

175 This study received Institutional Review Board approval. It uses the methodology of
176 quasi-experimental research design (Price et al., 2015). Our implementation of this methodology
177 has nonequivalent groups, pre- and post-instruction tests, and a time-series design (Price et al.,
178 2015). Participants in the PKIS group and the non-PKIS group were drawn from college courses
179 in which students self-enrolled. To ensure the two groups were as similar as possible, both
180 groups consisted of college students enrolled in introductory-level geoscience courses, had the
181 same instructor with the same norms and expectations for class participation, and spent one week
182 in the semester explicitly discussing aquifers. The pre- and post-instruction tests and the time-
183 series data collected were used to investigate students' conceptions of aquifers and groundwater
184 residence (dependent variable) at different points in time relative to each group's one-week
185 instructional sequence on aquifers (independent variable).

186 **Setting and Population**

187 This research was conducted in the naturalistic setting of college classrooms. In
188 education research, *natural setting* is defined as a realistic open situation, rather than a
189 laboratory-based controlled situation where variables can be manipulated (Cohen et al., 2002;
190 Green et al., 2012). The PKIS group and non-PKIS group were comprised of college students
191 enrolled in two central USA public universities. They were enrolled in introductory-level
192 geoscience courses that satisfy the natural science requirement for graduation. As survey
193 courses, they addressed a range of concepts but both courses addressed groundwater residence.
194 A timeline and list of topics covered by week in each course is provided in Supplemental
195 Material Table S1. The population demographics for both groups are shown in Table 1.

196 **Instructional Sequence**

197 The courses in which the PKIS and non-PKIS were implemented are considered
198 interactive in that the curricula were designed to actively engage students in their learning rather
199 than only being recipients of information. Students not only listened to lectures but also
200 participated in polls, independent work, small group work, and whole class discussions. Both
201 curricula were developed utilizing backward design wherein learning goals are articulated and
202 then used to inform assessments and learning activities (Wiggins & McTighe, 2011). The in-
203 class portions of the PKIS and non-PKIS each occurred over a one-week period of instruction
204 about aquifers and groundwater residence in which students met for three 50-minute class
205 meetings. The PKIS was used during Week 9 of a 16-week course, and students in the PKIS
206 group did not learn about groundwater or related concepts in the course prior to that week. The
207 non-PKIS was used during Week 4 of a 16-week course, and students in the non-PKIS group
208 learned about fluid storage and mobility in Week 2 of the course. At the end of the PKIS and

GROUNDWATER CONCEPTUAL CHANGE

209 non-PKIS, students completed a weekly homework assignment to review and apply what they
210 learned during the week.

211 *Prior-Knowledge Instructional Sequence (PKIS)*

212 A single instructor designed the PKIS over six iterations of implementation over five
213 years at two different large state universities (each with a total student enrollment greater than
214 30,000) in the US (Arthurs, 2019). This instructional sequence about aquifers consists of three
215 class meetings, each 50 minutes long. All three meetings are interactive lecture periods. A
216 detailed description of the PKIS and how to implement it can be found in Arthurs (2019).

217 Briefly, the PKIS is comprised of a series of in-class activities that are embedded into lecture
218 periods, thus creating interactive lectures. On Day 1 of the instructional sequence, students
219 engage in (i) a prior knowledge check where they pair up and discuss the real-world problem of
220 where they think the water people drink comes from, which is followed by a whole-class
221 discussion; (ii) a prior knowledge check where they individually respond to a polling question
222 about what they think an aquifer looks like; and (iii) an interactive video-based demonstration
223 where they are asked to record their predictions, observations, and explanations for what happens
224 when three drops of water are placed on four rocks with different permeabilities. On Day 2 of
225 the instructional sequence, students engage in (i) a follow-up discussion based on the predictions,
226 observations, and explanations they submitted on Day 1; (ii) a viewing of students' prior-
227 knowledge drawings of groundwater and aquifers, which were collected prior to the start of the
228 instructional week about aquifers, to explicitly show their ideas as a segue into a mini lecture
229 about how geoscientists define three non-karst types of aquifers; and (iii) a concept sketching
230 exercise where students are asked to apply what they learned from the mini lecture to shade in
231 the three different types of aquifers on a provided base-form sketch. On Day 3 of the

GROUNDWATER CONCEPTUAL CHANGE

232 instructional sequence, students engage in an activity where representative sketches for each
233 aquifer type collected on Day 2 are displayed for whole-class discussion about what is consistent
234 with geoscientific conceptions of each aquifer type and what could be revised to bring a
235 particular student sketch more closely aligned with expert-like conceptions. After this
236 discussion, the instructor projects a blank base-form sketch and shows how water moves in the
237 subsurface to create different aquifer types.

238 *Non-Prior-Knowledge Instructional Sequence (non-PKIS)*

239 A cohort of five faculty members designed the non-PKIS, and data collected during the
240 third semester of implementation is used in the present study. This instructional sequence about
241 aquifers consists of three class meetings, each 50 minutes long. The first two meetings are
242 interactive lecture periods and the third meeting is a recitation period. On Day 1 of the
243 instructional sequence, students engage in an interactive lecture where they learn about two of
244 the non-karst types of aquifers (confined aquifers and unconfined aquifers, but not perched
245 aquifers). Interspersed in the lecturing, students are asked two polling questions about
246 groundwater flow and three think-pair-share questions (which geologic material makes for a
247 good aquifer, what could perturb the water table, and identify aquitards or low permeability
248 layers in two figures displayed on a PowerPoint slide). Students are also asked to draw the
249 legend for two different figures of aquifers displayed on a PowerPoint slide. On Day 2 of the
250 instructional sequence, students engage in an interactive lecture that begins with displaying
251 accurate and clear legends that students submitted during the previous class meeting. They then
252 answer three polling questions to review the lecture content from the previous class meeting.
253 This is followed by three open-ended questions related to groundwater flow, in preparation to
254 learn about how to compute groundwater discharge and to learn about hydraulic head and

GROUNDWATER CONCEPTUAL CHANGE

255 hydraulic gradient. Day 2 of the instructional sequence ends with students applying what they
256 learned to calculate the hydraulic gradient for a given scenario. Day 3 of the instructional
257 sequence is a recitation period during which students complete a worksheet about aquifers.
258 Students complete the worksheet at their own pace and may work with peers if they like.
259 Students retain their worksheet and complete it at home if they do not finish it during class time.

260 Data Sources

261 To examine the cognitive, temporal, and social considerations associated with the
262 knowledge integration perspective of conceptual change, the following sources of data were
263 used: instructor lesson plans; instructor notes about in-class activities and discussions; student
264 responses to paper-and-pencil in-class activities; and student responses to weekly homework
265 assignments, exams, and pre- and post-course surveys. Trained third parties made classroom
266 observations that were also used.

267 The **cognitive dimension** of conceptual change that this study is interested in is
268 conceptual learning gains. Learning gains were estimated through the analysis of students'
269 responses to a free-response item before and after the instructional sequence. Students in the
270 PKIS group and non-PKIS group completed an in-class activity as a gauge of their prior
271 knowledge before the instructional sequence began. It consisted of a prompt and large blank
272 space in which to draw and label a sketch. In this study, this type of in-class activity is called a
273 *free-sketch activity* because students begin drawing on an entirely blank space where they are
274 free to create a sketch from scratch. The prompts are provided in Supplemental Material Table
275 S2. Students addressed a similar prompt in the course final exam.

276 The **temporal dimension** of conceptual change of interest in this study is the longitudinal
277 development of students' mental models akin to karst and non-karst aquifers, at four different

GROUNDWATER CONCEPTUAL CHANGE

278 times during the semester. The prompts are provided in Supplemental Material Table S2. A
279 timeline of the sampling points relative to the weeks in the semester is provided in Supplemental
280 Material Table S1.

281 For the PKIS group, the first time point (T_1) was the week before the instructional
282 sequence began (Week 8 of the semester). The second time point (T_2) was during the
283 instructional sequence in Week 9, after a mini lecture that separately described three main types
284 of aquifers. The third time point (T_3) was three weeks after the instructional sequence ended
285 (during a mid-term exam in Week 11 of the semester, after a week of vacation). The fourth and
286 last time point (T_4) was five weeks after the instructional sequence ended (during the final exam
287 in week 16 of the semester). In contrast to the free-sketch activities at T_1 and T_4 , the assessments
288 at T_2 and T_3 are *delimited-sketch activities*. A delimited-sketch activity is an in-class activity that
289 begins with a partial sketch already provided, which is called a *base-form sketch* (Arthurs, 2019).
290 Students add to the base-form sketch by drawing additional features, amending existing features,
291 and labeling their sketch to help clarify their ideas. The delimited-sketch activity at T_2 is an
292 activity in the PKIS.

293 For the non-PKIS group, the first time point (T_1) was two weeks before the instructional
294 sequence began (Week 2 of the semester). The second time point (T_2) was during the
295 instructional sequence in Week 4, after a lecture describing two types of aquifers. The third time
296 point (T_3) was two weeks after the instructional sequence ended (during a mid-term exam in
297 Week 6 of the semester). The fourth and last time point (T_4) was 11 weeks after the instructional
298 sequence ended (during the final exam in week 16 of the semester). The non-PKIS dis not utilize
299 a delimited-sketch activity, and students completed free-sketch activities at all four time points.

GROUNDWATER CONCEPTUAL CHANGE

300 The in-class activities for the PKIS group at T₁ and T₂ were formative assessments used
301 to draw out student thinking for explicit discussion in subsequent lessons. As with other in-class
302 activities during the semester, the instructor let students know their responses would aid her in
303 better understanding their current thinking, which would then assist her in helping them take
304 what they know to the next level. By ‘current thinking,’ the instructor meant students’ current
305 ideas about groundwater residence. By ‘the next level,’ the instructor meant advancing students’
306 ideas to achieve course learning goals associated with the course. Students earned two
307 participation points toward the in-class activity component of the course for completing their in-
308 class activities clearly and demonstrating good-faith effort at communicating their ideas, not for
309 correctness. As formative assessments, de-identified responses were displayed on PowerPoint
310 slides and discussed in subsequent lessons in the instructional sequence to summarize the
311 diversity of ideas expressed and to build on those ideas through follow-up in-class activities and
312 discussions. Although several examples of representative student work were displayed and
313 discussed during class, in-class activities were not returned to students.

314 The in-class activity soliciting students’ ideas about groundwater residence for the non-
315 PKIS group at T₁ and T₂ were not formative assessments and were not discussed in subsequent
316 lessons. They were intended only to obtain insights about students’ mental models for this study.
317 Nevertheless, as with the PKIS group, students in the non-PKIS group were also informed they
318 would earn two participation points toward the in-class component of the course for completing
319 the in-class activities clearly and demonstrating good-faith effort at communicating their ideas,
320 not for correctness. As with the PKIS group, in-class activities were not returned to students in
321 the non-PKIS group.

GROUNDWATER CONCEPTUAL CHANGE

322 The assessments at T₃ and T₄ for the PKIS group and non-PKIS group were summative
323 assessments. As summative assessments, the results of these exams were not discussed as part of
324 any follow-up instruction in class. Responses to other non-sketch-based homework and exam
325 items as well as the instructor's notes about in-class discussions and interactions with the
326 students provide additional information about the longitudinal development of students' mental
327 models.

328 The **social dimension** of conceptual change of interest in this study are mainly students'
329 interactions during the focal instructional sequence. To investigate these interactions, sources of
330 data include: the instructor's lesson plans and notes about student interactions during in-class
331 activities and discussions, student responses to pre- and post-course survey items (Supplemental
332 Material Table S3), and classroom observations. Two trained observers external to the course
333 and department used the Classroom Observation Protocol for Undergraduate Science (COPUS)
334 (Smith et al., 2013) to observe the PKIS, and one faculty peer reviewer and one graduate student
335 teaching assistant recorded in-class observations in the non-PKIS course. The two trained
336 observers were staff members who were employed and trained by a campus office that makes
337 formal observations of classroom teaching.

338 **Data Analysis**

339 For both the PKIS group and non-PKIS group, time points T₁, T₂, and T₃ were similarly
340 spaced relative to one another, which allows for more direct comparisons between the two
341 groups. Time point T₄ in the PKIS group occurs five weeks after T₃, and T₄ in the non-PKIS
342 group occurs 11 weeks after T₃. Thus, the pre- and post-instruction tests for the purposes of
343 measuring short-term conceptual learning gains in this study occur at T₁ and T₃. Data collected

GROUNDWATER CONCEPTUAL CHANGE

344 at T₄ are used to make supplemental observations about longer-term conceptual learning gains
345 (see *Temporal Dimension* in the Results section).

346 *Concept Sketch Analyses*

347 Sketches created during free- and delimited-sketch activities were analyzed using
348 diagrammatic (Gobert, 2000) and textual content analysis (Sapsford, 1999). A double-coding
349 process (Krefting, 1991) was applied to all pre-instructional annotated sketches, with two weeks
350 between the first and second coding session, to determine the types of mental models displayed
351 using an author-developed rubric. The rubric was used to classify them as underground pockets,
352 caves, caverns; pools, lakes; reservoirs; rivers, layers of water, tunnels; and pipes and veins
353 (Supplemental Material Figure S1). With greater than 97% agreement between the two coding
354 iterations, the process yielded little to no discrepancies in the codes. The high percent agreement
355 provides support of reliability (Krefting, 1991).

356 Analyses of all annotated sketches were performed with a scoring rubric (Supplemental
357 Material Table S4). The authors developed the scoring rubric to evaluate specific features in
358 concept sketches against an expert standard. The expert standard used for this study is based on
359 the descriptions of perched aquifers, unconfined aquifers, and confined aquifers provided in two
360 respected discipline-specific textbooks, one on hydrogeology (Fetter, 2001) and one on
361 groundwater (Freeze & Cherry, 1979) as well as the introductory-level course textbook
362 (Reichard, 2011). Using these descriptions, one researcher with a geology and education
363 background developed a scoring rubric in which the highest score that could be assigned to a
364 concept sketch is '6' and these scores are then translated into percentages (6 points = 100%).
365 The closer to 100% a concept sketch scores, the more expert-like the communicated mental
366 model about groundwater residence is. After the scoring rubric was developed, two research

GROUNDWATER CONCEPTUAL CHANGE

367 assistants with a geology background critiqued the rubric for content, clarity, and organization.
368 All three researchers discussed the critiques and no changes to the rubric were deemed necessary
369 as it was clear and consistently applied. The critiques contributed to the rubric's trustworthiness
370 (Guba, 1990).

