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Abstract. Post-training model compression can reduce the inference costs of deep neural networks, but un-
compressed training still consumes enormous hardware resources and energy. To enable low-energy
training on edge devices, it is highly desirable to directly train a compact neural network from scratch
with a low memory cost. Low-rank tensor decomposition is an effective approach to reduce the mem-
ory and computing costs of large neural networks. However, directly training low-rank tensorized
neural networks is a very challenging task because it is hard to determine a proper tensor rank a pri-
ori, and the tensor rank controls both model complexity and accuracy. This paper presents a novel
end-to-end framework for low-rank tensorized training. We first develop a Bayesian model that
supports various low-rank tensor formats (e.g., CANDECOMP/PARAFAC, Tucker, tensor-train,
and tensor-train matrix) and reduces neural network parameters with automatic rank determination
during training. Then we develop a customized Bayesian solver to train large-scale tensorized neural
networks. Our training methods shows orders-of-magnitude parameter reduction and little accuracy
loss (or even better accuracy) in the experiments. On a very large deep learning recommendation sys-
tem with over 4.2 x 10° model parameters, our method can reduce the parameter number to 1.6 x 10°
automatically in the training process (i.e., by 2.6 x 10 times) while achieving almost the same ac-
curacy. Code is available at https://github.com/colehawkins/bayesian-tensor-rank-determination.
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1. Introduction. Despite their success in many applications, deep neural networks are
often overparameterized, requiring extensive computing resources in their training and infer-
ence. For instance, the VGG-19 network requires 500M memory [44] for image recognition,
and realistic deep learning recommendation model (DLRM) [38] has billions of parameters.
It has been a common practice to reduce the size of neural networks before deploying them
in various scenarios ranging from cloud services to embedded systems to mobile applica-
tions. To reduce hardware cost, numerous techniques have been developed to build compact
models [1, 16, 34] after training. Representative approaches include pruning [34, 40], quanti-
zation [15, 58], knowledge distillation [21], and low-rank factorization [27, 33, 43, 52]. Among
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these techniques, low-rank tensor compression [6, 9, 20, 27, 33, 36] has achieved possibly
the most significant compression, leading to promising reduction of FLOPS and hardware
cost [7, 27]. The recent progress of algorithm /hardware co-design [7, 54] of tensor operations
can further reduce the run-time and boost the energy efficiency of tensorized models on edge
devices (e.g., on field-programmable gate arrays (FPGAs) and application-specific circuits).
While post-training compression techniques can reduce the cost of deploying a deep neural
network, they cannot reduce the training cost.

Training consumes far more money, run-time, energy, and hardware resources than infer-
ence [45]. Meanwhile, the increasing concerns about data privacy have become a driving force
for training on resource-constrained edge devices [48]. The high costs and hardware constraints
associated with neural network training motivate us to ask the following question: “Is it pos-
sible to train a compact neural network model from scratch?” Both computing and hardware
costs may be significantly reduced on various platforms if we can avoid the full-size uncom-
pressed training. While pruning techniques can also be used in training [40, 51], they do not
necessarily reduce the number of training variables. Low-precision arithmetic [13, 24, 31, 46]
can reduce the cost per parameter during training and inference, but the memory cost reduc-
tion is limited to a single order of magnitude even in ultralow-precision 4-bit training [46].

1.1. Contributions. This paper will present a rank-adaptive end-to-end tensorized train-
ing method to generate ultracompact neural networks directly from scratch. As shown in
Figure 1(a), our method avoids the expensive full-size training in contrast with existing post-
training tensor compression methods [6, 9, 27, 33]. Our method can reduce the training
and inference variables by several orders of magnitude, and may achieve further reductions
if combined with low-precision numerical operations [13, 24, 31, 46]. This work can make a
great practical impact: it may enable energy-efficient training of medium- or large-size neural
networks on edge devices (e.g., embedded graphics processing units and FPGA), which is
impossible to achieve at this moment with existing training methods. Some recent works have
studied low-rank tensorized training [3, 26, 41], but they fix the tensor ranks before training.
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Figure 1. (a) Key idea of this work. Conventional train-then-compress approaches have high training costs.
In constrast, the proposed end-to-end tensorized training can reduce the training variables significantly and di-
rectly produce ultracompact neural networks. (b) Effectiveness of this approach on a realistic DLRM benchmark.
Standard methods train 4.25 billion variables. Our proposed method only trains 2.36 million variables, which
are further reduced to 164K in the training process due to the automatic tensor rank determination.
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It is hard to decide a proper tensor rank parameter a priori in practice; therefore, one often
has to perform extensive combinatorial searches and many training runs until a good rank
parameter is found.

We make the following contributions to achieve efficient one-shot tensorized training:

e A general-purpose rank-adaptive Bayesian tensorized model. The training
cost and model performance are controlled by tensor ranks, which are unknown a priori.
In order to avoid expensive manual search for tensor ranks required by recent works [3,
26, 41], we develop a novel Bayesian model to determine both tensor ranks and factors
automatically. Existing tensor-based modeling methods are problem-specific and focus
on a single tensor format [18, 19, 55, 56]. In contrast our work includes all four
low-rank tensor formats in common use (CANDECOMP/PARAFAC (CP), Tucker,
tensor-train, and tensor-train matrix) and makes general advances in low-rank tensor-
based modeling. This paper focuses on neural networks, but our method can easily
be applied to other tensor problems (e.g., tensor completion, tensor regression, and
multitask tensor learning).

e A scalable stochastic variational inference Bayesian solver for the proposed
tensorized neural networks. Training Bayesian tensorized neural networks is ex-
pensive, and existing approaches incur high memory and compute requirements. This
is because particle-based Bayesian methods require multiple model copies and multiple
forward propagations for every training and inference step [19]. Existing mean-field
Bayesian tensor completion solvers [18, 55, 56] do not work for tensorized neural net-
works because of the highly nonlinear forward propagation model in our case. In this
work we improve the approximate Bayesian inference method [22]. Specifically, we
observe that directly employing the solver in [22] causes large gradient variance in our
tensorized model. Therefore, we simplify the posterior density of some rank-controlling
hyperparameters and develop an analytical/numerical hybrid approach for the solu-
tion update. This customized Bayesian solver infers the unknown tensor factors and
tensor ranks of realistic neural networks in a single training run, enabling training
and quantifying the uncertainty of extremely large-scale deep learning models that are
beyond the capability of existing Bayesian solvers.

e Extensive numerical validations. We test our algorithms on four benchmarks
with model parameters ranging from 4 x 10° to 4.2 x 10°. Our method can reduce the
training variables by several orders of magnitude with little or even no loss of accuracy.
For instance, our method achieves 26,000 x parameter reduction when training a large-
scale DLRM as shown in Figure 1(b). We also compare our methods with existing
tensorized neural network methods [3, 9, 26, 41] including post-training compression
and fixed-rank tensorized training, which clearly demonstrates the advantage of our
rank-adaptive training method in terms of variable reduction and model accuracy.

