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SUMMARY

Animals abstract compact representations of a task’s structure, which supports accelerated learning and
flexible behavior. Whether and how such abstracted representations may be used to assign credit for in-
ferred, but unobserved, relationships in structured environments are unknown. We develop a hierarchical
reversal-learning task and Bayesian learning model to assess the computational and neural mechanisms un-
derlying how humans infer specific choice-outcome associations via structured knowledge. We find that the
medial prefrontal cortex (MPFC) efficiently represents hierarchically related choice-outcome associations
governed by the same latent cause, using a generalized code to assign credit for both experienced and in-
ferred outcomes. Furthermore, the mPFC and lateral orbitofrontal cortex track the current “position” within
a latent association space that generalizes over stimuli. Collectively, these findings demonstrate the impor-
tance of both tracking the current position in an abstracted task space and efficient, generalizable represen-

tations in the prefrontal cortex for supporting flexible learning and inference in structured environments.

INTRODUCTION

Much of human and animal behavior relies on the ability to effec-
tively represent the environment and infer the most likely state of
the world, which in turn supports effective decision making. For
example, the value of taking a vacation depends not only on the
weather in your current location, but also on the weather in other
locales, which are systematically related to your own. Observing
cold winter weather in Chicago (northern hemisphere) predicts
summer weather in the southern hemisphere, making a trip to
Santiago, Chile, all the more valuable. In this situation, your brain
needs both the ability to represent the underlying structure of the
world (e.g., the inverse relationship between weather in each
hemisphere) and the ability to assign credit for an inferred
outcome (warm weather in Santiago) given an observed
outcome (cold weather in Chicago). Although this inference pro-
cess is critical to flexible learning, the neural substrates that
support credit assignment for inferred outcomes in real-world
hierarchical environments are still unknown. In the current study,
we test the hypothesis that the prefrontal cortex (PFC) efficiently
represents a hierarchical task space and uses this to infer un-
seen outcomes and assign credit to the appropriate latent cause.

Knowledge about the relational structure of environmental and
task states is thought to be stored in representations called
cognitive maps (Behrens et al., 2018; Gershman and Niv, 2010;
O’Keefe and Nadel, 1978; Schuck et al., 2016; Tolman, 1948;
Wilson et al., 2014). These representations contain information
critical to goal-directed behavior, encoding relationships be-

tween positions or task states in an efficient manner. For
example, outside of physical space, cognitive maps might
contain relational knowledge about transition probabilities be-
tween states, choice-outcome contingencies, or how these con-
tingencies change over time (Baram et al., 2021; Boorman et al.,
2016; Daw et al., 2011; Hampton et al., 2006). In principle, cogni-
tive maps are powerful because they allow for rapid updating
when the state of the environment shifts (Bartolo and Averbeck,
2020; Boorman et al., 2021) and generalization to similarly struc-
tured tasks (Baram et al., 2021; Behrens et al., 2018; Franklin and
Frank, 2018; Whittington et al., 2020). Within the PFC, the lateral
orbitofrontal cortex (IOFC) and medial PFC (mPFC), in particular,
have previously been implicated in using a model of the task’s
structure or an abstracted cognitive map of the task space to
assign credit for specific rewards to specific past choices or
causes (Boorman et al., 2013, 2016; Jocham et al., 2016; Taka-
hashi et al., 2011; Tanaka et al., 2008; Walton et al., 2010; Wang
et al., 2020; Wilson et al., 2014). However, the neural mecha-
nisms that underlie assigning credit to latent causes that
generalize to inferred, but unseen, relationships in structured en-
vironments remain poorly understood.

To support credit assignment, the PFC may also play a critical
role in tracking the state of knowledge within abstract task
spaces. Unobservable task-relevant information that defines
the current task state has been found during multi-step sequen-
tial tasks in the OFC (Schuck et al., 2016; Wilson et al., 2014;
Zhou et al., 2021). Moreover, recent work has pointed to interac-
tions between the OFC and hippocampus that would allow the
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Figure 1. Learning task design and behav-
ioral results

(A) Four fractal shapes were organized hierar-
chically into two independent systems of inversely
related pairs. This meant that participants could
infer the outcome of one object (e.g., shape B) after
observing the outcome from choosing its system
pair (e.g., shape A).

(B) lllustration of the fMRI task. Participants were
presented with 2 of the 4 shapes to choose from in

Model Estimates

a2

' q

each trial. They chose between the shapes on the
basis of two pieces of information: their estimate of
the transition probabilities (q' , g? ) that an object
would lead to either gift card outcome, and the
randomly generated number of points they could
potentially win on each gift card if obtained. The
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cated the number of points for iTunes. Next, they
observed the outcome of their choice (the gift card
and amount) after a delay.

(C) Example of a participant’s learning trajectory as
the task unfolded. Shaded regions indicate the true
associations for system 1 (g', blue) and system 2
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weighted-inference learning model (see compu-
tational models for details).
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(D) Results of a logistic regression analysis, which shows the influence of past choices and outcomes on the current choice. Both experienced and inferred past
choice-outcome associations significantly predicted current choice. As expected, this influence decreased for trials further in the past. Height of the bars

represents the mean of regression coefficients + SEM.

(E) Results of model comparisons using BIC (top) and 8-fold cross-validation (bottom) for weighted-inference, no-inference, and perfect-inference models

(see computational models for details).

brain to track “positions” along trajectories through abstract
task spaces to guide value-based decision making (Knudsen
and Wallis, 2020; Zhou et al., 2019), with neurons in the anterior
hippocampus coding the relative position along trajectories
through the 3D abstract value space defined by each option’s
current estimated value (Knudsen and Wallis, 2021). Recent ad-
vances in the approaches to measure the neural representations
of cognitive maps with functional magnetic resonance imaging
(fMRI) have likewise identified abstracted cognitive maps of
latent task spaces in the human hippocampus and OFC (Clarke
etal., 2019; Garvert et al., 2017; Park et al., 2020, 2021; Schapiro
et al., 2016). Together, these insights suggest a new framework
that may be extended to understanding associative learning in
structured tasks: the brain might track the inferred position of hi-
erarchically related associations in an abstracted “association
space” that generalizes over choice stimuli for efficient model-
based inferences and rapid updating.

In this study, we address these questions using a “hierarchical
reversal-learning task,” which required participants to use
knowledge about hierarchical relationships to infer unobserved
outcomes and make effective goal-directed decisions. We
show that the mPFC is a critical region for both efficiently repre-
senting choice-outcome relationships governed by a shared
latent cause and updating inferred choice-outcome associations
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at the time of feedback. Moreover, we present novel results
showing that the IOFC and mPFC encode the inferred “position”
within an abstracted association space for choice-outcome as-
sociations governed by the same latent cause.

RESULTS

Hierarchical reversal-learning task

Participants completed a “hierarchical reversal-learning task” in
which they tracked the probability that each of four fractal
shapes would lead to either of two gift cards for one of two
different online stores (Figure 1A). On each trial, participants
choose between two of the four shapes based on two pieces
of information: estimates of the probability that a particular
shape will lead to a particular outcome and the randomly gener-
ated potential payout indicated for each outcome (Figure 1B).
Importantly, the set of fractal shapes was organized hierarchical-
ly into two independent systems of inverse pairs. Shapes Aand B
formed “System 1,” while shapes C and D formed “System 2.”
This hierarchical organization gave participants the opportunity
to infer unobserved outcomes for an unchosen shape when
observing the outcomes derived from choosing the system
pair. For example, participants could track the probability that
A leads to outcome 1 by observing the frequency with which B
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leads to outcome 2. Because the two systems were independent
of each other, however, nothing could be learned about shapes
A or B from observing the outcomes of shapes C or D. Partici-
pants completed a total of 160 trials across two sessions, during
which the associative contingencies reversed three times (Fig-
ure 1C). Participants were told that one trial would be selected
at random to count “for real” at the end of the experiment and
they would be given money proportional to the number of points
won on the gift card they received for that trial.

Behavioral results

Optimal behavior in this task required that participants tracked
which stimulus choices led to which of the two outcomes and
used that knowledge to make decisions on the current trial.
We characterized the influence of previous choice outcomes us-
ing logistic regression models that predicted the odds of
choosing a certain shape given the currently desired outcome
(i.e., the stimulus with a higher payoff) and outcomes resulting
from the last three times that shape was chosen (Equation 9).
Note that available choice stimuli changed on each trial, so these
outcomes may be more than 3 consecutive trials into the past.
Critically, we also included the outcomes that could be inferred
from choosing the system pair—the source of inferred informa-
tion in our task—in the regression model. If participants utilized
both experienced and inferred outcomes to learn, reinforcement
learning theory predicts positive effects for each type of outcome
that decline exponentially over time into the past (Bayer and
Glimcher, 2005; Sugrue et al., 2005).

