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Abstract

The purpose of this study was to examine the effects of different data conditions on
item parameter recovery and classification accuracy of three dichotomous mixture
item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated
factors in the simulation included the sample size (11 different sample sizes from 100
to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent
class separation (normal/no separation, small, medium, and large), and class sizes
(equal vs. nonequal). Effects were assessed using root mean square error (RMSE) and
classification accuracy percentage computed between true parameters and estimated
parameters. The results of this simulation study showed that more precise estimates
of item parameters were obtained with larger sample sizes and longer test lengths.
Recovery of item parameters decreased as the number of classes increased with the
decrease in sample size. Recovery of classification accuracy for the conditions with
two-class solutions was also better than that of three-class solutions. Results of both
item parameter estimates and classification accuracy differed by model type. More
complex models and models with larger class separations produced less accurate
results. The effect of the mixture proportions also differentially affected RMSE and
classification accuracy results. Groups of equal size produced more precise item para-
meter estimates, but the reverse was the case for classification accuracy results.
Results suggested that dichotomous mixture IRT models required more than 2,000
examinees to be able to obtain stable results as even shorter tests required such large
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sample sizes for more precise estimates. This number increased as the number of
latent classes, the degree of separation, and model complexity increased.
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Introduction

Since the seminal paper by Rost (1990), mixed Rasch models (MRMs; see also

Kelderman & Macready, 1990; Mislevy & Verhelst, 1990) have attracted the atten-

tion of many researchers in the field of educational and psychological measurement

(e.g., Bolt et al., 2001; Cohen & Bolt, 2005). Later, extensions of MRMs for both

dichotomous and polytomous data have been developed and applied for several dif-

ferent testing situations (e.g., Austin et al., 2006; H. J. Cho et al., 2012; Cohen &

Bolt, 2005; Sen, 2016). In essence, these models can be considered a mixture of item

response theory (IRT) and latent class models. Combination of these two powerful

statistical tools under one modeling approach provides many advantages. For exam-

ple, qualitative information about the respondents can be obtained in addition to

quantitative information about the items and respondents.

Mixture extensions of IRT models are mostly used for handling the heterogeneity

behind the respondents (see Sen & Cohen, 2019 for a review). Traditional IRT mod-

els assume a single homogeneous population of respondents. However, it may not

always be possible to collect data from homogeneous populations. Population of

examinees may include two or more subpopulations that are captured in the different

latent classes. Mixture IRT is known to be a useful modeling approach for the analy-

sis of the heterogeneity in samples as it assumes that the overall population includes

multiple latent classes that can be identified based on the item response patterns of

respondents (Rost, 1990).

The mixture IRT modeling approach for dichotomous items has been used for sev-

eral purposes in social science research (e.g., Alexeev et al., 2011; Bolt et al., 2002;

Cohen et al., 2005; Maij-de Meij et al., 2010; Ölmez & Cohen, 2018; Sen, 2016).

The parameters of the mixture IRT model include the parameters of each latent class

and the IRT models. Thus, the final equation of mixture IRT resembles an IRT for-

mulization with latent class properties. The probability of a correct response to an

item under the three-parameter logistic mixture IRT (Mix3PL) model for dichoto-

mous data can be given as follows:
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where pg represent the mixture proportions; uj denotes the latent ability for person j;

and aig, big, and gig denote the discrimination, difficulty, and guessing parameters,

respectively, for item i in class g. The two-parameter logistic mixture IRT (Mix2PL)

model can be obtained from Equation 1 when the item guessing parameter is assumed

to be zero. Similarly, the one-parameter logistic mixture IRT (Mix1PL) model can be

obtained from Equation 1 by constraining of item discrimination estimates to be equal

and guessing values to be zero. Due to their parsimony, the Mix1PL models (or the

Rasch model variant, the mixture Rasch model, MRM) have been most frequently

applied by researchers to explore the heterogeneous samples in diverse research con-

texts (Sen & Cohen, 2019). One of the advantages of these simpler models is that it is

possible to obtain stable item difficulty parameter estimates with smaller sample sizes

as the item discrimination and the pseudo guessing parameters are not estimated in

these models. However, the equal discrimination assumption can be considered a dis-

advantage of the MRMs as it may lead to detection of spurious latent classes (see

Alexeev et al., 2011). In some cases, Mix2PL and Mix3PL models may be more

appropriate.

Mixture IRT models assume two or more unknown (latent) subclasses among the

respondents. As these classes are not known a priori, an exploratory approach is

appropriate in which the first step is to fit models with different numbers of classes

to the same data and compare these models to select best fitting model. Relative fit

indices (e.g., Akaike information criterion [AIC], Akaike, 1974; Bayesian informa-

tion criterion, [BIC], Schwarz, 1978; the deviance information criterion [DIC],

Spiegelhalter et al., 1998) can be used to determine the final model among the

alternatives.

Model parsimony is a generally accepted principle in mixture IRT model selec-

tion, such that the simpler model is generally preferred over the more complex model.

Model complexity also tends to increase with an increase in the numbers of latent

classes and items. A recent review on mixture IRT applications by Sen and Cohen

(2019) noted that the average sample sizes across 101 studies was 1,810.05 with a

median of 1,000. The sample sizes of mixture IRT applications were found to range

from N = 99 (Glück et al., 2002) to N = 251,278 (Oliveri & von Davier, 2011). For

example, Glück et al. (2002) conducted an MRM application with 99 respondents.

Such a small sample size, however, may not provide stable results as the MRM

requires a high ratio of the number of persons to the test length (W. H. Finch &

French, 2012). W. H. Finch and French (2012) suggest that for samples of 400 or

fewer—mixture IRT models may not be particularly viable, except perhaps for the

simplest models. Glück et al. (2002) also suggest that small sample size can be pro-

blematic for mixture IRT applications even with simpler models like the MRM.

As required sample size for stable results is an important factor to consider for sta-

tistical analyses, sample size must be considered at the study planning phase, because

it impacts the accuracy and efficiency of model parameter estimates of IRT models

(H. Finch & French, 2019). IRT models, in fact, are known to require larger sample

size than other common statistical analyses such as t-test and ANOVA (Nye et al.,
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2020). IRT models can produce stable results, however, with sample sizes as small as

100 (Cohen et al., 2001), although larger sample sizes would be needed for mixture

extensions of IRT models.

Sample size is not typically a concern, when applying IRT models and their exten-

sions in the context of large-scale assessments which by definition have large samples

of examinees use country-based populations. It may not always be possible, however,

for researchers to have large samples. For example, sample sizes are typically very

small (\200) for samples of students with disabilities or children of migrant workers.

In such cases, it could be difficult to accurately estimate the model parameters. More

information is needed regarding methods for parameter estimation with small samples

such as when working with these kinds of populations (H. Finch & French, 2019).

One concern with respect to sample size is that there is, as yet, little information

reported on the use of mixture IRT models with smaller samples. Only a few simula-

tion studies appear to have been reported within the mixture IRT framework on the

effect of sample size. For example, a recent simulation study conducted by Kutscher

et al. (2019) investigated the performance of mixture IRT models under different

sample size conditions. The focus of their study was on sample sizes for two polyto-

mous mixture IRT models, the restricted mixed generalized partial credit model

(rmGPCM) and the mixed partial credit model (mPCM). The problems of estimation

and accuracy of parameter and standard error estimates were examined by generating

different sample sizes from 500 to 5,000 examinees in 500 step increments. Kutscher

et al. (2019) suggested that the two mixture IRT models required at least 2500 obser-

vations for three latent class models to provide accurate parameter and standard error

estimates. There are other simulation studies conducted on the performance of poly-

tomous mixture IRT models under different data conditions (Y. Cho, 2014; Huang,

2016; Wetzel et al., 2016). For example, Huang (2016) generated mixed generalized

partial credit model (GPCM) data sets with sample sizes of 200, 500, 1,000, and

2,000. Results for a mixture GPCM model showed optimum performance with 1,000

examinees and 20 items for a three-class solution. Similarly, Wetzel et al. (2016)

conducted a simulation study with the mixed partial credit model (PCM), generating

the data sets with different sample sizes including 200, 500, and 2,000. Results from

Wetzel et al. indicated that all sample size conditions produced reasonable estimates

for the one-class solution with 10-items and two-class solutions with five items. Y.

