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SUMMARY
Animals abstract compact representations of a task’s structure, which supports accelerated learning and
flexible behavior. Whether and how such abstracted representations may be used to assign credit for in-
ferred, but unobserved, relationships in structured environments are unknown. We develop a hierarchical
reversal-learning task and Bayesian learning model to assess the computational and neural mechanisms un-
derlying how humans infer specific choice-outcome associations via structured knowledge. We find that the
medial prefrontal cortex (mPFC) efficiently represents hierarchically related choice-outcome associations
governed by the same latent cause, using a generalized code to assign credit for both experienced and in-
ferred outcomes. Furthermore, the mPFC and lateral orbitofrontal cortex track the current ‘‘position’’ within
a latent association space that generalizes over stimuli. Collectively, these findings demonstrate the impor-
tance of both tracking the current position in an abstracted task space and efficient, generalizable represen-
tations in the prefrontal cortex for supporting flexible learning and inference in structured environments.
INTRODUCTION

Much of human and animal behavior relies on the ability to effec-

tively represent the environment and infer the most likely state of

the world, which in turn supports effective decision making. For

example, the value of taking a vacation depends not only on the

weather in your current location, but also on the weather in other

locales, which are systematically related to your own. Observing

cold winter weather in Chicago (northern hemisphere) predicts

summer weather in the southern hemisphere, making a trip to

Santiago, Chile, all the more valuable. In this situation, your brain

needs both the ability to represent the underlying structure of the

world (e.g., the inverse relationship between weather in each

hemisphere) and the ability to assign credit for an inferred

outcome (warm weather in Santiago) given an observed

outcome (cold weather in Chicago). Although this inference pro-

cess is critical to flexible learning, the neural substrates that

support credit assignment for inferred outcomes in real-world

hierarchical environments are still unknown. In the current study,

we test the hypothesis that the prefrontal cortex (PFC) efficiently

represents a hierarchical task space and uses this to infer un-

seen outcomes and assign credit to the appropriate latent cause.

Knowledge about the relational structure of environmental and

task states is thought to be stored in representations called

cognitive maps (Behrens et al., 2018; Gershman and Niv, 2010;

O’Keefe and Nadel, 1978; Schuck et al., 2016; Tolman, 1948;

Wilson et al., 2014). These representations contain information

critical to goal-directed behavior, encoding relationships be-
tween positions or task states in an efficient manner. For

example, outside of physical space, cognitive maps might

contain relational knowledge about transition probabilities be-

tween states, choice-outcome contingencies, or how these con-

tingencies change over time (Baram et al., 2021; Boorman et al.,

2016; Daw et al., 2011; Hampton et al., 2006). In principle, cogni-

tive maps are powerful because they allow for rapid updating

when the state of the environment shifts (Bartolo and Averbeck,

2020; Boorman et al., 2021) and generalization to similarly struc-

tured tasks (Baram et al., 2021; Behrens et al., 2018; Franklin and

Frank, 2018; Whittington et al., 2020). Within the PFC, the lateral

orbitofrontal cortex (lOFC) and medial PFC (mPFC), in particular,

have previously been implicated in using a model of the task’s

structure or an abstracted cognitive map of the task space to

assign credit for specific rewards to specific past choices or

causes (Boorman et al., 2013, 2016; Jocham et al., 2016; Taka-

hashi et al., 2011; Tanaka et al., 2008; Walton et al., 2010; Wang

et al., 2020; Wilson et al., 2014). However, the neural mecha-

nisms that underlie assigning credit to latent causes that

generalize to inferred, but unseen, relationships in structured en-

vironments remain poorly understood.

To support credit assignment, the PFC may also play a critical

role in tracking the state of knowledge within abstract task

spaces. Unobservable task-relevant information that defines

the current task state has been found during multi-step sequen-

tial tasks in the OFC (Schuck et al., 2016; Wilson et al., 2014;

Zhou et al., 2021). Moreover, recent work has pointed to interac-

tions between the OFC and hippocampus that would allow the
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Figure 1. Learning task design and behav-

ioral results

(A) Four fractal shapes were organized hierar-

chically into two independent systems of inversely

related pairs. This meant that participants could

infer the outcome of one object (e.g., shape B) after

observing the outcome from choosing its system

pair (e.g., shape A).

(B) Illustration of the fMRI task. Participants were

presented with 2 of the 4 shapes to choose from in

each trial. They chose between the shapes on the

basis of two pieces of information: their estimate of

the transition probabilities ( q1 ; q2 ) that an object

would lead to either gift card outcome, and the

randomly generated number of points they could

potentially win on each gift card if obtained. The

color of each number indicated the identity of the

outcome on which that number of points could be

won. In the example, green indicates the number of

points for the Starbucks gift card, while pink indi-

cated the number of points for iTunes. Next, they

observed the outcome of their choice (the gift card

and amount) after a delay.

