
ORIGINAL RESEARCH
published: 07 January 2022

doi: 10.3389/frai.2021.668353

Frontiers in Artificial Intelligence | www.frontiersin.org 1 January 2022 | Volume 4 | Article 668353

Edited by:

Jean Kossaifi,

Nvidia, United States

Reviewed by:

Julia Gusak,

Skolkovo Institute of Science and

Technology, Russia

JIahao Su,

University of Maryland, United States

*Correspondence:

Zheng Zhang

zhengzhang@ece.ucsb.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 16 February 2021

Accepted: 13 December 2021

Published: 07 January 2022

Citation:

Zhang K, Hawkins C and Zhang Z

(2022) General-Purpose Bayesian

Tensor Learning With Automatic Rank

Determination and Uncertainty

Quantification.

Front. Artif. Intell. 4:668353.

doi: 10.3389/frai.2021.668353

General-Purpose Bayesian Tensor
Learning With Automatic Rank
Determination and Uncertainty
Quantification
Kaiqi Zhang 1†, Cole Hawkins 2† and Zheng Zhang 1*

1Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA,

United States, 2Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA, United States

A major challenge in many machine learning tasks is that the model expressive power

depends on model size. Low-rank tensor methods are an efficient tool for handling

the curse of dimensionality in many large-scale machine learning models. The major

challenges in training a tensor learning model include how to process the high-volume

data, how to determine the tensor rank automatically, and how to estimate the uncertainty

of the results. While existing tensor learning focuses on a specific task, this paper

proposes a generic Bayesian framework that can be employed to solve a broad

class of tensor learning problems such as tensor completion, tensor regression, and

tensorized neural networks. We develop a low-rank tensor prior for automatic rank

determination in nonlinear problems. Our method is implemented with both stochastic

gradient Hamiltonian Monte Carlo (SGHMC) and Stein Variational Gradient Descent

(SVGD). We compare the automatic rank determination and uncertainty quantification of

these two solvers. We demonstrate that our proposed method can determine the tensor

rank automatically and can quantify the uncertainty of the obtained results. We validate

our framework on tensor completion tasks and tensorized neural network training tasks.

Keywords: deep learning, tensor decomposition, tensor learning, Bayesian inference, uncertainty quantification

1. INTRODUCTION

Tensors (Kolda and Bader, 2009) are a generalization of matrices to describe and process
multidimensional data arrays. Due to its ability to represent a huge amount of data by low-rank
factorization, tensor computation has been applied in data recovery and compression (Acar et al.,
2011; Jain and Oh, 2014; Austin et al., 2016), machine learning (Cichocki, 2014; Novikov et al.,
2015; Sidiropoulos et al., 2017), uncertainty quantification (Zhang et al., 2014, 2016), and so forth.
However, most of the existing tensor algorithms rely on numerical optimization, and estimating
the tensor rank exactly is NP-Hard in some tensor formats (Hillar and Lim, 2013).

To overcome the rank determination challenge, Bayesian methods have been employed
successfully in tensor completion tasks (Chu and Ghahramani, 2009; Xiong et al., 2010; Rai
et al., 2014; Zhao et al., 2015a,c; Hawkins and Zhang, 2018; Gilbert and Wells, 2019). The key
idea is to represent the tensor factors as some hidden statistical variables and to automatically
determine the tensor ranks based on the training data and a proper rank-shrinking prior density.
Chu and Ghahramani (2009) proposed a maximum a posteriori (MAP) MAP estimation, but a
point prediction cannot estimate the uncertainty. In order to estimate model uncertainties, Gibbs

Zhang et al. End-to-End Tensorized Deep Learning

sampling and mean-field approximate Bayesian methods have
been employed in Xiong et al. (2010), Rai et al. (2014),
and Zhao et al. (2015a,b), respectively. The former assumes
that a conditional posterior density function can be obtained
analytically and be sampled from easily. The latter assumes that
the hidden parameters are mutually independent to each other.
These methods work well in some simple tensor learning tasks
such as tensor completion and factorization, but the may become
over-simplified when solvingmore complicated problems such as
tensorized neural networks.

Paper Contributions. This paper presents a Bayesian
framework that is applicable to a broad class of tensor
learning problems, e.g., tensor factorization/completion, tensor
regression, and tensorized neural networks. Given a tensor
learning model with a specified prior density, likelihood function
and low-rank tensor approximation format, our framework
estimates the posterior distribution of all the factors and
automatically determine the tensor ranks via more flexible
Bayesian inference methods such as Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987) and Stein Variational Gradient
Descent (SVGD) (Liu and Wang, 2016). Compared with the
mean-field Bayesian tensor completion (Zhao et al., 2015a,b),
our tensor learning approach is more flexible because it does
not require the strong assumption of independent hidden
parameters. Further, our approach can be applied to highly non-
linear tensor problems, i.e., tensorized neural networks. Due
to the huge amount of training data in many tensor learning
problems, estimating the full gradient can be computationally
expensive. Therefore, we replace the full gradient in a tensor
learning problem with the stochastic gradient (Chen et al.,
2014) while achieving a similar level of accuracy. Because
of that, our method has larger scalability than traditional
Bayesian methods. Our HMC-based sampling approach to
tensor learning returns a set of random samples following the
posterior distribution, therefore, we can provide uncertainty
estimations for both the model parameters and the predictive
results. In certain situations HMC may require that the user
store too many model copies for inference. For these situations
we also develop an SVGD-based framework which applies
deterministic updates to produce a small-sized set of particles to
approximate the posterior distribution and approximate model
uncertainty. We compare both approaches in our experiments.
We note that sampling-based approaches have been employed
in Bayesian neural networks (Neal, 1992; Liu and Wang,
2016) and data compression (Schmidt and Mohamed, 2009;
Şimşekli et al., 2015). However, a thorough investigation of
the generalized Bayesian tensor learning problem has not been
reported. Our method have several advantages compared with
existing methods: (1) generic–our method framework can deal
with a broad class of tensor learning problems, including the
tensor decomposition, tensor completion, tensor regression,
tensorized neural networks, etc. (2) scalable–the stochastic-
gradient implementation enables us to handle tensor learning
problems withmassive data. (3) uncertainty-aware–the resulting
posterior samples provide uncertainty estimations for both the
model parameters and predictive results.