Cho (2014) also examined the performance of a mixed PCM under sample size con-

ditions of 1,200, 3,000, and 6,000. Results from Cho suggested that mixed PCMs

with a four-class solution needed 3,000 cases and 10 items for stable results. Cho

also reported that mixed PCMs with fewer classes required fewer than 3,000 cases. It

should be noted that those studies specifically focused on polytomous versions of

mixture IRT models.

Other simulation studies have also considered sample size when focusing on dif-

ferent aspects of dichotomous mixture IRT models. For example Li et al. (2009)

investigated the performance of model selection indices for dichotomous mixture

IRT models. Results from Li et al. reported that 600 examinees appeared to be
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sufficient for one- to four-group MRMs and possibly for a Mix2PLM for 15- and 30-

item tests with the BIC index. Frederickx et al. (2010) compared samples of 500 and

1,000 in a mixture IRT model with random items and reported the average misclassi-

fication rate was lowest in the larger sample size. W. H. Finch and French (2012)

compared two estimation methods with sample sizes of 400, 1000, and 2,000. The

researchers stated that both estimation methods had difficulty reaching convergence

for many of the replications with the relatively small samples (e.g., 400). Results

showed that more precise parameter estimates were obtained with larger samples and

more items.

A range of sample sizes in simulation studies have been reported from 100 to

25,000 cases (S. J. Cho et al., 2010; W. H. Finch & French, 2012; W. Y. Lee et al.,

2018; Maij-de Meij et al., 2010; Preinerstorfer & Formann, 2012). Sample sizes of

1,000, 1,500, and 2,000 were the most frequently used.

The effects of sample size on item parameter estimation has received attention in

previous research (e.g., Baker, 1998; de la Torre & Hong, 2010; H. Finch & French,

2019; Swaminathan & Gifford, 1983; Swaminathan et al., 2003). There does not

appear, however, to be much on dichotomous mixture IRT models even though, as

noted above, mixture IRT models are known to fail with small sample sizes (e.g., W.

H. Finch & French, 2012). Furthermore, results of simulation studies with polyto-

mous mixture IRT models may not be appropriate as the type of model may have an

effect on parameter recovery.

The objective of this study, therefore, is to examine the effects of sample sizes,

and several other factors including test length, number of latent classes, the degree of

latent class separation, and the mixture proportions for three dichotomous mixture

IRT models, the Mix1PL, Mix2PL and Mix3PL, in the context of a comprehensive

simulation study. The present study focuses specifically on examining the effects of

these factors on estimation of item parameters and classification accuracy for dichot-

omous mixture IRT models.

Method

In this section, we report on a comprehensive simulation study designed to investi-

gate effects of sample size, test length, number of latent classes, the degree of class

separation, and the mixture proportions on the estimates of dichotomous mixture IRT

model parameters and classification accuracy. The study used a fully crossed design

consisting of 1,584 conditions: 11 sample sizes 3 3 test lengths 3 2 classes 3 2

mixture proportions 3 4 class separations 3 3 dichotomous mixture IRT models.

The sizes of each condition are reported in Table 1. The conditions used in this study

were based on those reported in previous simulation studies in mixture IRT models

(Alexeev et al., 2011; S. J. Cho et al., 2013; H. Finch & French, 2019; Jiao et al.,

2012; Li et al., 2009; Maij-de Meij et al., 2010; Preinerstorfer & Formann, 2012).

Some research has suggested that a sample size of 100 or more may be adequate

for estimation of model parameters for the 1PL IRT model (Wright, 1977). It would

Sen and Cohen 5



be useful to study whether this would be sufficient for mixture 1PL models.

Accordingly, we chose a set of sample sizes included 100, 200, 300, 400, 500, 750,

1,000, 2,000, 3,000, 4,000, and 5,000 respondents. Sample size values less than 500

were selected to examine the effect of relatively small sample sizes on parameter

estimates for the mixture models described in Table 1. Sample sizes larger than 500

were selected as these have been reported in previous simulation studies (e.g., S. Lee

et al., 2021; Li et al., 2009). We also generated three different test lengths: 10, 30,

and 50 items, as reported in S. J. Cho et al. (2013). These test lengths have also been

used in a number of simulation studies (e.g., H. Finch & French, 2019; Li et al.,

2009). These three test lengths simulated tests having a small, medium, or large num-

ber of items. Two different numbers of latent classes (two and three latent) were gen-

erated. Two mixture proportions were simulated: equal and nonequal proportions in

each latent class. Equal proportions were p1 = p2 = 1/2 for two-class models and p1

= p2 = p3 = 1/3 for three-class models as reported in S. J. Cho et al. (2013). The

ratio for two-class solutions of 0.25–.75 (Maij-de Meij et al., 2010) was used for

two-class models and 0.25-0.50-0.25 (Cassiday et al., 2021) was used for three-class

nonequal mixture proportion models. Thus, for the equal proportion two-class condi-

tions, each class was simulated to consist of 50% of the examinees (e.g., if 1,000

examinees was simulated, each latent class was constrained to consist of 500 exami-

nees). Four different degrees of latent class separation (large, medium, small and nor-

mal) were generated by manipulating the ability distributions of each class following

the method described in Jiao et al. (2012). For the large class separation conditions

in two-class solutions, ability parameters for Class 1 were simulated from a standard

Table 1. Manipulated Factors in Simulation Design.

Factor Conditions

Sample size 100, 200, 300, 400, 500, 750, 1,000, 2,000, 3,000, 4,000,
and 5,000

Test length 10, 30, and 50
# of class 2 and 3
Mixture Proportions Equal (1/2, 1/2), nonequal (3/4, 1/4) for two-class

solutionsEqual (1/3, 1/3, 1/3), nonequal (1/2, 1/4, 1/4) for
three-class solutions

Degree of class separation For 2-class solution: Large ability separation: N(0, 1) and
N(1, 1); Medium ability separation: N(0, 1) and N(0.8, 1);
Small ability separation: N(0, 1) and N(0.5, 1); Normal
ability separation: N(0, 1) and N(0, 1)For 2-class solution:
Large ability separation: N(0, 1), N(1, 1), N(-1, 1); Medium
ability separation: N(0, 1), N(0.8, 1), N(-0.8, 1); Small ability
separation: N(0, 1), N(0.5, 1), N(-0.5, 1); Normal ability
separation: N(0, 1), N(0, 1), N(0, 1)

Model type Mix1PL, Mix2PL, and Mix3PL IRT models

Note. IRT = item response theory.
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normal distribution N(0, 1), whereas those for Class 2 were simulated from N(1, 1).

While the distribution remains the same for Class 1, the ability parameters of Class 2

were simulated from N(0.8, 1) and N(0.5, 1) for medium and small separation condi-

tions, respectively. However, two classes were generated to have the same distribu-

tion N(0, 1) for the normal separation (i.e., no separation) condition. A similar

approach was used for three-class conditions (see Table 1). Three different dichoto-

mous mixture IRT models were considered: Mix1PL, Mix2PL, and Mix3PL models.

Data were generated for each of the three types of dichotomous mixture IRT mod-

els using code written in R, version 4.0.3 (R Core Team, 2021). The distributions of

examinee ability and item parameters (i.e., discrimination, difficulty, and guessing)

were generated to be the same for each of the three models. Person ability parameters

were randomly drawn from a standard normal distribution with a mean of 0 and a

standard deviation of 1 as in Alexeev et al. (2011). However, class-specific item para-

meters were generated for each model and item parameter values for the classes were

made to be different to differentiate the classes in the simulations (see Table 2). Item

difficulty values were randomly drawn from a standard normal distribution N(0,1)

between 22 and 2 as in DeMars and Lau (2011) and Preinerstorfer and Forman

(2012). Generating values of item discrimination parameter included two values: 1

(for poor performance items) and 2 (for good performance items) as in Li et al.

(2009). Values of item guessing parameters were .10, .20, and .25 as in Li et al.