This analysis showed significant effects for all three experi-
enced and inferred choice-outcome pairs going three choices
into the past (all t[36]'s > 1.94, all p’s < 0.05) (Figure 1D). This
learning-model agnostic analysis confirms that subjects learned
from both the experienced and inferred choice-outcomes asso-
ciations and utilized this information to make decisions on the
current trial. We compared the magnitude of regression coeffi-
cients between experienced and inferred outcomes over time
using a two-factor ANOVA. We found an expected main effect
of time (F[2,72] = 5.63, p < 0.01), showing that outcomes from tri-
als further in the past were less influential on the current choice.
The magnitude of the effects from the experienced outcomes
were not found to be significantly greater than those from
inferred trials, although there was a trend for experienced out-
comes to show greater influence on future choices (F[1,36] =
2.97, p = 0.09 BF4o = 0.91), and there was no significant interac-
tion between outcome type and time (F[2,72] = 2.34, p = 0.10,
BF,o = 0.52). Finally, the analysis showed no effect of the previ-
ous outcome’s reward magnitude on the subsequent trial’s
choice (t[36] = —1.03, p = 0.85), consistent with the fact that
they were generated randomly on each trial and there was no
advantage to tracking rewards between trials in our task. Taken
together, this analysis shows that subjects learned from both
experienced and inferred outcomes and that both directly expe-
rienced outcomes and inferred outcomes were integrated into
predictions for guiding future decisions in our task (results
were similar when incorporating the subjective value of each
outcome into the analysis; Figure S1).

To estimate subjects’ trial-by-trial beliefs about stimulus-
outcome associations, we fit each participant’s choices to a
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Bayesian reversal-learning model (see STAR Methods) that uti-
lized the history of outcomes observed from their choices and
outcomes inferred from the system pair. The best-fitting
“weighted-inference model” jointly estimates the stimulus-
outcome (transition) probability and the reversal probability and
included three free parameters: «, an indifference term capturing
the subjective preference for one outcome over the other; 8, an
inverse temperature term capturing participants’ sensitivity to
differences in choice values; and vy, an inference weight term,
which weighted the posterior belief in choice associations for
experienced relative to inferred outcomes, reflecting the amount
of information each subject derived from a directly experienced
outcome relative to an inferred outcome (see Equations 2, 3, 4, 5,
and 6; Table S1 for the distribution of parameter estimates).

We compared the “weighted-inference model” with two alter-
natives, which did not include y but instead assumed the partic-
ipants learned nothing from inference (“no-inference model”) or
learned perfectly from inferred and experienced information
(“perfect-inference model”), using Bayesian information crite-
rion (BIC) (Equation 8). The weighted-inference model was found
to best capture choice data across subjects compared with
these alternative models (lowest summed BIC across subjects),
although many subjects were better fit by the perfect-inference
model (Figure S4B). This shows that that the weighted-inference
model (BIC = 7,266.34) captured meaningful differences in par-
ticipants’ ability to infer from unobserved data (no-inference
model BIC = 7,401.76; perfect-inference model BIC =
7,278.12), generally consistent with the results of the logistic
regression analyses above (Figure 1E). We further confirmed
this finding using forward chaining cross-validation (CV) (k = 8;
Bergmeir and Benitez, 2012) to show that this model predicted
out-of-sample choices better than models that assumed either
no inference or perfect inference. Parameter recoverability for
the weighted-inference model is reported in Figure S9.

Finally, we tested whether subjects’ choices were a sigmoidal
function of the estimated expected value of each choice option
using the weighted-inference model (likelihood ratio test
[LRT] = 63.58, p = 1.53 x 10~ '®). Figure S1B shows the highly
significant results of a multilevel logistic regression model pre-
dicting the subjects’ choices given the expected value (Equa-
tion 5) difference between the two options on each trial.

Neural substrates of belief updating from experienced
and inferred outcomes

Our next analysis sought to identify the network of brain regions
that support updating of choice-outcome associations by
combining information from experienced and inferred outcomes
at the time of feedback. We defined the belief update from feed-
back as the Kullback-Leibler divergence (Dg, ) between prior and
the posterior beliefs after observing the outcome on each trial,
also called the “Bayesian surprise” (Iglesias et al., 2013; Schwar-
tenbeck et al., 2016). Because participants may learn through
both experienced and inferred outcomes, the total update on
a given trial is the sum of the Dy, for experienced and inferred
choice-outcome associations (D3™; Equation 13). We used
Dﬁzm as a parametric modulator of blood-oxygen-level-
dependent (BOLD) activity during feedback (see GLM 1) and
found clusters of positive effects in pre-supplementary motor
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Figure 2. Network of regions that reflect additional update for in-
ferred information

Sagittal and coronal slices through t statistic maps display brain regions whose
activity at feedback reflected the additional information gained from including
inferred information compared with only experienced information (D%ff). For
illustration, maps display regions at a threshold of t(36) = 2.71, p < 0.005,
uncorrected.

area/dorsal anterior cingulate cortex (pre-SMA/dACC) (peak
voxel, [x,y,z] = [0, 18, 50], t[36] = 7.31), bilateral dorsolateral pre-
frontal cortex (dIPFC) (right, [x,y,z] = [46,24,48], t[36] = 5.90; left,
[x,y,z] = [36,8,36], t[36] = 6.22) and bilateral anterior insula (right,
[x,y,2] = [32, 26, 0], t[36] = 5.35; left, [x,y,z] = [-32, 22, 2], t[36] =
5.69), (all whole-brain cluster-corrected with permutation-based
threshold-free cluster enhancement [TFCE] [Smith and Nichols,
2009] at prrce < 0.05), suggesting that these regions encode up-
dates to the system of choice-outcome associations (Fig-
ure S1C; Table S2A,; see Figure S1D for reward prediction error
[rPE] effects).

Next, we tested for regions that carried additional information
about updating derived from inferred information. We did this by
calculating the Dy, for the “no-inference” model (D%*), which
quantified the update on the current trial if no inference occurred
(i.e., only experienced information was used in the update). We
then used the “weighted-inference model” to compute the Dy,
given the subject-specific weighting of inferred information
(D%’ghted). We computed the difference between these regres-
sors (DRI Equation 13) to quantify the additional updating that
occurs when inferred information is combined with directly expe-
rienced information to update beliefs. We used the trial-by-trial
estimates of D" and D2 as parametric modulators of BOLD
activity at the time of feedback (see GLM 2) to identify regions
that reflected the additional update gained from inference,
even while controlling for updates due to experienced outcomes
only. We found significant positive effects of DRI in clusters in
pre-SMA/dACC ([x,y,z] = [4, 20, 50], t[36] = 5.86), bilateral dIPFC
(right, [x,y,z] = [44, 26, 28], t[36] = 5.05; left, [x,y,z] = [—44, 24, 28],
t[36] = 5.22) and bilateral anterior insula (right, [x,y,z] = [32, 22,
—2], t[36] = 5.58; left, [x,y,z] = [-30, 22, —4], t[36] = 6.11) (Fig-
ure 2A; Table S2B). These results implicate this network in sup-
porting the additional updating of beliefs about transition proba-
bilities from inferred outcomes at feedback.

Recent studies have suggested that activity in the dopami-
nergic midbrain encodes prediction errors not only about reward
value but also about outcome identity or “task state” (Boorman
et al., 2016; Gershman and Uchida, 2019; Howard and Kahnt,
2018; Iglesias et al., 2013; Langdon et al., 2018; Sharpe et al.,
2017; Suarez et al., 2019). As such, we tested whether activity
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in the dopaminergic midbrain, in particular the ventral tegmental
area (VTA), would also reflect the additional update of transition
probabilities based on inferred information (DRI, using an inde-
pendently defined region of interest (ROI) over the VTA and sub-
stantia nigra (SN) (Diaconescu et al., 2017). Consistent with our
prediction, we found a significant positive effect of the combined
update at the time feedback was delivered in the VTA ([x,y,z] =
[2,—18, —10], 1[36] = 3.99, ptrce < 0.05, ROI corrected), indepen-
dent of rPE. Notably, we found no significant effect of the rPE
(Equation 7) in the same VTA/SN ROI (Figure S1D), consistent
with the fact that there was no incentive to learn from reward
magnitudes in our task and that subjects did not show a behav-
ioral effect of learning from reward magnitudes, as shown above.
Collectively, this suggests that the VTA BOLD signal aligns with
the instrumentally relevant variable to track in our task and,
importantly, incorporates inferred information based on knowl-
edge of the task structure (Figure 2B).

mPFC represents latent causes and assigns credit to
inferred outcomes

We hypothesized that the brain would reinstate the latent cause
using an efficient code that generalizes over stimuli and out-
comes governed by the same cause at feedback time. If partic-
ipants retrieve representations of structural relationships at
feedback to appropriately assign credit to the latent association,
we would expect to decode the representations associated with
the common causes that arise in trials where the systems’ pairs
led to opposite outcomes. To probe which brain regions as-
signed credit to a shared representation for shapes governed
by the same causal relationship (i.e., shapes that are part of
the same system), we performed a multivariate pattern analysis
(MVPA) on activity patterns at feedback, the critical time for
credit assignment. First, we trained pattern-based classifiers
(linear support-vector machines [SVM]) to classify the chosen
stimulus and its associated outcome identity at the time of feed-
back (e.g., A — O1) and then used the resulting feature weights
to decode from patterns of activation on trials where the system
pair led to the opposite outcome through the same causal
relationship (e.g., B — 02) (Figure 3A; see supplemental infor-
mationSTAR Methods for details on decoding procedure).
Importantly, this analysis controlled for both the shape stimulus
and outcome identity such that no sensory information, neither
the previous choice stimulus nor reward outcome identity, was
shared between training and test sets. Thus, decoding is only
possible if these events share information about the same causal
relationships that bind shapes in the same system.