This manuscript is an extended version of our recent
work (Hawkins and Zhang, 2021), which reported SVGD training
for Bayesian tensorized neural networks. Our manuscript
extends Hawkins and Zhang (2021) in the following ways

1. In our previous work, we tested only one Bayesian sampler
(SVGD). In this work, we compare two Bayesian samplers
which have different memory/compute trade offs during both
the training and inference stages of model deployment.

2. In our previous work, we considered only one tensor format
(tensor-train) and one rank determination task (tensorized
neural networks). In order to test the generality of our
method we test our methods on both the tensor-train and
Tucker formats and in two rank determination settings: tensor
completion and tensorized neural networks.

3. In our previous work, the rank-threshold operation required
a user-defined cutoff. We introduce a rank-thresholding cutoff
that requires no user intervention.

2. GENERALIZED BAYESIAN TENSOR
LEARNING

This section will present the model and numerical solver
of our generic Bayesian tensor learning framework. We
will demonstrate specific applications of our framework in
later sections.

2.1. A Generalized Bayesian Model
We consider a generalized tensor learning problem: given a
set of observed data D = {D1,D2, . . .DN}, we want to
estimate the posterior density p(X|D) of an unknown tensor
X ∈ R

I1×I2×···Id . Because X has a huge number of unknown
variables, directly solving the Bayesian tensor learning problem
is computationally expensive.

Our framework allows various kinds of low-rank
tensor representations (Kolda and Bader, 2009), such as
CANDECOMP/PARAFAC (CP) (Harshman et al., 1970),
tensor-train (TT) (Oseledets, 2011), and Tucker (Tucker, 1966).
A low-rank tensor representation can significantly reduce the
number of unknown variables. For instance, low-rank CP
and tensor-train representations may reduce the number of
unknowns from an exponential function of d to a linear one.
In a general setting, we denote all model parameters (including
the tensor factors and some additional hyper-parameters such
as noise level or rank controlling parameters) as 2, and the
unknown tensor can be written as X(2). Then our goal is to
estimate the posterior density

P(2|D) ∝
N

∏

n=1
P(Dn|2)P(2). (1)

Here P(D|2) =
N
∏

n=1
P(Dn|2) is a likelihood function, P(2) is

a prior probability density. A key advantage of this Bayesian
parameterized description is as follows: by properly choosing a

Frontiers in Artificial Intelligence | www.frontiersin.org 2 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

Algorithm 1: SGHMC with thermostats

Input : The dataset D, the potential U(2), the massM,
Leapfrog steps per samplem, the maximal number
of samples T

Initialize 2 by minimizing U(2) using SGD, Adam, etc.
for t = 1, 2, . . .T do

Sample the momentum p ∼ N(0,M).
Draw a mini-batch B ⊂ D to formulate the unbiased
potential function Ũ(2) by equation (4).
for i = 1 to m do

Update 2, p, c using (6)
end

2(t) ← 2
end

Output: The sample set of {2(t)}Tt=1.

prior density P(2), one can control the structure of 2 and thus
automatically enforce a low-rank representation for X(2) based
on the observed dataD. Doing so overcomes the difficulty of rank
determination in optimization-based tensor learning.

The formulation (1) is very generic. In practice, one only needs
to specify the following information in order to use our Bayesian
tensor learning framework:

• The learning task, such as tensor completion, multi-task
tensor learning, tensorized neural networks for classification
or regression, etc;
• A low-rank parameterization format, such as CP, Tucker,

tensor-train factorization, etc;
• A prior density P(2) for tensor factors and hyper-parameters.

The first two decide the likelihood function P(D|2), and we will
make it clear in section 3. The third decides how compact the
resulting model would be: a stronger low-rank prior could result
in a model with much fewer model parameters.

2.2. Stochastic Gradient HMC (SGHMC)
Solver
Now we need to estimate the hidden tensor factors and hyper-
parameters by computing the posterior density in (1). Existing
methods (Zhao et al., 2015a; Hawkins and Zhang, 2018) do
not apply to generalized tensor learning problems because
they rely on Bayesian models that make strong assumptions
about the posterior density and require linear models. The first
Bayesian solver we employ is the Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987) to make our framework applicable to
a broad class of tensor learning problems. HMC is an extension to
Markov chain Monte Carlo (MCMC) Andrieu et al. (2003), and
it uses the gradient information to increase efficiency.

The HMC method avoids the random walks in a standard
MCMC framework by simulating the following dynamic system:

d2

dt
= M−1p,

dp

dt
= −∇U(2). (2)

Algorithm 2: SVGD

Input : The dataset D, the potential U(2), the maximal
number of samples n, number of SVGD iterations I

Initialize 2 by minimizing U(2) using SGD, Adam, etc.
for i = 1 to n do

Update 2 by taking one stochastic gradient step.
Initialize 2i ← 2.

end

for t = 1, 2, . . . I do
Draw a mini-batch B ⊂ D to formulate the unbiased
potential function Ũ(2) by equation (4).
for i = 1 to n do

Update 2i using (7)
end

end

Output: The sample set of {2i}ni=1.

Here p is the auxiliary momentum variable with the same
dimension as 2, M is a mass matrix. Here U(2) is the potential
energy which is equal to the negative log posterior:

U(2) = − log P(2|D) = −
N

∑

n=1
log P(Dn|2)− log P(2). (3)

The HMC method starts from a random initial guess of 2

to simulate a sample of 2, and its steady-state distribution
converges to our desired posterior density P(2|D).

Standard HMC becomes inefficient when we solve a tensor
learning problem with massive training samples, because
computing the gradient requires estimating ∇ log P(Dn|2) for
every index n over the whole data set. This often happens in
completing a huge-size tensor data set or training a tensorized
neural network. To reduce the cost, we use the stochastic
unbiased estimator of U(2):

Ũ(2) = − N

|B|
∑

Di∈B
log P(Di|2)− log P(2)+ const. (4)

Here B ⊂ D denotes a mini-batch with |B| ≪ N. Then one can

update the parameters via d2
dt
= M−1p and dp

dt
= −∇Ũ(2).

To compensate the noise introduced by the stochastic gradient,
we adopt the thermostats method (Ding et al., 2014) for our
tensor learning framework. Specifically, a friction term c is
introduced, i.e.,

d2

dt
= M−1p,

dp

dt
= −∇Ũ(2)− cp,

dc

dt

= 1

|2| tr(p
TM−1p)− 1.