To the best of our knowledge, this work is the first end-to-end Bayesian method that automat-
ically determines the tensor rank in large-scale neural network training (with billions of model
parameters) and supports multiple low-rank tensor formats simultaneously. This work will en-
able energy-efficient and low-cost training of realistic neural networks in resource-constrained
scenarios such as internet of things, robotic systems, and mobile phones. Our rank-adaptive
tensorized training method has reduced the memory and energy cost by two orders of magni-
tude when training a two-layer neural network on a preliminary FPGA prototype [53]. The
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Bayesian solution will enable uncertainty quantification of the prediction results, which is
important in safety-critical applications such as autonomous driving and medical imaging.

1.2. Related work. There is a massive body of work studying the pruning [34, 40], quan-
tization [15, 58], knowledge distillation [21], and low-rank compression [27, 33, 43, 52] of deep
neural networks. This work is most related to the following previous results.

Rank determination for linear tensor problems. Many heuristic methods have been developed
to estimate the tensor ranks in tensor factorization and completion. Optimization-based
approaches employ a heuristic tensor nuclear norm as the surrogate of tensor rank [8, 11], but
they require expensive regularization on the unfolded tensor. A nice alternative solution is
to use Bayesian inference to automatically estimate tensor ranks from observed data [12, 55,
59]. Current Bayesian tensor methods solve tensor factorization, completion, and regression
problems on small-scale data where the observed data is a linear function of the hidden tensor.
These problems allow closed-form parameter updates in mean-field Bayesian inference [12,
55, 59]. Sampling-based Bayesian methods (i.e., Markov chain Monte Carlo) require storing
thousands of copies of the model, which is not feasible for large neural networks. Because
the mean-field variational approach for linear tensor problems [55, 56] does not work for
tensorized neural networks, this paper develops a scalable solver based on stochastic variaitonal
inference [22].

Tensorized neural networks. Most work uses tensor decomposition to compress pretrained
neural networks. Examples include employing CP and Tucker factorizations to compress con-
volutional layers [27, 33]. In these examples the convolutional filters are already in a tensor
form. It is a common practice to reshape the weights in a fully connected layer into a high-
order tensor which enables tensor factorization can achieve much higher a compression ratio
than matrix factorization on convolution layers [33]. As shown in [27, 57], a neural network
compressed by low-rank tensor decomposition can consumes less memory, latency, and energy
on resource-constrained platforms such as mobile phones. Some recent approaches train low-
rank tensorized neural networks [3, 23, 41] by assuming a low-rank tensorization with a fixed
maximum rank. While it is possible to tune the tensor ranks in post-training tensor compres-
sion [27, 33] based on approximation errors, one has to use manual tuning or combinatorial
search to determine tensor ranks in existing tensorized training methods [3, 23, 41]. This has
been a major challenge that prevents one-shot training of realistic neural networks on edge
devices. Also related to our work are [30] and [28]. The work in [30] uses ¢; regularization
to determine CP tensor ranks in a computer vision application but requires multiple hyper-
parameter tuning runs, which are undesirable in the compressed training setting. The work
in [28] uses dropout to randomly drop entire tensor ranks as a form of regularization during
training. The dropout rate in [28], or rank reduction ratio, is the key hyperparameter that
our work determines automatically.

2. Preliminaries.

2.1. Tensors and tensor decomposition. This paper uses lowercase letters (e.g., a) to
denote scalars, bold lowercase letters (e.g., a) to represent vectors, bold uppercase letters
(e.g., A) to represent matrices, and bold calligraphic letters (e.g., A) to denote tensors. A
tensor is a generalization of a matrix or a multiway data array. An order-d tensor is a d-way
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Figure 2. (a) An order-3 tensor. (b) and (c): Representations in CP and Tucker formats, respectively,
where low-rank factors are color-coded to indicate the corresponding modes. (d) TT representation of an order-
d tensor, where the purple lines and squares indicate g(")(:,in, :), which is the i,th slice of the TT core g
obtained by firing its second indez.

data array A € RI*2XXla where I, is the size of mode n. The (iy,i2,...,iq)th element of
A is denoted as a;j,...i;- An order-3 tensor is shown in Figure 2(a).

Definition 2.1. The mode-n product of a tensor A € RIV}>XInxXla wyith o matriz U €
R/ *In g

In
(2.1) B=Ax, U< bi, i, 1jinir.iq = Z @iy g Wiy, -

in=1

The result is still a d-dimensional tensor B, but the mode-n size becomes J. In the special
case J = 1, the nth mode diminishes and B becomes an order-d — 1 tensor.

A tensor has a massive number of entries if d is large. This causes a high cost in both
computing and storage. Fortunately, many practical tensors have a low-rank structure, and
this property can be exploited to reduce the cost dramatically.

Definition 2.2. A d-way tensor A € RIV*la js rank-1 if it can be written as a single

outer product of d vectors

A=ubo...0u? withu™ c R forn=1,....d.
Each element of A is ajiy...i; = szl ul(:), where ugf) is the 7,th element of the vector
(n)
ul™,

A rank-1 tensor can be stored with only d vectors. Most tensors are not rank-1, but many
can be well-approximated via tensor decomposition [29] if their ranks are low. We will use
the following four tensor decomposition formats to reduce the parameters of neural networks.

Definition 2.3. The CP factorization [4, 17| expresses tensor A as the sum of multiple
rank-1 tensors:
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(2.2) A= Z u§1) o u§2) ~oul®,

Here o denotes an outer product operator. The minimal integer R that ensures the equality is
called the CP rank of A. To simplify notation we collect the rank-1 terms of the nth mode
into a factor matriz UM e RIWE yth U(")(:,j) = ugn). A rank-R CP factorization can be

described with d factor matrices {UM™}2_, using RY", I, parameters.

Definition 2.4. The Tucker factorization [49] expresses a d-way tensor A as a series of
mode-n products:

(23) A:gX1 U(l) Xg"'XdU(d).

Here G € RFv<xRa s g small core tensor, and UM e RI"*En s o factor matriz for the nth
mode. The Tucker rank is the tuple (R1,...,Rq). A Tucker factorization with ranks R, = R
requires R + R", I, parameters.

Definition 2.5. The tensor-train (TT) factorization [42] expresses a d-way tensor A as a
collection of matriz products:

(2.4) Uirig..ig = GV (i1, )0GP (102, ) ... GD (5, ).
Each TT-core G e REn—1xInxBn s an order-3 tensor. The tuple (Ro, Ry, ..., Rq) is the T'T

rank and Ry = Rg=1.

The TT format uses Zn R, 1I,R, parameters in total and leads to more expressive
interactions than the CP format.
Let A € RT*7 be a matrix. We assume that I and J can be factored as follows:

d d

(2.5) I= HIR,J: HJn.

n=1 n=1

We can reshape A into a tensor A with dimensions I; X -+ x Iy x J; x --- x Jyg, such that
the (7,7)th element of A uniquely corresonds to the (i1,42,...,%4, 71,72, - -,jq)th element of
A. The TT decomposition can extended to compress the resulting order-2d tensor as follows.