We began by conducting a whole-brain searchlight analysis to
estimate decoding accuracy at each voxel in the brain (Kriege-
skorte et al., 2008). Based on our a priori hypotheses concerning
the IOFC and mPFC in credit assignment (Baram et al., 2021;
Boorman et al., 2013, 2016; Jocham et al., 2016; Tanaka et al.,
2008; Walton et al., 2010), we tested anatomically defined
ROlIs (Glasser et al., 2016) of the mPFC and IOFC that were hy-
pothesized to contain these representations and used TFCE
(Smith and Nichols, 2009) to correct for multiple comparisons.
This analysis identified a significant cluster of voxels in the
ventral portion of the left mPFC ([x,y,z] = [-6,50,—10], t[36] =
3.54, prece < 0.05 ROI corrected; Figure 3B; Table S3A).
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Figure 3. Medial PFC carries representations of the latent cause to assign credit to inferred outcomes

(A) lllustration of the decoding procedure used to decode the latent cause. We first trained a linear SVM on specific shape-outcome combinations from each
system (e.g., A — O1and C — O1) and then used it to classify the system pairs that led to the opposite outcome (B — O2 and D — 02). No information other than
the latent cause was shared between training and testing trials. In a separate analysis (E), we correlated the amount of information about the latent cause in each
trial (distance from SVM hyperplane) with the magnitude of updates estimated by the weighted-inference learning model (see multivariate analysis for details).
(B) Sagittal slice through t statistic map showing effects of decoding of the latent cause from analysis depicted in (A) in the mPFC (SVC within an a priori mPFC
ROI), displayed using the same conventions as Figure 2.

(C) Same as (B) but shows regions where the magnitude of information decoded about the latent cause was significantly correlated with Dﬁf"’ (SVC in mPFC RQI).
(D) Conjunction t statistic map showing overlapping regions of (B) and (C) (p < 0.05 uncorrected).

(E) Graphical description of the analysis shown in (C). We used the same decoding procedure as in (A) but calculated the distance between multivariate voxel
pattern on each trial and the hyperplane to compute the decodability of system representations at feedback on each trial. We then correlated this distance with
D™, a model-derived measure of the magnitude of the update for the latent cause at the time of feedback.

However, we found no significant clusters in the IOFC bilaterally
(p > 0.05 uncorrected). Given a recent demonstration that ento-
rhinal cortex (EC) represents the abstracted task correlation
structure of stimulus-outcome associations (Baram et al,
2021; Whittington et al., 2020) and its strong anatomical connec-
tions withthe mPFC (Amaral et al., 1987; Barbas and Blatt, 1995),
we also performed post hoc tests in anatomically defined EC
(Amunts et al., 2005; Zilles and Amunts, 2010), which did not
show significant decoding (p > 0.05 uncorrected), highlighting
functional differences between the EC and mPFC.

To more directly test whether these representations of the
latent cause in mPFC relate to credit assignment during infer-
ence, we correlated the strength of representations of the latent
cause in the mPFC at the time of feedback with model-derived
estimates of the updates to outcome contingencies within
each system. We used the same SVM classifier to compute
the decodability of system representations at feedback during
each trial. We quantified the decodability of each representation
as its distance to the SVM hyperplane (Schuck and Niv, 2019)
and signed the distances such that correct classifications were

positive and incorrect classifications were negative. As before,
we defined the total trial-by-trial belief update as the D™ be-
tween the prior and posterior beliefs after having observed an
outcome. This whole-brain analysis revealed a significant cluster
in mPFC (Spearman rank correlation; [x,y,z] = [8,46,—10], t[36] =
4.19; prece < 0.05 ROI corrected; Figure 3C; Table S3B), which
overlapped with the main effect of latent cause decoding (Fig-
ure 3D; using the conjunction analysis with minimum statistics,
at p < 0.05 uncorrected compared with conjunction null; Nichols
et al., 2005). This finding shows enhanced representation of the
common causal relationship with greater updating for credit
assignment for both experienced and inferred outcomes at the
time of feedback.

IOFC and mPFC track positions in a latent association
space during learning

Our results have shown that the mPFC contains a representation
of underlying causal relationships that are used to infer informa-
tion about related stimuli during feedback. Based on recent ev-
idence showing that the hippocampus and OFC may track the
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Figure 4. Lateral OFC and medial PFC track
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ing linear regression (see “representational simi-
larity analysis of association space” for details).
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displaying regions in which the model RDM was
significantly related to the neural RDM. Maps are
displayed with the same conventions as in Fig-
ure 2. The clusters survived small volume correc-
tion within an a priori defined IOFC ROI (axial slice)
and mPFC ROI (sagittal slice).

(C) Visualization of the relationship between
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— Neural Pattern Similarity to Current State Mean
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model-estimated reversal points and neural
pattern similarity. Dashed vertical line indicates a
reversal point, where 0 is the trial directly after a
reversal in the configuration of each system, as

estimated by the weighted-inference learner. Green line represents the neural similarity of the activation patterns in the IOFC on each trial immediately preceding
and subsequent to the reversal point, compared with a “template pattern” —defined as the average pattern from trials with the same configuration as those prior
to the reversal point but from the other block. Red line shows the model-derived belief estimate on the same trials. Note the corresponding shift in the model

estimate and neural data from pre- to post-reversal.

current position within a value or task space (Knudsen and
Wallis, 2020, 2021; Park et al., 2020; Schuck et al., 2016), we hy-
pothesized that these regions may track the “position” of sub-
jects’ current beliefs within an abstract “association space” for
each system. To test this hypothesis, we used representational
similarity analysis (RSA) to identify regions of the brain that
coded relative “positions” within the latent association space.
That is, we sought to identify brain regions that had increasingly
similar representations when subjects had increasingly similar
beliefs about the choice-outcome contingencies for each sys-
tem. We generated a model representational dissimilarity matrix
(RDM) that calculated the divergence (Jensen-Shannon diver-
gence (Dys); a symmetric measure of the distance between
distributions, Equation 14) between model estimates of the pos-
terior belief distributions about stimulus-outcome associations
in a system (e.g., g') computed from our weighted-inference
learning model in each trial across sessions. We also generated
a RDM of neural similarity from activity patterns measured within
a searchlight during the inter-trial interval (ITl) by calculating the
Euclidean distance between voxel patterns in each trial across
sessions. We hypothesized that regions tracking one’s current
position in the association space would show increasingly
greater representational similarity for trials that had increasingly
similar posterior beliefs about the specific position of a configu-
ration of associations within a system. We reasoned that if
subjects were tracking the latent cause governing a system of
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associations (A — O1, B — 02), then this coding should be in-
dependent of the specific choice made within that system (e.qg.,
include both A [C] and B [D] choices for system 1 [2]) (see Fig-
ure 4A and STAR Methods).

We tested this hypothesis by constructing a general linear
model that predicted the values of the neural RDM while control-
ling for other possible explanations of neural similarity, using the
Djs model RDM along with 5 control RDMs. These alternative
RDMs controlled for the effect of the position in association
space of the unchosen system for the current trial as well as sim-
ilarity of the recently observed outcome, identity of the chosen
object, identity of the unchosen object, magnitude of the rPE,
and physical response made (see STAR Methods). We focus
on the ITl following recent evidence of positional coding in an ab-
stract value space during the ITl in monkey hippocampal single
unit recording (Knudsen and Wallis, 2021) and because subjects
theoretically benefit from tracking this information between trials
when no external task-related sensory stimuli are being pro-
cessed, but see Figure S2D for results during other phases of
the task. The RDM representing task “position” revealed signif-
icant effects in a network of regions, including the bilateral IOFC
(left IOFC, [x,y,z] = [-26, 30, —12], t[36] = 4.24, prrce < 0.05 ROI
corrected; right IOFC, [x,y,z] = [28, 28, —14], t[36] = 3.79,
pPrrce < 0.05 ROI corrected) and rostral mPFC ([x,y,z] = [4,
58, —4], t[36] = 4.56, ptrce < 0.05 ROI corrected) (Figure 4A;
Table S4). Indeed, visualization of pattern similarity in the IOFC
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on the trials immediately before and after an inferred reversal
point support this finding by revealing a shift in representation
from the previous to the current belief state, in tandem with the
shift in model estimates (Figure 4C). This visualization showed
positive pattern similarity to the current state prior to the reversal
and shift to negative pattern similarity at the inferred reversal
point. Collectively, these findings show that the IOFC and rostral
mPFC track the current position in an abstract association space
that generalizes over choices in the same system.

DISCUSSION

Understanding how the brain uses abstracted internal models to
learn from unobserved but inferred outcomes is essential for un-
derstanding flexible behavior in complex environments. The cur-
rent experiment adds to a growing body of work showing that the
mPFC is critical to maintaining compact and generalizable repre-
sentations of task-relevant variables (Baram et al., 2021; Beh-
rens et al., 2018; Constantinescu et al., 2016; lordanova et al.,
2007; Morton et al., 2020; Samborska et al., 2021) but goes
further to show these representations support credit assignment
when outcomes can be inferred through shared hierarchical re-
lationships. Our results show that the mPFC selectively encodes
the shared causal relationship between hierarchically related
choice-outcome associations with a compact representation
and leverages this code to assign credit for unseen but inferred
choice-outcome associations. We also show that the mPFC
and IOFC code the subject’s belief about the current position
of the hierarchically related system within a common “associa-
tion space” for each system, suggesting that these regions are
integral for tracking the learner’s “position” within a latent asso-
ciation space as learning unfolds.