(5)

The friction term changes accordingly to keep the average
kinetic energy 1

2p
TM−1p constant, thus keeping the

distribution of samples invariant. Our framework employs
a slightly modified leapfrog approach Iserles (1986) to
solve the Hamiltonian system because it has a smaller

Frontiers in Artificial Intelligence | www.frontiersin.org 3 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

integration error compared with other methods Duane et al.
(1987):

pt+ǫ/2 ← pt − 1
2ǫ(∇Ũ(2t)+ ctpt), 2t+ǫ ← 2t + ǫpt+ǫ/2,

pt+ǫ ← pt+ǫ/2 − 1
2ǫ(∇Ũ(2t+ǫ)+ ctpt+ǫ/2),

ct+ǫ ← ct + ǫ(1
|2| tr(p

TM−1p)− 1),

(6)
where ǫ is the stepsize, and t is the
iteration index.

2.3. Stein Variational Gradient Descent
(SVGD) Solver
The HMC solver described in the previous section can
accurately represent arbitrary distributions given a sufficient
sampling budget. The disadvantage of the HMC approach
is that it may require a large number of model copies for
accurate uncertainty quantification (Neal, 1992). Therefore,
we also consider the Stein Variational Gradient Descent
(SVGD) (Liu and Wang, 2016) to approximate the posterior
density p(2|D). SVGD uses a small number of particles
to approximate a target distribution. The advantage of this
approach compared to HMC is a lower memory cost due
to a lower particle number. The disadvantage compared to
HMC is a potential reduction in the accuracy of the final
posterior representation.

SVGD aims to find a set of particles {2i}ni=1 such that q(2) =
1
n

n
∑

i=1
k(2,2i) approximates the true posterior p(2|D). Here

k(·, ·) is a positive definite kernel, and we use the radial basis
function kernel in this work. The particles can be found by
minimizing the KL divergence between q(2) and p

(

2|D)
)

. The
optimal update φ(·) is derived in (Liu andWang, 2016) and takes
the form

2
k ← 2

k + ǫφ(2k), φ(2k)

= 1

n

n
∑

i=1

[

k(2i,2k)∇
2

iU(2i)+ ∇
2

ik(2i,2k)
] (7)

where ǫ is the step size. The gradient of the potential
function ∇

2
iU(2i) can be approximated with a stochastic

gradient ∇
2

iÛ(2i) when the data size |D| is large. The
SVGD training update is, therefore, a deterministic function
of the existing particle locations and minibatch gradients.
The particle locations are incorporated through the kernel
function k(·, ·) and the minibatch gradients of each individual
particles are ∇

2
iU(2i). To sample from the SVGD distribution

during training or inference one computes a deterministic
forward pass for each of the n particles {2}ni=1. At each
step of the SVGD Bayesian learning process we require
a deterministic forward/backward pass for each particle to
compute the gradient in Equation (7). In practice we use
ten particles to compute our posterior approximation. Unlike
the HMC update, in which we re-sample the momentum
parameter, no additional noise is introduced during the
training process.

We make two observations about the computational
requirements of SVGD. Due to the update in Equation (7)
this method requires the computation of n gradients of
the potential energy function U at each step. Second, each
computation requires that we acesss n particles. Therefore,
the per-step memory and compute costs of the SVGD solver
are n× as large as the per-step costs of the HMC solver.
The advantage of the SVGD model is the compact final
representation for uncertainty quantification (Liu and Wang,
2016).

3. SPECIFYING POTENTIAL ENERGY
FUNCTIONS

One can run our Bayesian tensor learning framework as a
black-box after specifying the energy function based on three
components: a learning task, a low-rank tensor representation
format, and a prior density. In this section, we will first give the
details of two cases: Bayesian tensor completion with a Gaussian
likelihood and low-rank CP representation, and Bayesian
tensorized neural network classification with a multinomial
likelihood and a low-rank tensor-train representation. Then
we will also briefly show the Bayesian models for some
other cases.

3.1. Bayesian CP Tensor Completion
Given D = {�,Y�} where Y� denotes some partially observed
noisy tensor elements and � specifies the sample indices, we aim
to find a low-rank tensor X such that Y = X + E, where E

denotes a Gaussian noise tensor with zero mean and variance σ .
We use the CP factorization (Harshman et al., 1970; Bro, 1997) to
paramterizeX:

X =
R

∑

r=1
a(1)r ◦ · · · ◦ a(d)r = JA(1), . . . ,A(d)K, (8)

where ◦ denotes the outer product of vectors and J·K denotes
a Kruskal operator. In the Bayesian tensor learning, we need
to estimate CP factors {A(k)}d

k=1 and CP rank R. Following the
Bayesian CP tensor completion (Zhao et al., 2015c), we set the
hidden parameters as 2 = {A(1), . . . ,A(d),3, τ }, where hyper-
parameters 3 = diag(λ1, . . . , λR) and τ = 1/σ control the
tensor ranks and noise level, respectively. The Gaussian noise
assumption leads to the Gaussian likelihood

P(Y�|2) = N(Y�|JA(1), . . .A(d)K, τ−1) (9)

where � denotes the observed tensor entries. The negative log
likelihood associated with each observation is

− log P(Yi|2) = 1

2

(

(

Yi − f (i;2)
)2

τ − log τ

)

+ const, (10)

where f denotes the forward evaluation from CP factors to the
i-th element of tensorX.

Next, our goal is to develop a rank-shrinkage prior. The prior
density will enforce structured sparsity on the CP factor matrices,

Frontiers in Artificial Intelligence | www.frontiersin.org 4 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

leading to rank shrinkage. We define this rank-shrinkage prior
density as

P(2) =
∏d

k=1
∏Ik

ik=1 N(A(k)(ik, :)|0,3−1)
∏R

r=1 Gamma(λr|a, b)Gamma(τ |c, d), (11)

We remark that the Gaussian prior on the factor matrices
enforces that all factor matrix entries in the same column (same
rank) share the same variance. Therefore, as the hyperparameter
λj →∞ all entries in the columns {A(k)(:, j)} shrink to 0.

This rank-shrinkage prior leads to the following negative
log-priors:

− log P(A(k)|3) = 1

2

R
∑

r=1

|A(k)(:, r)|2λr −
d

∑

k=1
Ik log λr

 ,

− log P(3) =
R

∑

r=1
−(a− 1) log λr + bλr .