Definition 2.6. The tensor-train matriz (TTM) factorization expresses an order-2d tensor
A as d matriz products:

(26) ail...idjl...jd - g(l)(:’ i17j17 :)g(Q)(:’ 7:27]-27 :) .. g(d)(:’ id:jdv )

Each TT-core G € REn-1xInxJnxBn i an order 4 tensor. The tuple (Ry, Ry, R, ..., Ry) is
the TT rank, and as before Ry = Rg = 1. This TTM factorization requires Zn R,_11,J, R,
parameters to represent A.

We provide a visual representation of the CP, Tucker, and TT formats in Figure 2(b)—(d).
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2.2. Tensorized neural networks. A deep neural network can be written as

(2.7) y =h(x)=gr(gr-1(81(x))),

where x is an input data sample and y is an output label. Here gi(z) = o(Wygz + byg)
represents layer k, where ¢ is a nonlinear activation function, Wy and by are the weights and
bias, respectively. Considering parameter dependence, we can rewrite (2.7) as

(2.8) y =h(x | {Wy,br}i_,).

In a convolutional layer Wy, should be replaced with tensor Wy. In modern neural networks,
{Wk},%zl contain millions to billions of parameters, which cause huge challenges in training
and inference on various hardware platforms. A promising solution is to generate a compact
neural network via low-rank tensor compression [9, 33, 41] as follows:

e Folding to high-order tensors. A weight matrix W € R’*/ can be folded into an
order-d tensor A € RIV>*1a where I.J =[], I,. We can also fold W to an order-2d
tensor A € R xlaxJix-xJa guch that Wij = Qj;.iyjy--j,- While a convolution filter
is already a tensor, we can reshape it to a higher-order tensor with reduced mode sizes.

e Low-rank tensor compression. After folding W into a higher-order tensor .4, one
can employ low-rank tensor compression to reduce the number of parameters. Either
the CP, Tucker, TT, or TTM factorization can be applied [9, 27, 33].

Assume that ®; includes all low-rank tensor factors required to represent Wy . Consid-
ering the dependence of Wy, on ®;, we can now write (2.8) as

(2.9) y =h (x | {Wy (@), br}izy) = £ (x | ®) with & = {&, by}

Here W include all tensor factors and bias vectors in a tensorized neural network. The number
of variables in ¥ is often orders-of-magnitude smaller than that in the original model (2.8).

Please note the following:

e The tensor factors in ®; depend on the tensor format we choose. In CP format,
®,. includes d matrix factors; in Tucker format, ®; includes d factor matrices and a
small order-d core tensor as shown in (2.3); when the TT or TTM format is used, ®y
includes d order-3 or order-4 TT cores shown in (2.4) and (2.6), respectively.

e The number of variables in each ®; depends on the tensor ranks used in the compres-
sion. A higher tensor rank leads to higher expressive power but a lower compression
ratio. In existing approaches, it is hard to select a proper tensor rank a priori.

Two main approaches exist to produce low-rank tensorized neural networks. The first
approach trains an uncompressed neural network h and then performs tensor factorization on
each of the weights {Wk}ﬁzl. This train-then-compress approach suffers from two drawbacks:

e High training costs. The uncompressed training consumes a huge amount of mem-
ory, run-time, and energy on a hardware platform.

e Lower accuracy. The subsequent tensor compression causes accuracy loss, which
becomes significant when the compression ratio is high.

The second approach is fixed-rank tensorized training. In this approach the user prespecifies
the tensor rank and trains low-rank tensor factors of weight parameters. This approach avoids
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the compute and memory requirements of uncompressed training but requires that the user
manually select a good rank a priori. This approach usually requires multiple training runs
to select the rank. In addition a user-specified rank may achieve suboptimal compression.

3. Bayesian low-rank tensorized model. In this work, we plan to develop a tensorized
training method that can automatically determine the tensor ranks in the training process.
This method requires only one training run and avoids the high cost of uncompressed training.
Bayesian methods have been employed for tensor completion and factorization [55, 56, 59],
where the observed data is a linear function of tensor elements. However, existing Bayesian
tensor solvers do not work for tensorized neural networks due to the nonlinear forward model
and large number of unknown variables.

3.1. High-level Bayesian formulation. We first describe a general-purpose Bayesian model
for training low-rank tensorized neural networks. For notational convenience we assume that
our neural network f has one nonlinear layer and that its weight matrix W is folded to a
single tensor A. Extending our method to general multilayer cases with multiple tensors is
straightforward, and we will report results on general multilayer models in section 5

Given a training dataset D, our goal is to determine the unknown low-rank factors ® for
A, the associated tensor ranks, and the bias vector b. We introduce hyperparameters A to
control the tensor ranks and model complexity. Our posterior distribution is

p(D|¥)p(¥, A)
p(D)
Here p(D|¥) is the model likelihood, p(¥, A) is the joint prior, and p(D) is the model evidence

(3.1) p(¥, A|D) = with ¥ = {®,b}.

(3.2) p(D)= | D)W, A)dwaA.
The likelihood and joint prior are specified below:

e Likelihood function. p(D|¥) and data D are determined by a forward propagation
model. Let (x,y) € D be a training sample where x is the neural network input and y
is the associated true label. The multinomial likelihood function for a neural network
classifier with C' potential classes is

(3.3) p(D®) < [] Hf x| W)Y

( ,y)ED c=1

where y, is the correct class label. Here f is the forward propagation model in (2.9)
which is conditioned on the given low-rank tensor factors and bias vectors. We omit
the multinomial distribution constant of proportionality for simplicity.

e Joint prior We place an independent prior over the low-rank tensor factors and the
bias term. We choose a weak normal prior for the bias term:

2
(3.4) p(®,A) = p(b)p(®,A), p(b) x H — exp< )

Here p(®,A) is the joint prior for tensor factors ® and hyperparameters A. The design
of p(®,A) depends on the tensor format we choose, which will be explained in sections 3.2
and 3.3.
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3.2. Tensor factor priors. Proper priors should be chosen in order to automatically shrink
tensor ranks in the training process. Here we will specify the joint prior p(®, A) for the four
tensor formats described in section 2.1: CP, Tucker, T'T, and TTM.