(2009). These values represent easy items, medium difficulty items, and difficult

items, respectively. Table 2 shows the generating parameters for the 10 item condi-

tions. (Generating item parameter values for 30- and 50-item conditions are presented

in the Appendix.) The values provided in Table 2 were used to generate two- and

three-class solutions for each of the three different mixture IRT models. For example,

only item difficulty values of first two columns (–0.436 and 1.443 were used for Item

1, so on so forth) were used for generating values for two-class Mix1PL conditions.

Similarly item difficulty values of three columns (–0.436, 1.443, and 0.482 were used

Table 2. Generating Item Parameter Values for 10-Item Conditions.

Item a1 a2 a3 b1 b2 b3 g1 g2 g3

1 1 2 1 –0.436 1.443 0.482 0.10 0.25 0.20
2 1 2 1 –0.694 1.168 1.138 0.10 0.25 0.20
3 1 2 1 –0.848 0.761 0.038 0.10 0.25 0.20
4 1 2 2 –1.040 0.900 –1.782 0.20 0.20 0.25
5 1 2 2 –1.646 –1.249 –0.978 0.20 0.20 0.25
6 2 1 2 1.215 –0.120 –0.294 0.20 0.20 0.25
7 2 1 2 1.145 –0.195 –0.408 0.20 0.20 0.25
8 2 1 1 1.375 –0.036 1.419 0.25 0.10 0.10
9 2 1 1 0.936 –0.552 0.593 0.25 0.10 0.10
10 2 1 1 0.333 –1.304 0.865 0.25 0.10 0.10

Note. a =item discrimination; b = item difficulty; g = item guessing.
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for Item 1, so on so forth) were used for generating values for three-class Mix1PL

conditions. Different model and class conditions can be obtained from this table with

the same logic. One hundred replications were simulated for each condition and a

total of 158,400 data sets were generated.

After the data were simulated, all data sets were analyzed for each of the mixture

IRT models with the computer program Mplus version 8.6 (Muthén & Muthén, 1998-

2021) using the robust maximum likelihood estimation (REML). This version of

Mplus was selected because it can be used to estimate all of the dichotomous mixture

IRT models considered in this study.

Convergence problems are sometimes observed in the ML estimation of mixture

IRT models, particularly with the more complex conditions (e.g., for the three-class

Mix3PL model). For example, local maxima may be found in the global ML solution.

For this reason, it might be useful to use either the true (i.e., generating) parameter

values or multiple random values as the starting values, although this does not guar-

antee convergence. In this study, the generating item parameters were used as the

starting values. For example, instances of solutions with extreme item parameter esti-

mates were observed for some conditions. The outputs with extreme item parameters

beyond the expected scale for the parameter (e.g., 1,903.84 for item difficulty) were

excluded from and new data were generated.

To evaluate the accuracy of item parameter estimates, it is necessary to compare

the estimated values with the ‘‘true’’ (generating) values. In this study, recovery of

item parameter estimates was assessed using root mean square errors (RMSEs) calcu-

lated by taking the square root of the mean of squared deviations of estimated para-

meter values minus their generating values. For example, the RMSE for the item

difficulty parameter for a specific condition was calculated as,

RMSE bið Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r = 1 b̂i � bi

� �2

R

s
, ð2Þ

where R (r = 1, . . . R) is the number of replications, bi denotes true parameter value,

and b̂i denotes the estimated parameter value for item i. Equation 2 was also used

for assessment of item discrimination and item guessing parameter estimates. Before

calculating the RMSE for a given replication, parameter estimates were first trans-

formed to the scale of the generating values. The parameter estimates are exactly the

same as the true value when RMSE equals zero. Lower values (e.g., \0.10) indicate

better fit. In addition to RMSE, the bias and the mean absolute error (MAE) values

were also computed using metrics package (Hamner et al., 2018) in R. These are not

reported in the main body of the paper due to space limitations, but are reported in

full in the supplementary material.

Classification accuracy was also evaluated. In addition to item parameters, estima-

tion of mixture IRT models yields a posterior probability for each person in each

latent class based on his or her response pattern (Maij-de Meij et al., 2008). The per-

son is classed in the latent class for which the posterior probability is the highest. For
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example, if two posterior probability values of a specific person were 0.91 and 0.09

for Class 1 and Class 2, respectively, this person would be assigned to Class 1. These

values are saved in the Mplus output using the SAVEDATA command along with the

FILE option (e.g., SAVEDATA: FILE = ‘‘respondents1.cprob’’;). Simulated latent

class membership values were compared with estimated highest probability latent

class membership for each replication. A percentage of correct membership was cal-

culated by determining the number of matched assignments between these two set of

values. Estimated latent class membership values were saved in the Mplus output and

extracted with the MplusAutomation package (Hallquist & Wiley, 2018). For a data

set with 1,000 examinees, classification accuracy value was calculated as 0.95 or 95

percent, if there was a matched assignment for 950 of the 1,000 cases.

It should be noted that class labels of different data sets may change during the

simulation studies as the designation of classes in Mplus arbitrary. This is referred to

as label switching. For example, given that Class 1 was simulated, the estimated

latent class might be Class 2. To avoid this problem, we used starting values for each

item parameter in Mplus syntax. In this case, label switching would also occur. To

determine whether label switching occurred, we first compared item parameter

estimates for each latent class with the generating values for a given replication. We

re-labeled the estimated latent classes, so that the estimated item parameters were

closest to the generating values for each latent class. We did not change item para-

meter estimates in making this correction. In this way, we used the item parameter

estimates to determine whether label switching had occurred. Thus, if label switching

had occurred such that Class 1 was labeled Class 2 in an output file, the classes were

re-labeled before tabulating RMSE and classification accuracy results. This was done

for each replication for each number of latent classes condition. RMSE values and

classification accuracy percentages were both calculated once any label switching

was corrected.

Results

Results of recovery of generating values for item parameters and classification accu-

racy of mixture proportions were obtained for the 1,584 conditions in the study.

Mean RMSE values and percentage of classification accuracy values were computed

for the 100 replications for each condition. Figures 1 to 6 summarize the mean

RMSE results for each fitted model. Separate plots are provided for item discrimina-

tion, difficulty and guessing parameters in each figure. Figures 7 to 9 summarize the

percentage of classification accuracy results for each fitted model. Each figure

includes eight plots, four of which are for two-class solutions and four others which

are for three-class solutions, with four different degrees of separation: (a) large, (b)

medium, (c) small, and (d) normal. Plots in each figure also display six labeled lines

representing six different conditions for the three test lengths (10, 30, and 50 items)

and two mixture proportions (E stands for equal proportions, NE stands for nonequal

proportions). For example, E50 indicates a condition with equal group size in the 50-
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item condition. Eleven sample size conditions are specified along the x-axis of the

plots.

Item Parameter Recovery Results

Minimum and maximum RMSE values of item difficulty parameter estimates for

the two-class solutions are presented in Table 3A (see Appendix). As shown in

Figure 1. Mean RMSE Values for Item Difficulty Parameter Under the Mix1PL Model
Note. RMSE = root mean square error.
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Table 3A, mean RMSE values for the item difficulty parameter ranged from 0.051 to

0.511 for the normal class separation conditions with two-class solutions. The ranges

of the mean RMSE values for the item difficulty parameter were computed for small

(0.265–0.629), medium (0.399–0.720), and large (0.478–0.806) class separation con-

ditions for the two-class solutions. Figure 1 displays the mean RMSE values for item

difficulty parameter for the Mix1PL model for each condition. As expected, average

Figure 2. Mean RMSE Values for Item Discrimination Parameter Under the Mix2PL Model.
Note. RMSE = root mean square error.

