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The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum
information science, however, this has remained a considerable challenge spanning several decades. Here,
we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon
level probe pulse (1.5 μs) triggered by a simultaneously propagating few-photon-level signal field. This
process is mediated by Rb87 vapor in a double-Λ atomic configuration. We use homodyne tomography to
obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood
estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed
input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a
theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is
a key milestone toward developing quantum logic and nondemolition photon detection using schemes such
as coherent photon conversion.
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Photons are primordial for transmitting [1,2] and storing
[3–5] quantum information. Additionally, there exist
photon-based quantum processing applications such as,
quantum random access memory [6] and quantum machine
learning [7]. The cornerstone of this “photonic processing”
is a photon-photon phase gate [8]. However, its experi-
mental realization has a number of challenges: (i) a system
must exhibit large cross-phase modulation (XPM) such that
a single photon causes a π phase shift on a second photon
state, (ii) the quantum state of the output must not be
distorted and, (iii) a “truth table” of input combinations
must be achieved with high fidelity.
Cavity-based and Rydberg-based systems have demon-

strated large XPM at the single-photon level [9–11], and
have begun investigating fidelities of a photon-photon gate
[12,13]. However, these new schemes need cavities or
require the light to be stored in an atomic medium, which
dramatically lowers the gate’s efficiency, ranging from
0.5% to 8%, with an entangling gate fidelity of 63.7%�
4.5% [13]. Therefore, further advances need to be made
before these systems are ready for large problems requiring
fault tolerance [14].
Additionally, it has recently been shown that, unlike

previously thought [15,16], there are indeed nonlinear
systems that are capable of large phase shifts at high
fidelity [17], and they can perform gate operations even in a
full frequency-mode framework [18]. These systems use a
paradigm called “coherent photon conversion” (CPC) [19],
using four-wave mixing (FWM). Combined with linear
optics, these processes can form the basis for universal
quantum computation [20].
A quantum photonic gate using CPC requires (i) FWM

for single photon inputs, (ii) an output quantum state with

low-noise in the Fock state basis, (iii) the two photon inputs
must be efficiently converted into a third (initially vacuum)
field and then converted back, thereby creating a “Rabi
oscillation” between the j1; 1; 0i and j0; 0; 1i states [19].
While current work toward CPC uses nonlinear wave-

guides and is limited by the efficiency of the quantum
process [21], atomic systems can create FWM [22] at near
unitary efficiencies, and are an excellent candidate for
highly efficient CPC. Additionally, it has been shown that
using FWM systems, it is possible to achieve large XPM at
the low light level without requiring cavities, storage or
Rydberg levels [23].
In this experiment we demonstrate the first room-

temperature implementation of a single-photon level
FWM double-Λ system (DL) in which simultaneously
propagating pulses of single-photon-level light create π
phase shifts. We perform a quantum characterization of
these phase-shifted output states using quantum state
tomography of the quadrature statistics. We also show that
four-wave mixing processes at room temperature produce
well-behaved quantum states, observing high fidelities for
single-photon level light phase shifted by π.
We use a double-Λ atomic system in a room-temperature

Rb87 atomic ensemble, in which both individual Λ sub-
systems exhibit electromagnetically induced transparency
(EIT) [see Supplemental Material (SM) for experimental
details [24] ]. As illustrated in Fig. 1(b), we send a pulse
sequence consisting of three cases: probe pulse only, probe
and signal pulse on (creating the double-Λ system), and
signal only (generating FWM). Each pulse is 1.5 μs long,
each case is separated with a 20 μs interpulse delay, and
this is repeated every 60 μs. Control fields 1 and 2 are on
during the whole cycle.
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A key feature of this double-Λ system is that the
output FWM-assisted phase shift is phase sensitive on
the input phases of multiple fields [41]. Accordingly,
we identify an important parameter for our experiment:
ΔϕFWM ≡ ϕp