(12)

The noise level τ may vary among different datasets, and
λr can be very large for diminishing ranks. Therefore, we
slightly modify the model to ensure the numerical stability
in HMC-based Bayesian tensor learning. Instead of sampling
τ and λr directly, we sample τ̂ = log(τ) and λ̂r = λ−1r

for better numerical stability, because these values can vary
dramatically among different datasets. Therefore, we use the
following prior distributions:

P(τ̂) = exp(cτ̂) exp(−eτ̂)/d)
dcT(c)

, P(λ̂) = ba

T(a)
(1/λ̂)a+1 exp(−b/λ̂).

(13)
Combining equations (12) and (13), we have the modified
negative log-prior

− log P(2) =
R

∑

r=1

(1

2

d
∑

k=1

(

|A(k)(:, r)|2/λ̂r + Ik log λ̂r

)

+ (α + 1) log λ̂r +
β

λ̂r

)

− cτ̂ + exp τ̂ /d.

(14)

Based on the above prior density and our given Gaussian noise
model, the potential function (neglecting the constants) for the
Bayesian CP tensor completion is

U(2) = − log P(2|Y�) = − log P(2)−
∑

i∈�
log P(Yi|2)

= 1

2

(

∥

∥

∥

(

Y− JA(1), . . . ,A(d)K
)

�

∥

∥

∥

2

F
exp τ̂ − |�|τ̂

)

+
R

∑

r=1

(1

2

d
∑

k=1

(

|A(k)(:, r)|2/λ̂r + Ik log λ̂r

)

+ (a+ 1) log λ̂r +
b

λ̂r

)

− cτ̂ + exp τ̂ /d.

(15)

We note that in order to use other low-rank tensor formats, all
that is necessary is a change in the prior density. We provide the
specific prior densities for the tensor-train and Tucker formats in
later sections.

3.2. Bayesian Tensorized Neural Networks
We further show how to apply our Bayesian tensor learning to
train a tensorized deep neural network in the tensor-train (TT)
format. Given the training data D = {xn, yn}Nn=1, we want to find
a low-rank tensor W in the TT format to describe the weight
matrices or convolution filters such that y = g(x,W), where g
denotes the forward propagation model of a neural network.

For a weight matrix W of size M × J, one can decompose
M =

∏K
k=1mk and J =

∏K
k=1 jk, then reformulate W as a 2K-

dimension tensorWwith sizem1×j1×· · ·×mK×jK . Afterwards,
W is approximated by a low-rank tensor-train decomposition

W = JG(1), . . . ,G(K)KTT ⇐⇒W(i1, · · · , iK , l1, · · · , lK)
= G(1)(:, i1, l1, :) · · ·G(K)(:, iK , lK , :) (16)

where G(k) ∈ R
Rk−1×mk×jk×Rk is called the TT core, Rk is

the TT rank, R0 = RK = 1, and J·KTT denotes the tensor-
train product (Oseledets, 2011). The convolutional layers can be
decomposed in a similar way. The convolution kernel C is a 4-th
dimension tensor in M × J × H × W, where H and W denote
the height and width of the convolution window. This tensor
can be further viewed as a (2K + 2)-dimensional tensor with size
m1×j1×· · ·×mK×jK×H×W. In our experimentsH =W = 3
remain unchanged, and we only compress along the remaining
dimensions, i.e.,

C = JG(1),G(2), . . . ,G(2K)KTT . (17)

The shape of each factors G(1),G(2), . . .G(2K−1),G(2K) are m1 ×
R1,R1× j1×R2, . . . ,R2K−2×mK ×R2K−1,R2K−1× jK ×H×W,
respectively. The parameters in both fully connected layers and
convolutional layers can be represented as

2 = {G(1),3(1),G(2),3(2), . . .}, (18)

where hyper-parameters 3(k) = diag(λ(k)1 , . . . λ(k)Rk
) are used to

control the rank Rk.
Here a Gaussian prior is placed over each tensor factor and a

Gamma prior is placed over 3(k),

P(G(k)|3(k−1),3(k)) =
∏

i,j

N
(

G(k)(i, :, j)
∣

∣0, (ckλ
(k−1)
i λ

(k)
j)−1

)

,

P(3(k)) =
Rk
∏

r=1
Gamma(λ(k)r |α,β),

P(2) =
d

∏

k=1
P(G(k)|3(k−1),3(k))

d−1
∏

k=1
P(3(k)).

(19)

where α and β are constants. Once the estimated parameter

λ
(k)
r is larger than a threshold, we delete one horizontal slice of

Frontiers in Artificial Intelligence | www.frontiersin.org 5 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

G(k) and one frontal slice of G(k+1). The distribution of 3(k) is
the same as Equation (30). The prior of unknown parameters

2 = {G(k),3(k)} is P(2) =
∏d

k=1 P(U
(k)|3(k))P(3(k)). The idea

of the tensor-train low-rank prior is structurally similar to the
idea of the low-rank CP prior in Equation (12). However, instead

of shrinking columns of every factor matrices, each element λ
(k)
j

controls the prior variance of two factor tensor slices, each of
which can shrink to 0. The negative log prior is

− log P(2) =1

2

d
∑

k=1

Ik
∑

i=1

〈

G(k)(:, i, :) ∗ G(k)(:, i, :), (3(k−1) ⊗3(k))−1
〉

−1

2

d
∑

k=1

IkRk

Rk−1
∑

r=1
λ(k−1)r + IkRk−1

Rk
∑

r=1
λ(k)r

−
d−1
∑

k=1

Rk
∑

r=1

(

(a− 1) log λ(k)r − bλ(k)r

)

.

(20)

Here ∗ denotes the element-wise product of two tensors
or matrices.

For all hyperparameters λ
(k)
r , we sample λ̂

(k)
r = log λ

(k)
r and

use the log Gamma distribution as a prior. The potential function
can be computed as

U(2) = − log P(2|D) =
N

∑

n=1
loss(yn, g(xn,2))− log P(2),

(21)

where loss(·) is the negative log likelihood and g(·) denotes the
neural network. The loss function can be the cross entropy loss
for classification problems and the mean square error loss for
regression problems. After getting the potential function, we can
apply the SGHMC or SVGD framework to draw samples for the
parameters 2.