We designed a novel hierarchical reversal-learning task to test
the hypothesis that assigning credit for inferred outcomes de-
pends on the reinstatement of a generalizable neural representa-
tion that links both experienced and inferred causal relationships
(Liu et al., 2021). We found that a reversal-learning model that
assumed subjects’ updating benefited from detecting the true
underlying reversal structure of choice-outcome contingencies
best fit our behavioral data compared with alternative models.
This suggests that subjects may have leveraged their training
with the same task structure, but different stimuli, to efficiently
update coupled choice-outcome contingencies following a
reversal, but the extent to which each subject did so varied.
This finding dovetails with previous demonstrations in similarly
structured tasks (Boorman et al., 2016; Hampton et al., 2006)
and is consistent with theoretical notions of structure learning
(Gershman and Niv, 2010).

Prior evidence across species has implicated both the IOFC
and the mPFC in credit assignment (Boorman et al., 2013;
Chanetal.,2016; Jocham et al., 2016; Takahashietal., 2011; Ta-
naka et al., 2008; Tsujimoto et al., 2009; Walton et al., 2010), but
the precise functional roles attributed to each region remained
unclear. Consistent with studies showing that the mPFC con-
tains condensed, low-dimension codes for structurally related
items in the environment (Constantinescu et al., 2016; Doeller
et al., 2010; Morton et al., 2020; Park et al., 2021; Samborska
et al., 2021; Wang et al., 2020), we found that mPFC, but not

¢ CellP’ress

IOFC, reinstated the shared latent cause that governed two
sets of stimulus-outcome associations in the same system.
Importantly, this effect could not be explained by either the out-
come’s identity or the identity of the chosen stimulus alone.
Further, we show that the decodability of these representations
in the mPFC increases when subjects updated their estimates to
a greater extent, which is consistent with prior work showing that
representations in the mPFC are important for rapid updating be-
tween states (Klein-Fligge et al., 2019; Muller et al., 2019). These
results suggest that generalized representations in the mPFC are
used for credit assignment at feedback, directly linking knowl-
edge about causal structure to inference about unobserved out-
comes. Moreover, they provide novel evidence that cognitive
maps may be used to generate inferences about an untaken
choice based on knowledge about the underlying relational
task structure.

Our study also extends our understanding of the network of re-
gions involved in updating choice-outcome associations by
showing that these regions also support updating from inferred
outcomes using a model of the task’s hierarchical structure. A
network of regions’ activity reflected the full learning update
(Dkp) from an outcome, including the VTA, pre-SMA/JACC,
dorsolateral PFC, ventrolateral PFC/IOFC, and anterior insula,
consistent with past studies investigating directly experienced
outcomes/stimuli (Boorman et al., 2016; Iglesias et al., 2013;
Schwartenbeck et al., 2016). These findings support the view
that dopaminergic precision-weighted prediction errors modu-
late both local cortical and long-distance cortico-cortical and
cortico-striatal synapses within a similar network of regions dur-
ing incremental learning (Stephan et al., 2015). Notably, dopami-
nergic neurons in the VTA are known to signal rPEs (Bayer and
Glimcher, 2005; Montague et al., 1996; Schultz et al., 1997),
but more recent work has suggested that this role extends to up-
dating value-neutral associations between states or outcome
identities. Indeed, activity in the VTA is modulated by errors in
the predicted outcome identity (Howard and Kahnt, 2018; Igle-
sias et al., 2013, 2021; Oemisch et al., 2019; Suarez et al.,
2019; Takahashi et al., 2017) and belief updating about the state
of associative relationships in the environment (Schwartenbeck
et al., 2016; Sharpe et al., 2017), which have been shown to
play a causal role in learning such value-neutral associations
(Langdon et al., 2018; Sharpe et al., 2017). Here, we show that
activity in the VTA quantitatively encodes precision-weighted
prediction errors about the state of hierarchically related
choice-outcome associations, integrating information from
both experienced and inferred outcomes. Furthermore, this
signal only reflected how much to learn about the instrumentally
relevant variable and did not track learning-irrelevant, but none-
theless rewarding, outcomes. We found no evidence that the
VTA signal incorporated the monetary reward value obtained
at feedback, which in our task is irrelevant for future behavior.
This is consistent with the absence of any effect of reward
magnitude on learning behaviorally. Taken together, our findings
highlight the importance of dopamine in updating model-based
associations through inference.

Finally, we show that a network of brain regions, including the
IOFC and mPFC, track the learner’s position in a latent associa-
tion space that generalizes over choice-outcome associations
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within a system. We found that the IOFC and rostral mPFC
showed relational coding corresponding to the position in the hi-
erarchically related choice-outcome association space such that
activation patterns were increasingly similar when the expecta-
tion and precision of beliefs about associations within a system
were more similar. This finding dovetails with recent studies
showing that relational position in a wide range of abstract
spaces is coded by the medial temporal lobe and OFC (Constan-
tinescu et al., 2016; Knudsen and Wallis, 2021; Park et al., 2020;
Theves et al., 2019). Here, we show that this coding scheme ap-
plies to a hierarchically general latent causal space in the IOFC
and mPFC that reflects both the certainty and confidence in
learned choice-outcome associations (Pouget et al., 2016).
Although we did not find any significant effects on the hippocam-
pus at the thresholds used, there was a subthreshold correlation
in the head of the right hippocampus (ptrce < 0.08 ROI cor-
rected, Figure S2A). Recent pioneering studies using closed-
loop theta stimulation in monkeys have identified a causal role
for hippocampal input to a homologous region of the IOFC (Brod-
mann area 13) during the ITI of a reward-guided learning task
(Knudsen and Wallis, 2020). A second study elaborated these
findings by showing that hippocampal neurons coded for direc-
tion dependent “positions” in the monkeys’ trajectory through an
abstract 3D value space (Knudsen and Wallis, 2021). Taken
together with our findings, this suggests that representations
of learning trajectories in the IOFC and mPFC may be derived
from hippocampal relational codes, which are input to these re-
gions through direct anatomical connections (Barbas and Blatt,
1995). In our study, these codes can be used for accurate credit
assignment and inference. Interestingly, significant coding of the
latent association space during the outcome phase was local-
ized to similar regions but was qualitatively weaker compared
with our results during the ITl phase, which could suggest that
this signal may have been ramping up at the time of the outcome
(see Figure S2C). Our findings support the theory that the OFC
represents an animal’s current position in a task space when
its position cannot be directly observed (Schuck et al., 2016;
Stalnaker et al., 2015; Wilson et al., 2014; Zhou et al., 2021)
and, more generally, connect with other findings showing that
the OFC plays a critical role in representing task-specific rela-
tional knowledge for model-based inference (Wang et al., 2020).

One key difference between recent previous work (e.g., Baram
et al., 2021) and the findings presented here concerns whether
prefrontal and entorhinal brain regions form unique or general-
ized codes for separate systems of relationships despite having
similar structures. For example, in Baram et al. (2021), the au-
thors found that when participants learned about choice-
outcome relationships with identical correlation structures, a
system of regions —including the EC and temporal parietal junc-
tion—carried generalized representations of the task structure
that were independent of the stimuli or “contents.” Further,
they found that the ventral mPFC carried rPE effect patterns
that were also specific to the correlation structure between stim-
uli and outcomes, suggesting that value error signals in this re-
gion are coded differently depending on how choice options
are inter-related. Our study, conversely, focuses on the role of
the mPFC in assigning credit for unobserved outcome identities
within a relational system. Thus, our data elaborate the role of the
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mPFC in inference and credit assignment by showing that it con-
tains specific representations of the latent cause for coupled
choice-outcome relationships that differentiate between sys-
tems despite sharing the same correlation structure and lever-
ages this knowledge to connect specific inferred outcome
identities to choice stimuli independently of their reward value.
We also found no evidence of system-specific representations
in the EC. Although these results are certainly not contradictory
to the findings in Baram et al. (2021), they point to a more flexible
role for the mPFC in credit assignment and generalization de-
pending on the needs of the task and highlight important differ-
ences with EC coding. Overall, our results show how compact
representations in the mPFC are utilized during structured
learning and afford insights into neural mechanisms that support
learning from inferred knowledge.

An intriguing open question is whether the IOFC would reacti-
vate specific individual past choices, as opposed to generaliz-
able latent causes with a common code, for credit assignment
to specific past choices. Previous work has shown that the
OFC reactivates choices, which led to the currently observed
outcome specifically at outcome time (Tsujimoto et al., 2009)
and may trigger the reactivation of sensory representations via
descending anatomical connections between areas of posterior
and lateral OFC and several sensory cortical regions (Carmichael
and Price, 1995; Cavada et al., 2000). Whether or not the same
mechanism underlies credit assignment for inferred stimuli is un-
known. Notably, we did not find any significant decoding of the
chosen stimulus identity alone at feedback anywhere in the brain
at our threshold used (prrce < 0.05). This finding is consistent
with our fMRI decoding and behavioral analyses showing that,
by and large, subjects treated stimulus-outcome associations
governed by the same cause as a unitary representation rather
than coding its individual associations distinctly. Future work
can elaborate these mechanisms by testing whether the appro-
priate inferred choices are reactivated in a modality-specific sen-
sory cortex during learning.