Sen and Cohen 11



RMSE values decreased as the sample size increased in two- and three-class condi-

tions. As shown in Figure 1A to 1D, 10-item conditions with nonequal group sizes

(NE10) produced the highest mean RMSE values and 30- and 50-item conditions

with nonequal group sizes (NE30 and NE50) produced the lowest mean RMSE val-

ues for normal latent class separation conditions. Similar patterns were observed with

the conditions with other class separations in terms of the highest and lowest RMSE

Figure 3. Mean RMSE Values for Item Difficulty Parameter Under the Mix2PL Model.
Note. RMSE = root mean square error.
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means. Recovery of item difficulty parameters across all conditions appeared to be

affected by the test length. Increase in the test length appears to have a positive effect

on the recovery of item difficulty parameters. As can be seen, 30- and 50-item condi-

tions had mean RMSE values that were lower than the 10-item conditions. For the

mixture proportions, the recovery of item difficulty parameters for equal proportions

was better than that of nonequal mixture proportions. As shown in Figure 1A to 1D,

only the normal class separation conditions had mean RMSE values less than 0.10

for 2,000 and more examinees (see the horizontal line). Mean RMSE values of all of

the conditions were below 0.10 when the sample size was 3,000 examinees and were

Figure 4. Mean RMSE Values for Item Discrimination Parameter Under the Mix3PL Model.

Sen and Cohen 13



large for conditions with less than 500. Similar patterns were observed for the condi-

tions with other class separations with respect to the sample size effect. However,

none of these class separation conditions produced mean RMSE values lower than

0.10, even with the largest sample size conditions (i.e., 5000). The mean RMSE val-

ues appeared to increase as the degree of class separation increased from small to

large.

Minimum and maximum RMSE values of item difficulty parameter estimates for

the three-class solutions are also presented in Table 3A (see Appendix). As shown in

Table 3A, mean RMSE values for the item difficulty parameter ranged from 0.064 to

Figure 5. Mean RMSE Values for Item Difficulty Parameter Under the Mix3PL Model.
Note. RMSE = root mean square error.
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0.806 for the normal class separation conditions with three-class solutions. The

ranges of the mean RMSE values for the item difficulty parameter were higher for

small (0.345–0.823), medium (0.528–0.905), and large (0.546–0.834) class separa-

tion conditions for the three-class solutions. As shown in the plots in Figure 1E to

1H, the 10-item conditions with equal- and nonequal group sizes (E10 and NE10)

produced the highest mean RMSE values and the 50-item conditions with both equal

and nonequal group sizes (E50 and NE50) produced the lowest mean RMSE values.

Figure 6. Mean RMSE Values for Item Guessing Parameter Under the Mix3PL Model.
Note. RMSE = root mean square error.
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Recovery of item difficulty parameters across all conditions appeared to be affected

by the test length. Increase in test length had a positive effect on recovery of item

difficulty parameter estimates. Mixture proportions, however, appeared to differ

Figure 7. Classification Accuracy Percentages Under the Mix1PL Model.
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depending on the recovery of item difficulty parameters. For example, nonequal

group sizes had higher RMSE values for 10-item normal and large class separation

conditions but the reverse for the 50-item conditions.

Figure 8. Classification Accuracy Percentages Under the Mix2PL Model.
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Recovery of item difficulty parameters across all conditions appeared to be

affected by the degree of class separation. Increase in the degree of class separation

from small to large had a negative effect on recovery of item difficulty parameter

Figure 9. Classification Accuracy Percentages Under the Mix3PL Model.
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estimates. As shown in the plots in Figure 1E to1H, none of the conditions yielded

mean RMSE values less than 0.10 with small, medium and large class separations

(see horizontal line). Mean RMSE values for all conditions with 30 and 50 items

were below 0.10, when the sample size was 3,000 or greater for the normal class

separation conditions. Similar to the two-class solutions, mean RMSE values were

larger for the conditions with fewer than 500 examinees and three classes. Overall,

recovery in conditions with the three-class Mix1PL were worse, than results of the

two-class Mix1PL. The three-class conditions appeared to have the worst recovery,

particularly in the small sample with large class separation, 10-item conditions. The

number of latent classes simulated, sample size, test length, the degree of class

separation, and to some extent, class size appeared to affect recovery of item diffi-

culty parameters for the Mix1PL model.

Minimum and maximum RMSE values of item discrimination parameter esti-

mates for the two-class solutions of Mix2PL model are presented in Table 4A (see

Appendix). As shown in Table 4A, mean RMSE values for the item discrimination

parameter ranged from 0.081 to 0.961 for the two-class solutions with normal class

separation. The ranges of the mean RMSE values for the item discrimination para-

meter were computed to be lower for small (0.080–0.915), medium (0.081–0.959),

and large (0.081–0.918) class separation conditions for the two-class Mix2PL model

solutions. The plots in Figure 2A to 2D display the mean RMSE values for item dis-

crimination parameter under the Mix2PL model for each condition. Average RMSE

values decreased as the sample size increased in both two- and three-class conditions.

As shown in Figure 2A to 2D, the 10-item conditions with both equal- and nonequal

group sizes (E10 and NE10) produced the highest mean RMSE values and 50-item

conditions with equal and nonequal group sizes (E50 and NE50) yielded the lowest

mean RMSE values for item discrimination parameters. Recovery of item discrimina-

tion parameters across all conditions appeared to be affected by the test length.

Increase in the test length also had a positive effect on the recovery of item discrimi-

nation parameter estimates. Conditions with 30 and 50 items showed better recovery

in terms of item discrimination. Overall, nonequal latent group size conditions had

higher RMSEs than conditions with equal group sizes for each test length. As shown

in Figure 2A to 2D, none of the six conditions yielded mean RMSE values less than

0.10 with 3,000 or fewer examinees (see horizontal line). Mean RMSE values of

some of the 30 and 50 item conditions were below 0.10 when sample size was around

or above 4,000. Mean RMSE values were large for conditions with fewer than 1,000

examinees, particularly with short tests.

The degree of latent class separation, however, appeared to differentially affect

the recovery of item discrimination parameters. For example, recovery in the normal

separation conditions yielded smaller RMSE values for the large sample size condi-

tions (i.e., 1,000 or more) but the reverse was the case for the conditions with fewer

than 1,000 examinees. The mean RMSE values for item discrimination parameters

were close to each other across the different class separation conditions, such that.

No clear pattern was observed.
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Minimum and maximum RMSE values of item discrimination parameter esti-

mates for the three-class solutions are presented in Table 4A (see Appendix). As

shown in Table 4A, mean RMSE values for the item discrimination parameter ranged

from 0.099 to 1.169 for the normal class separation with three-class solutions. The

mean RMSE values for the item discrimination parameter ranged from 0.101 to

1.121 for the small separation condition. The range for the three-class Mix2PL model

solutions was 0.102 to 1.175 for the medium separation condition, and 0.097 to 1.171

for the large class separation conditions. As shown in Figure 2E to 2H, 10-item con-

ditions with nonequal group sizes (NE10) produced the highest mean RMSE values

and 50-item conditions with nonequal group sizes (NE50) yielded the lowest mean

RMSE values. Recovery of item discrimination parameters across all conditions

appeared to be affected by the test length. Increase in the test length had a positive

effect on the recovery of item discrimination parameter estimates. Mixture propor-

tions, however, appeared to differ depending on the recovery of item discrimination

parameters. As shown in the Figure 2E to 2H, none of the three-group conditions

yielded mean RMSE values less than 0.10 with 4,000 or fewer examinees (see hori-

zontal line). Mean RMSE values of some of the conditions with 50 items were below

0.10 when the sample size was around 5,000. Similar to the two-class solutions, mean

RMSE values were large for the conditions with less than 1,000 examinees in the

three-class conditions. Overall, conditions for the three-class Mix2PL model had

worse recovery, compared with the results of the two-class Mix2PL model. The

three-class conditions had the worst recovery, particularly in the small sample, 10-

item test condition. To briefly summarize, the number of latent classes, sample size,

test length and to some extent, the degree of class separation and class size appeared

to affect recovery of item discrimination parameters of the Mix2PL models.

The results for item difficulty parameters of the Mix2PL model are summarized

in Figure 3. RMSEs were similar to those in Figure 2. As expected, average RMSE

values for item difficulty parameter decreased as the sample size and test length

increased in two- and three-class conditions.