In this framework, the tensor ranks can be adjusted
automatically to reduce the neural network model size in
training.We propose to set a threshold and reduce the rank when

λ̂(k)r ≥ log(
1

2
SkRk−1 +

1

2
Sk+1Rk+1 + α)+ logβ − ǫ, (22)

where Sk = MkJk for the fully connected layers and S2k−1 =
Mk, S2k = Jk for the convolutional layers.We select this threshold
for λ by setting Gk(:, i, :) = 0 and maximizing the negative log
prior from (20) with respect to 3. Therefore, the threshold is
chosen as an MAP point of the marginal log-prior conditioned
on the value of the tensor factors.

3.3. More General Models
Our Bayesian tensor learning framework can also be applied to
other low-rank tensorized neural network formats such as the
CP and Tucker formats, other tensorized neural network tasks
such as regression instead of classification, and to other tensor
completion and factorization approaches using the tensor-train
or Tucker formats. For instance, we only need to change the

TABLE 1 | Equations to calculate the potential energy U(2) for different tensor

learning tasks and with different low-rank tensor formats.

Learning tasks Likelihood CP Tucker Tensor-Train

Tensor completion Gaussian (12)+(14) +(10) (31)+(14)+(10) (20)+(14)+(10)

Neural network

classification

Multinomial (12)+(24) (31)+(24) (20)+(24)

Neural network

regression

Gaussian (12)+(26) (31)+(26) (20)+(26)

likelihood function to a Gaussian distribution when solving a
neural network regression task. We summarize these results in
Table 1. In this subsection we provide the likelihoods for more
general tensor models and a Bayesian rank-shrinkage prior for
the low-rank Tucker format.

Classification Problems. In most classification problems, the
neural network can give a likelihood ŷi = f (xi;2) directly, where
f (xi;2) is the propagation function of the network, ŷi is a vector
and each element denotes the probability that xi belongs to one
class. It is usually the softmax of output of the last linear layer.
Suppose yi is a vector with size C, C is the total number of classes,

yic =
{

1, if xi in class c
0, otherwise.

(23)

The negative log likelihood is

− log P(yi|2) =
〈

yi,− log f (xi;2)
〉

. (24)

Regression Problems. In a regression problem, it is usually
assumed to have a Gaussian likelihood function

P(yi|2) = N(yi|f (xi;2), σ 2). (25)

This leads to the following negative log-likelihood:

− log P(yi|2) = 1

2
(yi − f (xi;2))2/σ 2, (26)

where σ is a hyperparameter denoting the variance.
Tucker Tensor Prior. A popular alternative to the CP and

tensor-train tensor formats is the low-rank Tucker format
(Tucker, 1966). The Tucker decomposition projects the original
tensorX into a smaller kernel tensor G,

X = G

d
⊗

k=1
U(k) ⇐⇒ X(i1, · · · , id)

=
R1
∑

r1=1
· · ·

Rd
∑

rd=1
G(i1, · · · , id)U(1)(i1, r1) · · ·U(d)(id, rd).

(27)

Similar to Zhao et al. (2015b), the priors of U(k) and G are set as

P(U(k)|3(k)) =
Ik

∏

ik=1
N(U(k)(ik, :)|0, (3(k))−1) (28)

Frontiers in Artificial Intelligence | www.frontiersin.org 6 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

and

P(G|3(1), . . . ,3(d)) =
∏

r1 ,...,rd

N

G(r1, . . . , rd)

∣

∣

∣

∣

∣

∣

0,β
d

∏

k=1

(

λ(k)rk

)−1

(29)

respectively. Here β is a constant scaling factor. For simplicity, we
assume β is a constant instead of a random variable, which differs
from Zhao et al. (2015b). The hyperparameter 3(k) follows from
the Gamma distribution

P(3(k)) =
Rk
∏

r=1
Gamma(λ(k)r |a, b). (30)

Here, 3(k) is shared between U(k) and G. We observe that similar
to other low-rank tensor formats this prior enforces structural
rank-shrinkage. This approach differs from the CP format in

that each low-rank hyperparamter λ
(k)
rk controls entries in both

a factor matrix and the Tucker tensor core G.
In summary, the prior of the unknown parameters 2 =

{G,U(k),3(k)} is

P(2) = P(G|3(1) . . . 3(1))
d

∏

k=1
P(U(k)|3(k))P(3(k))

The negative log prior is

− log P(2) = 1

2

d
∑

k=1
tr(U(k)3(k)(U(k))T)+ 1

2

〈

β

d
⊗

k=1
3(k),G ∗ G

〉

− 1

2

d
∑

k=1

(Ik +
∏

t 6=k
Rt)

Rk
∑

r=1
log λ(k)r

−
d

∑

k=1

Rk
∑

r=1

(

(a− 1) log λ(k)r − bλ(k)r

)

(31)

where G ∗ G is the element-wise product of two tensors.

4. NUMERICAL EXPERIMENTS

4.1. Tensor Completion
We first consider a synthetic example and an MRI data
experiment to show the efficiency of our proposed methods
in tensor data recovery, uncertainty estimation, and automatic
rank determination in CP tensor format. In both our SGHMC
and SVGD implementations, we generate the initial guess by
two steps: we first use the ADAM method (Kingma and Ba,
2014) to reach the neighborhood of a local optimal, and then
reduce its rank by truncating all λ̂r below the threshold given in
Equation (22). After that, with SGHMC algorithm, we discard the
first 50 samples and use the next 450 samples for evaluation.With
SVGD algorithm, we use 10 samples for evaluation.

4.1.1. Synthetic Dataset
Wefirst randomly generated a 20×20×20 tensor with the ground
truth rank of 5. We consider two sets of experiments. Case 1:

tensor factors with uniform distributions. Assume the factors
follow an independent uniform distribution between 0 and 1. We
randomly select 10% of the tensor data to be observed. Case 2:
tensor factors with Gaussian distribution. Assume the factors
follow a Gaussian distribution with zero mean and variance one.
We randomly sample 20% entries of the whole tensor. We select
a higher observation ratio in this task because it is more difficult
than task with uniformly distributed tensor factors. This is
because the true data and the noise have similar distributions. In
both cases, we perturb all elements with identically independent
distributed Gaussian noise N(0, σ 2). In Equation (11), we set
R = 15, a = c = 1, b = 1 for the uniform factors and b = 4
for Gaussian factors, d = 106 when σ = 0.001 and d = 104

otherwise. For the HMC approach we divided the parameters in
two groups, and set the mass of factors matrices as 1 and the
mass of all other parameters to 100, as the values of the factor
matrices vary more during sampling. We report the root mean
square error

RMSE : ‖X− Y‖F/
√

∏

k

Ik

where Y is the ground truth and ‖ · ‖F is the Frobenius norm,
and SD is the predicted noise standard deviation. The results are
shown in Table 2.