In conclusion, we find that the human brain represents latent
causes with compact representations in the mPFC, which sup-
ports updating during credit assignment to inferred relation-
ships. Further, relational codes in both the IOFC and mPFC track
learning positions along trajectories within an abstract associa-
tion space that generalizes over stimuli and rapidly update the
actor’s position as learning dynamically unfolds. Collectively,
these findings support a novel framework for understanding
how the human brain learns in hierarchically structured settings
that abound in the real world.
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MATLAB ver.2018a Mathworks https://www.mathworks.com;
RRID:SCR_001622

Psychopy v1.84 Peirce, 2009 https://www.psychopy.org;
RRID:SCR_006571

SPM12 Penny et al., 2007 https://www.fil.ion.ucl.ac.uk/spm/
software/; RRID:SCR_007037

MarsBaR Ver. 0.44 Brett et al., 2002 https://sourceforge.net/projects/marsbar/;
RRID:SCR_009605

RSA toolbox Nili et al., 2014 https://git.fmrib.ox.ac.uk/hnili/rsa

LIBSVM Chang and Lin, 2011 https://github.com/cjlin1/libsvm;
RRID:SCR_010243

Original Code This manuscript https://doi.org/10.17605/OSF.IO/XACHQ

Deposited data

Unthresholded statistical maps This manuscript https://identifiers.org/neurovault.

collection:11985

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Phillip P. Witkowski
(pwitkowski@ucdvis.edu).

Materials availability
This study neither used any reagent nor generated new materials.

Data and code availability
@ Unthresholded group-level statistical maps have been deposited at NeuroVault (https://identifiers.org/neurovault.
collection:11985) and are publicly available as of the date of publication. Links are listed in the key resources table.
o All original code has been deposited at Open Science Framework (DOI 10.17605/0SF.I0/XACHQ) and is publicly available as of
the date of publication. DOls are listed in the key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

Forty subjects (25 females; mean age = 20.5) were recruited from the general population around University of California, Davis. None
of the participants reported a history of neurological or psychiatric disorders. Subjects either received either course credit or money
($15/hour) for participation in the experiment. Two subjects were removed due to excessive motion during scanning (head
movement > 3mm), while a third subject was removed for excessive dropout in ventral regions of the prefrontal cortex that are of
interest to this study. Thus, the final sample included 37 subjects (22 Females; mean age = 20.5). All procedures were approved
by the University of California, Davis IRB. Participants gave written consent before the experiment.

METHOD DETAILS
Task instruction
Subjects completed a “hierarchical-reversal-learning-task” in which they tracked associations between abstract shapes (choices)

and reward identities (outcomes) to optimize the possibility of larger rewards at the end of the experiment (Figure 1A). On each trial,
subjects were presented with 2 of 4 different fractal shapes from which to choose. Two numbers between 0 and 100 were presented
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at the top of the screen in unique colors. The color of the numbers corresponded to the identity of the gift-cards that the subject could
win, and the magnitudes corresponded to the point value of the reward on the current trial. For example, a pink “42” meant that
subjects could win 42 points on an iTunes gift-card while a green “58” meant they could win 58 points on a Starbucks gift card.
The cumulative number of points available on each trial was always equal to 100. Subjects were told that the point values were
randomly chosen on each trial and there was no point to tracking them.

Each shape had a certain probability of leading to one outcome and the inverse probability of leading to the other. For example, at
the start of the experiment shape “A” would lead to the Starbucks gift-card with probability g' and the iTunes gift-card with prob-
ability 1-g". However, these true probabilities would reverse such that a given shape would lead to each outcome with opposite prob-
abilities. Continuing with our example, after a reversal, shape “A” would lead to an iTunes gift card with probability g* probability and
a Starbucks gift card with 1-g' probability. The point values (reward magnitudes) for each outcome were generated randomly from
the range 0-100 on each trial, meaning that subjects did not need to track the reward magnitudes between trials. Instead, to maximize
rewards, participants had to track the probability a shape would lead to each of the outcomes over trials and combine this with the
reward magnitudes associated with each outcome on the current trial to guide their decisions based on their subjective preference.

Crucially, the shapes were organized such that they formed 2 sets of inversely related “systems”. Shapes within a system always
led to opposite outcomes and had inverted outcome probabilities. Shapes A and B were paired (system 1) and shapes C and D were
paired (system 2). The inverse relationships within a system allowed subjects to learn the probability that a shape would lead to a
specific outcome by observing the choice-outcome relationship of the other shape within the same pair. For example, experiencing
that shape A led to Starbucks would also give you the knowledge that if shape B were available and it was chosen, the outcome would
have been iTunes. The same relationship was true for shapes C and D. Between systems, observations were completely independent
of each other such that observing an outcome from choosing A or B gives no information about the likely outcomes of choosing
shapes C or D. These structural relationships between choice options and outcomes within a system, and the independence of items
between systems, was clearly explained to participants before the experiment began. Specifically, subjects knew that the probability
that shape A would lead to a particular outcome was the opposite probability that shape B would lead to that outcome, and the same
for shapes C and D. Subjects were tested on these relationships via a “matching task” during the practice session and once more
before the scanning session (see S5). Finally, during a debriefing session we asked subjects to name the inversely related pairs in
the task.

However, subjects did not have any prior knowledge about choice-outcome associations, and when reversals in choice-outcome
associations occurred, or how many times reversals would occur (three times for each system, see Figure 1A). Subjects only knew
that the outcome probabilities could “switch” throughout the task. Therefore, subjects needed to infer both associative contingency
for each choice and when reversals had occurred from their choices and outcome histories during experiments.

Stimuli

Four visually distinct unfamiliar fractal images were chosen such that the visual similarity between any two items were minimal and
were presented to all participants as choice options. Images for system 1 and those for system 2 were randomized across
participants.

Two types of reward identities (two gift cards images) were chosen from 7 different gift-cards from stores familiar to participants:
Best-Buy (blue), Barnes and Noble (tan), iTunes (pink), Regal (purple), REI (orange), Sephora (white), and Starbucks (green). The two
reward identities were chosen prior to the fMRI experiment based on participant’s preference ratings. Subjects rated their preference
level for each of these gift cards presented in a random order on a 1-100 scale. A pair of gift-cards having the minimum difference
among four most highly preferred were selected per individual participant. These two gift-cards were assigned to outcome 1 (O1) and
outcome 2 (02), counterbalanced across subjects, and presented during fMRI experiment. This procedure allowed us to minimize
potential biases from initial preferences in choices during the reversal learning task, while maintaining a high desirability for each
outcome. All stimuli in each phase were presented on a computer running Psychopy v1.84 (Peirce, 2009).

Task-Schedule and Procedure
We generated two separate schedules that determined which choice options (shapes) would be presented on each trial and when
reversals would occur. In this experiment, there were six possible unique combinations of four choice stimulus on any trial. In the
experiment schedule, none of the same combination was repeated twice in consecutive trials. Further, we optimized the schedule
such that an ideal Bayesian learner (perfect inference model; see Computational models) would choose each shape and receive each
outcome approximately equally, given an equal preference between outcome identities. This was important because it minimized the
potential for sampling bias in planned multivariate analyses (see multivariate analyses). Each schedule had predetermined reversal
points where the choice-outcome associations switched (e.g., g'>1-q" and 1-q'>q") for a given system. During fMRI experiments
system 1 reversed every 40 trials starting from the first trial onwards, while system 2 reversed every 40 trials starting from the 20™ trial
onwards, making the state of each system independent of each other. The independent reversal points of two systems made it so
participants were not able to learn the choice-outcome associations of one system from that of the other.

Subjects completed two blocks of 80 trials (160 trials total). Before the fMRI experiment, subjects were instructed that one trial
would be chosen at random to count “for real” and would be used to calculate the subjects reward for the experiment. This makes
each choice independent. Therefore, participants need to make an optimal decision for every trial to maximize their rewards. At the
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end of experiment, we randomly selected one trial and gave a reward proportionate to the number of points earned on the specific gift
card received on that trial. The minimum reward given was $5 while the maximum value was $25.