Minimum and maximum RMSE values of item difficulty parameter estimates for

the two- and three-class solutions are presented in Table 5A (see Appendix). As

shown in Table 5A, mean RMSE values for the item difficulty parameter ranged

from 0.057 to 0.698 for the two-class solutions with normal class separation. The

mean RMSE values for the item difficulty parameter ranged from 0.269 to 0.762 for

the small separation condition, 0.403 to 0.822 for the medium separation condition,

and 0.485 to 0.878 for the large class separation conditions for the two-class Mix2PL

model solutions. The mean RMSE values for the item difficulty parameter ranged

from 0.076 to 0.947 for the three-class solutions for the normal class separation con-

ditions. The mean RMSE values for the item difficulty parameter ranged from 0.343

to 0.928 for the small separation condition, 0.514 to 0.969 for the medium separation

condition, and 0.607 to 0.934 for the large class separation condition for the three-

class Mix2PL model solutions. As shown in Figure 3, the three-class Mix2PL model

conditions had worse recovery compared with the results of those for the two-class
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Mix2PL model. RMSEs were lower for the 30- and 50-item conditions with equal

group sizes (E30 and E50) and higher for the 10-item both equal- and nonequal group

conditions (E10 and NE10) for both the two- and three-class solutions. RMSEs

decreased as test length increased for recovery of item difficulty parameter estimates.

Overall, nonequal group sizes had higher RMSEs than equal group sizes for each test

length. As shown in Figure 3A to 3D, no mean RMSE values were lower than 0.10

for the small, medium, or large class separation conditions. Mean RMSE values of

some of the conditions with 30 and 50 items, however, were lower than 0.10, for the

sample size of 3,000 or greater for both two- and three-class model solutions for the

normal class separation conditions. Mean RMSE values were large for samples with

fewer than 3,000 examinees, particularly for the short tests.

Minimum and maximum RMSE values of item discrimination parameter esti-

mates for the two- and three-class Mix3PL model solutions are presented in Table

6A (see Appendix). As shown in Table 6A, mean RMSE values for the item discrim-

ination parameter ranged from 0.244 to 0.801 for the two-class solutions with normal

class separation. The mean RMSE values for the item discrimination parameter ran-

ged from 0.216 to 0.710 for the small separation conditions, 0.215 to 0.734 for the

medium separation conditions, and 0.216 to 0.713 for the large class separation condi-

tions for the two-class Mix3PL model solutions. Likewise, mean RMSE values for

the item discrimination parameter ranged from 0.408 to 1.226 for the three-class solu-

tions with normal class separation. The mean RMSE values for the item discrimina-

tion parameter ranged from 0.407 to 1.191 for the small separation condition, 0.367

to 1.149 for the medium separation condition, and 0.357 to 1.144 for the large class

separation condition for the two-class Mix3PL model solutions. The results for item

discrimination parameters of Mix3PL model are summarized in the plots in Figure 4.

As expected, recovery of item discrimination parameter estimates improved as the

sample size increased in the two- and three-class conditions. As shown in Figure 4,

recovery was worse in for the three-class solutions compared with the results for two-

class solutions under the Mix3PL model. The 10-item conditions with nonequal group

sizes (NE10) produced the highest mean RMSE values and 50-item conditions with

equal- and nonequal group sizes (E50 and NE50) had the lowest mean RMSE values

for both two- and three-class conditions. Increase in the test length had a positive

effect on the recovery of item difficulty parameter estimates. Overall, nonequal group

size conditions had higher RMSE values than conditions with equal group size condi-

tions for each test length conditions. None of the six conditions yielded mean RMSE

values less than 0.10. Mean RMSE values were large for the conditions with fewer

than 1,000 examinees particularly with short tests. The degree of class separation

appeared to have a positive effect on the recovery of item difficulty parameters.

Comparable results in Figures 3 and 4 were observed for item difficulty and item

guessing parameters of Mix3PL model (see Figures 5 and 6). However, the difference

between 10-item conditions and other test lengths decreased for item difficulty for

the Mix3PL model, compared with the results of Mix1PL and Mix2PL models. As

for item discrimination results, the number of latent classes, sample size, test length,
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the degree of class separation, and class size appeared to affect recovery of item diffi-

culty and guessing parameters for the Mix3PL model. The conditions with larger

sample sizes, longer tests, smaller number of latent classes, and equal group sizes

had lower RMSEs for item difficulty and guessing parameters, compared with condi-

tions with smaller sample sizes, shorter tests, larger number of classes and nonequal

group sizes. The degree of class separation, however, appeared to differentially affect

the recovery of item difficulty and guessing parameters for the two- and three-class

solutions. The increase in the degree of class separation had a positive effect on the

recovery of item guessing parameters in two- and three-class conditions. This was

also the case with item difficulty parameters in the two-class conditions. However,

the pattern was the reverse for the shorter test lengths for the three-class conditions.

Minimum and maximum RMSE values of item difficulty and guessing parameter

estimates for the two- and three-class solutions are also presented in Tables 7A and

8A (see Appendix).

Mean RMSEs for item difficulty parameters were above 0.10 for all conditions

with all sample sizes in both two- and three-class model conditions (see Figure 5).

Mean RMSE values of item guessing parameters were also above 0.10 for most of

the conditions (see Figure 6). Mean RMSE values of some conditions for 30 and 50

items, however, were less than 0.10 for samples of 4000 or greater. In general, recov-

ery of the item guessing parameter was better than that of item difficulty and item

difficulty was recovered better than item discrimination for Mix3PL.

Classification Accuracy Results

Figures 7 to 9 present classification accuracy results for the Mix1PL, Mix2PL, and

Mix3PL models, when model-data fit holds. Recovery of classification accuracy per-

centages varied between 81.22 and 99.76 for the Mix1PL two-class model for the

normal class separation conditions. Classification accuracy percentages varied from

82.28 to 99.77 for the small separation conditions, from 83.32 to 99.78 for the

medium separation conditions, and from 83.82 to 99.77 for the large class separation

conditions for the two-class Mix1PL model. Likewise, classification accuracy per-

centages varied between 54.58 and 97.66 for the Mix1PL three-class model for the

normal class separation condition. Classification accuracy percentages varied from

54.01 to 97.70 for the small separation condition, from 50.99 to 97.86 for the medium

separation condition, and from 49.20 to 97.95 for the large class separation condition

for the three-class Mix1PL model. Mean classification accuracy values were above

99% for two-class solutions, but mean classification accuracy values were lower,

being above 83% for the three-class solutions. As shown in Figure 7, classification

accuracy percentages for the conditions for the two-class solutions were better than

for the three-class solutions. Classification accuracy percentages appeared to increase

as the test length and number of examinees increased. However, the rate of increase

was small for 30- and 50-item conditions. The increase was consistent for the 10-item

conditions with the sample sizes larger than 400. Test conditions with 30 and 50

items yielded higher percentages than those of the 10-item conditions. In contrast to
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item recovery results, conditions with nonequal group sizes had higher classification

accuracy percentages than conditions with equal group sizes. The 2-class 3 50-item

3 nonequal proportion conditions produced the highest classification accuracy per-

centages for the Mix1PL model for all sample sizes. Classification accuracy per-

centages appeared to increase as the degree of class separation increased from

normal separation to large separation. Recovery of classification accuracy percen-

tages was almost perfect (i.e., 99 percent or higher) for all two-class conditions

with 50 items. Classification accuracy percentages were also very high (i.e., 98

percent or higher) for the 30-item conditions under two-class solutions. However,

the percent of correct identifications was less than 90 for the two- and three-class

conditions with 10 items.

Classification accuracy percentages for the Mix2PL are plotted in Figure 8. The

percent of correct identifications varied between 78.85 and 99.65 for Mix2PL two-

class model conditions with normal class separation. Classification accuracy percen-

tages varied from 72.68 to 99.54 for small separation conditions, from 68.89 to 99.49

for medium separation conditions, and from 65.04 to 99.47 for large class separation

for two-class Mix2PL model conditions. Likewise, classification accuracy percen-

tages varied between 48.55 and 98.83 for Mix2PL three-class model conditions with

normal class separation. Classification accuracy percentages varied from 50.85 to

98.69 for small, from 48.27 to 98.64 for medium, and from 49.53 to 98.60 for large

class separations with three-class Mix2PL model conditions. Mean classification

accuracy values were above 93% for two-class solution conditions, although mean

classification accuracy values were lower, starting at 79% for three-class solution

conditions. Classification accuracy percentages for conditions of the Mix2PL two-

class solutions appear to be better than that of Mix2PL three-class solutions (see

Figure 8). Classification accuracy percentages also appear to increase as the test

length and number of examinees increased. However, the rate of increase of classifi-

cation accuracy percentages changed only slightly as sample size changed, in the 30-

and 50-item conditions. Increase was consistent for the 10-item two-class conditions

for sample sizes larger than 2,000. Conditions with 30 and 50 items yielded higher

percentages than the 10-item conditions. In contrast to item recovery results, condi-

tions with nonequal group sizes produced higher classification percentages than

conditions with equal mixture proportions for most of the simulation conditions. The

2-class 3 50-item 3 nonequal proportion conditions produced the highest percen-

tages for the Mix2PL model for all sample sizes. Classification accuracy percentages

were high (at 98 percent or higher) for almost all two-class 50-item conditions.