FWM − ϕp
PO, which represents the relative

phase between the generated FWM and the “probe-only”
case. This phase sensitivity of the FWM is a critical feature
because the output light’s amplitude EDL

p ðΔϕFWMÞ and
phase shift (written as ΔϕDL) are both functions of ΔϕFWM
(see SM for full dependence [24]).
We use a standard balanced homodyne detector to obtain

accurate phase and quadrature information of the phase-
shifted double-Λ system output. We estimate ΔϕFWM and
ΔϕDL simultaneously by implementing a closely separated
three pulse sequence with a fast local oscillator scan
(illustrated in Fig. S2a [24]). We let the interferometric
phases fluctuate randomly and we collect quadrature
statistics of the output double-Λ system and bin them by
the phase shift that uniquely describes their state (ΔϕFWM).
Additionally, we also collect quadrature data describing the
quantum states of the light generated by the FWM and the
probe light experiencing EIT-like behavior. Furthermore,
the data across multiple local oscillator scans is evaluated
using maximum-likelihood estimation to uncover their
quantum states in the Fock state basis [42,43]. This
workflow of this data processing is illustrated in Fig. S2.
When using coherent states as inputs, our theoretical

model predicts the obtained phase shifts to be the result
of a linear interference of a probe-only contribution
and “FWM” contribution. Using the approximations that

Δp ¼ Δc1 ¼ Δ (the detuning of the probe and the first
control field), Δs ¼ Δc2 ¼ 3Δ (signal and second
control field detunings), and γ ¼ 0 (decoherence
between ground states), our double-Λ output field
EDL
p has the form EDL

p ¼ðΩ2
c1þΩ2

c2e
fp=Ω2

c1þΩ2
c2ÞjEin

p j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
probe-onlycontribution

−

ðΩc1Ωc2ðefs−1Þ=Ω2
c1þΩ2

c2ÞjEin
s jeiΔϕ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

four-wave-mixingcontribution

.

fs¼−
kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logð2Þp ðΩ2

c1þΩ2
c2Þ

ΓðΩ2
c1þΩ2

c2Þ−2iΔð3Ω2
c1þΩ2

c2Þþ2WðΩ2
c1þΩ2

c2Þ
;

fp¼−
kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π logð2Þp ðΩ2

c1þΩ2
c2Þ

Ω2
c1ðΓ−6iΔþ2WÞþΩ2

c2ðΓ−2iΔþ2WÞ ;

whereΩp;sc1;c2 are the Rabi frequencies of the probe, signal,
and the two control fields. Additionally, k ¼ ðαγ=2L℘Þ,
Γ is the decay rate, W is a parameter describing Doppler
width of our atomic ensemble, α is the optical depth, L is the
length of the cell, ℘ is the dipole moment element (see SM
for full derivation [24]).
Using this result, we introduce an effective photon-

photon model and find the expected value of the quadrature
values XðθÞDLp of the DL output:

hαsjhαpjXðθÞDLp jαpijαsi
¼

ffiffiffi
2

p
½jαPOj cosðθÞ þ jαFWMj cosðΔϕFWM − θÞ�;

(a) (b)

(c)

FIG. 1. (a) Experimental setup. A sequence of probe (Ωp) and signal pulses (Ωs) are sent through a room-temperature 87Rb atomic
ensemble. The probe output is then measured on a balanced homodyne detector and the associated quadrature and phase values are
analyzed. (b) Diagram of our sequence of input pulses. First, we send a pulsed probe field (Ωp), with two CW control fields (Ωc1, Ωc2)
creating EIT. Second, we add a pulsed signal Ωs field (in addition to the probe Ωp pulse), creating a double-Λ system. Third, we switch
off the probe pulse (leaving the signal pulse on), creating four-wave mixing FWM in the frequency of the probe. (c) Voltage values of the
balanced homodyne detector, representing quadrature measurements of the pulse sequence. Across a scan of the phase of the local
oscillator of the homodyne, phase information can be extracted from these pulses (as discussed in the SM [24]).
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where αPO and αFWM are the coherent-state amplitudes for
the probe-only and FWM cases and θ is the phase of the
local oscillator. The theoretical DL amplitude vs ΔϕFWM is
visualized as the solid orange line in Fig. 2(a), while the
dashed blue line in Fig. 2(b) represents ΔϕDL vs ΔϕFWM.
This simple model matches the experimental data without
any free parameters at the single-photon level. The small
degree of uncertainty in the experimental estimation of our
phases (ΔϕFWM and ΔϕDL) implies we can accurately
associate quadrature statistics with a particular phase-
shifted output state, thereby allowing accurate quantum
state estimation through binning.
For each sweep of the homodyne local oscillator phase,