371 Two researchers (a professor and a professional research assistant) independently coded
372 all the sketches and then compared their coding results to achieve interrater agreement (LeBreton
373 & Senter, 2008). A comparison of scores assigned to sketches from the PKIS group resulted in
374 >84% initial interrater agreement, and after discussion resulted in 100% interrater agreement. A
375 comparison of scores assigned to sketches from the non-PKIS group resulted in >84% interrater
376 agreement prior to discussion. Discussion of the sketches from the non-PKIS group also led to
377 adjustments in the coding rubric to accommodate sketched features not previously observed. For
378 example, some non-PKIS post-instruction sketches included a water table as a layer with depth
379 or thickness rather than as a boundary between the unsaturated and saturated zones. Application
380 of the adjusted coding rubric resulted in interrater agreement >88%, and after discussion resulted
381 in 100% interrater agreement. Although the PKIS curriculum addressed all three types of non-
382 karst aquifers, the non-PKIS curriculum did not explicitly address perched aquifers. The reason
383 for this difference is attributed to curriculum design priorities of those involved in designing
384 these curricula. Thus, comparative statistical analyses were performed using data for only
385 confined and unconfined aquifers collected from the PKIS group and non-PKIS group. The
386 PKIS group had two free-sketch activities (T_1 and T_4) and two delimited sketch activities (T_2 and
387 T_3) while the non-PKIS group had free-sketch activities at all four time points (T_1 , T_2 , T_3 , and
388 T_4) because the delimited sketch activities were part of the PKIS curriculum (with test group)
389 and not part of the non-PKIS curriculum (with control group).

GROUNDWATER CONCEPTUAL CHANGE

390 Data collected at T₁, T₂, T₃, and T₄ were statistically analyzed (i.e., calculated average,
391 standard error, t-value, p value, and Cohen's d) to examine the overall development of students'
392 mental models over time. Additionally, each group's average learning gains were computed
393 using Equation 1 (Hake, 1998). In Equation 1, $\langle g \rangle$ is called the normalized gain, $\langle \text{pre} \rangle$ is the
394 group's average pre-instruction test score, $\langle \text{post} \rangle$ is the group's average post-instruction test
395 score, and the denominator equals the maximum possible gain. Learning gain, $\langle g \rangle$, is reported
396 as a fraction of 1, where 1 represents 100%.

$$397 \quad (1) \quad \langle g \rangle = \frac{\langle post \rangle - \langle pre \rangle}{100 - \langle pre \rangle}$$

398 Potentially statistically significant differences from one time to another were determined
399 using a two-tailed t-test, and the effect size was determined by calculating Cohen's d. The same
400 analyses were performed to determine potential impacts based on gender and race. To determine
401 the impact of the PKIS curriculum and non-PKIS curricula over time, learning gains were
402 calculated with data of students for whom data was collected at all four time points. For the
403 analyses of learning gains, the PKIS group consists of 51 students and the non-PKIS group
404 consists of 52 students. This is about 84% and 94% of the participants in the PKIS group and
405 non-PKIS group, respectively, and they are demographically representative of their groups.

406 *Homework and Exam Items*

407 Additional insights into the development of students' mental models about groundwater
408 were obtained via answers to groundwater-related items in homework and exams. Although the
409 homework and exam items in the PKIS and non-PKIS courses were not directly comparable
410 because they are not the same, they did provide an additional means to gauge student
411 understanding. These items were mainly multiple-choice items. A few were open-ended items.
412 Multiple-choice items were scored dichotomously (i.e., scored as either correct or incorrect), and

GROUNDWATER CONCEPTUAL CHANGE

413 free-response items were scored to permit partial credit for partly correct answers. These items
414 are included in Supplemental Material Tables S5 and S6.

415 *Classroom Observations*

416 Two trained observers used the COPUS to observe all three days of the PKIS, and they
417 produced a report describing their observations. A faculty peer observer and a graduate teaching
418 assistant observed the non-PKIS course, and they provided reports describing their observations.
419 The graduate teaching assistant observed all three days of the non-PKIS and the faculty peer
420 observer was present only one day. Information in these reports were used in conjunction with
421 the instructor's lesson plans and notes to aid in characterizing the social dimensions of
422 conceptual change.

423 *Pre- and Post-Course Surveys*

424 Additional insights into the social dimensions of conceptual change were obtained via
425 responses to items on the pre- and post-course surveys. Matching Likert-scale items were
426 analyzed to determine whether any pre/post shifts in students' attitudes towards working alone
427 and with others might have occurred. Two free-response items in the post-course survey were
428 analyzed to determine the frequency with which social aspects of the course that students
429 mentioned. Social aspects counted included in-class activities, discussions, and group work.

430 **RESULTS**

431 The Results section addresses the three dimensions of learning presented in the
432 theoretical framework: cognitive, temporal, and social.

433 **Cognitive Dimension**

434 The depth of conceptual understanding was determined by comparing rubric scores for
435 the concept sketches that the PKIS group and non-PKIS group drew at T₁ and T₃, where T₁

GROUNDWATER CONCEPTUAL CHANGE

436 represents pre-instruction conceptual understanding and T_3 represents post-instruction conceptual
437 understanding. The results show the PKIS group and non-PKIS group had pre-instructional
438 conceptual understandings that were similar (Figure 1 and Table 2a). Representative examples
439 of students' pre-instructional concept sketches are shown in Figure 2. The results show a large
440 and statistically significant positive shift towards more expert-like mental models for the PKIS
441 group from T_1 to T_3 (Table 2b). The results also show a statistically significant positive shift
442 towards more expert-like mental models for the non-PKIS group from T_1 to T_3 (Table 2c).
443 Additionally, the results show the PKIS group and non-PKIS group had post-instructional
444 conceptual understandings that are significantly different (Table 2d). Finally, the results show a
445 statistically significant difference in the overall learning gains between the PKIS group and the
446 non-PKIS group (Table 2e).

447 **Temporal Dimension**

448 Students' mental models about groundwater residence akin to karst and non-karst
449 aquifers were compared among the PKIS group and non-PKIS group at four different time
450 points.

451 *Temporal Change in PKIS Group*

452 For the PKIS group, the most commonly occurring pre-instructional mental model of
453 groundwater residence at T_1 was that it exists in underground 'rivers' or layers of water (26%).
454 The second most common was underground 'pools,' 'lakes,' or 'reservoirs' of water (23%).
455 Twenty-three percent also expressed water is intermixed with soil. The third most common are
456 groundwater resides in underground 'pockets,' 'caves,' or 'caverns' (21%). Only 7% expressed
457 groundwater resides in the spaces in between small rocks, gravel, and sand. Also, only 5%
458 expressed groundwater resides inside porous or permeable rock itself. The results reveal a

GROUNDWATER CONCEPTUAL CHANGE

459 gradual change toward more expert-like mental models over time. Evidence of students'
460 conceptual change over time were determined by applying the scoring rubric to concept sketches
461 collected at T₁, T₂, T₃, and T₄ (Figure 3a and Figure 4a). Additional evidence of a change toward
462 more expert-like ways of conceptualizing groundwater residence comes from students'
463 performance on groundwater-related items in homework and exams, which have a combined
464 average of >80% (see Supplemental Material Table S5). The PKIS curriculum had a large
465 positive impact on the conceptual development of male and female students as well as Caucasian
466 and non-Caucasian students (see Supplemental Material Tables S7).

467 *Temporal Change in non-PKIS Group*

468 For the non-PKIS group, the most commonly occurring pre-instructional mental model of
469 groundwater residence at T₁ was it resides in underground 'pools,' 'lakes,' or 'reservoirs' (36%).
470 The second most common was underground 'pockets,' 'caves,' or 'caverns' of water (35%). The
471 third most common was groundwater is found in underground 'rivers' or layers of water (24%).
472 Only 4% expressed groundwater resides in the spaces in between small rocks, gravel, and sand.
473 Also, only 2% expressed groundwater resides inside porous or permeable rock itself. The results
474 reveal a gradual change toward more expert-like mental models over time. Evidence of students'
475 conceptual change over time were determined by applying the scoring rubric to concept sketches
476 collected at T₁, T₂, T₃, and T₄ (Figure 3b and Figure 4b). Additional evidence of a change
477 toward more expert-like ways of conceptualizing groundwater residence comes from students'
478 performance on groundwater-related items in homework and exams, which have a combined
479 average of >80% (see Supplemental Material Tables S6). The non-PKIS curriculum had a
480 positive impact on the conceptual development of male and female students as well as Caucasian
481 and non-Caucasian students (see Supplemental Material Table S8).

482 **Social Dimension**

483 *Social Interactions in PKIS Group*

484 The instructor's lesson plans, instructor's notes, and external observers' reports show the
485 PKIS is best described as an interactive lecture with a conversational tone characterized by the
486 back-and-forth sharing of ideas between students and between students and the instructor. Each
487 class meeting was facilitated with 19–20 PowerPoint slides. Of them, 10% were used as visual
488 transitions from one topic to another and/or as announcements, 15% engaged students as part of
489 lecture, 35% were used to transfer information via lecture, and 40% were used to facilitate in-
490 class activities and discussions. During times of lecture, students were actively engaged in note
491 taking, listening, and asking questions. During times of individual work, students engaged in
492 independent thought and committed their ideas to paper. During group work and whole-class
493 discussion, the room was vibrant with audible discussion, inquiry, and even laughter.

494 An analysis of the prompts shown in Supplemental Material Table S3, reveals the pre-
495 and post-course survey results show there were no shifts in the extent to which the PKIS group
496 liked working alone, working with other people, and their preferences for working in one way or
497 another. A free-response item on the post-course survey shows 3% of students wanted 'fewer in-
498 class activities' or 'less participation.' Meanwhile 52% of students said they enjoyed one or
499 more social aspects of the course. Of these students, six (12%) offered suggestions for doing
500 more socially oriented activities. Representative quotes that highlight these sentiments among
501 the PKIS group are listed below.

502 • "I loved how [the interactive] lectures were always fun and interesting. I often became
503 involved learning about subjects that I had little interest in to begin with. I really enjoyed
504 taking this class!"

GROUNDWATER CONCEPTUAL CHANGE

505 • “I really enjoyed the [the interactive] lectures, and the knowledge [the professor] had on
506 the subject. Some of the material can be dry, and she made it fun with activities and
507 videos.”

508 • “I really enjoyed the professor and the people in the class! I learned a lot from the in
509 class activities as well.”

510 • “I really liked the open discussion in class. I also enjoyed the additional videos that we
511 watched. Also, I really did enjoy [the professor] as a teacher and appreciated her
512 enthusiasm and encouragement [to participate in class].”

513 • “What I liked best was the encouragement to discuss and question ideas we talked about
514 both with our classmates individually and as a whole class.”

515 • “I loved how [the professor] incorporated the class’s ideas into the next powerpoint. She
516 was very engaging and made me want to learn. This class was never a chore and was
517 always fun.”

518 • “Include more group presentations and models.”

519 • “I feel the instructor can use small group work more often”

520 *Social Interactions in non-PKIS Group*

521 The instructor’s lesson plans, instructor’s notes, faculty peer observer’s report, and
522 graduate student teaching assistant’s observation report show the non-PKIS can be described as
523 an interactive lecture-and-recitation. The lecture periods have a conversational tone
524 characterized by the back-and-forth sharing of ideas between students and between students and
525 the instructor. Each lecture period was facilitated with 17 PowerPoint slides (Day 1) or 15
526 PowerPoint slides (Day 2). Of them, 16% were used as visual transitions from one topic to
527 another and/or as announcements, 50% engaged students as part of lecture, 47% were used to

GROUNDWATER CONCEPTUAL CHANGE

528 transfer information via lecture, and 6% were used to facilitate in-class activities and discussions.
529 The total percentages do not sum to 100% because some slides both engaged students as part of
530 lecture (e.g., with polling question) and transferred information via lecture. During times of
531 lecture, students in the non-PKIS were actively engaged in note taking, listening, and asking
532 questions. During times of individual work, they engaged in independent thought and committed
533 their ideas to paper. During group work and whole-class discussion, the non-PKIS group
534 exhibited audible discussion and inquiry.

535 The pre- and post-course survey results show there were no shifts in the extent to which
536 the non-PKIS group liked working alone versus working with other people. A chi-square test of
537 independence was performed to examine the relation between pre/post non-PKIS curriculum
538 (independent variable) and the preference for working alone and/or with others (dependent
539 variable). The relation between these variables was statistically significant, $X^2 (3, N = 49) =$
540 0.295, $p = .990$. By the end of the course, students in the non-PKIS group were more likely to
541 prefer a combination of both working alone and with others. A free-response item on the post-
542 course survey shows 2% of students wanted ‘less group work’. Meanwhile 29% of students said
543 they enjoyed one or more social aspects of the course. Representative quotes that highlight these
544 sentiments among the non-PKIS group are listed below.

- 545 • “I liked [the professor’s enthusiasm. It really helped me get in the mindset to learn and to
546 enjoy the class discussion.”
- 547 • “The topic is very interesting so I enjoyed spending time learning it and the people made
548 the course better.”
- 549 • “The fact that [the professor] made an effort to learn everyone’s names in such a large
550 class and actually wanted to talk to you personally and learn about you really showed

GROUNDWATER CONCEPTUAL CHANGE

551 how much she cares about her students. Seeing her commitment to her students made me
552 even more motivated to put effort into the class and do well.”

553 **DISCUSSION**

554 The Discussion section addresses the three dimensions of learning presented in the
555 theoretical framework: cognitive, temporal, and social.

556 **Cognitive Implications**

557 The PKIS group and non-PKIS group had similar levels of conceptual understanding
558 about groundwater residence and aquifers as a drinking water source at T₁, prior to their
559 respective instructional sequences about aquifers and groundwater residence (Table 2, Figure 1,
560 and Figure 2). Figure 2 highlights examples of the ways in which students sketched continuous
561 bodies of water versus water in the interstices of sediment. Both groups held similar
562 preconceptions about continuous underground bodies of water that also appear across grade
563 levels and regions (Arthurs & Elwonger, 2018; Ben-zvi-Asarf & Orion, 2005; Dickerson &
564 Dawkins, 2004; Pan & Liu, 2018; Reinfried, 2006; Unterbrunner et al., 2016).