Classification accuracy percentages were also very high (above 97 percent) for 30-

item conditions for the two-class solutions. The percent of correct identifications was

lower, however, for the two- and three-class conditions for the 10-item tests.

Classification accuracy percentages appear to decrease as the degree of class separa-

tion increased from normal to large separation.

Classification accuracy percentages for Mix3PL are plotted in Figure 9. The per-

cent of correct identifications varied between 62.40 and 98.22 for Mix3PL two-class
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model conditions with normal class separation. Classification accuracy percentages

varied from 64.69 to 98.38 for the small separation conditions, from 64.08 to 98.13

for the medium separation conditions, and from 67.42 to 98.15 for the large class

separation conditions for the two-class Mix3PL model. Likewise, recovery of classi-

fication accuracy percentages varied between 52.69 and 90.17 for Mix3PL three-

class model conditions with normal class separation. Classification accuracy percen-

tages varied from 51.77 to 92.31 for small class separation conditions, from 54.90 to

93.06 for medium class separation conditions, and from 54.31 to 93.34 for large class

separation conditions for the three-class Mix3PL model. Mean classification accuracy

values were above 86% for two-class solution conditions, but were only above 70%

for three-class solution conditions. As was the case with the Mix1PL and Mix2PL,

classification accuracy percentages for the conditions with two-class solutions were

better than that of three-class solutions for Mix3PL model. Classification accuracy

percentages appeared to increase as the test length and number of examinees increase.

However, the increase rate of percentages changes slightly with sample size increase

especially for 30- and 50-item conditions with sample sizes larger than 200. Increase

appears to be stable for 10-item conditions with the sample sizes larger than 1,000.

Test conditions with 30 and 50 items yielded higher percentages than that of 10-item

conditions. Mixture proportions, however, appeared to differ depending on the recov-

ery of item difficulty parameters. The 2-class 3 50-item 3 equal proportion condi-

tions produced the highest percentages for the Mix3PL model for all sample sizes.

Classification accuracy percentages were relatively good for most of the two-class

conditions (mostly at or above 94 percent) and three-class conditions (mostly at or

above 80 percent) for 50-item tests. Classification accuracy percentages were also

very high for 30-item tests for the two-class conditions (mostly at or above 90 per-

cent) and three-class conditions (mostly at or above 80 percent). However, the percent

of correct identifications for 10-item test conditions were lower, at around 60 percent

for the two-class solutions, and around 70 percent for the three-class conditions. As

was the case with Mix2PL, classification accuracy percentages appear to decrease as

the degree of class separation increase from normal to large.

When all models were compared, the highest classification accuracy percentages

were observed for the Mix1PL model for the two-class solutions with a mean across

all conditions of 95.08 percent. The models with the next highest classification per-

centages were for the two-class Mix2PL (M = 94.24), two-class Mix3PL (M = 87.08),

three-class Mix1PL (M = 84.32), three-class Mix2PL (M = 81.44), and three-class

Mix3PL (M = 71.46).

A Linear Model Analysis of Simulation Results

Mean RMSE and classification accuracy results were also summarized using a linear

model. Effects of each of the conditions were evaluated using a factorial ANOVA for

the RMSE and classification accuracy percentages. The partial eta-squared and F-val-

ues from the factorial ANOVA are presented in Table 3 for each main effect and 2-
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way interactions. As can be seen, number of examinees (N), test length (k), mixture

proportions (P), class separation (S), the number of latent classes (C), and model type

(M) significantly affected a part of the variation in both the RMSE and classification

accuracy percentages. However, the number of latent classes (C) did not explained

variation only in the item guessing parameter of Mix3PL conditions.

Based on partial eta-squared values, sample size (N) and test length (k) were the

most influential factors on RMSE and classification accuracy percentages for each

item parameter. Model type had also a large effect on the results. The least influen-

tial factor was the mixture proportions.

In addition to the interaction between number of class and two factors: mixture

proportion (P 3 C) and test length (k 3 C), interaction between model type and other

factors including sample size (N 3 M), test length (k 3 M), number of class (M 3

C), mixture proportions (P 3 M) and latent class separation (M 3 S) affected both

the RMSE values and classification accuracy parameters. Mean RMSE values for

item guessing parameter were also significantly affected by other two-way

Table 3. Partial Eta-Squared Values for Main Effects and 2-Way Interactions of Simulation
Conditions.

Factor

a b g CA%

F partial-h2 F partial-h2 F partial-h2 F partial-h2

N 561.291 .857** 178.03 .552** 5267.97 .992** 120.820 .456**
k 965.255 .674** 24.691 .033** 9665.68 .979** 3,418.561 .826**
P 10.633 .011** 23.414 .016** 42.117 .091** 32.572 .022*
M 2747.64 .747** 625.976 .464** — — 850.904 .541**
C 1783.92 .657** 57.994 .039** .000 .000 3,514.560 .709**
S 5.719 .018** 368.892 .434** 695.927 .832** 9.691 .020**
N 3 k 1.116 .023 1.467 .020 63.547 .750** 3.779 .050**
N 3 P 0.470 .005 0.029 .000 2.914 .064* 0.265 .002
N 3 M 21.249 .186** 5.100 .066** — — 8.471 .105**
N 3 C 23.913 .204** 0.083 .001 .000 .000 21.936 .132**
N 3 S 0.379 .012 5.863 .109** 9.277 .397** 0.162 .003
k 3 P 2.957 .006 2.619 .004 131.098 .383** 9.005 .012**
k 3 M 217.997 .318** 94.734 .208** — — 23.836 .062**
k 3 C 35.944 .072** 11.873 .016** .000 .000 220.372 .234**
k 3 S 1.071 .007 10.462 .042** 13.844 .164** 0.374 .002
P 3 M 7.077 .008* 4.319 .006* — — 26.840 .036**
P 3 C 6.264 .007* 42.818 .029** .000 .000 16.511 .011**
P 3 S 0.281 .001 1.179 .002 21.403 .132** 1.557 .003
M 3 C 97.144 .094** 89.229 .058** — — 41.036 .054**
M 3 S 4.661 .015** 50.387 .173** — — 2.454 .010*
C 3 S 0.418 .001 1.691 .004 .000 .000 1.853 .004

Note. N = sample size, k = test length (i.e., number of items), p = mixture proportions, M = model type, C =

number of classes. a = item discrimination; b = item difficulty; g = item guessing, CA = classification accuracy.

*p \ .05. **p \ .01.
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interactions including sample size (N) 3 test length (k), sample size (N) 3 mixture

proportion (P), sample size (N) 3 class separation (S), test length (k) 3 mixture pro-

portion (P), and test length (k) 3 class separation (S). These results suggest that inter-

actions of test length with other factors such as sample size, model type and number

of latent classes may affect model parameter estimates.

Discussion

Although mixture IRT models have been shown to be useful in educational and psy-

chological measurement, relatively little research has been reported on the effects of

practical testing conditions such as sample size, test length, number of latent classes,

the degree of latent class separation, and mixture proportions on IRT model para-

meter estimates or classification accuracy. In this study, a Monte Carlo simulation

study was conducted to examine the effects of these testing conditions on item para-

meter recovery and classification accuracy for three dichotomous mixture IRT mod-

els. RMSE values were computed between generating parameters and the parameter

estimates. Effects on class assignment were also assessed using the percentage of

classification accuracy.