Behavioral Training

To familiarize subjects with the task, all subjects completed a behavioral training session before the fMRI experiment. After behavioral
training participants performed the fMRI experiment on different day within a week. The task used for behavioral training was the
same with the fMRI task except for slight modifications to aid learning. During behavioral training, the experimenter guided subjects
through the first 30 practice choice trials to ensure that subjects understood the task, then left participants to complete the rest of the
trials on their own. In addition, to ensure that subjects tracked the relationship between paired stimuli, subjects were tested every
10th trial on the relationship between shapes, by asking them to connect shapes in the same pair with a single line (Figure S3).
The subjects received feedback via the line color - an incorrect pairing resulted in the line turning red, while a correct pairing turned
the line green. During behavioral training participants learned the task with the same fractal images assigned to the same systems.
However, we used 2 faux outcome identities (Zappos and Netflix) that would not be available for rewards during the fMRI experiment.
Participants who understood the task well and performed well (model fit negative log-likelihood <130) were invited to return for fMRI
experiments. Among 48 participants who initially enrolled the experiment, 40 participants participated in fMRI experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational models

Weighted-Inference learning model

We designed a Bayesian computational model to predict the choice of participants in each trial t based on one’s choice and outcome
history and available choice options and reward magnitudes of the current trial (see Arulampalam et al., 2002; Boorman et al., 2016 for
related models). Since the true probability of the associative contingencies cannot be observed, the model estimated, in a Markovian
fashion, the subjective belief that choosing a given shape (S) would lead to outcome 1 (O7), and by definition led to outcome 2 (02)
with the inverse probability which is denoted as follows:

p(S—0O1) = gs

p(S—-02) = 1-qs (Equation 1)

Choice-outcome contingencies for all shapes were modeled as separate distributions, but beliefs about contingencies for shapes
in the same system were related through an inference term (y where 0 < y < «), which takes account to what extent an individual
participant learns and updates g5 from direct experiences (the outcome y after choosing S) compared to that from inferred outcomes
(the outcome y’ if you had chosen S’ where, S and S’ are paired in the same system; if y is O7 then y’ is 02). On each trial t, the pos-
terior belief about g5 is computed using Bayes rule, as follows:

P (ve| Gst) P (Astlye -1, vs) - v if directly experienced

Equation 2
P (v:|as.s) P (Qselyrre—1,vs)+ 1/y if inferred (quation 2)

P(CIs.t|}/1;t) o {

where vs is the probability that a reversal in the associative contingencies has occurred (see Equation 4). That is, y = 1 for an ideal
learner who can take advantage of the structural relationship (p(S —y:) = p(S’ —y;)) and learn from inferred outcomes as much
as they learn from experienced outcome. Therefore, a participant with a higher level of y is more likely learn from direct experiences
(S—y) but less likely to learn from inferred outcomes (S’ —y;). After each observation the model updated the associative contin-
gencies in a Markovian fashion, such that the posterior probability depended only on the belief about the most recent state of the
associative contingencies (gs ¢ 1) and the likelihood of a reversal (v; _ 1). This is because the prior, g5+ _ 1, captures the most likely state
given the full history of previous choices and outcomes without needing to store the history of outcomes or statistics of the environ-
ment. The single trial update is then reflected in the following equation:

P(CIs,t~,Vt |}/1;t) = P(Yt|qS,t)/{/P(QS.tq,qu{Y1:t71)P(Vt|Vt71)thf1 p(qs,t‘qs,t—hvt) dqgst -1 (Equation 3)

After each trial, the probabilities were normalized such that they remained bounded between 0 and 1.

We took into account the probability that the contingency of the system associated with the current choice (S) is reversed (vs =
p(Jst = 1)) when computing the prior, p(qs,t|y1 t—1). The term vg indicated the subjects’ belief that choice-outcome contingencies
had reversed (Js; = 1) for the chosen shape, S and assumed this probability was constant but unknown. Taken together, the prior
belief of the associative contingency for a chosen shape remained the same as the posterior of the previous trial (o(gs; - 1)) with the
probability 1 — vs (if no reversal has occurred) or flipped to the inverse probability (1- p(gs ¢ — 1)) with the probability vs (if a reversal has
occurred). Therefore, the prior (q:|y1.+— 1) after observing an outcome on trial t-1, but before the beginning of a new trial ¢, is obtained
by the following transition function:
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P(Qs,t|.V1:t71) = /[P(Qs,t71|.V1:t71) (1 - Vs)} + [1 - P(QS,t71|}/1:t71) . Vs]st (Equation 4)

A second normalization step was done after applying the transition probabilities v to the posterior probabilities of the current trial,
such that the probability of all possible transitions equals 1. Note that vs was defined and updated independently per four possible
choice options. However, due to the inherent design of the underlying task structure, vsfor shapes within the same system should be
more correlated than vs of the other system. Finally, note that the reversal probability is fixed during the experiment but unknown to
participants.

For each participant, we initialized the model with a uniform prior over the entire parameter space at the onset of the task. All in-
tegral computations are performed using numerical grid integration.

We then used the prior belief, in the associative contingencies, p(qs + |y1;t, 1), to compute the expected value of a given shape (Es)
on each trial according to the following formula:

Es = [P(qselyre—1) *MP" = a] + [1 = p(Qselyre—1) - MP% - a” "] (Equation 5)

where « was a free parameter and reflected a subject’s preference for one outcome (O7) over the other (02) (0 < a < %), and MP' and
Mto2 indicated the reward magnitudes of the outcome available in the current trial, f. We then predicted the choice of a participant
between the two available shapes (Es1 and [Eg,) on each trial according to a SoftMax function:

efs18

p(S1) = (Equation 6)

efs18 4 gls26
where the free parameter 3, captured the level of sensitivity of choices to expected values (inverse temperature; 0 <8 < «).
Finally, when the outcome was revealed, the reward prediction errors (rPE) were computed as follows:

MO+ if y, = O1

Equation 7
M?z-a”ifyt:OZ Eq )

rPE = R — [EswhereR:{

Alternative models

We tested the weighted-inference learning model against two additional models which made alternative assumptions about
how subjects updated the posterior belief from the inferred outcomes. In the first alternative model, named the “perfect-
inference model”, v was fixed to 1 in Equation 2, resulting in equal and optimal integration for experienced and inferred outcomes
(Yexp=7inf=1)- In the second alternative model, called the “no-inference model”, we assumed that participants did not take the struc-
tural relationship between shapes in the same system into the updates. Specifically, we set v, = 0 while y,,, = 1 in Equation 2.
Therefore, an agent using no-inference model only learned from experienced outcomes but not from inferred outcomes.
Parameter estimates

The weighted-inference learning model has three free parameters, «, 8, and vy, and the two alternative models have two free param-
eters, a, and 8. We fit all three models independently for each subject using custom Markov Chain Monte Carlo (MCMC) code in
MATLAB R2018a. Model parameters were bounded by the following: [0< a <2], [0<8<1], and [0<y<100], and were initialized at
a=1 p3=.5, and y=1. In each case, these starting values represent no bias in the parameter (e.g., =1 means no preference for either
choice). Each model was fit to maximize the likelihood of a subject’s choices given model estimates of the expected value of each
choice on each trial (Equation 6).

Model Comparisons

To test potential overfitting, we compared the goodness of fit for each model type using the sum of the Bayesian Information Criterion
(BIC) over subjects. This gave us an overall measure of how well these data were fit by each model at the group level, while penalizing
models that added additional free parameters.

BIC = k«In(n) — 2inL (Equation 8)

where k is the number of parameters in the learning model, n is the number of choices (i.e., trials) the subject made, and InL indicates
the log-likelihood of each model.

Forward chaining cross-validation

We also tested if the weighted-inference model better predicts out-of-sample data. In the current study, a subject’s belief that any
choice would lead to a specific outcome is dependent on the observations and inferences made in the preceding trials. That is the
choice at the trial t cannot be predicted from any randomly sampled trials but only from y1.; _ 1. To account for the time-dependence of
our data, we applied a forward chaining cross validation (CV) (Bergmeir and Benitez, 2012), which iteratively fits data from the earliest
time points and uses the fitted model to predict later time points. We began by fitting the model on the first 20 trials of the experiment,
then tested the model on choices made in the 20 trials that came immediately after (trials 21 through 40). In the next iteration, we
trained on the first 40 trials, and tested on choices made in the subsequent 20 trials (trials 41 through 60). This process continued
in steps of 20 until the last iteration which trained on the first 140 trials and then were tested on the last 20 (total of 8 folds). We
summed together the negative log-likelihood returned from each test set to determine which model performed best.
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Model-free analysis of choice history on decisions

To test whether subjects showed a behavioral effect of learning on choice, we fit logistic regression models estimating the effects of
past choice-outcome observations on which item was chosen at the current trial t. The regression model included the effect of expe-
rienced choice-outcome association going three trials back (denoted t£ — n), and inferred choice-outcome relationships going three
trials back (denoted t' — n), such as the following:

p(chosen) o
In{ ———"<| = Bo+B1Wi_10i _1 + BoWie _ 20 _5 + B3Wie 30 _3+ BaWy _ 104 _1 + BsWy _ 204 _» + BgWy _304 _g + B, M
p(UnChOSGn) ﬁO 61 t! 1Yt 1 62 tE —2YtE —2 63 tE —3YitE -3 64 th—1Yt —1 65 th—2%t -2 56 t-3¥ -3 57 tE 1
(Equation 9)

where n is the n-th previous trial that object was chosen, up to 3 previous experiences. For example, t£* — 1 means the outcome
directly experienced the last time they chose the current shape. The same notation is used for previously inferred outcomes. In
this study, participants were presented with two choice options among four shapes in each trial. This means that the chosen option
in the current trial may not be available in the previous trial. As such, if current choice S or the paired shape, S’ was not available in the
previous trial, thentf — 1 ort’ — 1 was the last trial when S or S'was chosen, respectively. We fit separate regression models for the
choices of each of four shapes for each subject. For experienced trials, the value of each of these regressors was 1 if currently consid-
ered choice led to the desired outcome n-trials back and -1 if it did not. Thus:

Oc . = { 1if S _, led to the desired outcome (Equation 10)

—1if S _, led to the undesired outcome

We also included contextual, counter-factual information about the other option in the experienced regressors. For example, if the
subject were choosing between choices A and C but choose C and got the desired outcome, this may deter them from choosing
shape A the next time A and C are available. We included this information for completeness with respect to all the experienced in-
formation that could influence the choice of a shape on any given trial.

For inferred trials, the regressor had a value of 1 if the system pair (i.e., B when participants’ choice is A in the current trial) led to the
undesired outcome n trials back, such that

t—n

1if S, __ led to the undesired outcome

t—n

—1if S, _ led to the desired outcome )
Oy_, = (Equation 11)

because this indicates that the currently considered shape should lead to the desired current.