565 Although the majority in both groups held mental models of continuous underground
566 bodies of water akin to karst aquifers, there were two differences in the spread of mental model
567 types at T₁ between the PKIS group and non-PKIS group. The first difference is that about 7%
568 of students in the non-PKIS group indicated groundwater we use for drinking water comes from
569 ‘pipes’ or ‘veins’ and the PKIS group students made no mention of pipes or veins. Based on
570 previous research (Arthurs & Elwonger, 2018; Dickerson & Dawkins, 2004), this is a far less
571 commonly held conception than others noted in the literature. Thus, it is perhaps not surprising
572 that a few students in the non-PKIS group expressed this idea and none in the PKIS group did.

GROUNDWATER CONCEPTUAL CHANGE

573 The second difference is that about 23% of PKIS group students indicated groundwater we use
574 for drinking water is intermixed with soil and the non-PKIS group students made no mention of
575 water intermixed with soil. Given that water intermixed with soil is not a commonly identified
576 preconception in the research literature (Arthurs & Elwonger, 2018) and given that the PKIS
577 group's T₁ prior knowledge check occurred at the end of a week-long lesson about soil resources,
578 we hypothesize that this mental model appeared in the PKIS group because they learned about
579 soil resources in the previous week of instruction. Although soil holds water moisture, soil is
580 neither an aquifer nor is soil moisture a source of drinking water. In this sense, the PKIS group
581 started their instructional sequence about aquifers and groundwater residence with a
582 misconception that the non-PKIS group did not express.

583 Despite these two differences, the PKIS group and non-PKIS group began their
584 respective instructional sequences about aquifers and groundwater with comparable levels of
585 conceptual understanding and similar types of preconceptions relevant to karst and non-karst
586 aquifers. One reason why the conception of large continuous bodies of water underground may
587 be so common among students in this study and others is that the conceptions of 'underground
588 lake' and 'underground river' serve as metaphorical tools. Lakoff and Johnson (1980) suggest
589 such metaphors enable people to use what they know based on their direct physical experiences
590 to understand more abstract or not directly visible phenomena. In other words, applied to this
591 context, students use their direct experiences seeing or recreating in lakes and rivers to
592 understand the typically unseen underground environment of aquifers and groundwater.

593 Comparisons of the average learning gains computed using the pre- and post-instruction
594 results (at T₁ and T₃) reveal that the PKIS and the non-PKIS approaches to teaching and learning
595 about aquifers and groundwater residence both facilitated a shift towards more expert-like

GROUNDWATER CONCEPTUAL CHANGE

596 conceptions. Both the PKIS group and non-PKIS group exhibited statistically significant
597 learning gains from T_1 (pre-instruction) to T_3 (post instruction) that were more than twice that
598 expected from traditional lecture-based instruction, according to research by Hake (1998) who
599 found lecture alone leads to about 0.23 learning gains at most and Freeman et al. (2014) who
600 conducted a meta-analysis demonstrating active learning leads to greater learning than lecture
601 alone. See Table 2e for the learning gains data. A plausible explanation for the difference in
602 learning gains with these two approaches relative to traditional lecture-based instruction alone is
603 that both the PKIS and non-PKIS curricula were designed to be interactive and utilized active
604 learning techniques.

605 While the PKIS and non-PKIS curricula produced higher learning gains than expected in
606 traditional lecture-based instruction, the PKIS curricula also produced significantly larger
607 learning gains from T_1 (pre-instruction) to T_3 (post-instruction) compared to the non-PKIS
608 curricula. One might argue the difference is due to differences in how the T_3 data were collected
609 because the PKIS group used a delimited sketch activity and the non-PKIS group used a free-
610 form sketch activity. However, the idea that the observed difference is due to the testing mode is
611 weakened by the fact that the PKIS group used a free-form sketch activity at T_4 with very similar
612 results as at T_3 . The main discernable difference between the two instructional sequences is not
613 whether they were interactive but whether they explicitly solicited and actively engaged
614 students' prior knowledge to facilitate the development of more expert-like conceptions of
615 aquifers and groundwater. Thus, it is plausible that the difference in observed learning gains
616 between the PKIS group and the non-PKIS group is attributable to that difference. Also, recall
617 the knowledge integration perspective of conceptual change advocates four practices in
618 classroom instruction: (1) using personally relevant problems; (ii) making individual student

GROUNDWATER CONCEPTUAL CHANGE

619 thinking visible; (iii) enabling students to learn from one another by sharing, discussing, and
620 evaluating one another's ideas; and (iv) providing students with opportunities to reflect on and
621 monitor their performance. Although the PKIS and non-PKIS curricula addressed the personally
622 relevant question of where people obtain their drinking water, only the PKIS curriculum
623 implemented the other three practices by focusing on students' prior knowledge and evolving
624 ideas.

625 Since the time of Meyer's (1987) and Bar's (1989) calls to utilize students'
626 preconceptions about groundwater as instructional tools, a review of the literature reveals those
627 calls have not been taken up until recently (Arthurs, 2019). Unterbrunner et al. (2016) utilized
628 student preconceptions documented in the literature to develop a multimedia learning program
629 that students navigated through on their own, but they did not actively elicit and incorporate
630 individual students' preconceptions into the learning program. Their decision was made from
631 concern based on Sinatra's work (2005) that acknowledging students' preconceptions in a
632 statistically significant way would reinforce misconceptions. To the best of our knowledge, we
633 are the first to demonstrate the efficacy of explicitly invoking and directly utilizing students'
634 preconceptions in learning about groundwater residence and aquifers.

635 **Temporal Implications**

636 The PKIS group and the non-PKIS group held a similar range of pre-instructional
637 conceptions about groundwater residence, and the instructional sequence both groups
638 experienced had a positive impact on facilitating conceptual change. The PKIS group
639 experienced significantly higher learning gains compared to the non-PKIS group from T_1 to T_3 .
640 Although a one-to-one comparison of the longer-term retention (i.e., at T_4) of more expert-like
641 conceptions about aquifers and groundwater residence between the PKIS group and the non-

GROUNDWATER CONCEPTUAL CHANGE

642 PKIS is not possible because of a three-week difference between T₄ for the two groups, it is
643 nevertheless possible to make within-group comparisons with the available data.

644 For the non-PKIS group, there was a statistically significant difference between the
645 scores at T₃ and T₄, indicating a loss in conceptual gains 13 weeks after the instructional
646 sequence (Table 2 and Figure 3b). This finding was not surprising because it is common for
647 students to forget what they learned, especially when what they learned is not used regularly
648 (Wixted, 2005). Interestingly, that loss brought the PKIS group back to the T₂ level of
649 conceptual understanding, which is still significantly greater than their conceptual understanding
650 at T₁, indicating statistically significant memory retention.

651 For the PKIS group, there was no statistically significant difference between the scores at
652 T₃ and T₄, indicating the more expert-like conceptual understanding of aquifers and groundwater
653 residence persisted for a large fraction of students even 8 weeks beyond the instructional
654 sequence (Table 2 and Figure 3a). This finding was surprising because students often do forget
655 what they learned (Murre & Dros, 2015; Terada, 2017). The overall learning gains for the PKIS
656 group remaining relatively steady from T₃ and T₄ suggests that explicitly soliciting and actively
657 incorporating their preconceptions into the instructional sequence had a relatively long-lasting
658 impact. Whether or not that impact would have held even longer is an area of potential future
659 research.

660 The longitudinal results for both the PKIS group and non-PKIS group from T₁ to T₄
661 (Figure 3) indicate conceptual change occurs at various rates for different students and is,
662 generally, a more gradual process rather than a rapid or revolutionary process. This is consistent
663 with Linn's (2008) knowledge integration perspective of conceptual change. Additionally,
664 students struggle to assimilate and/or accommodate scientific conceptions into their

GROUNDWATER CONCEPTUAL CHANGE

665 preconceptions. For example, Figure 4b illustrates how one student modified their initial mental
666 model of groundwater residence after learning about permeable and impermeable rocks by
667 adding a casing of impermeable rock around the pocket or capsule of water underground while
668 retaining the notion that water is stored in such pockets. These empirical data support the
669 knowledge integration perspective, which posits learning is gradual (Linn, 2008) because
670 students need time to confront their own perhaps confusing and conflicting ideas (Linn, 2008).
671 During the instructional period (e.g., lesson, instructional sequence, semester, etc.), time for
672 active learning and reflection during purposeful in-class activities are required for students to
673 make sense of new ideas learned in class and to reconcile them with their pre-existing ideas,
674 which may be incongruent or dissonant with new ones.

675 **Social Implications**

676 The COPUS results and reports that the third-party reviewers provided corroborate the
677 opportunities described in the instructor's lesson plans and notes on the PKIS and non-PKIS
678 curricula and their implementation. In line with the knowledge integration perspective of
679 conceptual change, the in-class activities in the PKIS allowed students to (i) individually engage
680 in a personally relevant issue (i.e., groundwater as a drinking water source); (ii) make their
681 individual thinking visible to themselves, their peers, and instructor; (iii) learn from one another
682 by sharing, discussing, and evaluating one another's ideas; and (iv) reflect on and monitoring
683 their performance. While the non-PKIS curriculum also engaged students in the same personally
684 relevant issue of drinking water resources, it did not incorporate the other three practices.

685 Although not specific to the instructional sequences, the results of two free-response
686 items in the post-course surveys indicate that many students in both the PKIS group and non-
687 PKIS group valued various social aspects of the courses and their learning experiences in it.

GROUNDWATER CONCEPTUAL CHANGE

688 These responses provide some affective insights into how students value social interactions as a
689 part of their learning experiences, including the importance of an instructor learning their names.
690 The courses had no statistically significant impact on how members of the PKIS group and the
691 non-PKIS group liked working individually and with others. Both the PKIS and non-PKIS
692 curricula positively impacted students who preferred to work alone, those who preferred to work
693 with others, and those who had no preference.

694 **Limitations**

695 This study is limited in its use of (a) concept sketches as the mechanism for obtaining
696 insights into students' mental models, (b) naturalistic settings, and (c) quasi-experimental
697 research design. Concept sketches elicited two different but complementary ways of
698 communicating students' ideas, diagrammatic and textual communication. Although a concept
699 sketch can communicate key elements of an individual's mental model, it does not necessarily
700 communicate all elements that may be present (Clement, 1982; Henriques, 2002; Osborne &
701 Wittrock, 1983). In addition, sketching to communicate one's ideas has similar goals and
702 limitations as verbal communication – the goal of clarity in the conveyance of ideas and the
703 potential for imperfect conveyance of those ideas. Despite its limitations, sketching has a long
704 and demonstrated history as a useful tool for studying mental models and cognitive development
705 (e.g., Piaget, 1956; Rees, 2018; Roberts & Russell, 1975).

706 Research conducted in naturalistic settings is less controlled than in research laboratory
707 settings, with greater opportunities for confounding variables to be introduced. For example,
708 readers may find a drawback to the study is that the course in which the PKIS was implemented
709 addressed three aquifer types and the course with the non-PKIS addressed only two. However,
710 systematic comparisons were still possible given the PKIS and non-PKIS addressed two of the

GROUNDWATER CONCEPTUAL CHANGE

711 same aquifer types. Additionally, not all students completed all assessments related to this study
712 due to class absences. Although research in naturalistic settings is less controlled than research
713 laboratory settings, naturalistic settings offer opportunities to investigate learning phenomena in
714 the actual settings in which learning occurs. While this contributes to lower internal validity, it
715 contributes to greater external validity (Price et al., 2015). In this way, as Barab (2006) notes,
716 learning sciences research recognizes ‘context is not simply a container within which the
717 disembodied “regularities” under study occur, but is an integral part of the complex causal
718 mechanisms that give rise to the phenomenon under study (Maxwell, 2004).’

719 Although students were not randomly assigned to the PIKIS and non-PKIS groups, these
720 groups were representative of the courses from which they were derived and the larger
721 population of undergraduate students at each institution at the time this research was conducted
722 (Table 1). Furthermore, the two groups were similar in terms of demographics and their baseline
723 conceptual understanding of aquifers and groundwater residence (Table 1, Table 2, Figure 1, and
724 Figure 3). Using a quasi-experimental research design in two different naturalistic settings
725 enhances the findings’ generalizability and their relevance for curriculum design and
726 instructional decisions in groundwater-related instruction.

727 CONCLUSION

728 The idea of utilizing students’ prior knowledge during instruction has deep roots in
729 education theory as a form of best practice (National Research Council, 2000); however,
730 translating this general best practice to domain-specific instruction has remained elusive
731 (National Research Council, 2012). Actively acknowledging students’ prior knowledge may
732 seem undesirable to instructors who view them as potential barriers to learning (Sinatra, 2005;
733 Unterbrunner et al., 2016) and who believe they must be replaced with correct ideas (Bransford,

GROUNDWATER CONCEPTUAL CHANGE

734 2000; Meyer, 2004). This study's findings, however, provide evidence to support Meyer's
735 (1987) and Bar's (1989) hypothesis that students' prior knowledge can be effective instructional
736 tools for teaching students about groundwater residence and aquifers. Major findings of this
737 study include:

- 738 • The interactive instructional sequences for both the PKIS group and non-PKIS group
739 produced statistically significant post-instruction learning gains, far greater than that
740 expected with traditional lecture alone.
- 741 • The interactive instructional sequence that explicitly solicited and actively engaged
742 students' preconceptions (PKIS group) resulted in learning gains that were significantly
743 larger compared to the instructional sequence that did not (non-PKIS group).
- 744 • Active engagement of students' preconceptions about groundwater can lead to
745 statistically significant learning gains for Caucasian and non-Caucasian students and male
746 and female students.
- 747 • The results of the PKIS and non-PKIS curricula reveal students' trajectory toward more
748 expert-like conceptual understanding varies for different students, and there remain
749 variations in individual conceptual understanding at each time point in the trajectory. In
750 other words, the development of different individuals' conceptual understanding does not
751 necessarily progress at the same rate given the same instructional interventions.

752 These findings suggest the positive impact on learning that interactive engagement has
753 can be increased through the explicit solicitation and active engagement of students'
754 preconceptions. We found that the explicit solicitation and active engagement of students'
755 preconceptions comparably benefitted male and female students as well as Caucasian and non-
756 Caucasian students, which suggests this instructional approach can be used to support racial and

GROUNDWATER CONCEPTUAL CHANGE

757 gender equity and inclusion in the geosciences and STEM more broadly to some extent. For
758 example, the PKIS has not yet been modified for visually impaired students. Additionally, our
759 findings demonstrate that statistically significant learning gains in students' conceptual
760 understanding of aquifers and groundwater residence can be achieved with basic instructional
761 tools (e.g., PowerPoint and handouts) and do not require field trips, special software, or
762 specialized apparatus. The fact that the PKIS can be implemented at low cost with standard
763 instructional resources means that the PKIS is also accessible to many instructors who might like
764 to include it in their courses. Additionally, the PKIS could be used as an introduction to lessons
765 about specifically named local aquifers and groundwater resources. Finally, these findings are
766 consistent with the knowledge integration perspective of conceptual change, which posits
767 'variability in student ideas is fundamentally a valuable feature and that instruction designed to
768 capitalize on the variability ... has [the] potential for facilitating conceptual change' (Linn, 2008,
769 p. 715).