Firstly we specify the general form of p(®, A). For the CP format, we initialize each factor
U™ as a matrix with R columns. Assume that R is larger than the actual rank r and all
factors shrink to r columns in the training process. All CP factors have the same maximum
rank (column number), so we use a single vector A = X € R¥ to control the rank. The tensor
rank in Tucker, TT, or TTM format is a vector, and the rank associated with each mode
can be different. Therefore, we require a collection of vectors A = {)\(”)}‘fl:l to control the
ranks of each mode individually. Here A(™ € Rf» and the “maximum rank” R, exceeds the
“actual rank” r, of mode n. As a result, we introduce the general form

p(®|A)p(A) for CP format,

(3.5) p(®,A) = d
p(@{A™}) TT p(A™) for Tucker, TT, and TTM formats,
n=1

where the prior distribution(s) on A or {A\(™}¢_, enforce(s) rank reduction.
Next we specify the tensor factor priors p(®|A) or p(®[{ A1) for each tensor format, and
we defer the prior on A and {A(™ d_, to section 3.3.
e CP format. The CP tensor factors are d matrices ® = {U™}¢_ . We assign a
Gaussian prior with controllable variance to each element of each factor matrix U():

e P@A)=pN]Ip (VW) p (U A) = TN () 10.3).
p L

Here ul(]n) is the (i, j)th element of U™ . Each entry of X controls one column of each

factor matrix. If a single entry A; approaches zero, then the prior mean and prior
(n)
ij

n € [1,d]. This encourages the whole jth column of U™ to shrink to zero, leading to
a rank reduction. The vector X is shared across all modes; therefore, it will shrink the

same column of all CP factor matrices simultaneously, as shown in Figure 3(a).

variance of u;;’ are both close to zero for all row indices i € [1, [,,] and mode indices

e mom >
! 1

oo u® g
(a) (b) (c)

Figure 3. (a) For the CP prior, if one element of A is small, one column is removed from every factor
matriz. (b) For the Tucker prior, if one element of A is small, then one column of U™ shrinks to zero. (c)

For the TT prior, if one element of A™ is small, then one slice of G™ shrinks to zero. The columns /slices to
be removed are marked in white.
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e Tucker format. A Tucker factorization includes a core tensor and d factor matri-
ces; therefore, ® = {G,{UM™}¢_}. We also assign each factor matrix U™ with
a variance-tunable Gaussian distribution. A Tucker model has d separate rank pa-
rameters (r1,...,7rq) to determine, one per factor matrix as shown in Figure 3(b).
Furthermore, the factor matrices and core tensor are handled separately. Therefore,
we propose the following prior distributions:

0.8 =i0) T (07) (37) . (0 13) =TT (510

We use d independent rank controlling vectors {)\(”)}szl to control the prior variances
of different factor matrices separately. The jth element of A(™ controls the jth column
of factor matrix U™, Therefore A controls r,, the nth entry of the Tucker rank.
We place a weak normal prior over the entries of the core tensor G:

(3.7) p(@) = [ N (@i..ia]0,00).

115ee0id

We make this choice to simplify parameter inference compared to the alternative of
placing low-rank priors on both of the core tensor and the factor matrices.

e TT format. A TT factorization has d order-3 TT cores; therefore, ® = {GW}4_, .
The TT format requires a more complicated prior because each TT core G e
R7n—1XInXTn depends on two rank parameters r,_1 and r,. In order to automati-
cally determine the TT rank, we choose R,, > r, and initialize the nth TT core with
size R,,_1 X I, X R,,. The prior density of all TT cores is given as

p(Q’A):I,(g(d)‘)\(d—l)) I1 p(g(n)’)\(n))p@\(n))’

1<n<d—1
(3.9) p (6" 1A =TTV (g0 10,A(") forn € [1,d -1,
0,5,k
p (99 1Y) = 1TV (gl 10,2,

We introduce a vector A(™ € R to control the actual rank r,, for mode 1 to d—1. As
shown in Figure 3(c), the kth element of A (i.e., )\,(cn)) controls the prior variance of
aslice G (:,:, k). If )\,(Cn) is small, the whole slice G (:, :, k) is close to zero, leading to
a rank reduction in the nth mode. Parameter A(¢~Y controls two separate cores. This
prevents any rank parameters from overlapping, and it simplifies posterior inference.

e TTM format. Similar to the TT format, a TTM decomposition also has d core
tensors; therefore, ® = {G(™}?_,. The only difference is that each G™ is an order-4
tensor, which is initalized with a size R,,_1 x I, X J,, X R;, in our Bayesian model. The
prior for the TTM low-rank factors is

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/24/22 to 128.111.61.42 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

56 COLE HAWKINS, XING LIU, AND ZHENG ZHANG

p(cp,A):p<g(d)‘,\(d—1)> I1 p<g(n)|)\(n)>p<)‘(n))’

1<n<d-1
o p(1N) = TT ¥ (o 0") orncita—1,
2,9,k,l
p(61300) = T 10+
,7,k,l

This prior is very similar to that of the TT format. We use a vector parameter A
to control the actual rank 7, of the nth mode for n € [1,d — 1], and A4~V is shared
among G and g(d—U.

3.3. Rank-shrinking hyperparameter priors. To complete the setup of the full Bayesian
model (3.1), we still need to specify the prior of rank-control hyperparameters A = X (for
CP) or A = {AM}¢__ (for Tucker, TT, and TTM). Since small elements in A and A lead
to rank reductions in the tensor models, we choose two hyperprior densities that place high
probability near zero. We focus our notation in this subsection on the CP model for simplicity.

We consider two choices of prior on the hyperparameter A: the half-Cauchy (HC) with
scale parameter 7 and the improper log-uniform (LU) on (0, c0):

HC(V/Ail0,7) or
LU(VX:).

The improper LU distribution has a fatter tail than the HC distribution and is parameter-
free. We illustrate both densities in Figure 4(a). The HC scaling parameter n > 0 can be
adjusted to tune the tradeoff between accuracy and rank-sparsity. Decreasing the magnitude
of n increases rank-sparsity. Both the HC density function,

R
(3.10) p(A) =[] pN) with p(A;) = {
=1

AN
(3.11) HC(x|0,n) <1 + ?> ,

10° 4 100 4

10—1 4

10—1 -

1072 102

1073 4 10-3 4

0.0 0.5 1.0 15 2.0 2.5 3.0 -20 -15 -10 -05 0.0 0.5 1.0 1.5 2.0

(a) (b)

Figure 4. (a) Comparison of the probability density functions of the LU and HC hyperprior on \;. Several
values of the HC scale parameter n are given. (b) Comparison of the probability density functions of the
(n)

corresponding marginal prior on the low-rank tensor factor entry Uy
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Figure 5. (a) CP graphical model; (b) Tucker graphical model; (¢) TT/TTM graphical model.

and the LU density function,
(3.12) LU(z) oc 2!,

place high probability in regions around zero. The parameter A controls the prior variance of
the tensor factors in ®, all of which have prior mean zero. Therefore the prior density encodes
a prior belief that the tensor rank is low, and it encourages structured rank shrinkage. We
provide the Bayesian graphical models for each low-rank tensor format in Figure 5.

In Figure 4 we demonstrate how our prior induces rank-sparsity in a CP model. Figure 4(a)

plots the prior density on the rank parameter \;. Figure 4(b) shows the corresponding mar-
o)
hyperprior leads to strong shrinkage of small values of ugl) towards 0 but permits medium
values to escape the “gravitational pull” around 0 [5]. In comparison, the marginal horseshoe
prior induced by the HC hyperprior exerts a weaker shrinkage effect at small values of ugl)
but a stronger shrinkage effect on larger values.

ginal prior on u The flat tail and sharp peak of the marginal prior induced by the LU rank

4. Scalable parameter inference. Now we discuss how to estimate the resulting posterior
density (3.1). We develop an efficient tensorized Bayesian inference approach by improving
stochastic variational inference (SVI) [22]. We consider SVI [22] due to its superior computa-
tional and memory efficiency over gradient-based Markov Chain Monte Carlo [39] and Stein
variational gradient descent [35]. However, directly applying SVI to our tensorized training
can cause numerical failures. Therefore, we will develop a customized SVI solver with an ana-
lytical /numerical hybrid parameter update that is suitable for our Bayesian tensorized neural
networks.