For the tensor with Gaussian factors, our proposed methods
perform almost as well as the mean field approximation (BFCP)
(Zhao et al., 2015a) in terms of RMSE and SD. For the tensor
with uniform-distributed factors, the BFCP method always
underestimates the rank and results in high recovery error and
SD. This is because the mean-field assumption on the posterior
in the BFCP method places a strong Gaussian assumption on
the approximating distribution. We also observe in Table 2

that the SVGD approach can produce lower RMSE estimates
than the proposed HMC approach, but may underestimate the
uncertainty and predict an SD that is too low.

4.1.2. MRI Dataset
We continue to consider the PINCAT MRI dataset (Candes
et al., 2013). This is a 128 × 128 × 50 complex-value tensor
and we only consider its amplitude. We re-scale the tensor such
that the average amplitude ‖A‖F/

√
I1I2I3 = 1. We randomly

sample 80000 (≈ 10%) elements. The parameters in (11) are
set to be a = 1, b = 0.2, c = 1, d = 104, and R = 80.
We compare our results with BFCP report them in Table 2. The
results in Table 2 demonstrate that our methods obtain a much
lower RMSE and SD than BFCP, and that BFCP underestimates
the rank.

4.2. Tensorized Neural Networks
In this section, we present numerical experiments of our
Bayesian tensor learning framework for tensorized neural
network tasks.We evaluate both the compression capabilities and

Frontiers in Artificial Intelligence | www.frontiersin.org 7 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

TABLE 2 | Numerical results of tensor completion for the synthetic experiment and MRI dataset.

Proposed-HMC Proposed-SVGD BFCP (Zhao et al., 2015a)

True factors Noise Est. Rank RMSE SD Est. Rank RMSE SD Est. Rank RMSE SD

0.001 5 0.0013 0.0047 5 0.0019 0.0011 1 0.1476 0.1517

Uniform 0.003 5 0.0038 0.0040 5 0.0031 0.0016 1 0.1499 0.1607

Rank-5 0.01 5 0.0128 0.0118 5 0.0114 0.0098 1 0.1386 0.1365

0.03 5 0.0403 0.0318 5 0.0512 0.0071 1 0.1468 0.1523

0.001 5 0.0013 0.0025 5 0.0019 0.0007 6 0.0005 0.0011

Gaussian 0.003 5 0.0038 0.0031 5 0.0027 0.0019 6 0.0033 0.0033

Rank-5 0.01 5 0.0130 0.0102 5 0.0119 0.0069 5 0.0106 0.0110

0.03 5 0.0418 0.0236 5 0.0336 0.0193 7 0.0338 0.0354

MRI dataset 65 0.0856 0.0670 65 0.0727 0.0319 17 0.1495 0.1456

TABLE 3 | Results of different networks on two datasets.

#Parameters MAP Proposed

Dataset Network (compression ratio) LL Accuracy LL Accuracy

Fashion-

MNIST

NN 3.97× 105(1×) –0.7118 88.91% –0.6730 89.41%

TT-NN 2.63× 104(15.1×) –0.6687 87.07% –0.6337 87.78%

HMC-BF-TT-NN 4.02× 103(98.8×) –0.3317 88.24% –0.3254 88.64%

SVGD-BF-TT-NN 2.8× 104(14.1×) –0.3317 88.24% –0.3261 88.57%

Tucker-NN 2.57× 105(1.54×) –1.1673 87.20% –1.0984 87.53%

HMC-BF-Tucker-NN 3.10× 104(12.8×) –1.2948 87.18% –0.4405 88.18%

SVGD-BF-Tucker-NN 3.10× 104(12.8×) –1.2948 87.18% –0.4705 87.86%

CIFAR-10

CNN 9.91× 106(1×) -0.5337 91.54% –0.5370 91.53%

TT-CNN 6.93× 105(14.3×) –0.6077 89.00% –0.5329 90.13%

HMC-BF-TT-CNN 7.83× 104(127×) –0.3936 86.68% –0.3623 88.01%

SVGD-BF-TT-NN 7.83× 104(127×) –0.3936 86.68% –0.3419 88.41%

LL, predictive log likelihood (the larger the better); TT, tensor train decomposition; Tucker, Tucker decomposition; BF, Bayesian low rank prior.

accuracy of our proposed method on two common computer
vision datasets.

4.2.1. Datasets
We first consider the Fashion-MNIST dataset (Xiao et al., 2017)
by a two layer neural network. The first layer (FC1) is a 784×500
fully connected layer with a ReLU activation and the second
layer (FC2) is a 500 × 10 fully connected layer with the softmax
activation. We convert FC1 as a 8-th order tensor and FC2 as
a 4-th order tensor for the tensor-train decomposition. For the
Tucker decomposition, we convert FC1 as a 4-th order tensor and
FC2 into a 3-th order tensor.

Next we consider the CIFAR-10 dataset. We build a 6-layer
convolutional neural network (CNN) containing 4 convolution
layers and 2 fully connected layers. Each convolution layer has a
kernel size of 3 × 3 and padding of 1. The number of channels
in each convolution layer is 128, 256, 256, 256, respectively.
The size of the first fully connected layer (FC1) is 512. A batch
normalization layer and a ReLU activation layer is placed after
each convolution and fully-connected layer. A maxpooling layer
with kernel size of 2× 2 is placed after the second and the fourth
convolution layer.

4.2.2. Numerical Results
We use the ADAM method to minimize the negative posterior
to get an initial point, then shrink the rank according to
equation (22). In Fashion-MNIST dataset, the initialization takes
50 epochs, and in Cifar-10 dataset, it takes 150 epochs. We
searched the hyperparameters in the grid defined by β among
[0.1, 0.2, 0.5, 1, 2, 5, 10] and α among [1, 2, 5] and picked the one
with the best trade-off between accuracy and compression ratio.
Afterwards, we generate T = 450 SGHMC samples aftering
discarding the first 50 samples, or n = 10 SVGD samples.We
evaluate the accuracy of this model using two criterion: the
predictive log likelihood (LL) and the prediction accuracy. The
results for different benchmarks using different tensor formats
are shown in Table 3. We compare the proposed Bayesian
learning with the optimization method that maximize a posterior
(MAP) directly. It is shown that our tensor learning framework
outperforms MAP in almost every case in terms of both the
accuracy and the log likelihood (LL). The improvement in log
likelihood indicates that our model can predict the uncertainty
better than the MAP method. Besides, our method achieves
a compression ratio of up to 98.8× in Fashion-MNIST and
127× in CIFAR-10 in terms of the number of model parameters

Frontiers in Artificial Intelligence | www.frontiersin.org 8 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

FIGURE 1 | The inferred TT rank at different layers. (A) 2 TT-FC layers for Fashion-MNIST. (B) 2 Tucker-FC layers for Fashion-MNIST. (C) 4 TT-Conv and 2 TT-FC

layers for CIFAR-10.

compared with the baseline network. One SGD initialization
of our method on the CIFAR-10 problem takes approximately
3 h to run on an NVIDIA Titan V GPU with 12GB of
memory. Either sampling process (SVGD or HMC) takes less
than 10 min.