770 Aligned with the knowledge integration perspective of conceptual change, the PKIS uses
771 the repertoire of characterized student-held ideas documented in Arthurs & Elwonger (2018) as
772 'a way to increase the efficiency and effectiveness of instruction' (Linn, 200, p. 716). The
773 widely-held commonalities in pre-instructional conceptions about groundwater residence across
774 grade levels and geographic regions (e.g., Arthurs & Elwonger, 2018; Ben-zvi-Asarf & Orion,
775 2005; Dickerson & Dawkins, 2004; Pan & Liu, 2018; Reinfried, 2006; Unterbrunner et al., 2016)
776 imply that the PKIS curriculum has applicability and the potential to positively impact the
777 learning of student groups beyond those in this study.

778 ACKNOWLEDGEMENTS

779 This material is based upon work supported by the National Science Foundation under Grant No.
780 1821709. Any opinions, findings, and conclusions or recommendations expressed in this

GROUNDWATER CONCEPTUAL CHANGE

781 material are those of the author(s) and do not necessarily reflect the views of the National
782 Science Foundation.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826 **REFERENCES**

827 L. Arthurs, (2011), What college-level students think: Student cognitive models of geoscience
828 concepts, their alternate conceptions, and their learning difficulties. In A. Feig and A.
829 Stokes (Eds.), *GSA Special Papers: Qualitative Inquiry in Geoscience Education*
830 *Research* (pp. 135-152). Boulder: Geological Society of America.

831 Arthurs, L. A. (2019). Using student conceptions about groundwater as resources for teaching
832 about aquifers. *Journal of Geoscience Education*, 67(2), 161-173.

833 Arthurs, L. A., & Elwonger, J. M. (2018). Mental models of groundwater residence: A deeper
834 understanding of students' preconceptions as a resource for teaching and learning about
835 groundwater and aquifers. *Journal of Astronomy & Earth Sciences Education*, 5(1), 53-
836 66.

837 Agelidou, E., Balafoutas, G., & Gialamas, V. (2001). Interpreting how third grade junior high
838 school students represent water. *International Journal Education Information*, 20: 19-36.

839 Ausubel, D. P., & Ausubel, D. P. (2000). *The acquisition and retention of knowledge: A*
840 *cognitive view*. Dordrecht: Kluwer Academic Publishers.

841 Bar, V. (1989). Children's views about the water cycle. *Science Education*, 73(4), 481-500.

842 Barab, S. (2006). Design-based research: A methodological toolkit for the learning scientist. In
843 R. K. Sawyer (Ed.), *The Cambridge handbook of the learning sciences* (pp. 153-169).
844 New York, NY: Cambridge University Press.

845 Ben-zvi-Assarf, O., & Orion, N. (2005). A study of junior high students' perceptions of the water
846 cycle. *Journal of Geoscience Education*, 53(4), 366-373.

847 Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). *How people learn* (Vol. 11).
848 Washington, DC: National academy press.

849 Clement, J. (1982). Students' preconceptions in elementary mechanics. *American Journal of*
850 *Physics*, 50, 66-71.

851 Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students'
852 preconceptions in physics: *Journal of Research in Science Teaching*, 30(10), 1241-1257.

853 Cohen, L., Manion, L., & Morrison, K. (2002). *Research methods in education*. New York:
854 Routledge.

855 Dal, B. (2007). How do we help students build beliefs that allow them to avoid critical learning
856 barriers and develop a deep understanding of geology? *Eurasia Journal of Mathematics,*
857 *Science & Technology Education*, 3(4), 251-269.

858 Derry, S. (1996). Cognitive schema theory in constructivist debate. *Educational Psychologist*,
859 31(3/4), 163-174.

860 Dickerson, D., & Dawkins, K. (2004). Eighth grade students' understandings of groundwater.
861 *Journal of Geoscience Education*, 52(2), 178-181.

862 Dickerson, D. L., Penick, J. E., Dawkins, K. R., & Van Sickle, M. (2007). Groundwater in
863 science education. *Journal of Science Teacher Education*, 18(1), 45-61.

864 Driver, R. (1981). Pupils' alternative frameworks in science. *European Journal of Science*
865 *Education*, 3(1), 93-101.

866 Driver, R., & Erickson, G. (1983). Theories-in-action: Some theoretical and empirical issues in
867 the study of students' conceptual frameworks in science. *Studies in Science Education*,
868 10(1), 37-60.

869 Fetter Jr., C. W. (2001). *Applied Hydrogeology*. Prentice-Hall Inc.

870 Ford, D., & Williams, P. D. (2013). *Karst hydrogeology and geomorphology*. Southern Gate,
871 West Sussex: John Wiley & Sons.

GROUNDWATER CONCEPTUAL CHANGE

872 Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &
873 Wenderoth, M. P. (2014). Active learning increases student performance in science,
874 engineering, and mathematics. *Proceedings of the National Academy of Sciences*,
875 111(23), 8410-8415.

876 Freeze, R.A., & Cherry, J.A. (1979). Groundwater. Prentice-Hall Inc.

877 Ghasemizadeh, R., Hellweger, F., Butscher, C., Padilla, I., Vesper, D., Field, M., &
878 Alshawabkeh, A. (2012). Groundwater flow and transport modeling of karst aquifers,
879 with particular reference to the North Coast Limestone aquifer system of Puerto Rico.
880 *Hydrogeology Journal*, 20(8), 1441-1461.

881 Gobert, J. D. (2000). A typology of causal models for plate tectonics: Inferential power and
882 barriers to understanding. *International Journal of Science Education*, 22, 937-977.

883 Green, J. L., Camilli, G., & Elmore, P. B. (Eds.). (2012). *Handbook of complementary methods*
884 *in education research*. Washington DC: Lawrence Erlbaum Associates, Publishers.

885 Guba, E. G. (1990). The alternative paradigm dialog. In E. G. Guba (Ed.), *The paradigm dialog*
886 (pp. 17–30). Newbury Park, CA: Sage.

887 Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student
888 survey of mechanics test data for introductory physics courses. *American journal of*
889 *Physics*, 66(1), 64-74.

890 Helm, H. (1980). Misconceptions in physics amongst South African students. *Physics Education*,
891 15(2), 92.

892 Henriques, L. (2002). Children's ideas about weather: A review of the literature. *School Science*
893 *and Mathematics*, 102(5), 202-215.

894 Kalhor, K., Ghasemizadeh, R., Rajic, L., & Alshawabkeh, A. (2019). Assessment of groundwater
895 quality and remediation in karst aquifers: A review. *Groundwater for sustainable*
896 *development*, 8, 104-121.

897 Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map
898 analysis can be used to aid learning by illustrating patterns of conceptual development:
899 *Educational Research*. 12(1), 13-57.

900 Kiraly, L. (2003). Karstification and groundwater flow. *Speleogenesis and evolution of karst*
901 *aquifers*, 1(3), 155-192.

902 Koomson, C. K., & Owusu-Fordjour, C. (2018). Misconceptions of senior high school science
903 students on evaporation and water cycle. *European Journal of Research and Reflection in*
904 *Educational Sciences Vol*, 6(5), 13-28.

905 Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthiness. *American*
906 *Journal of Occupational Therapy*, 45(3), 214-222.

907 Lakoff, G., & Johnson, M. (2008). *Metaphors we live by*. University of Chicago press.

908 LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and
909 interrater agreement. *Organizational research methods*, 11(4), 815-852.

910 Linn, M. C. (2008). Teaching for conceptual change: Distinguish or extinguish ideas. In S.
911 Vosniadou (Ed.), *International Handbook of Research on Conceptual Change* (pp. 694-
912 722). New York, NY: Routledge.

913 Maxwell, J. A. (2004). Causal explanation, qualitative research, and scientific inquiry in
914 education. *Educational Researcher*, 33(2), 3-11.

915 Meyer, H. (2004). Novice and expert teachers' conceptions of learners' prior knowledge. *Science*
916 *education*, 88(6), 970-983.

GROUNDWATER CONCEPTUAL CHANGE

917 Meyer, W. B. (1987). Vernacular American theories of earth science. *Journal of Geological
918 Education*, 35, 193-196.

919 Murre, J. M., & Dros, J. (2015). Replication and analysis of Ebbinghaus' forgetting curve. *PLoS
920 one*, 10(7), e0120644.

921 National Park Service. (2020, August 16). *Karst landscapes*. Retrieved from
922 <https://www.nps.gov/subjects/caves/karst-landscapes.htm>

923 National Research Council. (2000). *How people learn: Brain, mind, experience, and school:
924 Expanded edition*. Washington, DC: National Academies Press.

925 National Research Council. (2012). *Discipline-based education research: Understanding and
926 improving learning in undergraduate science and engineering*. Washington, DC:
927 National Academies Press.

928 Norman, D. A. (1983). *Some observations on mental models*. In D. Gentner & A. L. Stevens
929 (Eds.), *Mental Models*, pp. 7-14. Hillsdale, NJ: Laurence Erlbaum Associates, Inc.

930 Novak, J. D. (1977). *A Theory of Education*. Ithaca, NY: Cornell University Press.

931 Osborne, R. J., & Whitrock, M. C. (1983). Learning science: A generative process. *Science
932 Education*, 67, 489-908.

933 Palmer, A.N. (2012). *Cave geology*. Laurel, MD: Cave Books.

934 Pan, Y. T., & Liu, S. C. (2018). Students' understanding of a groundwater system and attitudes
935 towards groundwater use and conservation. *International Journal of Science Education*,
936 40(5), 564-578.

937 Piaget, J. (1956). *The child's conception of space*. New York, NY: Macmillan Publishers.

938 Powell, K., & Kalina, C. (2009). Cognitive and social constructivism: Developing tools for an
939 effective classroom. *Education*, 130(2), 241-250.

940 Price, P. C., Jhangiani, R., & Chiang, I. C. A. (2015). *Research methods in psychology*.
941 BCCampus.

942 Rees, C. (2018). Drawing on drawings: Moving beyond text in health professions education
943 research. *Perspectives on medical education*, 7(3), 166-173.

944 Reichard, J. (2010). *Environmental Geology*. Dubuque, IA: McGraw-Hill Higher Education.

945 Reinfried, S. (2006). Conceptual change in physical geography and environmental sciences
946 through mental model building: The example of groundwater. *International Research in
947 Geographical and Environmental Education*, 15(1), 41-61.

948 Roberts, D. A., & Russell, T. L. (1975). An alternative approach to science education research:
949 Drawing from philosophical analysis to examine practice. *Curriculum Theory Network*,
950 5(2), 107-125.

951 Sapsford, R. (1999). *Survey research*. London: Sage Publishing.

952 Sinatra, G. M. & P. R. Pintrich. (2003). *Intentional conceptual change*. Mahwah, NJ: Lawrence
953 Erlbaum Associates, Inc.

954 Smith, M. K., Jones, F. H., Gilbert, S. L., & Wieman, C. E. (2013). The Classroom Observation
955 Protocol for Undergraduate STEM (COPUS): a new instrument to characterize university
956 STEM classroom practices. *CBE—Life Sciences Education*, 12(4), 618-627.

957 Terada, Y. (2021, July 3). Why students forget – and what you can do about it. Edutopia.
958 Retrieved from: [https://www.edutopia.org/article/why-students-forget-and-what-you-can-
do-about-it](https://www.edutopia.org/article/why-students-forget-and-what-you-can-
959 do-about-it)

960 United States Geological Survey. (2020, August 16). *Aquifer basics*. Retrieved from
961 <https://water.usgs.gov/ogw/aquiferbasics/>

GROUNDWATER CONCEPTUAL CHANGE

962 Unterbrunner, U., Hilberg, S., & Schiffli, I. (2016). Understanding groundwater: Students' pre-
963 conceptions and conceptual change by means of a theory-guided multimedia learning
964 program. *Hydrology and Earth System Sciences*, 20(6), 2251-2266.

965 Vosniadou, S. (2013). *International handbook of research on conceptual change*. New York,
966 NY:Routledge.

967 Weary, D. J., & Doctor, D. H. (2014). *Karst in the United States: a digital map compilation and*
968 *database*. US Department of the Interior, US Geological Survey.

969 Wixted, J. T. (2005). A theory about why we forget what we once knew. *Current Directions in*
970 *Psychological Science*, 14(1), 6-9.

971 Wiggins, G., & McTighe, J. (2011). *Understanding by design*. Alexandria, VA: Association for
972 Supervision and Curriculum Development.

Table 1. Participant demographics compared against class and institutional demographics. (a) PKIS group drawn from two courses taught at one university. (b) Non-PKIS group drawn from a single course taught at another university. The column labeled Univ. undergrads lists the demographic data for the undergraduate population for each university at the time this study was conducted.

(a) Demographics for PKIS group		Participants (n=61) %	Combined Course Enrollment (n=88) %	Univ. undergrads (n=20,081) %
Gender	Male	44	49	53
	Female	56	51	47
Class Standing	Freshmen	37	34	19
	Sophomore	26	23	19
	Junior	20	20	25
	Senior	16	22	29
	Other	0	1	1
Race	Asian	10	3	2
	Caucasian	84	82	77
	Other	6	15	21
Major	STEM ¹	36	39	47
	Non-STEM	64	61	53
First generation ²		13	16	9
International		8	9	8

(b) Demographics for Non-PKIS group		Participants (n=55) %	Course Enrollment (n=59) %	Univ. undergrads (n=27,409) %
Gender	Male	58	58	55
	Female	42	42	45
Class Standing	Freshmen	18	20	19
	Sophomore	38	37	25
	Junior	15	15	22
	Senior	29	27	25
	Other	0	0	8
Race	Asian	11	10	9
	Caucasian	71	73	67
	Other	18	17	24
Major	STEM ¹	44	42	44
	Non-STEM	56	58	56
First generation ²		16	14	17
International		3	4	6

¹STEM: science, technology, engineering, and mathematics

²Incoming first-generation students that academic year

Table 2

Table 2. Comparisons of conceptual understanding. (a) PKIS group and non-PKIS group at T₁. (b) PKIS group at T₁ and T₃. (c) Non-PKIS group at T₁ and T₃. (d) PKIS group and non-PKIS group at T₄. (e) PKIS group and non-PKIS group's learning gains from T₁ to T₃. (f) PKIS group at T₃ and T₄. (g) Non-PKIS group at T₃ and T₄.