We assumed that participants would desire the outcome with higher magnitude between O7 and O2. To test the effects of greater
desirability in previous choices in the current decision, we assigned the difference in reward magnitude (W, = |[MQ' =~ — M2 |
as a weight on each regressor. We did not consider the subjective preference of one outcome type over the other (« in the model,
Equation 5) for the model free regression analysis. However, we repeated the analysis using « to moderate the value of each stimulus
(Equation 5) to test if subjective preference produced any changes in these results. Finally, M;’Ebﬁ represents the influence of the
magnitude of the reward obtained the last time subject chose the currently considered choice.

After fitting separate regression models for each fractal shape, we averaged together the regression coefficients (8) across shapes,
representing the subject specific influence of previous decisions on the current choice.

1

MRI data Acquisition

Data was acquired using Siemens Skyra 3 Tesla scanner. We used gradient-echo-planar imaging (EPI) pulse sequence, with a multi-
band acceleration factor of 2, and set the slice angle of 30° relative to the anterior-posterior commissure line, minimizing the signal
loss in the OFC region (Weiskopf et al., 2006). We acquired 38 axial slices, 3mm thick with the following parameters: repetition time
(TR) = 1200 ms, echo time (TE) = 24 ms, flip angle = 67°, field of view (FoV) = 192mm, voxel size =3 x 3 x 3 mm3. Contiguous slices
were acquired in interleaved order. We also acquired a field map to correct for potential deformations with dual echo-time images
covering the whole brain, with the following parameters: TR = 630 ms, TE1 = 10 ms, TE2 = 12.46 ms, flip angle = 40°, FoV =
192mm, voxel size =3 x 3 X 3 mma3. For accurate registration of the EPIs to the standard space, we acquired a T1-weighted struc-
tural image using a magnetization-prepared rapid gradient echo sequence (MPRAGE) with the following parameters: TR = 1800 ms,
TE = 2.96 ms, flip angle = 7°, FoV = 256mm, voxel size =1 x 1 x 1 mm3.

Preprocessing

Preprocessing of the data was done in SPM12 (Wellcome Trust Centre for Neuroimaging) in MATLAB (2018b Matworks). Data were
preprocessed using the default options in SPM. Images were slice-time corrected and realigned to the first volume of each sequence.
We realigned to correct for motion using a six-parameter rigid body transformation. Inhomogeneities in the field were corrected using
the phase of non-EPI gradient echo images at 2 echo times, which were co-registered with structural maps. Images were then
spatially normalized by warping subject specific images to the reference brain in the MNI (Montreal Neurological Institute) coordinate
system with 2mm isotropic voxels. Finally, for the univariate analysis images were spatially smoothed using a gaussian kernel with full
width at half maximum of 8mm.
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Univariate fMRI Analysis

To model BOLD activity in each voxel we used a GLM with four different regressors; the choice period (a boxcar, from the choice
onset including the duration of .5s plus the reaction time of decisions), the button press (a stick function), the reward expectation
period (a boxcar including jittered 1SI) and the reward feedback phase (a 2 second boxcar). In the first GLM (GLM 1), we included
the decision difficulty of each trial as a parametric regressor at the choice period. The decision difficulty was computed as the inverse
of the expected value difference between options. See below:

|Es1 — Esp|™" (Equation 12)

In addition, we computed the model-based belief updates to the choice-outcome associations after the outcome was observed in
each trial and inputted this as a parametric regressor at the feedback phase. This belief update was calculated as the Kullback-Lei-
bler divergence (Dg.) between the prior and posterior belief in gs; (Equation 1) for the chosen shape (S),

D (t) = / In (Fm)p(qs.,}ym) dgs: (Equation 13)

The Dk, reflected changes in the model estimated “beliefs” about which choice led to which outcome (gift card identity) as par-
ticipants progressed through learning. The Dg; for each shape was computed using numerical integration and then shapes in the
same system were summed together system to generate Dﬁ‘zm. Six motion regressors were included as regressors of no interests
in the model to account for translation and rotation in head position during the experiment. From the first-level analysis, contrast im-
ages of parameter estimates from regressors of the D™ were estimated for each participant and inputted for the one sample t-test in
the second level analysis.

We performed an additional GLM (GLM 2) to distinguish the neural activity reflecting the additional information gained from infer-
ence in belief updates at the time of feedback. To address this, we computed the Dk, from the no-inference model (Dﬁ{p) in addition to
Dy which was estimated from the weighted-inference model given the subject specific weighting of inferred outcomes. We then
generated DRI by subtracting D5® from the Dy, of the weighted-inference model (D2 = DJ7¥9™® _ DE®). Thus, DEP this would
account for the update that comes from experiencing outcomes alone (i.e., no inference), whereas DRI contained the additional up-
dating that occurs when both inferred outcomes are integrated into a new belief. GLM2 was the same with the GLM1 except that we
inputted two parametric regressors at the feedback phase.

Group-level statistical inference

Group level testing was done using a one-sample t-test (df=36) on the cumulative functional maps generated by the first level anal-
ysis. All first level maps were smoothed prior to being combined and tested at the group level. To correct for multiple comparisons, we
used Threshold-Free Cluster Enhancement (TFCE) which uses permutation testing and accounts for both the height and extent of the
cluster (Smith and Nichols, 2009). All parameters were set to default parameters (H=2, E=0.5) and we used 5000 permutations for
analysis. In all ROl based analyses and whole brain analyses we report effects that surpassed a prrce<.05 threshold.

We first performed group-level inference on independent anatomical ROls, then performed exploratory whole brain analyses. For
ROl analyses, we first extracted voxels from each ROl in each subject’s first-level activation map, averaged the maps together, then
applied small volume TFCE correction. We used this analysis method for testing univariate effects of updating in VTA, decoding the
latent cause of each system in mPFC and testing which regions represented association space. All other analyses were corrected for
multiple comparisons at the whole brain level.

Multivariate Analyses

The MVPA analysis aimed to identify regions of the brain that coded knowledge of the relationship between system pairs - the un-
derlying structure of the task. To test this, we estimated the BOLD activity patterns during the feedback phase using unsmoothed
preprocessed images. The feedback period was modeled as a boxcar that had a constant duration lasting 2 seconds from the feed-
back onset of each trial. No parametric modulators were added.

Each trial was labeled according to which shape was chosen and which outcome received from that choice (S; —y;). Our main
hypothesis of this study was that subjects would use knowledge about the underlying relationships between shapes in a system
to make inferences of unobserved outcomes at feedback. If participants retrieve representations of these structural relationships
at feedback to appropriately assign credit learned from experiences to the latent association, we could expect to decode the rep-
resentations associated with the common causes that arise in trials where the systems’ pairs led to opposite outcomes (S;— y;).
For example, trials where one shape in the pair lead to outcome one (e.g., A— O7) should share the same causes (e.g., g') with trials
where the other shape in the same system led to the opposite outcome (e.g., B— 02).

Importantly, to make sure that the activity patterns are not associated with the outcomes (O7 or O2) presented on the screen but
are associated with the latent causes (q'or g2, i.e., the reward contingency in the system 1 and 2), we organized training and testing
labels in a way to control for visual information. Specifically, we trained a shape against another shape which shared the same out-

1 2
comes but did not share the causes (e.g., AL O1vs. Ci»O1) to identify the activity patterns specifically associated with the causes.
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Subsequently, we tested theses activity patterns on independent data sets which included the shapes that did not share the outcome

1 2
with the training shapes but share the causes (e.g., B 3, 02vs. D% 02). As this example showed, no sensory information was shared
between training and testing sets that could influence the classifier to bias the results. See table for the full list of eight training and
test pairs.

Training and Testing scheme of Linear Classifier for Latent Cause Decoding

Training set Test set

A% 01vs. c %01 B 02vs. DH02
q' 1-q? q' 1-q?

A= O1vs.D — O1 B— 0O2vs.C — 02
1-q' =g 1-q' 1=gq2

A — O2vs.C — 02 B —- O1vsD — O1
1-q' 7 1-g' 7

A — 02vs D->02 B - 01vsC—-01
17(71 qz 1-q' qz

B - 01vsC—-01 A — 02vs D—>02
1-q' 1-q? 1-q' 1-¢?

B - O1lvsD — O1 A — 02vsC — 02
q' 1-q? q' 1-q?
B— 02vs C — 02 A— O1vsD — O1
1 2 1 2
BL 02vs DL 02 A% 01vs cL 01

This table shows all combinations of training (left column) and testing (right column) trial sets used for decoding the latent cause at
the time of feedback. Capital letters denote the chosen shape (A,B,C or D). Arrows followed by “O1” or “O2” indicate which outcome
each shape led to on that trial. Note that training and test stimuli are matched for outcome identity so that no visual information can be
used by the classifier to separate representations. Finally, letters above each arrow denote the latent cause (p or g) being decoded,
indicating the system each stimulus belongs to (system 1 or system 2, respectively).

We then used a searchlight procedure to identify regions of the brain that contained representations of the underlying structure of
the environment. Each searchlight consisted of a 5x5x5 voxel cube placed around a centroid voxel in the brain. Each centroid was
required to values in at least 10 of the surrounding voxels to be considered for further processing and were then standardized by
z-scoring the beta values within each searchlight.