an accurate value of the output phase shift ΔϕDL and the
four-wave mixing phase shiftΔϕFWM can be extracted from
the peaks of the pulses (as illustrated in the SM, Fig. S2,
part b [24]). Therefore, for every output phase shift
(represented by a single data point in Fig. S2, part c),
we obtain an entire set of homodyne statistics fXðθÞg, all
associated with a particular FWM phase shift ΔϕFWM. We
then organize the output phase shifts into ten bins and
combine the quadrature sets fXðθÞg with their associated
FWM phase shifts in the same the bin region. A selection of
these combined sets is plotted in Fig. 2(c).

For each combined set (binned by ΔϕFWM), we perform
a quantum state reconstruction for each case: probe only,
double-Λ, and FWM. Additionally, we also measure and

reconstruct the density matrix for the probe and signal
fields without the cell. The reconstructed density matrices
can additionally be mapped to a Wigner function repre-
sentation for easier visualization. Figure 3 illustrates an
input-output representation for different phase-shifted out-
put states, while Fig. 4(a) shows how both the four-wave
mixing and the double-Λ system traverse phase space. In
Fig. 4(a), we observe an unshifted circle (in dark blue)
representing the maximum values of each Wigner function
of the four-wave mixing in phase space, indicating the
mean photon number of the quantum state of the FWM
does not change with phase. This is unlike the double-Λ
system which has its maximum values in phase space
represented by a shifted circle (illustrated in teal), as
expected by our theoretical model.
To better understand and characterize our system using

the reconstructed density matrices we calculate two values,
which we name the “coherent-state fidelity” (CSF) and the
“phase-aligned, input-output fidelity” (PAIOF). The CSF,
which measures the fidelity between our state and a
theoretical coherent state of the same mean photon number
and phase, is useful for characterizing changes due to noise
or unwanted nonlinear processes. As shown in Fig. 4(c), we
find that our phase-shifted states retain a remarkably high
CSF at the single-photon level—remaining above 90%.
These values reach as high as 94.4%� 0.5% for the
bin ΔϕFWM ∈ ð1.69; 2.43Þ radians, a surprising result
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FIG. 2. (a),(b) Comparison between the phase and amplitude of each sinusoidal fit of individual homodyne scans and theoretical
values for single-photon-level data. (a) The blue dots represent individual values of ΔϕDL − ΔϕFWM vs ΔϕFWM for each individual
homodyne “scan.” The orange dots represent the fitted amplitudes, AðαFWM; αp;ΔϕFWMÞ, of each homodyne shot for the DL case. These
are compared to their theoretical values (solid orange and dashed blue lines) obtained from Eqs. (21) and (22) in the SM, with αp ¼ 0.57
and αFWM ¼ 0.91 [24]. No free parameters are used in the theoretical fits. In (b) the blue points represent the phase shift, ΔϕDL vs
ΔϕFWM. Part (c), to reconstruct the quantum state, the quadrature statistics obtained from the outputs must be sorted by their associated
ΔϕFWM phase shifts. Using the phase information illustrated in (a) and (b), we can collect quadrature statistics associated with different
binned phases (as discussed in the SM [24]). Extracted single-photon-level quadrature data are illustrated for the double-Λ (teal) and EIT
reference (red)—for different sets of postselected phase shifts (for bins ΔϕFWM ∈ 0.01; 1.33;−0.91, and −2.77� 0.37 radians).
Quadrature values are compared to their averaged fitted values (plotted as a solid line in red and teal).
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considering that thermal noise typically affects output
fidelities in storage of light in similar systems. We also
calculate the purity operator ρ2. For the DL system
exhibiting large phase shifts [within the bin ΔϕFWM ∈
ð2.42; 3.14Þ radians], we observe a purity of 0.92� 0.02, as
compared to a purity of 0.93� 0.01 for the EIT-like case
and 0.96� 0.02 for the FWM-only case. This high level of
purity and coherent-state fidelity indicates that we are
measuring neither large amounts of parasitic thermal light
nor decoherence in our phase-shift process (from, for
example, thermal or Doppler effects). The results are
consistent with a simple quantum model which takes