(a)	PKIS T ₁ Avg. Score (%)	PKIS T ₁ Standard Error (%)	Non-PKIS T ₁ Avg. Score (%)	Non-PKIS T ₁ Standard Error (%)	t-value	p value	Cohen's d
	4.534	0.125	2.043	1.040	1.319	.190	0.259
(b)	PKIS T ₁ Avg. Score (%)	PKIS T ₁ Standard Error (%)	PKIS T ₃ Avg. Score (%)	PKIS T ₃ Standard Error (%)	t-value	p value	Cohen's d
	4.534	0.125	84.069	0.130	-26.573	< .00001*	5.2628
(c)	Non-PKIS T ₁ Avg. Score (%)	Non-PKIS T ₁ Standard Error (%)	Non-PKIS T ₃ Avg. Score (%)	Non-PKIS T ₃ Standard Error (%)	t-value	p value	Cohen's d
	2.043	1.040	65.505	4.374	-14.115	< .00001*	10.339
(d)	PKIS T ₃ Avg. Score (%)	PKIS T ₃ Standard Error (%)	Non-PKIS T ₃ Avg. Score (%)	Non-PKIS T ₃ Standard Error (%)	t-value	p value	Cohen's d
	84.069	0.130	65.505	4.374	3.653	< .001*	0.722
(e)	PKIS <g> Avg. Score	PKIS <g> Standard Error	Non-PKIS <g> Avg. Score	Non-PKIS <g> Standard Error	t-value	p value	Cohen's d
	0.817	0.035	0.643	0.045	2.898	.005*	0.608
(f)	PKIS T ₃ Avg. Score (%)	PKIS T ₃ Standard Error (%)	PKIS T ₄ Avg. Score (%)	PKIS T ₄ Standard Error (%)	t-value	p value	Cohen's d
	84.069	0.130	83.088	3.343	0.220	.826	0.0436
(g)	Non-PKIS T ₃ Avg. Score (%)	Non-PKIS T ₃ Standard Error (%)	Non-PKIS T ₄ Avg. Score (%)	Non-PKIS T ₄ Standard Error (%)	t-value	p value	Cohen's d
	65.505	4.374	49.760	5.195	2.319	.022*	0.455

* p < .05

Figure 1 TIF

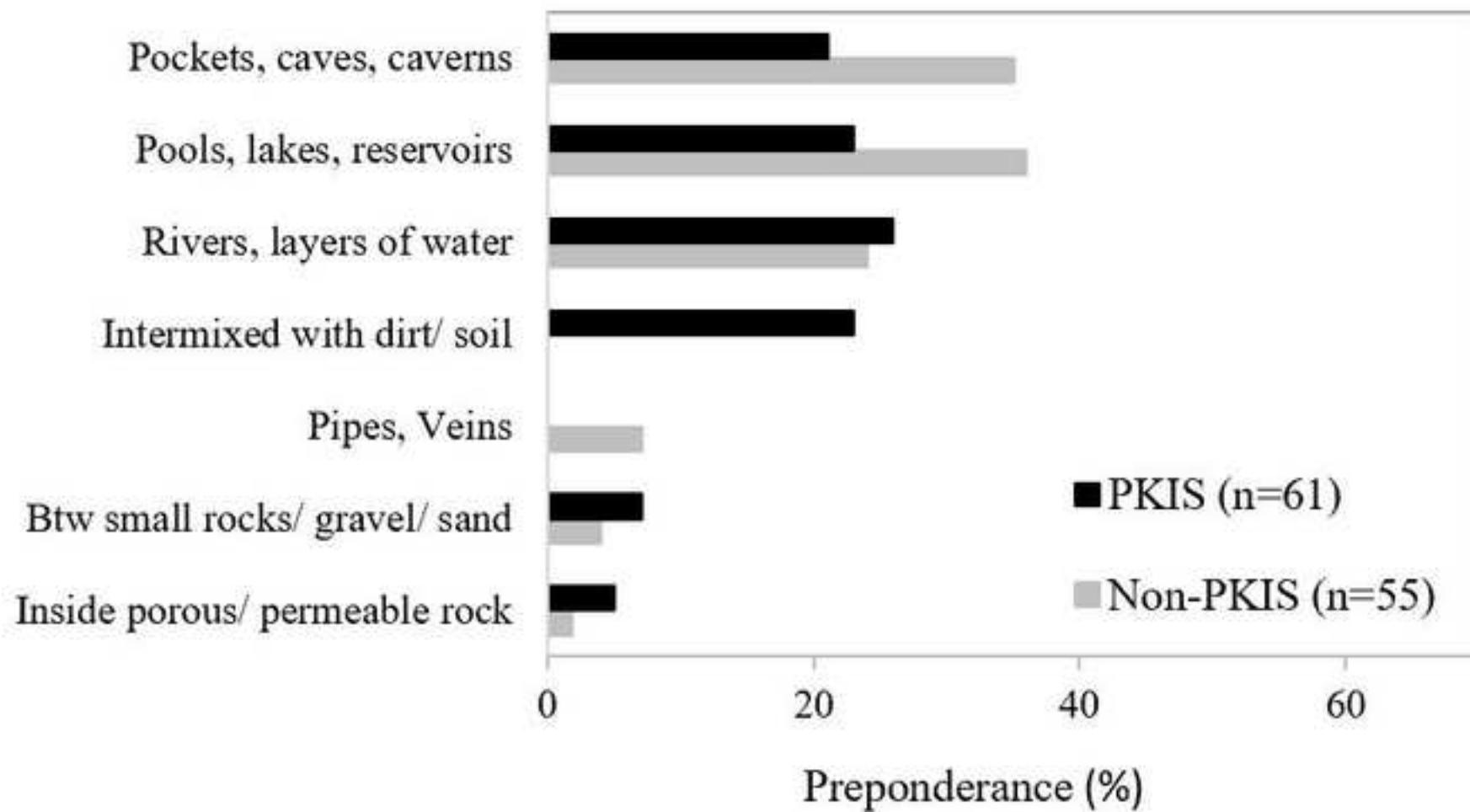


Figure 1 with caption

Figure 1. Preconceptions of groundwater residence held by the PKIS group and non-PKIS group. The sum for each group is greater than 100% because more than one mental model could be depicted in the same sketch.

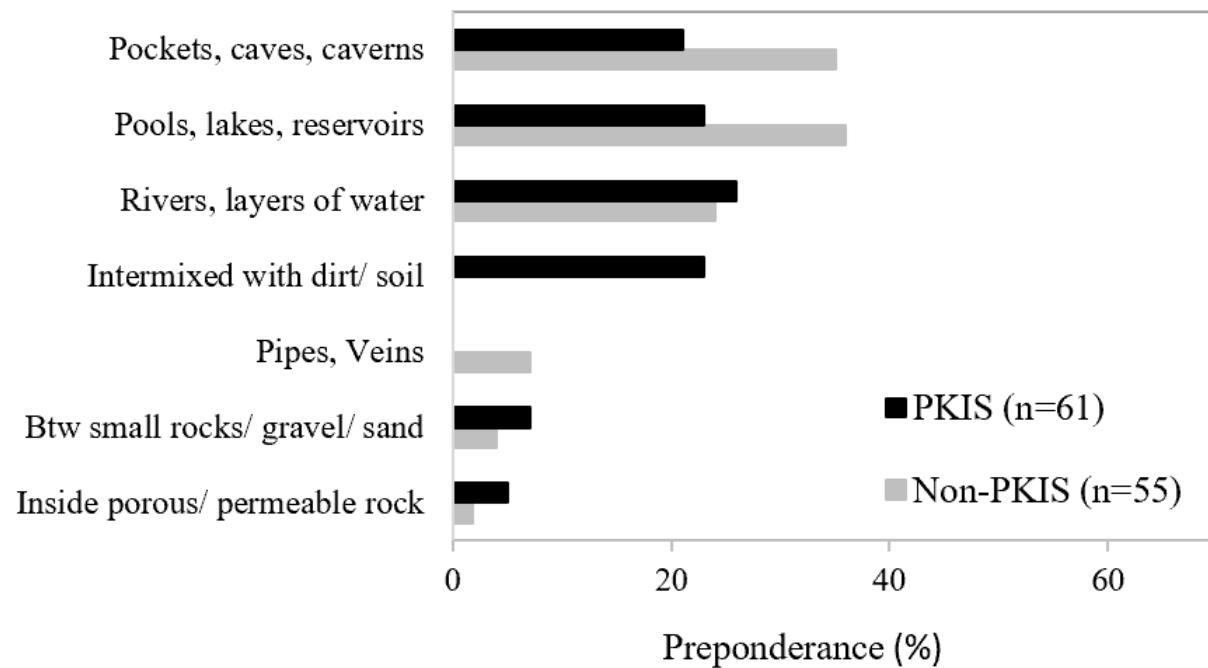


Figure 2 TIF

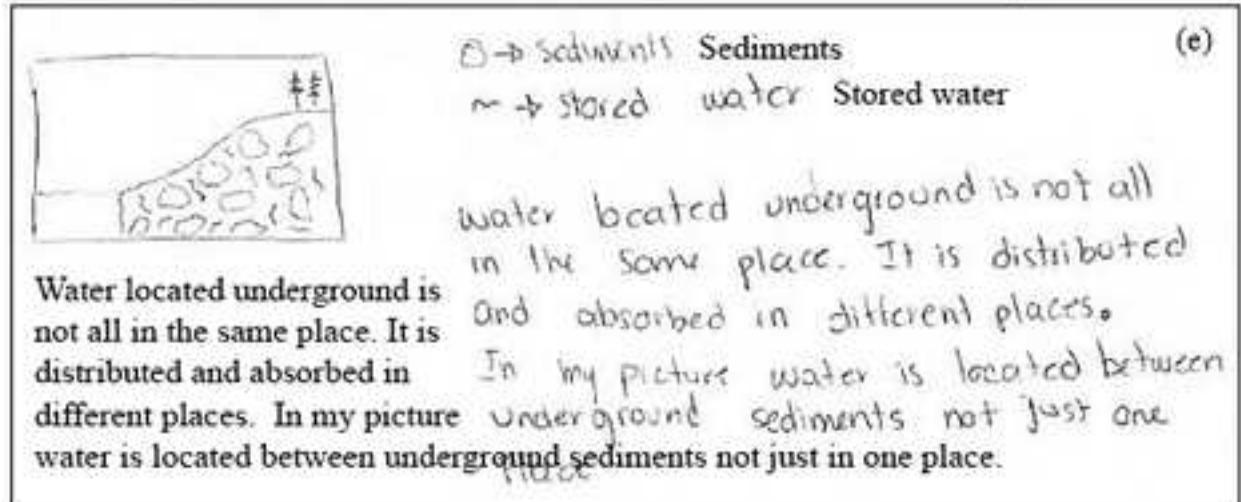
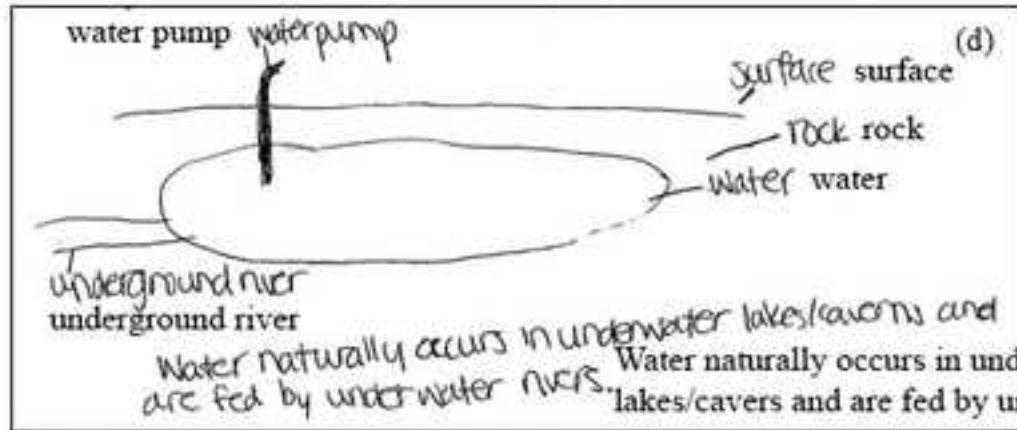
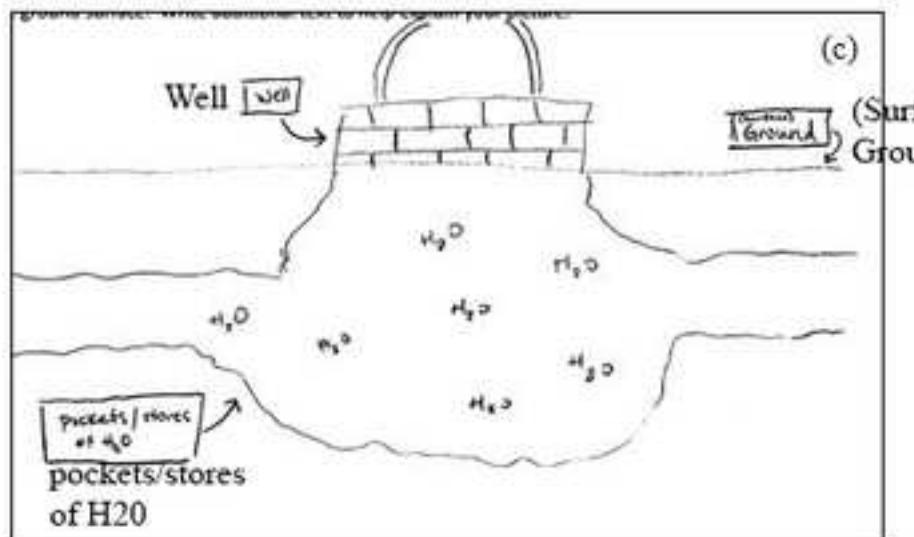
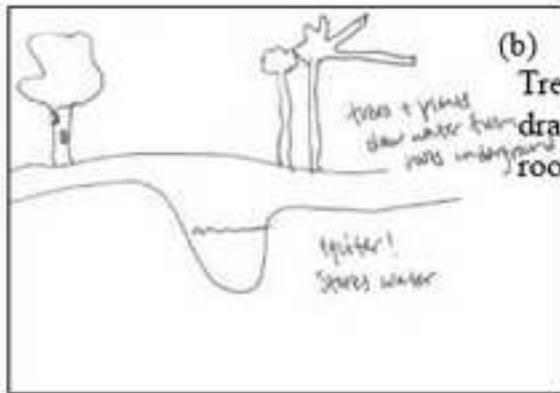
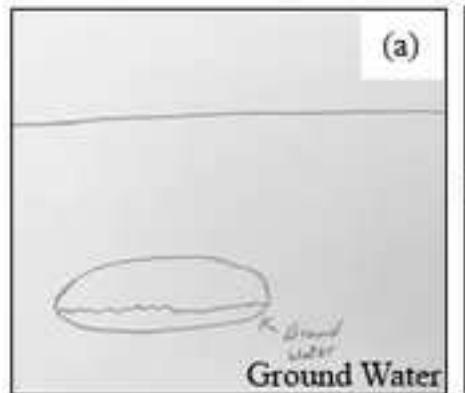






Figure 2 with caption

Figure 2. Annotated sketches of pre-instruction conceptions of groundwater residence. (a)-(d) Examples of mental model for continuous body of water. (e) Example of water stored between sediments.