The data were subset such that only the relevant trials were used for a particular classifier (see table), then split by blocks into a
training set and a test set. We used LIBSVM (Chang and Lin, 2011) to fit linear SVMs with training data, which we then used to classify
data points from the test set. We iterated through this process for each of 2 blocks and for each of 8 combinations of training and test
labels, then computed the mean decoding accuracy (average proportion of correct classifications) across all 16 classifiers for each
voxel. The mean decoding accuracy for each voxel was compared to a voxel specific null distribution which was estimated with the
same procedure while randomly assigning the labels over 100 permutations at each searchlight. The mean classification accuracy of
this null distribution was subtracted off the classification accuracy of each searchlight to give us a measure of how reliably information
about the latent cause could be decoded above chance. The resulting maps were then spatially smoothed using a gaussian kernel
with full width half maximum of 8mm.

Group-level analyses were preformed using a one-sample t-test on accuracy maps across subjects (see Group-level Inference).
For this analysis we focused on a priori defined ROIs in IOFC and mPFC (see Regions of interest (ROI) analyses) and corrected for
multiple comparisons within each ROI using small volume correction TFCE. The threshold for significance remained the same
(PrFce <-09)

Decoding of Latent Cause Correlated with Belief Updates

To test whether the strength of the neural representations followed beliefs in specific choice-outcome contingencies, we correlated
the probability that representations for the latent cause could be decoded on each trial with trial-by-trial belief updates in choice-
outcome relationships. We used the same decoding procedure mentioned above to classify voxel patterns at feedback in each trial
(see Multivariate Analyses), but additionally calculated the distance of each pattern from the hyperplane that divides categories. Dis-
tances were obtained using the equation specified on the LIBSVM webpage (https://www.csie.ntu.edu.tw/~cjlin/libsvm/fag.html).
Patterns that are more distant from the hyperplane can be thought of as having more information about a category, and those
that are closer to the hyperplane as having less information (Schuck and Niv, 2019). We then signed the distance of each point ac-
cording to whether the predicted category label was correct (+ for correct, — for incorrect), and averaged the distance from each rele-
vant decoding scheme.

The signed distances to the hyperplane and the magnitude of the Dy, from the weighted-inference model were correlated using
Spearman’s rank correlation, in each voxel throughout the brain. We used Spearman’s correlation as a conservative measure against
outliers or nonlinear relationships that could bias the results. The correlation values were normalized using a Fisher transform and the
resulting maps were spatially smoothed using a Gaussian kernel with full width at half maximum of 8mm. Group level analyses were
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preformed using a one-sample t-test on correlation values, then we applied TFCE correction to volumes within preselected ROls. The
same thresholds were applied for group level statistical correction (prrce <.05).

Representational similarity analysis of association space

We used RSA to look for regions of the brain that tracked the position of each system within an abstract association space as learning
unfolded. If participants represented the state of each system as “positions” within an abstract association space, then we should
observe similar neural representations when subjects occupy similar regions of the association space. For example, if subjects
believe that the configuration of system 1is A— 07 and B — O2 with probability g'=.80, the neural representation of this belief should
be highly similar to a trial where participants believe system 1 is in the same configuration but g'=.75. However, the neural similarity
should be more dissimilar if g =.55, and yet more dissimilar if subjects believe that the configuration of system 1 has been reversed
(A— 02 and B—01;q"'=.15). Note that while this example gives point estimates of ', the true contingencies were defined as belief
distributions which includes the confidence of each belief. Such increases in the dissimilarity of voxel patterns would suggest that
neural representation is coded as an abstract value space, because it shows that distal points in the association space are repre-
sented with proportionately dissimilar activity patterns. As in previous work, we focused our analysis during the time of the ITl (Knud-
sen and Wallis, 2021).

To test this, we estimated the BOLD activity patterns during the ITI phase using unsmoothed preprocessed images. The ITI period
was modeled as a boxcar and no parametric modulators were added. We created model representational dissimilarity matrices
(RDMs) for each system (S) which measures the dissimilarity of seven factors of each trial (t) that could give rise to dissimilarity in
neural representations. All RDMs were constructed such that they represented the dissimilarity of these factors between trials in
separate blocks. The first two model RDM’s captured similarity of belief distributions across trials which were separated into the be-
liefs of the “task-relevant association” and “task-irrelevant association”. The task-relevant association RDM included the trial-by-
trial dissimilarity between beliefs about S. This included the trials in which participants used their belief about reward contingency
to choose a particular shape and subsequently updated the belief with the given feedback. Therefore, the size of the task-relevant
RDM corresponded to the number of trials in which a participant chose a shape associated with S in block 1 X those trials in block 2.
The task-irrelevant association RDM included the beliefs about reward contingencies for S, but it included the trials in which
participants did not choose a shape associated with S, but needed to hold the representation for potential future or pending trials.
Therefore, the size of the task-irrelevant RDM corresponded to the number of trials in which a participant chose a shape that was not
associated with S in block 1 X those trials in block 2. We computed the model RDMs of the task-relevant and -irrelevant contin-
gencies in each of two systems.

To compute the trial-by-trial dissimilarity between two belief distributions across sessions, we used the Jensen-Shannon Diver-
gence (Dys) between distributions. This metric is commonly used to measure the dissimilarity between two distributions
(D1 and D5). Note that D s is symmetric. That is, Dys(D+||D2) is the same with D, s(D»||D+) unlike the KL divergence. We computed
Dys by combining Dy, of each distribution to their mean distribution (D) using numerical integration:

D1 +D2
2

Dys(D4ID2) = 3Dk (D41D) + 3D (D |D) where D = (Equation 14)

We included 5 additional model RDM’s to control for alternative possible explanations of neural similarity. These were as follows:
the identity of the chosen shape (CS), the identity of the unchosen shape (US), choice location (right or left side; CL), the outcome
identity (Ol), and the signed reward prediction error (rPE) computed by the weighted-inference model (Equation 7). All of these model
RDMs were binary matrices except for the rPE matrix, in which the dissimilarity was computed as the absolute difference in rPE’s
between trials. All analyses were conducted separately per system (see Figure S2E for correlation matrix).

We then followed the same searchlight procedure as with the MVPA (5x5x5 voxel cube around a centroid voxel), at each centroid
generated a neural RDM by calculating the Euclidean distance between voxel activities for trials in each session, after standardizing
voxel activity within the ROI. We then regressed the neural similarity matrix against each of the model RDM’s (Flesch et al., 2021;
Parkinson et al., 2017) using the following GLM:

neuralRDM® = B+ B1DSg e + B2D5s_i + B3CS® + B,US® + B5CL® + B50OI° + f,rPE® (Equation 15)

All predictors were z-scored before fitting the GLM. Each subject’s resulting DS ., beta maps were averaged across systems to
produce a single estimate of the correlation between system specific belief similarity and neural similarity. Group level analyses were
preformed using a one-sample t-test on smoothed beta values. We applied TFCE correction to volumes within preselected ROls at
prrce <-05 threshold for group level statistical correction.

To visual this analysis and create Figure 4C, we performed the following procedure: first, we split the data into a left-out run and a
visualized run. For the left-out run, we created two “template patterns” that represented the average multivariate pattern for each of
the two possible configurations for a given system. For example, we created a template pattern for the state of system 1 when A—O1
and B—~ 02 (q' ) by averaging the activity in each voxel across trials in which the weighted-inference model indicated this belief was
true. The same was done for all other possible configurations of each system (1 — @', g%, 1 — g? ). These template patterns were
then used as a comparison for trials in the visualized block, pre- and post-reversal. Reversal points were identified as trials that
subjects had a different belief about the configuration of a system compared to the trial before it (e.g., g'flipped to 1 — g'). Al
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reversal points were required to have at least 3 prior trials in which the same belief was held by the learning model (e.g., g") and three
trials after when the configuration changed (1 — q'). We then compared these trials to the template pattern that matched the belief
prior to the reversal, such that if prior to the reversal the learner’s belief was that g'was true, the neural pattern of those trials was
compared to the template pattern for q' . Similarity patterns were compared using spearman’s rank correlations. However, no sta-
tistical inference was conducted on the correlations, as they were only used to visualize the analysis conducted in Figure 4B.

Regions of interest (ROI) analyses

Regions of interest in prefrontal cortex were generated from anatomically defined regions in the Human Connectome Project Dataset
(Glasser et al., 2016). The IOFC ROls corresponded to bilateral area BA13 (index 92) and for the mPFC we used BA10 (index 65). We
included these regions because they have been previously implicated in credit assignment for causal choices, particularly in similar
contingency learning tasks (Boorman et al., 2013, 2016; Jocham et al., 2016). To understand the role of dopaminergic regions of the
midbrain in inferential updating, we looked at the ventral tegmental area (VTA) which has previously been linked to updating choice-
outcome association (Boorman et al., 2016; Gershman and Uchida, 2019; Howard and Kahnt, 2018; Iglesias et al., 2013). Here, we
used an anatomical VTA\SN ROI taken from a previous study linking the VTA to social updating about the trustworthiness of advice
from others (Diaconescu et al., 2017). The EC defined by Juelich atlas allowed us to choose the threshold of images based on prob-
ability. To define ROIs in the EC, we binarized the probabilistic map in which the minimum threshold was 0 and the maximum
threshold was 10. Note that ROIs were defined independently from the current task.
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