4.1. Review of SVI. Let 6 be the parameters to infer, and let ¢(0@) be the approximating
distribution to the target posterior distribution

p(8|D) o< p(D]6)p(6).
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SVI [22] solves an optimization problem where the loss function is the Kullback-Leibler (KL)
divergence and the goal is to find the best approximating density ¢* among a parameterized
class of densities P:

(A1) '(0) = argminKL (@) p(6IP) . KL@)nOID) =By {log

q(0) ]
p(0D) ]

The KL divergence can be rewritten as

KL (q(8)|[p(0|D)) = Ey ) [log q(8) — log p(D|0) — log p(0)] + const.

(42) — —E, o) llogp(DI0)] + KL (q(6) [p(6)) + const.

This is a combination of the log-likelihood (model fit) and the divergence from the approximate
posterior to the prior (low-rank). To approximate the log-likelihood one samples from the
variational distribution q. The KL divergence is either approximated via sampling or evaluated
in a closed form. The form in (4.2) requires the evaluation of the full-data model likelihood. If
the data is large the full-data likelihood p(D|0) is intractable, so we approximate the likelihood
by subsampling a minibatch M C D.

4.2. Challenges in training Bayesian tensorized neural networks. Now we explain the
challenges of directly applying SVI to train our Bayesian tensorized neural network model.
As an example, we focus our notation on the CP format one-layer model with parameters

(4.3) 0={® A} = {{UW}zl ,A} .

The extension to other tensor formats and to multiple layers is trivial. For notational con-
venience we omit the description of the bias term b since it is assigned a normal variational
posterior and follows the standard update rules specified in [2].

In variational inference, it is a common practice to simplify a posterior density in or-
der to reduce the computational cost. In our problem setting, we firstly use the mean-field
approximation [25] to achieve a tractable optimization:

oy ({0} = (0] o 0

We further model the posterior of the tensor factors with a normal distribution

09w (00)) = oo (07 s (0) =TT (o007 557).
n=1 ij

where ul(?)
standard deviation (™ to be inferred, respectively.
Now we discuss the challenges in learning the variational posterior distribution. We modify

(4.2) to obtain our objective function:

(16)  £(0) = =B,(quoyalos p (PH{UT ) + KL (g ({U 0) llp ({U™} ).

and EZ(-;-Z) are the (i, j)th elements of the unknown posterior mean U(") and posterior
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Due to the nonlinear tensorized forward model, we need to employ gradient-based iterations
in SVI to update the tensor factor parameters. The expected log-likelihood in (4.6) must
be approximated by sampling the variational distribution ¢. The first standard approach is
to select a variational distribution ¢ ({U(”)}, A) for which the KL divergence in (4.6) can be
obtained in a closed form. The second standard approach is to approximate the KL divergence
term by sampling from the variational posterior. In practice, two challenges prevent us from
applying these standard SVI approaches:

e Challenge 1: Closed-form objectives require multiple training runs. Varia-
tional distributions g that permit a closed-form approximation of the KL divergence
require additional hyperparameters. Existing distributions that enable a closed-form
KL divergence require a hierarchical Bayesian parameterization of the rank parame-
ter A [10, 50], requiring up to five additional hyperparameters for the new random
variables [50]. Additional hyperparameters would require additional tuning runs and
remove the benefits of one-shot tensorized training. Therefore, we avoid this option.

e Challenge 2: Sampling-based approximation increases gradient variance.
Sampling-based approximation of the KL divergence leads to gradient instability dur-
ing rank shrinkage. The gradient variance with respect to the low-rank tensor factor
parameters is proportional to the variance of 1/A, and it may explode during rank-
shrinkage as A approaches 0, so sampling A\ is not feasible.

We provide more details about the second challenge. We consider the gradient of the

objective function in (4.6) with respect to the parameters u( ") and E( ") First we observe that

M) a(n)?
)yl
(4.7) KL (/\/ <u(’?)| ) s ) I (ug‘)m,Aj)) i T

1) z] ? .
)‘]

Let ¢ represent either parameter of {uZ e

(48 v [t (8 (7Y I (u10.00)) ] v [

The goal of our low-rank prior is to shrink many A;’s to 0 in the training process. If the
distribution of A; is nondegenerate, even small uncertainties in the value of A\; will lead to
large variance in (4.8) as the posterior probability of A; concentrates around 0. As a result, a
rank shrinkage can cause high-variance gradients which in turn may increase the magnitude
of factor matrix parameters, as shown in Figure 6.

$(n) . . . .
Z;L }. Then sampling A yields a gradient variance

4.3. Simplified posterior for rank-controlling hyperparameters. To avoid gradient vari-
ance explosion, we propose a deterministic approximation to the hyperparameter A:

(4.9) A (A) = ox(A),

where ¢ is a delta function and X is the posterior mean of X. This delta approximation was
used for empirical partially Bayes estimation in [37]. This approximation admits closed-form
updates to the following subproblem when the factor matrices are fixed:

(4.10) argxinin KL (q ({U<”>} ,)\) I ({U(")} A)) .
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Figure 6. The gradient variance of a single low-rank tensor factor parameter. Sampling the rank parameter
A leads to high-variance gradients, while our proposed delta approximation of hyperparameters reduces the
gradient variance significantly (see section 4.3 and section 4.4).

We provide the closed-form analytical updates for A, under each choice of prior in CP
format and give the details in Appendix A. The results associated with other tensor formats
can be obtained similarly. For the LU prior

— M
4.11 _
(4.11) Ak D+1

Here we have used the notations

(4.12) D=1, M= > Y @2+2§,’j)2.

1<n<d 1<i<T,

The number of entries controlled by A; is D, and M is their combined magnitude and variance.
In the case of the HC prior with scale parameter n, the update is

M —n2D M2+ (2D + 8)n2M + n*D?

For the HC hyperprior, decreasing the magnitude of the scale parameter n decreases the
magnitude of the update of Tk, thereby increasing rank-sparsity.

4.4. Analytical/numerical hybrid parameter update in SVI. With the proposed delta
posterior approximation for A, now we can train our tensorized neural network training with
an analytical /numerical hybrid parameter update rule in SVI. Specifically, in every iteration
of SVI, we use a gradient-based half step to update the tensor factors in ® and closed-form
half step to the hyperparameters X. We apply the reparametrization trick

(4.14) ugl) = ugl) + ZZZ-L), z~N(0,1)

to sample from the tensor factor distributions.
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e Half Step 1: Gradient update for tensor factors. We sample the low-rank tensor
factors ® and update all parameters of the tensor factor variational distributions using
gradient descent on the loss £ (¢) of (4.6) with a learning rate a:

(4.15) &+ ®+aVel(q).