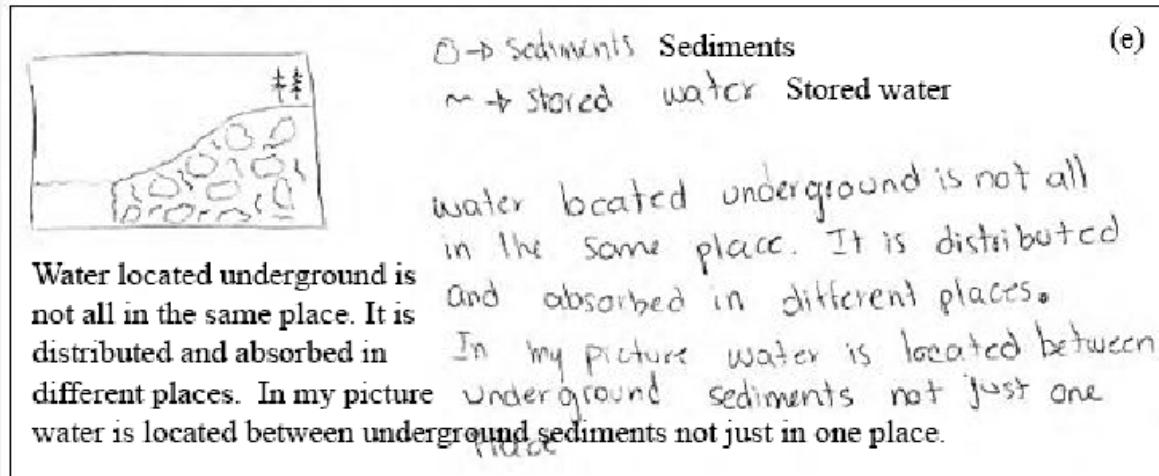
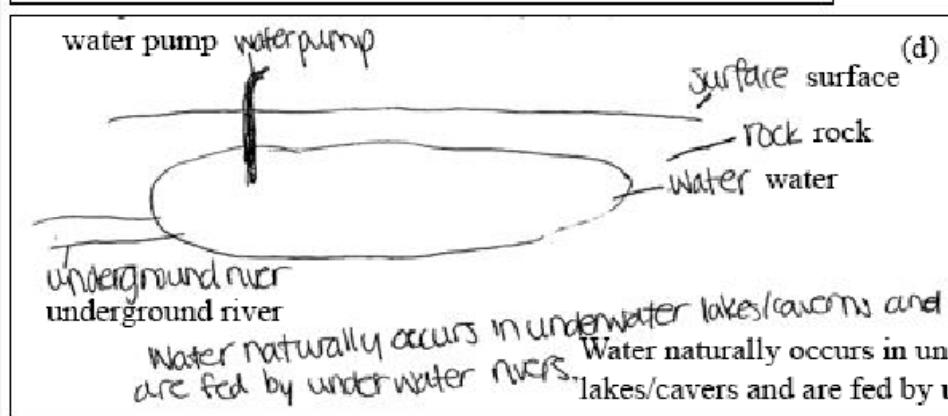
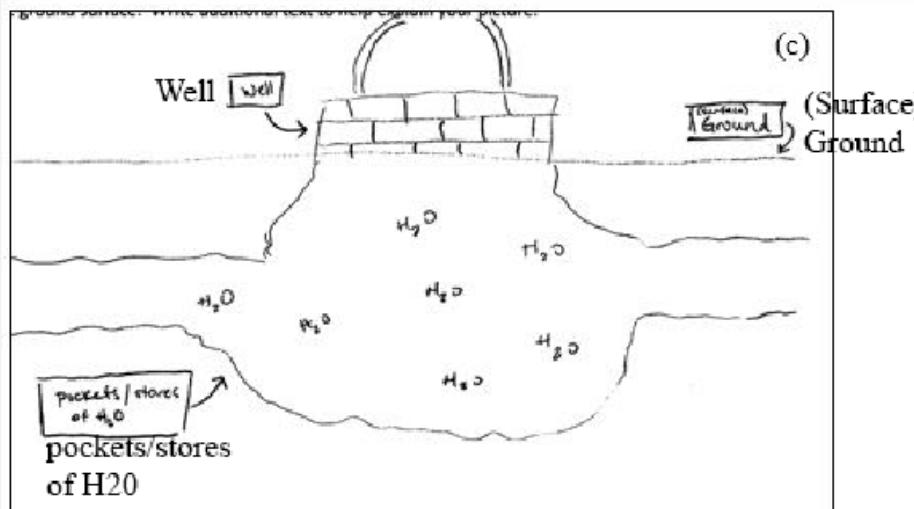
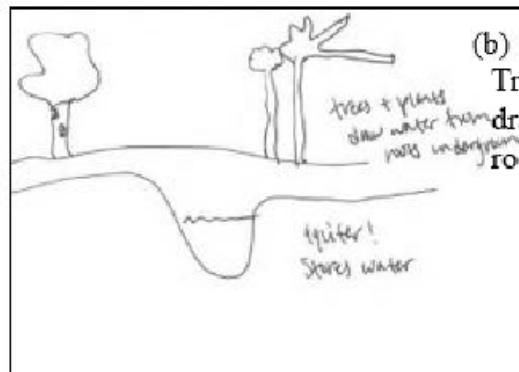
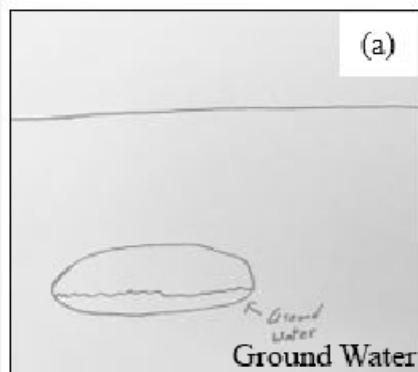
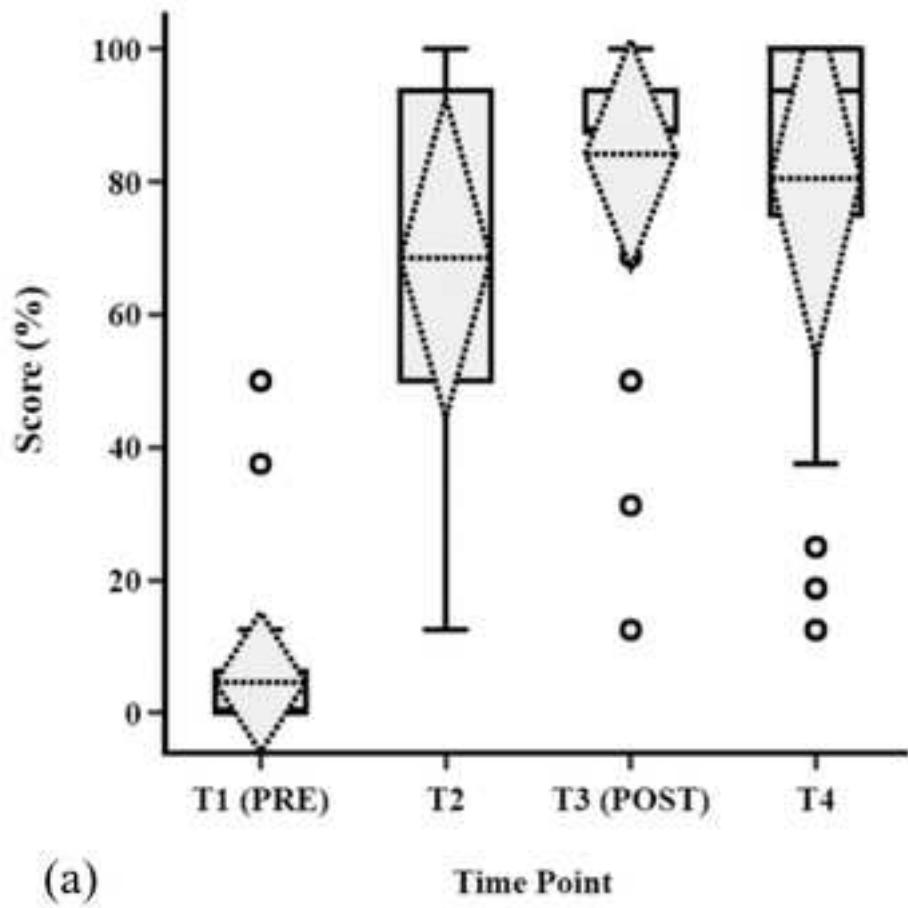
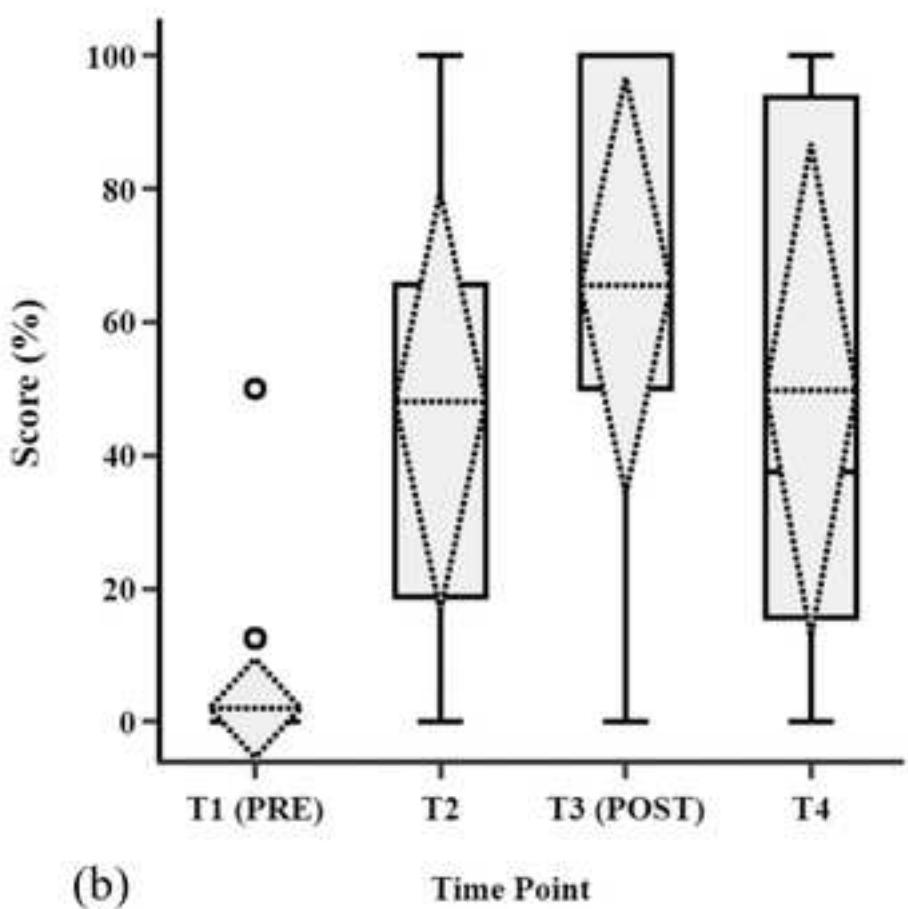








Figure 3

(a)

(b)

Figure 3 with caption

Figure 3. Conceptual change over time. (a) PKIS group. (b) Non-PKIS group. The dashed line represents the mean, and the dashed triangles represent the standard deviation. The circles indicate outliers. As is typical with box-and-whisker plots, the upper-bound of the rectangle represents the upper quartile, the lower-bound of the rectangle represents the lower quartile, the solid vertical line between them represents the median, the upper horizontal line on the whisker represents the max observed value or upper fence, and the lower horizontal line on the whisker represents the min observed value or lower fence. This visualization was created using BioVinci version 1.1.5 developed by BioTurning Inc., San Diego California USA, www.biouring.com

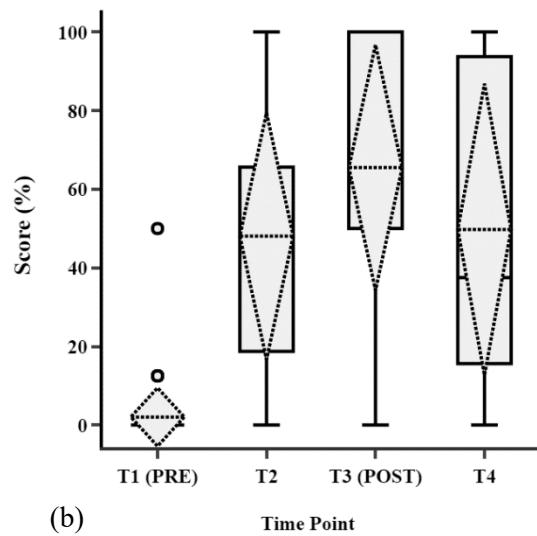
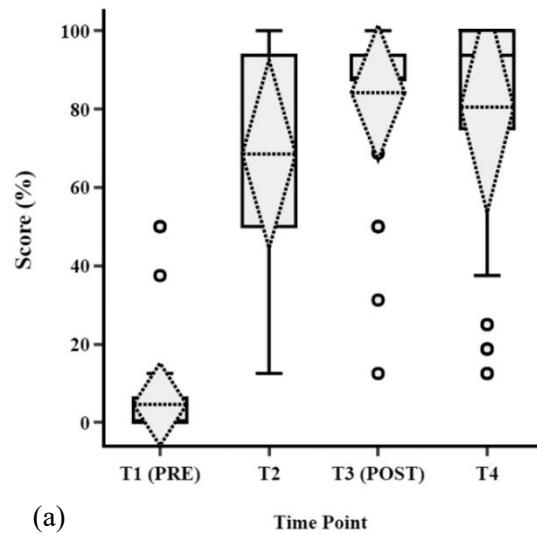