We also show the estimated tensor-train ranks of the
estimated weight matrices and convolution filters in Figure 1.
Clearly, our Bayesian tensor learning framework can perform
model compression in the training process with automatic
rank determination.

5. RELATED WORK

There are many recent works on training a tensor learning
model. There are a series of works targeting on tensor
completion/factorization problems. Chu and Ghahramani (2009)
proposed tensor completion algorithm using a maximum
a posteriori (MAP) MAP estimation. Various attempts to
evalute the uncertainly of completion using Bayesian method
has been made in Xiong et al. (2010), Rai et al. (2014),
Zhao et al. (2015a,c). On the other hand, some other
works targets only on training a tensorized neural networks
Jaderberg et al. (2014) demonstrated the first attempt to
compress a CNN using tensor decomposition method. Tai
et al. (2015) further improved that by training such a
neural network from scratch and evaluate it on a large
network. Kossaifi et al. (2019) proposed to compress a CNN
by parametrizing the entire structure with a single, high-
order tensor. In Kolbeinsson et al. (2021), tensor dropout
technique was proposed. This technique can be applied
to tensor factorizations and improve the robustness and
generalization abilities while provide more computationally and
memory efficient models. Bulat et al. (2021) further empirically
demonstrated that tensor dropout method can improve the
robustness to adversarial attacks. Hayashi et al. (2019) proposed
a graphical notation to represent all kinds of decomposition
used in tensorized CNN and experimentally compare the tradeoff

between accuracy and efficiency. Our work proposes a generic,
scalable and uncertainty-aware algorithm to solve a broad
class of tensor learning problems, including but not limited
to tensor factorization/completion, regression, and tensorized
neural networks. Furthermore, these works either focused on
post-training compression or fixed-rank training, while our
work is the first to our knowledge that perform on-shot rank-
adaptive training.

6. CONCLUSION

We have presented a generic Bayesian framework that is
applicable to various tensor learning task described with
different low-rank tensor representations. This framework
is implemented with Hamiltonian Monte Carlo and Stein
variational gradient descent. Among the wide range of
applications in tensor learning tasks, we have specifically
tested our methods by tensor completion with CP format and
tensorized Bayesian neural networks with both tensor train
and Tucker formats. In tensor completion, our method has
shown better accuracy and capability of rank determination
than the state-of-the-art mean-field approximation. In the
Bayesian neural network, our method has demonstrated a
significant compression ratio in the end-to-end training of
tensorized neural networks, as well as better accuracy than the
maximum-a-posterior training.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KZ and CH developed the low-rank Bayesian
model under the guidance of ZZ. KZ coded

Frontiers in Artificial Intelligence | www.frontiersin.org 9 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

the proposed HMC approach and CH coded
the proposed SVGD approach. All authors
contributed to the article and approved the
submitted version.

FUNDING

This work was supported by NSF CCF-1817037 and DOE ASCR
grant no. DE-SC0021323.

REFERENCES

Acar, E., Dunlavy, D. M., Kolda, T. G., and Mørup, M. (2011). Scalable tensor
factorizations for incomplete data. Chemometrics Intell. Lab. Syst. 106, 41–56.
doi: 10.1016/j.chemolab.2010.08.004

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I. (2003). An
introduction to mcmc for machine learning. Mach. Learn. 50, 5–43.
doi: 10.1023/A:1020281327116

Austin, W., Ballard, G., and Kolda, T. G. (2016). “Parallel tensor compression for
large-scale scientific data,” in Intl. Parallel and Distributed Processing Symp.,
(Chicago, IL: ACM), 912–922.

Bro, R. (1997). Parafac. tutorial and applications. Chemometrics

Intell. Lab. Syst. 38, 149–171. doi: 10.1016/S0169-7439(97)0
0032-4

Bulat, A., Kossaifi, J., Bhattacharya, S., Panagakis, Y., Hospedales, T.,
Tzimiropoulos, G., et al. (2021). Defensive tensorization. arXiv preprint

arXiv:2110.13859.
Candes, E. J., Sing-Long, C. A., and Trzasko, J. D. (2013). Unbiased

risk estimates for singular value thresholding and spectral estimators.
IEEE Trans. Signal Process. 61, 4643–4657. doi: 10.1109/TSP.2013.2
270464

Chen, T., Fox, E., and Guestrin, C. (2014). “Stochastic gradient hamiltonian monte
carlo,” in International Conference on Machine Learning, (Beijing: ICML),
1683–1691.

Chu, W. and Ghahramani, Z. (2009). “Probabilistic models for incomplete
multi-dimensional arrays,” in Artificial Intelligence and Statistics, (Florida, FL:
Clearwater Beach), 89–96.

Cichocki, A. (2014). Era of big data processing: a new approach via tensor networks
and tensor decompositions. arXiv preprint arXiv:1403.2048.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and Neven, H. (2014).
“Bayesian sampling using stochastic gradient thermostats,” in Advances in

Neural Information Processing Systems, (Vancouver, VN: MIT Press), 3203–
3211.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte
carlo. Phys. Lett. B 195, 216–222. doi: 10.1016/0370-2693(87)91197-X

Gilbert, D. E., and Wells, M. T. (2019). Tuning free rank-sparse bayesian
matrix and tensor completion with global-local priors. arXiv preprint

arXiv:1905.11496.
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and

conditions for an “explanatory” multimodal factor analysis. UCLA Working

Papers in Phonetics 16, 1–84. Available Online at: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.144.5652&rep=rep1&type=pdf.