In the the CP model, the gradients for the posterior variance and mean of the factor
matrices are given by

IR
Vgg})ﬁ (q) = —2Vy,; log p (D’ {U(n)}> _ — XZ] ’
(4.16) T”L)J ;

Note that z is the random variable sampled during the forward pass due to the repa-
rameterization in (4.14) and the gradients with respect to the log-likelihood are com-
puted using standard automatic differentiation. We describe the gradients for the
other three tensor formats in Appendix B.

e Half Step 2: Incremental closed-form update for A. We analytically update
the rank-controlling parameters A based on the results in (4.11) and (4.13). We found
empirically that incremental updates, rather than direct assignment of the results from
(4.11) or (4.13), led to better performance. Therefore we adopt an incremental update
strategy with learning rate v for the rank parameter updates:

(4.17) M YA, + (1 =)k

As shown in Figure 6, this proposed hybrid parameter update can greatly reduce the
gradient variance of tensor factors.

4.5. Algorithm flow and implementation issues. The full description of our end-to-end
tensorized training with rank determination is shown in Algorithm 4.1. We iteratively repeat
the hybrid parameter updates for a predetermined number of epochs m. In the following, we
discuss some important implementation issues.

Warmup schedule. A general challenge in Bayesian tensor computation is that poor ini-
tializations can lead to excessive rank shrinkage and trivial rank-zero solutions. In linear
tensor problems such as tensor completion the SVD is used to generate high-quality initial-
izations [55, 56]. For nonlinear tensorized neural networks we randomly initialize the factor
matrices so the predictive accuracy is low and the KL divergence to the prior may domi-
nate the local loss landscape around the initialization point. To avoid trivial rank-zero local
optima early in the training process, we incrementally reweight the KL divergence from the
variational approximation to the prior during the training process. Let e, be the number of
warmup training epochs and e be the current epoch. We reweight the KL divergence from
the variational approximation to the prior by a factor 8 defined by

(4.18) 5 = min <1, )

Cw
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Algorithm 4.1. SVI-Based Tensorized Training with Rank Determination

Input: Factor learning rate o, expectation maximization stepsize v, rank cutoff €, warmup
epochs ey, total epochs m, tuning epochs ¢
for Epoch e in [1,...,m] do
Assign 3 according to (4.18).
for each batch B C D do
Update the low-rank factor distribution variational parameters as in Half Step 1,
(4.15).
Update the rank-control hyperparameters as in Half Step 2, (4.17).
end for
end for
Prune tensor ranks as described in (4.20).

and update the loss from (4.6) accordingly:

10 2l0 =g oy (21{0}) 53 (0 ({0 ) ((0).).

Gradually increasing the weight of the KL divergence to the prior avoids early local optima
in which all ranks shrink to zero. We have found empirically that e,, = m/2 is a good choice
for the number of warmup steps.

Rank pruning. After we run our Bayesian solver we truncate the ranks with variance \j
below a prespecified threshold e. For example, for the CP format if \;, < € we assign

(4.20) ul™  0and B 0 for 1 <n<d,1<i<I,

The associated kth column of U™ is removed, leading to a rank shrinkage and automatic
model parameter reduction.

5. Experiments. We demonstrate the applications of our rank-adaptive tensorized end-
to-end training method on several neural network models. Our method trains a Bayesian
neural network; therefore, we report the predictive accuracy of the posterior mean. In order
to compare the performance, we implement the following methods in our experiments:

e Baseline. A standard training method, where model parameters are uncompressed.

e TC-MR [27, 33]. Train and then compress with maximum ranks. We train a uncom-
pressed neural network with the “baseline” method, followed by a tensor decomposition
and fine-tuning. For the DLRM we fine-tune for one epoch. In all other experiments
we fine-tune for 20 epochs. This approach requires that the user select the compression
rank. Here we use the maximum rank used in our Bayesian model. This approach has
been studied for computer vision tasks using the CP decomposition in [33] and the
Tucker decomposition in [14, 27]. We compare against the algorithms of [27, 33] but
on different architectures.

e TC-OR. Train and then compress with oracle rank (r in CP or r = [rq, 79, ..., rg] for
other formats). This method follows the same procedures of TC-MR [27, 33], except
that it uses the “oracle rank” discovered by our proposed rank determination method.
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In practice this “TC-OR” method would require a combinatorial rank search over a
high-dimensional discrete space to discover the same rank as our method.

e FR. Fixed-rank tensorized training. We implement tensorized training [3, 9, 23, 41]
with a tensor rank fixed a priori. Determining the tensor ranks is challenging in
this approach. In our experiments we reuse the well-tuned parameters from previous
literature. The convolutional neural network experiment and architecture in the sup-
plemental material are taken from [9]. The natural language processing (NLP) and
DLRM experiment architectures are taken from [23].

e ARD-LU. The first version of our proposed tensorized training method with auto-
matic rank determination. We use the LU prior in (3.12) for the rank-control hyper-
parameters. All tensor factors are initialized with a maximum rank (R for CP and
R = [R ..., R4 for other formats), and the actual ranks (r for CP and r = [rq,...74]
for other formats) are automatically determined by our training process. To compare
our method with FR, we set the maximum rank to the rank used in FR.

e ARD-HC. The second version of our proposed training method using the HC
prior (3.11) for the rank-control hyperparameters.

As shown in Table 1 our proposed methods enjoy all of the listed advantages compared with
other methods. The proposed automatic tensor rank determination avoids the expensive mul-
tiple training runs in FR, and it also results in the (almost) smallest models for inference. We
consider four low-rank tensor formats for each tensorized method. Therefore, our experiments
involve the implementation of 21 specific methods in total (20 tensorized implementations plus
one baseline method). For all experiments we list the full tensor dimension and rank settings
in the supplement. For all experiments we set the rank parameter learning rate v = 0.9.

Remark 5.1. In our Bayesian training, every tensorized model parameter is equipped with
two training variables (i.e., posterior mean and variance). Therefore the number of training
variables is 2x that of the tensorized model parameter numbers. This parameter overhead in
Bayesian training brings in the capability of uncertainty quantification in output prediction,
which is important for safety-critical applications. Our Bayesian model also allows a point-
wise maximum a posteriori training. In such training, the only additional parameters required
are the rank-control parameters, so the number of training variables is only slightly larger than
the number of training variables in fixed-rank tensorized training.

5.1. Synthetic example for rank determination. First we test the ability of our proposed

method to infer the tensor rank of model parameters in a neural network. For each tensor

Table 1
Summary of different training methods.