Figure 4

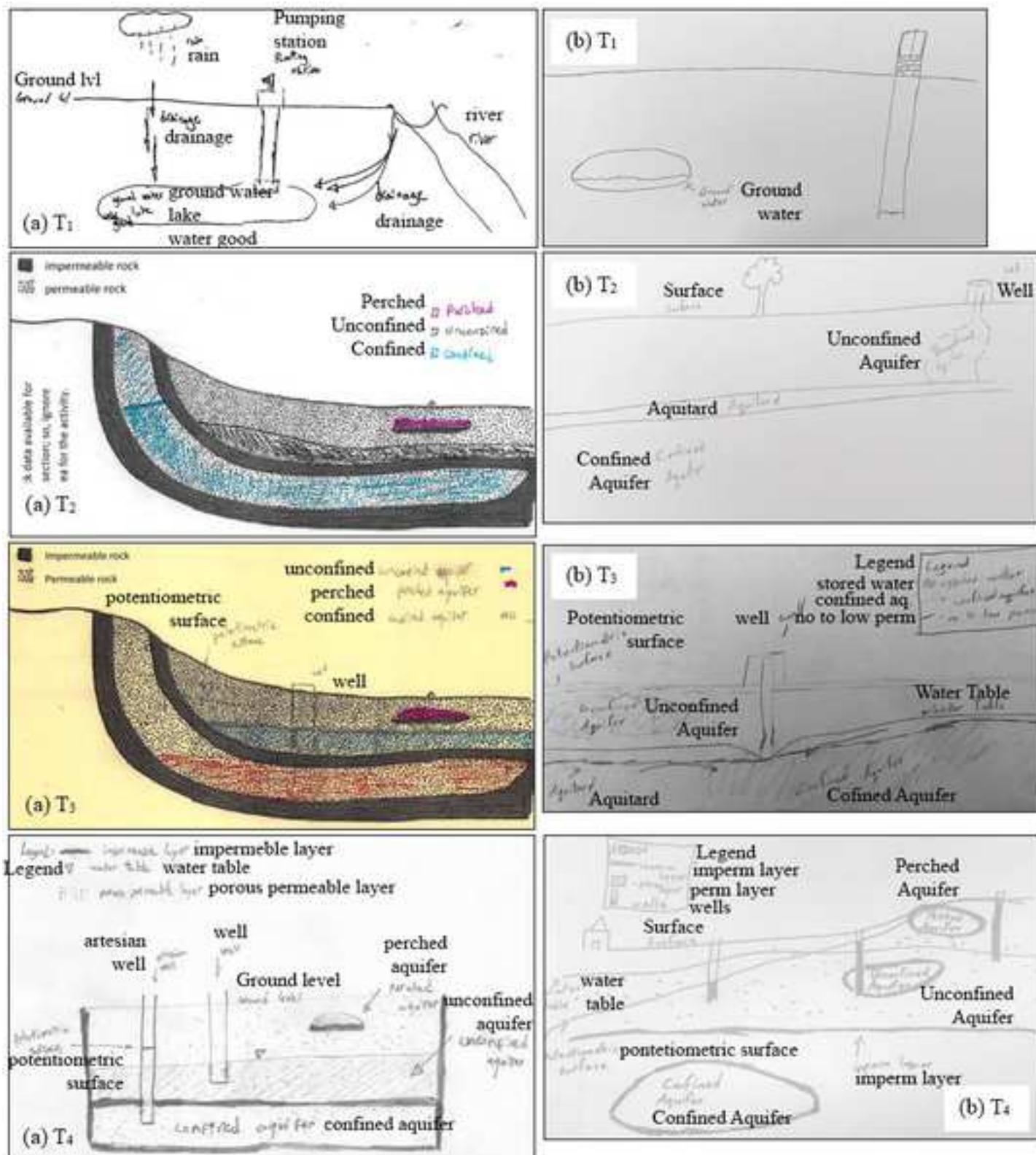


Figure 4 with caption

Figure 4. Sketches illustrating conceptual change over time for (a) one student in the PKIS group and (b) one student in the non-PKIS group.

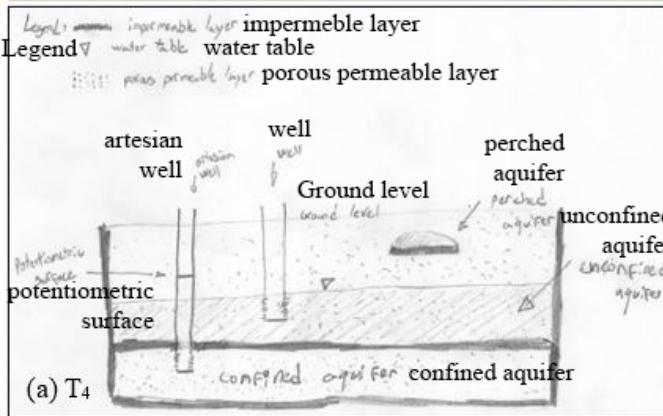
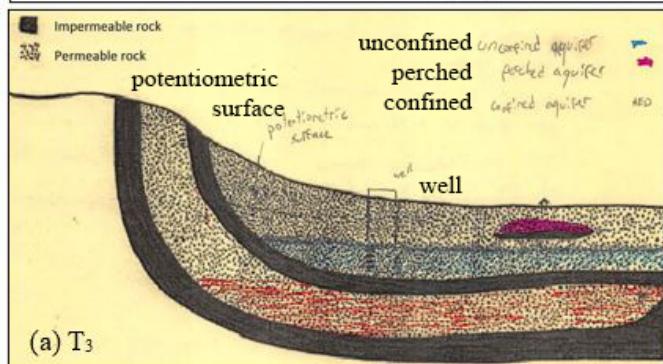
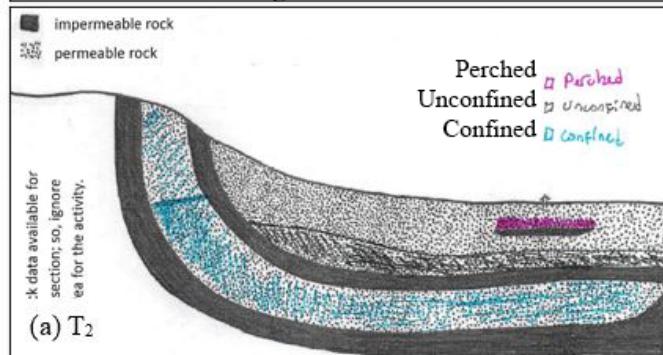
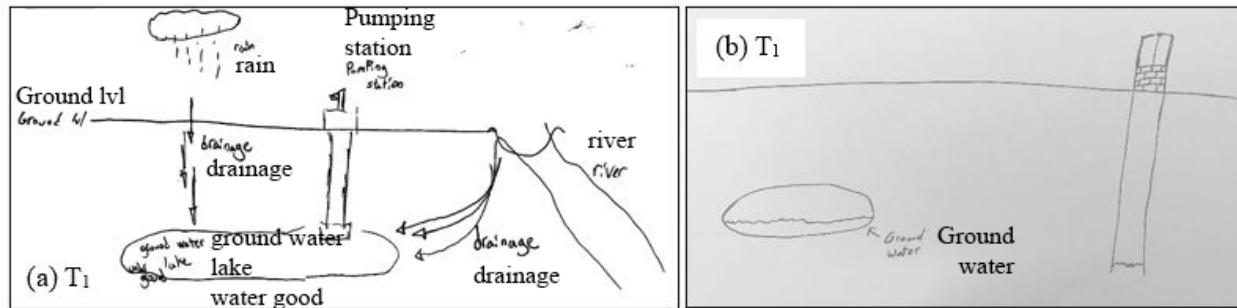





Table S1. Sampling timeline relative to week in the semester and course content. Both courses are introductory-level geoscience courses that satisfy the natural science requirement for graduation. Both are survey courses that address a different topic each week. T₂ sampling occurs in both courses during the week that students learned about aquifers, groundwater residence, and groundwater flow. T₁ sampling in the PKIS group and the non-PKIS group occurred before groundwater-related concepts were first addressed in both courses. T₂ sampling occurred during the week where both courses had instruction on aquifers and groundwater flow. T₃ sampling occurred two to three weeks after the instructional sequence of interest. The PKIS group received one week of direct instruction related to groundwater concepts, whereas the non-PKIS group had about six weeks of direct instruction on groundwater concepts. Time points T₁, T₂, and T₃ sampling data are used to make inter-group comparisons. Time point T₄ sampling data are used only to make within-group comparisons because of the large difference in time that elapsed between T₃ and T₄ in the non-PKIS group compared to the PKIS group.

Week in Semester	PKIS time point	PKIS Group course topic	Non-PKIS time point	Non-PKIS Group course topic
1		What is science and how do scientists know what they know	T ₁	Rocks and minerals
2		Volcanoes		Fluid storage and mobility
3		Earthquakes		Water cycle and human water uses
4		Plate tectonics	T ₂	Aquifers and groundwater resources
5		Waves and floods		Impacts and extending water supply
6		Hurricanes and tornadoes	T ₃	Water quality
7		Rock and mineral resources		Water remediation
8	T ₁	Soil and forest resources		Energy sources
9	T ₂	Aquifers and groundwater resources		Petroleum systems
10		Fossil fuel resources		Unconventional hydrocarbons
Semester break				
11	T ₃	Non/Renewable resources		Geothermal energy
12		Mining		Solar and nuclear energy
13		Pollution and waste		Mining
14		Climate change		Impacts of mining
15		Possible solutions		Mining remediation
16	T ₄		T ₄	

Table S2. Prompts used to ask students sketch their ideas about groundwater and how it is naturally stored underground.

Group	Time Point	Prompt	Type of Item
Non-PKIS	T ₁	Draw and label a picture of how water (used for drinking water) naturally exists or is naturally stored below the ground surface. Write additional text to help explain your answer.	Free-sketch in-class activity
Non-PKIS	T ₂	Draw and label a picture of how water (used for drinking water) naturally exists or is naturally stored below the ground surface. Write additional text to help explain your answer.	Free-sketch in-class activity
Non-PKIS	T ₃	Draw and label a cross-section of the subsurface that shows the position of the following geologic structures or features: confined aquifer, unconfined aquifer, aquitard, water table, potentiometric surface, direction of groundwater flow, and one or more wells as needed to illustrate certain structures and/or relationships in your cross-section.	Free-sketch mid-term exam item
Non-PKIS	T ₄	Draw and label a cross-section that shows the position of the following geologic structures with respect to one another: confined aquifer, unconfined aquifer, perched aquifer; water table, potentiometric surface; impermeable layers, porous and permeable layers; and wells as needed to illustrate certain hydrological relationships.	Free-sketch final exam item
PKIS	T ₁	In preparation for next week, draw and label a picture of how water * is naturally stored below the ground. *water that is pumped from the ground to drink	Free-sketch in-class activity
PKIS	T ₂	How are all three aquifers related to each other in a 'bigger picture'? Let's give it a try! Use color pencils if you brought some. On your handout: Shade in where each of the three types of aquifers would occur. Be sure to label each aquifer that you shaded in. Note: There is a little house sketched in for reference, to help you visualize the size and extent of the aquifers.	Delimited-sketch in-class activity
PKIS	T ₃	In the figure below, (1) draw in the confined, perched, and unconfined aquifers; (2) draw in a drinking water well that pumps water out of the unconfined aquifer; (3) label each aquifer, the water table, ad the potentiometric surface; ad (4) in the space below, answer the following question: 'What does it mean for a rock to be impermeable?' by completing the sentence: For a rock to be considered impermeable, it means that ...	Delimited-sketch mid-term exam item
PKIS	T ₄	Draw and label a sketch that shows the position of the following geologic features with respect to one another: confined aquifer, unconfined aquifer, perched aquifer, water table, potentiometric surface, impermeable layers, porous and permeable layers, and wells as needed to illustrate certain relationships.	Free-sketch final exam item

Table S3. Prompts posed in the pre-course and post-course surveys to gain insights about the social dimension of learning.

Prompt	Type of Item
I like to work alone. Likert-scale answer choices: (1) Strongly disagree, (2) Disagree, (3) Unsure, (4) Agree, (5) Strongly agree	Likert-scale
I like to work with others. Likert-scale answer choices: (1) Strongly disagree, (2) Disagree, (3) Unsure, (4) Agree, (5) Strongly agree	Likert-scale
I strongly prefer to work ... Multiple-choice answer choices: (1) alone, (2) with others, (3) both, (4) no preference	Multiple-choice
What did you like best about this course?	Open-ended
What can the instructor do to improve the course when she teaches it in the future?	Open-ended

Table S4. Scoring rubric applied to students' concept sketches.

Aquifer Type	Location Criteria	0 Point	0.25 Point	0.5 Point	1 Point	1.5 Points	1.75 Points	2 Points
Perched	Water-saturated permeable rock layer that rests on an impermeable rock lens above the water table or an unconfined aquifer	Not shown in T ₁ and T ₂ . Not shown or not labeled in T ₃ and T ₄ .	Incorrect location (e.g., inside unconfined aquifer) but labeled something. Water body encased in impermeable rock shell.	Partially correct. Above unconfined aquifer but does not rest on an impermeable rock lens.	Correct location but incorrect lateral extent (e.g., drawn as a 'packet' or points at general location).	NA	NA	Correctly positioned in terms of location and lateral extent.
Unconfined	Water-saturated permeable rock layer that rests on an impermeable rock layer and has vertical pore connection to the atmosphere	Not shown in T ₁ and T ₂ . Not shown or not labeled in T ₃ and T ₄ .	Incorrect location (e.g., envelopes a confined aquifer) but labeled something. Water body encased in impermeable rock shell.	Partially correct. Below the unsaturated zone but does not rest on an impermeable rock layer.	Correct location but incorrect lateral or vertical extent (e.g., drawn as a 'packet' or points at general location). The water table is not the top boundary of the unconfined aquifer. The water table has thickness and is drawn as a layer.	NA	Mostly correct location but the vertical extent abuts impermeable rock, thus creating a confined aquifer.	Correctly positioned in terms of location as well as lateral and vertical extent.
Confined	Water-saturated permeable rock layer that rests between two layers of impermeable rock and has no vertical pore connection to the atmosphere	Not shown in T ₁ and T ₂ . Not shown or not labeled in T ₃ and T ₄ .	Incorrect location but labeled something. Water body encased in impermeable rock shell.	Partially correct. Has a top impermeable rock layer but no bottom impermeable rock layer (or vice versa).	Correct location but incorrect lateral extent (e.g., drawn as a 'packet' or points between two impermeable rock layers) and/or incorrect vertical extent (e.g., groundwater does not fill vertical space in the permeable rock between the two impermeable rock layers).	Correct or mostly correct lateral extent, below unconfined aquifer, but missing bottom impermeable rock layer.	Correct location and mostly correct lateral extent.	Correctly positioned in terms of location as well as lateral and vertical extent.