Hawkins, C., and Zhang, Z. (2018). Robust factorization and completion of
streaming tensor data via variational bayesian inference. arXiv preprint

arXiv:1809.01265.
Hawkins, C., and Zhang, Z. (2021). Bayesian tensorized neural networks

with automatic rank selection. Neurocomputing 453, 172–180.
doi: 10.1016/j.neucom.2021.04.117

Hayashi, K., Yamaguchi, T., Sugawara, Y., and Maeda, S.-I. (2019). “Exploring
unexplored tensor network decompositions for convolutional neural
networks,” in Advances in Neural Information Processing Systems, Vol. 32
(Cambridge, MA:), 5552–5562.

Hillar, C. J., and Lim, L.-H. (2013). Most tensor problems are np-hard. J. ACM 60,
45. doi: 10.1145/2512329

Iserles, A. (1986). Generalized leapfrog methods. IMA J. Numer. Anal. 6, 381–392.
doi: 10.1093/imanum/6.4.381

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866.

Jain, P., and Oh, S. (2014). “Provable tensor factorization with missing data,”
in Advances in Neural Information Processing Systems, (Montreal, MO: MIT
Press), 1431–1439.

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kolbeinsson, A., Kossaifi, J., Panagakis, Y., Bulat, A., Anandkumar, A., Tzoulaki,
I., et al. (2021). Tensor dropout for robust learning. IEEE J. Sel. Topics Signal

Process. 15, 630–640. doi: 10.1109/JSTSP.2021.3064182
Kolda, T. G., and Bader, B. W. (2009). Tensor decompositions and applications.

SIAM Rev. 51, 455–500. doi: 10.1137/07070111X
Kossaifi, J., Bulat, A., Tzimiropoulos, G., and Pantic, M. (2019). T-net:

Parametrizing fully convolutional nets with a single high-order tensor.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. Long Beach, CA, USA.
Liu, Q., andWang, D. (2016). “Stein variational gradient descent: a general purpose

bayesian inference algorithm,” in Advances in Neural Information Processing

Systems, Vol. 29 (Cambridge, MA: MIT Press), 2378–2386.
Neal, R. M. (1992). Bayesian Training of Backpropagation Networks by the Hybrid

Monte Carlo Method. Technical Report, Department of Computer Science,
University of Toronto

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015). “Tensorizing
neural networks,” in Advances in Neural Information Processing Systems,
(Cambridge, MA: MIT Press), 442–450.

Oseledets, I. V. (2011). Tensor-train decomposition. SIAM J. Sci. Comput. 33,
2295–2317. doi: 10.1137/090752286

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and Carin, L. (2014).
“Scalable bayesian low-rank decomposition of incomplete multiway tensors,” in
International Conference on Machine Learning, (Glasgow: ICML), 1800–1808.

Schmidt, M. N. and Mohamed, S. (2009). “Probabilistic non-negative tensor
factorization using markov chain monte carlo,” in European Signal Processing

Conf., (Glasgow: ICML), 1918–1922.
Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E.,

and Faloutsos, C. (2017). Tensor decomposition for signal processing
and machine learning. IEEE Trans. Signal Process. 65, 3551–3582.
doi: 10.1109/TSP.2017.2690524

Şimşekli, U., Koptagel, H., Güldaş, H., Cemgil, A. T., Öztoprak, F., and Birbil,
Ş. İ. (2015). Parallel stochastic gradient markov chain monte carlo for matrix
factorisation models. arXiv preprint arXiv:1506.01418.

Tai, C., Xiao, T., Zhang, Y., Wang, X., andWeinan E. (2015). Convolutional neural
networks with low-rank regularization. arXiv preprint arXiv:1511.06067.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.
Psychometrika 31, 279–311. doi: 10.1007/BF02289464

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.
Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G.

(2010). “Temporal collaborative filtering with bayesian probabilistic tensor
factorization,” in Proceedings of the 2010 SIAM International Conference on

Data Mining, (Beijing: SIAM), 211–222.
Zhang, Z., Weng, T.-W., and Daniel, L. (2016). Big-data tensor recovery

for high-dimensional uncertainty quantification of process variations.
IEEE Trans. Compon. Packag. Manufact. Technol. 7, 687–697.
doi: 10.1109/TCPMT.2016.2628703

Zhang, Z., Yang, X., Oseledets, I. V., Karniadakis, G. E., and Daniel, L.
(2014). Enabling high-dimensional hierarchical uncertainty quantification
by anova and tensor-train decomposition. IEEE Trans. Comput.-Aied

Design Integr. Circuits Syst. 34, 63–76. doi: 10.1109/TCAD.2014.2
369505

Frontiers in Artificial Intelligence | www.frontiersin.org 10 January 2022 | Volume 4 | Article 668353

Zhang et al. End-to-End Tensorized Deep Learning

Zhao, Q., Zhang, L., and Cichocki, A. (2015a). Bayesian cp factorization
of incomplete tensors with automatic rank determination. IEEE Trans.

Pattern Anal. Mach. Intell. 37, 1751–1763. doi: 10.1109/TPAMI.2015.23
92756

Zhao, Q., Zhang, L., and Cichocki, A. (2015b). Bayesian sparse tucker models
for dimension reduction and tensor completion. arXiv preprint arXiv:1505.
02343.

Zhao, Q., Zhou, G., Zhang, L., Cichocki, A., and Amari, S.-I. (2015c). Bayesian
robust tensor factorization for incomplete multiway data. IEEE Trans. Neural

Netw. Learn. Syst. 27, 736–748. doi: 10.1109/TNNLS.2015.2423694

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Zhang, Hawkins and Zhang. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 January 2022 | Volume 4 | Article 668353

	General-Purpose Bayesian Tensor Learning With Automatic Rank Determination and Uncertainty Quantification
	1. Introduction
	2. Generalized Bayesian Tensor Learning
	2.1. A Generalized Bayesian Model
	2.2. Stochastic Gradient HMC (SGHMC) Solver
	2.3. Stein Variational Gradient Descent (SVGD) Solver

	3. Specifying Potential Energy Functions
	3.1. Bayesian CP Tensor Completion
	3.2. Bayesian Tensorized Neural Networks
	3.3. More General Models

	4. Numerical Experiments
	4.1. Tensor Completion
	4.1.1. Synthetic Dataset
	4.1.2. MRI Dataset

	4.2. Tensorized Neural Networks
	4.2.1. Datasets
	4.2.2. Numerical Results

	5. Related Work
	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