The effect of sample size on mixture IRT model parameter estimates has only been

partially investigated in previous studies. The sample size conditions in this study

included a range of conditions from 100 to 5,000 simulated examinees, whereas pre-

vious research has only reported two or three different sample size conditions. Our

findings demonstrated that recovery of item parameters and classification accuracy

was better with an increase in sample size and test length. These results are consistent

with simulation results in S. J. Cho et al. (2013) and Preinerstorfer and Formann

(2012). Item parameter recovery and class assignment were better for the two-class

models than the three-class models. In addition, item parameter recovery was better

for equal class sizes, but the reverse was the case for classification accuracy, with

models with larger class separations producing less accurate results.

Recovery of item parameter estimates and classification accuracy percentages was

better with larger samples of examinees. This was consistent with results from previ-

ous studies (S. J. Cho et al., 2013; Preinerstorfer & Formann, 2012). In this study,

however, we investigated smaller sample sizes to determine where smaller sample

sizes might be expected to affect recovery. Thus, we report on recovery results for

each model for sample sizes from very small (i.e., 100) to large (i.e., 5,000). Results

of this study suggest that the more complex mixture IRT models (e.g., the Mix3PL

model) generally require larger sample sizes to yield accurate estimates. Furthermore,

results of this study also suggest that the simpler mixture IRT models (e.g., the MRM

and the Mix1PL) can typically be estimated accurately with smaller sample sizes.

The findings of this study also suggest that sample size should be at least 2,000 to

obtain stable item difficulty estimates for the Mix1PL. Furthermore, the need for

larger sample size increased as model complexity increased. For the Mix2PL model,

at least 3000 examinees were needed for accurate recovery of item difficulty
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estimates and the larger sample sizes were needed for recovery of item discrimina-

tion. For the Mix3PL model, a sample size of 5,000 was needed to obtain RMSE val-

ues lower than 0.10 for all item parameters. That is, results suggest that accuracy of

recovery of item parameters estimates improved as sample sizes increased. The

RMSE tended to be slightly larger for the Mix2PL and Mix3PL models than the

Mix1PL model. That is, as the number of item parameters increased, recovery tended

to decrease for a given sample size.

Findings also suggested some increase in classification accuracy percentages with

an increase in sample size, although this increase was relatively small for 30- and

50-item conditions. Classification accuracy percentages, however, did not appear to

be affected by sample sizes larger than 1,000. Effects of sample size on classification

accuracy with 10 items were greater than for the 30- and 50-item conditions. The

classification accuracy percentages were also positively affected, however, by an

increase in test length and a decrease in number of latent classes. Finally, classifica-

tion accuracy rates were higher, when the class sizes were not equal.

In summary, consistent with previous research (S. J. Cho et al., 2013; W. H. Finch

& French, 2012; Li et al., 2009), item parameter recovery and classification accuracy

were better with an increase in test length, although classification accuracy percen-

tages varied, as a function of test length. Recovery results for mixture IRT models in

this study were better with more than 10 items. This was also the case for recovery of

item parameters and class assignment.

The results of this simulation study also showed that two-class mixture IRT mod-

els were recovered better than three-class as were recovery of item difficulty and dis-

crimination parameters. That is, more classes appeared to result in less accurate

recovery of item parameters and less accurate classification for all models. The

increase in number of latent classes for a given sample size condition was also asso-

ciated with a decrease in sample size in each class. That is, for a given sample size,

more latent classes result in smaller samples in latent classes. Thus, decreased accu-

racy of recovery of item parameters and the lower classification accuracy are likely

due, at least in part, to the smaller number of individuals in the latent classes, as sug-

gested by W. H. Finch and French (2012). Classification accuracy rates, in other

words, were higher for two-class solution conditions. Results of this study were con-

sistent with results reported in Li et al. (2009).

Another important finding obtained is the effect of item parameter recovery was

better for equal class sizes but less so compared with the nonequal class sizes. Results

also suggested that studies with smaller sample sizes or shorter test lengths may do

well to consider simpler models such as the Mix1PL and MRM.

Results of this study showed that the increase in latent class separation had a nega-

tive effect on both the recovery of item parameters and classification accuracy. When

latent class separation was large, all three models produced less accurate recovery of

generating parameters. Overall, better recovery was obtained with the normal separa-

tion condition in which each class was generated to have the same ability distribution
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N(0, 1). Only item discrimination parameter estimates of some conditions were found

to show better results with larger class separation conditions.

It should be noted that estimation of models did not run smoothly for all condi-

tions. With respect to using mixture IRT models with relatively small samples (i.e.,

of 500 or less), MLR estimation had difficulty reaching convergence for many of the

conditions in the study. While stable results were obtained for conditions with more

than 500 cases, more than 100 data sets were generated in conditions with small sam-

ples and only converged data sets included in this study. This problem was particu-

larly evident for a conditions with three latent classes and for the more complex

Mix3PL models for smaller sample sizes. For the small sample size conditions with

complex models, the variance/covariance matrices of the mixture IRT models

included some unidentified values (e.g., caused by nonpositive definite matrices) and

multiple maxima problems. The data sets generated for shorter test conditions also

had difficulty reaching convergence compared with data sets with the longer tests.

Future research on mixture IRT models might consider examining the effects of

the appropriateness of nonnormal distributions on accuracy of recovery of item para-

meter estimates. In this regard, it is possible that the effects of sample size may vary,

when the distribution of ability is nonnormal. In addition, examining the recovery of

item parameters for different mixture IRT models, for example, multilevel mixture

IRT models, would also be useful.
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Appendix

Table 1A. Generating Item Parameter Values for 30-Item Conditions.

Item b1 b2 b3 a1 a2 a3 g1 g2 g3

1 –0.680 1.079 0.759 1 2 1 0.10 0.25 0.20
2 –0.310 1.463 1.105 1 2 1 0.10 0.25 0.20
3 –1.115 1.004 1.328 1 2 1 0.10 0.25 0.20
4 –1.853 1.242 0.917 1 2 1 0.10 0.25 0.20
5 –1.714 0.665 0.467 1 2 1 0.10 0.25 0.20
6 –0.256 0.175 –1.158 1 2 1 0.10 0.25 0.20
7 –0.457 1.952 0.522 1 2 1 0.10 0.25 0.20
8 –0.017 1.516 –0.729 1 2 1 0.10 0.25 0.20
9 –0.057 0.326 –0.264 1 2 1 0.10 0.25 0.20
10 –0.918 0.574 –0.986 1 2 1 0.10 0.25 0.20
11 –0.577 0.952 –1.819 1 2 2 0.20 0.20 0.25
12 –1.120 0.483 –0.763 1 2 2 0.20 0.20 0.25
13 –1.773 1.009 –1.119 1 2 2 0.20 0.20 0.25
14 –0.381 0.138 –1.632 1 2 2 0.20 0.20 0.25
15 –0.487 –1.203 –0.637 1 2 2 0.20 0.20 0.25
16 –0.804 –0.303 –1.294 2 1 2 0.20 0.20 0.25
17 –1.305 –1.025 –0.599 2 1 2 0.20 0.20 0.25
18 –0.301 –1.894 –0.971 2 1 2 0.20 0.20 0.25
19 1.155 –1.460 –0.717 2 1 2 0.20 0.20 0.25
20 0.722 –0.826 –0.559 2 1 2 0.20 0.20 0.25
21 1.725 –1.710 0.471 2 1 1 0.25 0.10 0.10
22 1.508 –0.942 1.268 2 1 1 0.25 0.10 0.10
23 1.144 –0.481 0.679 2 1 1 0.25 0.10 0.10
24 0.916 –1.133 0.113 2 1 1 0.25 0.10 0.10
25 0.893 –0.250 1.898 2 1 1 0.25 0.10 0.10
26 1.035 –1.010 0.197 2 1 1 0.25 0.10 0.10
27 0.924 –1.685 1.123 2 1 1 0.25 0.10 0.10
28 0.795 –0.577 0.819 2 1 1 0.25 0.10 0.10
29 0.927 –0.270 1.038 2 1 1 0.25 0.10 0.10
30 0.171 –0.493 1.558 2 1 1 0.25 0.10 0.10
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Table 3A. Mean RMSE Ranges for Item Difficulty Parameter Estimates of Mix1PL Model.