Doppler-broadening into account (described in the SM
[24]). Additionally, since these values are not unitary, we
also describe in the SM various sources that could cause
quantum damage [24]. Overall, we attribute most of this
“damage” to statistical errors in the reconstruction.
Since the CSF does not characterize overall losses due to

attenuation, we use the phase-aligned, input-output fidelity
(PAIOF) to characterize these losses. This value compares
the overlap between the input state and the output state with
a modified phase that is aligned in phase with the
input state. Using the quantum state of the light
without the cell, ρinθ , and a double-Λ output with a
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FIG. 4. (a) For each postselected phase bin, the position in the phase space where the Wigner functions exhibit their maximum values
are plotted, illustrating the motion in phase space of the probe output as the global input phase is changed. These maxima are illustrated
for the double-Λ states (in teal) and the four-wave mixing (in blue). Additionally, the maximum for the probe-only case is labeled in red
for comparison. (b) Plots of mean photon number from reconstructed states, as a function of postselected phase shifts. Photon numbers
are plotted as dashed lines for double-Λ (dashed teal), four-wave mixing (dashed blue), EIT-probe (dashed red), and probe input (solid
red). (c) Plots of “coherent-state fidelity” (CSF) from reconstructed states, as a function of postselected phase shifts. For each
postselected phase shift, the associated reconstructed state is compared to a theoretical, perfect coherent state of the same mean photon
number and phase. This is done for quadrature statistics for each pulse sequence (probe-only, double-Λ system, and FWM in red, teal,
and blue, respectively). (d) Plots of “phase-aligned, input-output fidelity” (PAIOF) from reconstructed states as a function of
postselected phase shifts. The PAIOF fidelity (plotted as a dashed red line) is found by comparing the density matrix overlap between a
reference in which the probe is reconstructed without the Rb cell and the phase-shifted double-Λ output state. In calculating the PAIOF,
the phase of double-Λ state is shifted to be aligned to the phase of the input. Additionally, a “phase-aligned fidelity” is calculated
between reconstructed states obtained between the pulse sequence 1 (probe-only case) and the pulse sequence 2 (double-Λ case) and is
plotted as a dashed green line. For comparison, we additionally plot the same phase-aligned fidelity calculations with theoretically
perfect coherent states with the same mean photon number (as dotted red and green lines).
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modified phase, notated as ρDLθ0
, we define the PAIOF as

Fθ ≡ ðtr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρinθ

p
ρDLθ0

ffiffiffiffiffiffiffi
ρinθ

pq
Þ2. The PAIOF is plotted as a

function of phase shift in Fig. 4(d) as a dashed red line. This
value reaches its highest value of 94.4%� 0.5% for the bin
ΔϕFWM ∈ ð1.69; 2.43Þ radians, indicating that large phase
shifts can be obtained without substantial losses.
Our results demonstrate that protocols utilizing effective

single-photon-level FWM processes in Rb cells are achiev-
able, despite their room-temperature operation. This bodes
well for the future construction of FWM-mediated quantum
nonlinear systems.
We mention that in its current form, our double-Λ system

cannot form a full truth table necessary for quantum logic,
because the “phase-triggering” photon j1is is partially
converted into the other frequency mode jαpi, which lowers
the fidelity of the desired output state (see Sec. XI in SM
[24]). Despite this, the well-behaved nature of the analyzed
quantum states demonstrates that near-resonant atomic
systems are a viable candidate for a future gate using
CPC. As the primary mechanism creating the phase-shifted
light in this double-Λ system is two interfering four-wave-
mixing channels, we have positively checked the first two
benchmarks for implementation of the CPC protocol, as
outlined in the introduction. Observing no detrimental
effects on fidelity of the quantum state of these 1-to-1
photon processes indicates that this architecture is ready to
explore 1-to-2 photon conversion necessary for CPC [19].
This would give our system the potential to achieve 2-qubit
gate operations and quantum nondemolition measurements
of single photons.
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