Method Memory cost of training | # training runs | Model size for inference
Baseline high 1 huge
FR [41] low many small
TC-MR [33] high 1 small
TC-OR [33] high 1 small
ARD-LU (Proposed) low 1 small
ARD-HC (Proposed) low 1 small
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format we construct a synthetic version of the Modified National Institute of Standards and
Technology (MNIST) dataset using a one-layer tensorized neural network (equivalent to ten-
sorized logistic regression). The tensorized layer is fully connected, and the fixed tensor rank
is five for each tensor format: 5 for CP, [5, 5, 5] for Tucker and [1, 5, 5, 1] for TT/TTM
(Table 2). We use the rank-5 model to generate synthetic labels for the MNIST images. Then
we train a set of low-rank tensorized models with a maximum rank of 10 on the synthetic
dataset. For the CP, TT, and Tucker formats we reshape the weight matrix W € R784x10 into
a tensor of shape size [28,28,10] (i.e., an order-3 tensor of size 28 x 28 x 10). For the TTM
format we use the dimensions [4,7,4], (7,2, 5].

We plot the mean inferred ranks for our LU and HC priors in Figure 7. The actual CP
rank is exactly recovered in our model. The inferred ranks of Tucker, TT, and TTM are
close to but not equal to the exact values, because tensor ranks are not unique, which is a
fundamental difference between matrices and tensors.

5.2. MNIST. Next we test a neural network with two fully connected layers on the
MNIST dataset with images of size 28 x 28. The first fully connected layer is size 784 x 512
and has a rectified linear unit activation function. The second fully connected layer is size
512 x 10 with a softmax activation function. Exact tensor dimensions are given in Table 2 of
Appendix D. In all cases our automatic rank determination can achieve the highest compres-
sion ratio in training. Our proposed automatic rank determination both improves accuracy
and reduces parameter number in all tensor formats except the TT format which has slight
accuracy loss but the highest compression ratio. We hypothesize that the automatic rank
reduction can reduce overfitting on the simple MNIST task. The TTM format is best-suited
to fully connected layers, achieving the second-highest compression ratios and the second-best
accuracy. In Figure 8 we plot the rank determination output of a single training run using our
LU prior. We note that our algorithm discovers the actual ranks that are nearly impossible
to determine via hand-tuning or combinatorial search (for example, [1,20,3,2,1] in the TTM
model from a maximum rank of [1,20,20,20,1], which may require up to 16,000 searches).

With the obtained Bayesian solution, we can quantify the uncertainty of our model as a by-
product. Popular metrics for uncertainty measures include negative log-likelihood, expected
calibration error, which measures model over-/underconfidence, and out-of-distribution input
detection [32]. In Figure 9, we show the classification uncertainty of an image that is hard
to recognize in practice. With the CP tensorized model trained from ARD-LU, we plot the

Inferred Rank

Inferred Rank
O NWRAULION
O NWRAULION

7
;Czﬁ
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-4
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Q2
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0

LU HC LU HC HC LU HC
Method Method Method Method

(a) CP format (b) TT format (¢) TTM format (d) Tucker format

Figure 7. The inferred ranks for a synthetic example. The true rank (dashed lines) is 5, and mazimum
rank is set to 10. The inferred ranks of different modes are given by colored bars.
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Table 2

Training results of the MNIST example.

Tensor format Model Training parameter # | Final parameter # | Accuracy
Baseline 407,050 407,050 98.09
FR 8,622 (47.2x) 8,622 (47.2x) 97.52
TC-MR [33] 407,050 (1x) 8,622 (47.2x) 97.32
CPp TC-OR [33] 407,050 (1x) 7,175 (56.7x) 97.36
ARD-LU (Proposed) 17,344 (23.5%) 7,175 (56.7x) 98.06
ARD-HC (Proposed) 17,344 (23.5%) 7,134 (57.1x) 97.98
FR [3] 171,762 (2.4x) 171,762 (2.4%) 97.93
TC-MR [27] 407,050 (1x) 171,762 (2.4x) 98.00
Tucker TC-OR [27] 407,050 (1x) 100,758 (4.0%) 97.91
ARD-LU (Proposed) 343,644 (1.18x%) 100,758 (4.0x) 98.30
ARD-HC (Proposed) 343,644 (1.18x) 91,332 (4.5x) 98.30
FR [41] 26,562 (13.9x) 26,562 (15.3x) 97.78
TC-MR 407,050 (1x) 26,562 (15.3x) 97.43
TT TC-OR 407,050 (1x) 4,224 (96.4%) 96.91
ARD-LU (Proposed) 53,224 (7.65x) 4,224 (96.4x%) 96.28
ARD-HC (Proposed) 53,224 (7.65x) 4,276 (95.2%) 97.04
FR [41] 29,242 (13.9x) 29,242 (13.9%) 98.06
TC-MR 407,050 (1x) 29,242 (13.9%) 97.47
TTM TC-OR 407,050 (1x) 6,144 (66.3x) 96.61
ARD-LU (Proposed) 58,564 (6.95x) 6,144 (66.3x) 98.24
ARD-HC (Proposed) 58,564 (6.95%) 5,200 (78.3%) 98.23

Note: the training parameters in ARD-LU and ARD-HC include posterior mean and variance,
so the training parameter number is 2x of that in FR. The results of FR rely on manual rank

tuning in contrast to our automatic rank determination procedure.
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Figure 8. Inferred ranks for one run of the MNIST experiment using an LU prior. The mazimum rank is
given by a dashed black line. The inferred ranks are given by colored bars.

mean and variance of the predicted softmax outputs in Figure 9(b). This plot clearly shows
that this image looks like “2,” “3,” or “7” with the highest probability of being classified as
“7.” Figure 9(c) further plots the marginal predictive density of the two most likely labels “2”
and “7.”

5.3. Embedding table for NLP. We continue to validate our algorithm with a sentiment
classification task from [26]. Like many NLP models, the first layer is a large embedding table.
Embedding tables are a promising target for tensor compression because their required input
dimension equals the number of unique tokens in the input dataset (i.e., number of vocabulary
words, number of users). Tensor decomposition can enforce weight sharing and dramatically
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Figure 9. (a) A challenging MNIST image with true label “2.” (b) Mean and standard deviation of the CP
ARD-LU model softmaz outputs. (c) Marginal predictive density of the two most likely labels “2” (z-azis) and
“T7 (y-azis).
reduce the parameter count of these models. Recent work in tensorized neural networks has
applied the TTM format to compress large embedding tables with a high ratio [26]. We
replicate a sentiment classification model on the IMDB dataset from this work. The neural
network model consists of an embedding table with dimension 25,000 x 256, two bidirectional
long short-term memory layers with hidden unit size 128, and a fully connected layer with 256
hidden units. Following the setting in [26] we do not tensorize these layers. Dropout masks
are applied to the output of each layer except the last. Exact tensor dimensions are given in
Table 3 of Appendix D.

We test all methods on the sentiment classification problem. The tensor dimensions and
maximum ranks used to compress the embedding table are given in the supplementary ma-
terial (supplement.pdf [local/web 329KB]). The outcomes of our experiments are reported in
Table 3. Compared with all other tensor approaches, our methods (ARD-LU and ARD-HC)
have achieved the best compression ratio for all tensor formats at little to no accuracy cost.
The TTM format outperforms all other models (including the baseline uncompressed model)
in terms of accuracy, though we note that the CP model performs well despite its extremely
low parameter number.