Condition

b

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.065 0.461 0.287 0.547 0.423 0.640 0.484 0.702

Two-class-NE10 0.076 0.511 0.304 0.629 0.440 0.720 0.499 0.806

Two-class-E30 0.053 0.359 0.265 0.454 0.399 0.548 0.478 0.606

Two-class-NE30 0.058 0.404 0.276 0.520 0.410 0.627 0.490 0.690

Two-class-E50 0.051 0.352 0.275 0.455 0.407 0.559 0.484 0.629

Two-class-NE50 0.058 0.389 0.284 0.511 0.414 0.624 0.491 0.700

Three-class-E10 0.122 0.781 0.373 0.823 0.550 0.905 0.582 0.774

Three-class-NE10 0.133 0.806 0.367 0.819 0.537 0.884 0.583 0.834

Three-class-E30 0.070 0.579 0.352 0.639 0.537 0.721 0.550 0.731

Three-class-NE30 0.074 0.621 0.348 0.673 0.533 0.759 0.546 0.751

Three-class-E50 0.064 0.449 0.351 0.548 0.533 0.680 0.553 0.696

Three-class-NE50 0.066 0.495 0.345 0.568 0.528 0.664 0.550 0.676

Note. RMSE = root mean square error.

Table 4A. Mean RMSE Ranges for Item Discrimination Parameter Estimates of Mix2PL
Model.

Condition

a

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.154 0.961 0.141 0.915 0.141 0.959 0.147 0.918

Two-class-NE10 0.174 0.901 0.177 0.870 0.185 0.817 0.177 0.793

Two-class-E30 0.087 0.569 0.087 0.587 0.087 0.612 0.088 0.648

Two-class-NE30 0.097 0.652 0.097 0.651 0.098 0.670 0.098 0.669

Two-class-E50 0.081 0.525 0.080 0.517 0.081 0.530 0.081 0.530

Two-class-NE50 0.090 0.587 0.089 0.577 0.091 0.578 0.091 0.555

Three-class-E10 0.337 1.140 0.252 1.121 0.288 1.161 0.324 1.123

Three-class-NE10 0.303 1.169 0.263 1.121 0.369 1.175 0.398 1.171

Three-class-E30 0.109 0.783 0.106 0.780 0.109 0.780 0.112 0.787

Three-class-NE30 0.115 0.818 0.112 0.816 0.114 0.818 0.116 0.824

Three-class-E50 0.149 0.874 0.165 0.903 0.184 0.956 0.097 0.649

Three-class-NE50 0.099 0.647 0.101 0.628 0.102 0.668 0.103 0.690

Note. RMSE = root mean square error.
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Table 5A. Mean RMSE Ranges for Item Difficulty Parameter Estimates of Mix2PL Model.

Condition

b

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.103 0.671 0.308 0.709 0.443 0.757 0.529 0.799

Two-class-NE10 0.124 0.698 0.345 0.762 0.489 0.822 0.558 0.878

Two-class-E30 0.059 0.377 0.269 0.453 0.403 0.545 0.485 0.619

Two-class-NE30 0.065 0.457 0.281 0.575 0.414 0.667 0.493 0.713

Two-class-E50 0.057 0.365 0.277 0.455 0.411 0.543 0.490 0.604

Two-class-NE50 0.064 0.409 0.290 0.532 0.424 0.635 0.502 0.692

Three-class-E10 0.231 0.913 0.396 0.917 0.556 0.918 0.663 0.929

Three-class-NE10 0.205 0.947 0.372 0.928 0.541 0.969 0.633 0.934

Three-class-E30 0.078 0.607 0.348 0.626 0.527 0.686 0.636 0.708

Three-class-NE30 0.084 0.632 0.343 0.650 0.514 0.686 0.607 0.722

Three-class-E50 0.120 0.815 0.397 0.820 0.589 0.861 0.644 0.710

Three-class-NE50 0.076 0.498 0.346 0.524 0.516 0.637 0.626 0.756

Note. RMSE = root mean square error.

Table 6A. Mean RMSE Ranges for Item Discrimination Parameter Estimates of Mix3PL
Model.

Condition

a

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.538 0.794 0.533 0.701 0.541 0.650 0.569 0.659

Two-class-NE10 0.536 0.801 0.629 0.710 0.619 0.734 0.479 0.713

Two-class-E30 0.264 0.629 0.269 0.603 0.253 0.607 0.250 0.590

Two-class-NE30 0.274 0.626 0.288 0.586 0.318 0.554 0.330 0.542

Two-class-E50 0.244 0.648 0.216 0.591 0.215 0.564 0.216 0.557

Two-class-NE50 0.264 0.644 0.251 0.600 0.263 0.553 0.282 0.553

Three-class-E10 0.543 1.143 0.568 1.120 0.571 1.085 0.596 1.036

Three-class-NE10 0.541 1.145 0.607 1.111 0.584 1.082 0.607 1.072

Three-class-E30 0.408 1.053 0.421 0.995 0.418 0.974 0.421 0.954

Three-class-NE30 0.421 1.045 0.422 1.028 0.430 0.989 0.461 1.001

Three-class-E50 0.519 1.213 0.407 1.140 0.367 1.149 0.357 1.126

Three-class-NE50 0.602 1.226 0.531 1.191 0.536 1.137 0.485 1.144

Note. RMSE = root mean square error.
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Table 7A. Mean RMSE Ranges for Item Difficulty Parameter Estimates of Mix3PL Model.

Condition

b

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.485 1.046 0.563 1.027 0.640 1.023 0.717 1.046

Two-class-NE10 0.485 1.000 0.727 0.997 0.788 1.015 0.768 0.980

Two-class-E30 0.261 0.899 0.406 0.931 0.518 0.959 0.584 0.961

Two-class-NE30 0.255 0.966 0.445 0.998 0.629 1.030 0.718 1.073

Two-class-E50 0.220 0.792 0.363 0.846 0.480 0.883 0.557 0.902

Two-class-NE50 0.226 0.823 0.393 0.881 0.537 0.898 0.626 0.944

Three-class-E10 0.497 0.888 0.480 0.879 0.464 0.849 0.478 0.829

Three-class-NE10 0.509 0.916 0.475 0.886 0.478 0.875 0.475 0.836

Three-class-E30 0.385 1.040 0.476 1.024 0.586 1.013 0.625 1.008

Three-class-NE30 0.412 1.050 0.490 1.050 0.583 1.029 0.612 1.011

Three-class-E50 0.417 1.087 0.499 1.098 0.607 1.095 0.684 1.091

Three-class-NE50 0.520 1.087 0.548 1.084 0.624 1.077 0.632 1.098

Note. RMSE = root mean square error.

Table 8A. Mean RMSE Ranges for Item Guessing Parameter Estimates of Mix3PL Model.

Condition

g

Normal Small Medium Large

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

Two-class-E10 0.164 0.252 0.172 0.302 0.173 0.307 0.172 0.318

Two-class-NE10 0.153 0.250 0.158 0.282 0.170 0.287 0.181 0.294

Two-class-E30 0.099 0.255 0.111 0.272 0.108 0.285 0.102 0.285

Two-class-NE30 0.097 0.261 0.110 0.284 0.122 0.297 0.126 0.305

Two-class-E50 0.079 0.229 0.085 0.246 0.089 0.257 0.093 0.263

Two-class-NE50 0.082 0.228 0.089 0.246 0.094 0.258 0.099 0.268

Three-class-E10 0.164 0.252 0.172 0.302 0.173 0.307 0.172 0.318

Three-class-NE10 0.153 0.250 0.158 0.282 0.170 0.287 0.181 0.294

Three-class-E30 0.099 0.255 0.111 0.272 0.108 0.285 0.102 0.285

Three-class-NE30 0.097 0.261 0.110 0.284 0.122 0.297 0.126 0.305

Three-class-E50 0.079 0.229 0.085 0.246 0.089 0.257 0.093 0.263

Three-class-NE50 0.082 0.228 0.089 0.246 0.094 0.258 0.099 0.268

Note. RMSE = root mean square error.
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