Table S5. Homework, mid-term exam, and final exam questions in both courses provide supplemental insight into students' learning progress; however, they are not directly comparable between the PKIS and non-PKIS groups as the two courses asked different homework, mid-term exam, and final exam questions. Questions most directly related to groundwater residence and aquifers in the course from which the PKIS group were enrolled are included below.

Assessment Type*	Item	PKIS, % Correct (n=61)
HW	Karst terrain is not widespread in the US. However, Florida is a US state that is characterized by karst terrain in which subterranean caves can form. Explain under what conditions such a subterranean cave could be considered an aquifer. (free-response)	76
HW	An aquifer composed of ____ will have the greatest porosity compared to aquifers of the other materials listed. (multiple-choice)	82
HW	Apply your knowledge of rock types, porosity, permeability, and aquifers to answer the following question. Which one of the following materials could hold a lot of water but would not allow water to flow through it readily (assuming all other factors are held equal)? (multiple-choice)	56
HW	____ has very low permeability, whereas ____ has very high permeability. (multiple-choice)	89
HW	Examine the relationship between the unconfined and perched aquifers shown in the figure provided. (a) Say what is incorrect with the perched aquifer. (b) Pull from what was discussed in class and the textbook to provide the rationale/reason for why it is incorrect. (free-response)	69
ME	Which one of the following is true about the saturated zone? (multiple-choice)	91
ME	Which of the aquifers listed below is charged locally? (multiple-choice)	85
FE	Generally, when over pumping of groundwater occurs in inland regions far from the coast, ____ around the well. (multiple-choice)	95
FE	Generally, when over pumping of groundwater occurs in coastal communities, ____ around the well. (multiple-choice)	94

* HW = homework at end of instructional sequence, ME = mid-term exam three weeks after end of instructional sequence, FE = final exam eight weeks after end of instructional sequence

Table S6. Homework, mid-term exam, and final exam questions in both courses provide supplemental insight into students' learning progress; however, they are not directly comparable between the PKIS and non-PKIS groups as the two courses asked different homework, mid-term exam, and final exam questions. Questions most directly related to groundwater residence and aquifers in the course from which the non-PKIS group were enrolled are included below.

Assessment Type*	Item	Non-PKIS, % Correct (n=55)
HW	What are the defining characteristics of an <i>aquifer</i> ? (free-response)	61
HW	What are the defining characteristics of an <i>aquitard</i> ? (free-response)	87
HW	What is the difference between an <i>unconfined aquifer</i> and a <i>confined aquifer</i> ? (free-response)	77
HW	Use Figure 11.2 on page 24 in your textbook (or the figure provided) to (a) name one sediment or one sedimentary rock type that makes a good <i>aquifer</i> and (b) report its approximate permeability (in units of m ²). (free-response)	87
HW	Use Figure 11.2 on page 24 in your textbook (or the figure provided) to (a) name one sediment or one sedimentary rock type that makes a good <i>aquitard</i> and (b) report its approximate permeability (in units of m ²). (free-response)	79
ME	What is permeability? (multiple-choice)	92
ME	Below are thin sections for two sandstones. In both thin sections, pores are orange in color and clasts are white in color (and a few clasts are blue in Sandstone A). Which sandstone has greater permeability? (multiple-choice)	90
ME	The figure below shows that loose sediments exhibit a wide range of porosity and permeability. Why do loose sediments exhibit a wide range of porosity and permeability? (multiple-choice)	92
FE	The final exam did not include questions about groundwater residence and aquifers, except for the T ₄ sketch question posed to compare the PKIS and non-PKIS for the purposes of this study.	NA

* HW = homework at end of instructional sequence, ME = mid-term exam three weeks after end of instructional sequence, FE = final exam eight weeks after end of instructional sequence. NA = not applicable

Table S7. Temporal data comparing the PKIS Group's performance by (a) gender and (b) race. There are neither statistically significant differences between the performance of male and female students nor between Caucasian and non-Caucasian students.

Table S8. Temporal data comparing the non-PKIS Group's performance by (a) gender and (b) race. There were neither statistically significant differences between the performance of male and female students nor between Caucasian and non-Caucasian students. Only students who completed both the T₁ and T₄ assessments were included in this analysis. A few of them did not include the T₂ and T₃ assessments, which explains why the totals for study participants during T₂ and T₃ might not equal those for T₁ and T₄.

Non-PKIS Group gender (a)	T1. Pre-Instruction sample (n)	T1. Pre-Instruction Score (median %)	T1. Pre-Instruction Score (average %)	T1. Pre-Instruction Score (sdev)	T1. Pre-Instruction Sampling Error (%)	T2. Instruction sample (n)	T2. Instruction Score (median%)	T2. Instruction Score (average%)	T2. Instruction Score (stddev)	T2. Instruction Sampling Error (%)	T3. Instruction sample (n)	T3. Instruction Score (median%)	T3. Instruction Score (average%)	T3. Instruction Score (stddev)	T3. Instruction Sampling Error (%)	T4. Post-Instruction sample (n)	T4. Post-Instruction Score (median%)	T4. Post-Instruction Score (average%)	T4. Post-Instruction Score (sdev)	T4. Post-Instruction Sampling Error (%)	T4-T1 change in average (%)
female	23	0.00	3.26	10.80	2.25	21	50.00	39.58	31.02	6.77	23	62.50	64.95	33.11	6.90	23	68.75	58.97	35.80	7.46	55.71
male	32	0.00	1.37	3.45	0.61	32	50.00	52.54	31.66	5.60	31	62.50	62.30	32.97	5.92	32	25.00	44.14	38.30	6.77	42.77
overall	55	0.00	2.16	10.38	1.40	53	50.00	47.41	31.76	4.36	55	62.50	63.43	32.75	4.46	55	37.50	50.34	37.66	5.08	48.18
t-value			0.930					-1.469						0.291				1.455			1.217
p value			0.356					0.148						0.772				0.152			0.229
signific ant?			no					no						no				no			no

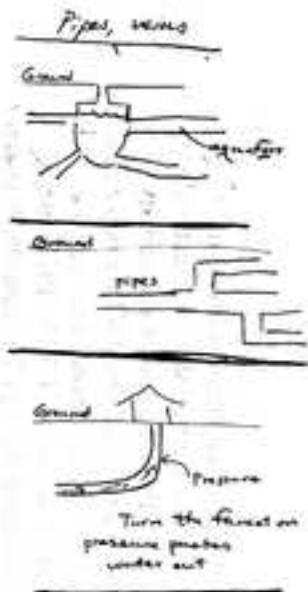
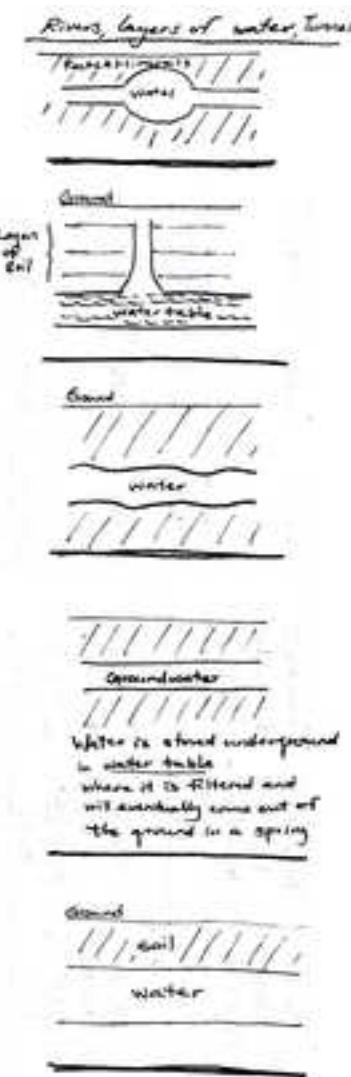
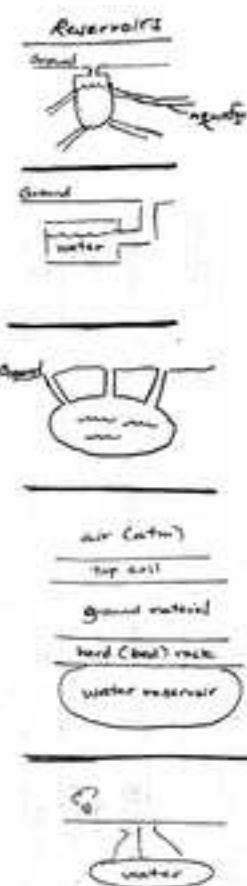
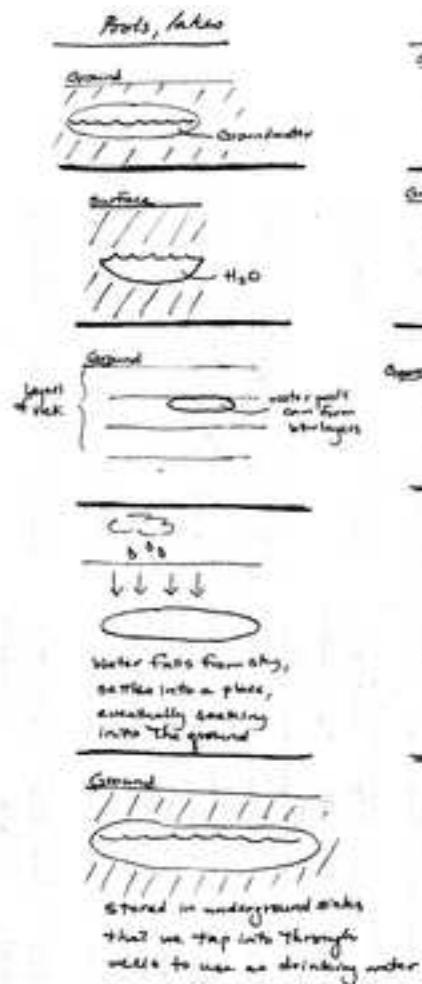
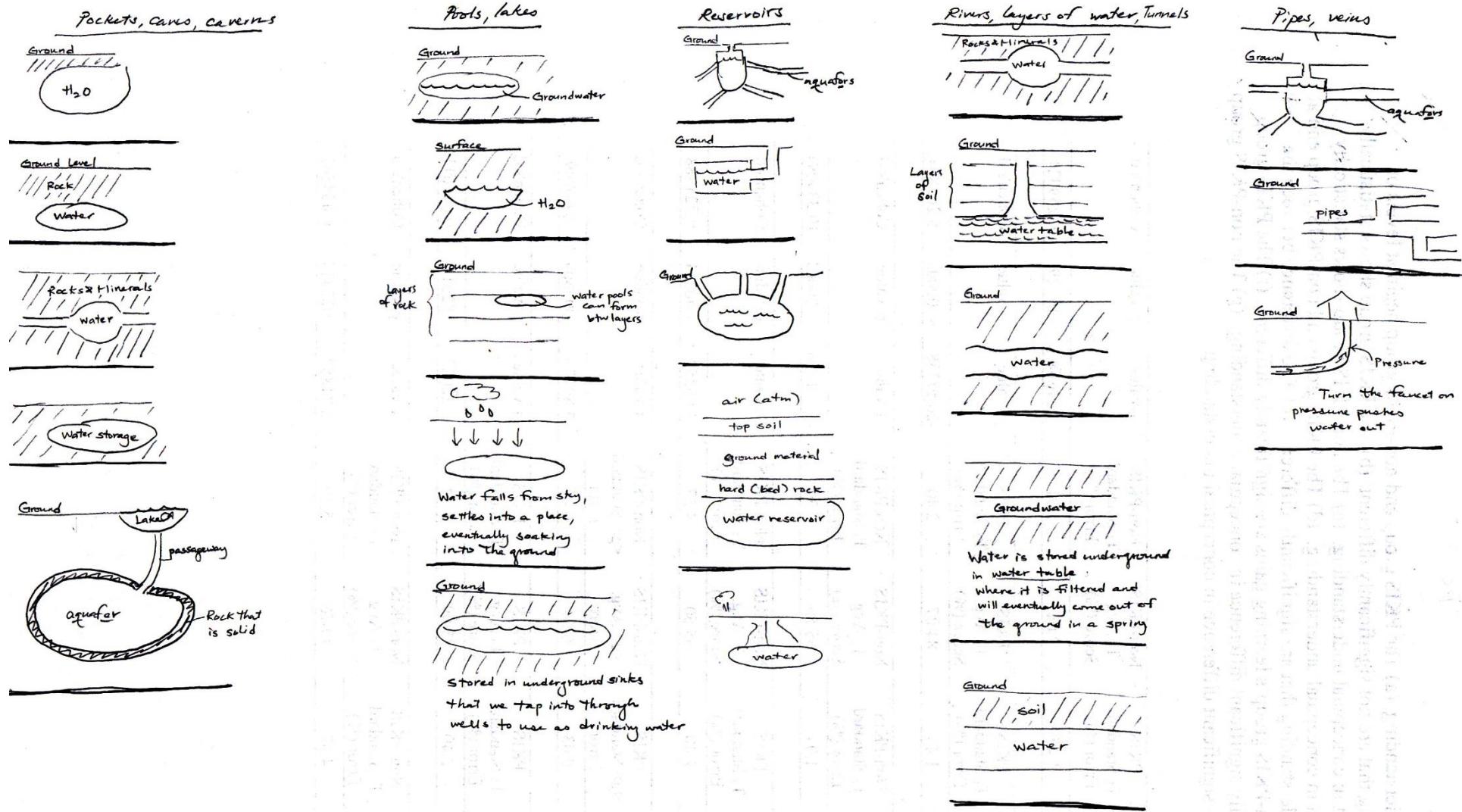






Figure S1. Rubric for pre-instructional mental models, based on categories that emerged from analyzing students' sketches. The emergent categories include 'pockets, caves, and caverns'; 'pools and lakes'; 'reservoirs'; 'rivers and layers of water', and 'pipes and veins.' Each category includes author-recreated student sketches to illustrate the range in sketches for each emergent category.