5.4. DLRM system. We continue to use our proposed Bayesian tensorized method to
train the benchmark DLRM [38]. In DLRM, embedding tables are used to process categor-
ical features, while continuous features are processed with a bottom multilayer perceptron.
Then, second-order interactions of different features are computed explicitly. The results are
processed with a top multilayer perceptron and fed into a sigmoid function in order to give a
probability of a click. The whole model has over 4 billion training variables.

We tensorize the five largest embedding tables to reduce the training variables. Exact
tensor dimensions are given in Table 4 of Appendix D. Our experiment results are reported in
Table 4. Our proposed automatic rank reduction enables parameter reduction at little to no
accuracy cost over fixed-rank tensorized training. Our approach outperforms the train-then-
compress approach which requires expensive full-model training. Compared with baseline
full-size training, our method achieves to up to 27,664 x (in TT format) parameter reduction
during training with little accuracy loss. Our one-shot training also greatly increases the
compression ratio over fixed-rank training at little to no accuracy cost, enabling up to 7x
higher compression ratios in the TTM model.
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Table 3

Training results on the NLP embedding table.
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Tensor type Model Training Final model Accuracy
parameter # parameter #
Baseline 6,400,000 6,400,000 88.34
FR 8,276 (774x) 8,276 (774x) 87.44
TC-MR 6,400,000 (1x) | 8,276 (774x) 74.46
CP TC-OR 6,400,000 (1x) | 6,138 (1024x) 73.21
ARD-LU (Proposed) | 16,602 (385x) | 6,138 (1024x) 87.61
ARD-HC (Proposed) | 16,602 (385x) | 6,476 (998x) 87.54
FR 78,540 (81x) 78,540 (81x) 87.80
TC-MR 6,400,000 (1x) | 78,540 (81x) 75.12
Tucker TC-OR 6,400,000 (1x) | 61,920 (103x) 71.97
ARD-LU (Proposed) | 157,105 (40x) | 61,920 (103x) 87.79
ARD-HC (Proposed) | 157,105 (40x) | 58,120 (110x) 88.01
FR [23] 28,260 (226x) | 28,260 (226x) 85.6
TC-MR 6,400,000 (1x) | 28,260 (226x) 82.34
TT TC-OR 6,400,000 (1x) | 22,982 (278x) 71.81
ARD-LU (Proposed) | 56,640 (113x) | 22,982 (278x) 85.33
ARD-HC (Proposed) | 56,640 (113x) | 19,363 (331x) 85.82
FR [23] 22,312 (287x) | 22,312 (287x) 88.59
TC-MR 6,400,000 (1x) | 22,312 (287x) 83.79
TTM TC-OR 6,400,000 (1x) | 15,932 (402x) 84.83
ARD-LU (Proposed) | 44,724 (143x) | 15,932 (402x) 88.93
ARD-HC (Proposed) | 44,724 (143x) | 14,275 (448x) 88.78

Note: the training parameters in ARD-LU and ARD-HC include posterior mean
and variance of each tensorized model parameter. The results of FR rely on
manual rank tuning in contrast to our automatic rank determination procedure.

The train-then-compress approach can be expensive for this large-scale problem. Because
the trained embedding tables are extremely large, compressing them in Tucker or CP format
is computationally expensive and time-consuming. This challenge can be avoided in our end-
to-end-training approaches because we do not need to explicitly form the embedding tables.

5.5. Impact: On-device training and FPGA acceleration. We have demonstrated that
our method can successfully train large end-to-end tensor compressed neural networks and
increase the compression ratio during training. End-to-end compressed training has a major
impact on embedded device training by reducing off-chip memory reads which are an energy
and latency bottleneck [47]. In [53] FPGA acceleration of our method demonstrates 123x
gains in energy efficiency and 59x speedup over nontensorized training on embedded device
CPU. These latency and efficiency gains show how our method enables practical on-device
training of compact neural networks from scratch.

6. Conclusion and future work. This work has proposed a variational Bayesian method
for one-shot end-to-end training of tensorized neural networks. Our work has addressed the
fundamental challenge of automatic rank determination, which is important for training com-
pact neural network models on resource-constrained hardware platforms. The customized SVI
method developed in this paper enables us to train tensorized neural networks with billions
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Table 4

Training results on the DLRM embedding tables.

Tensor type Model Training Final model Accuracy
parameter # parameter #
Baseline 4,248,739,968 4,248,739,968 78.75
FR 1,141,597 (3,721x) | 1,141,597 (3,721x) 78.60
TC-MR 4,248,739,968 (1x) | 1,141,597 (3,721x) 75.41
CP TC-OR 4,248,739,968 (1x) 563,839 (7,535x) 74.92
ARD-LU (Proposed) | 2,284,844 (1860x) 563,839 (7,535x) 78.61
ARD-HC (Proposed) | 2,284,844 (1860x) 570,685 (7,444 x) 78.57
FR 1,131,212 (3,755%) | 1,131,212 (3,755x) 78.60
TC-MR 4,248,739,968 (1x) | 1,131,212 (3,755x%) 78.67
Tucker TC-OR 4,248,739,968 (1x) 436,579 (9,731x) 78.50
ARD-LU (Proposed) | 2,262,852 (1,877x%) 436,579 (9,731x) 78.64
ARD-HC (Proposed) | 2,262,852 (1,877x) | 402,023 (10,568x) 78.62
FR [23] 1,135,752 (3,740x) | 1,135,752 (3,740x) 78.68
TC-MR 4,248,739,968 (1x) | 1,135,752 (3,740%) 78.39
TT TC-OR 4,248,739,968 (1x) | 153,582 (27,664% ) 78.45
ARD-LU (Proposed) | 2,271,864 (1870x) | 153,582 (27,664 %) 78.67
ARD-HC (Proposed) | 2,271,864 (1870x) | 159,529 (26,633x%) 78.63
FR [23] 1,130,048 (3759%) | 1,130,048 (3759x) 78.73
TC-MR 4,248,739,968 (1x) | 1,130,048 (3759x) 78.43
TTM TC-OR 4,248,739,968 (1x) | 199,504 (21,296x) 78.62
ARD-LU (Proposed) | 2,260,256 (1879x) | 199,504 (21,296x) 78.72
ARD-HC (Proposed) | 2,260,256 (1879x) | 163,976 (25,910x%) 78.73

Note: the training parameters in ARD-LU and ARD-HC include posterior mean and
variance of every tensorized model parameters, so the number of training variables is 2x
of that in FR. The results of FR rely on manual rank tuning in contrast to our automatic
rank determination procedure.

of uncompressed model parameters. Our experiments have demonstrated that the proposed
end-to-end tensorized training can reduce the training variables by several orders of magni-
tude. Our proposed method has outperformed all existing tensor compression methods on the
tested benchmarks in terms of both compression ratios and predictive accuracy.

This work will enable ultra—memory- and energy-efficient training of artificial intelli-
gence models on resource-constraint computing platforms, as demonstrated by our prelim-
inary on-FPGA tensorized training in [53]. We will further investigate the theoretical and
algorithm /hardware co-design issues in this direction, especially for training large-size neural
networks on resource-constraint computing platforms.
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