(C) Example of a participant’s learning trajectory as

the task unfolded. Shaded regions indicate the true

associations for system 1 (q1, blue) and system 2

(q2, red). Each system reversed 3 times during

the experiment, switching q1 and q2 to 1 � q1 and

1� q2, respectively. Blue and red lines indicate the

estimated values of cq1 and cq2 based on the

weighted-inference learning model (see compu-

tational models for details).

(D) Results of a logistic regression analysis, which shows the influence of past choices and outcomes on the current choice. Both experienced and inferred past

choice-outcome associations significantly predicted current choice. As expected, this influence decreased for trials further in the past. Height of the bars

represents the mean of regression coefficients ± SEM.

(E) Results of model comparisons using BIC (top) and 8-fold cross-validation (bottom) for weighted-inference, no-inference, and perfect-inference models

(see computational models for details).
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brain to track ‘‘positions’’ along trajectories through abstract

task spaces to guide value-based decision making (Knudsen

and Wallis, 2020; Zhou et al., 2019), with neurons in the anterior

hippocampus coding the relative position along trajectories

through the 3D abstract value space defined by each option’s

current estimated value (Knudsen and Wallis, 2021). Recent ad-

vances in the approaches to measure the neural representations

of cognitive maps with functional magnetic resonance imaging

(fMRI) have likewise identified abstracted cognitive maps of

latent task spaces in the human hippocampus and OFC (Clarke

et al., 2019; Garvert et al., 2017; Park et al., 2020, 2021; Schapiro

et al., 2016). Together, these insights suggest a new framework

that may be extended to understanding associative learning in

structured tasks: the brain might track the inferred position of hi-

erarchically related associations in an abstracted ‘‘association

space’’ that generalizes over choice stimuli for efficient model-

based inferences and rapid updating.

In this study, we address these questions using a ‘‘hierarchical

reversal-learning task,’’ which required participants to use

knowledge about hierarchical relationships to infer unobserved

outcomes and make effective goal-directed decisions. We

show that the mPFC is a critical region for both efficiently repre-

senting choice-outcome relationships governed by a shared

latent cause and updating inferred choice-outcome associations
2 Neuron 110, 1–11, August 17, 2022
at the time of feedback. Moreover, we present novel results

showing that the lOFC andmPFC encode the inferred ‘‘position’’

within an abstracted association space for choice-outcome as-

sociations governed by the same latent cause.

RESULTS

Hierarchical reversal-learning task
Participants completed a ‘‘hierarchical reversal-learning task’’ in

which they tracked the probability that each of four fractal

shapes would lead to either of two gift cards for one of two

different online stores (Figure 1A). On each trial, participants

choose between two of the four shapes based on two pieces

of information: estimates of the probability that a particular

shape will lead to a particular outcome and the randomly gener-

ated potential payout indicated for each outcome (Figure 1B).

Importantly, the set of fractal shapes was organized hierarchical-

ly into two independent systems of inverse pairs. Shapes A andB

formed ‘‘System 1,’’ while shapes C and D formed ‘‘System 2.’’

This hierarchical organization gave participants the opportunity

to infer unobserved outcomes for an unchosen shape when

observing the outcomes derived from choosing the system

pair. For example, participants could track the probability that

A leads to outcome 1 by observing the frequency with which B
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leads to outcome 2. Because the two systemswere independent

of each other, however, nothing could be learned about shapes

A or B from observing the outcomes of shapes C or D. Partici-

pants completed a total of 160 trials across two sessions, during

which the associative contingencies reversed three times (Fig-

ure 1C). Participants were told that one trial would be selected

at random to count ‘‘for real’’ at the end of the experiment and

they would be given money proportional to the number of points

won on the gift card they received for that trial.

Behavioral results
Optimal behavior in this task required that participants tracked

which stimulus choices led to which of the two outcomes and

used that knowledge to make decisions on the current trial.

We characterized the influence of previous choice outcomes us-

ing logistic regression models that predicted the odds of

choosing a certain shape given the currently desired outcome

(i.e., the stimulus with a higher payoff) and outcomes resulting

from the last three times that shape was chosen (Equation 9).

Note that available choice stimuli changed on each trial, so these

outcomes may be more than 3 consecutive trials into the past.

Critically, we also included the outcomes that could be inferred

from choosing the system pair—the source of inferred informa-

tion in our task—in the regression model. If participants utilized

both experienced and inferred outcomes to learn, reinforcement

learning theory predicts positive effects for each type of outcome

that decline exponentially over time into the past (Bayer and

Glimcher, 2005; Sugrue et al., 2005).

This analysis showed significant effects for all three experi-

enced and inferred choice-outcome pairs going three choices

into the past (all t[36]’s > 1.94, all p’s < 0.05) (Figure 1D). This

learning-model agnostic analysis confirms that subjects learned

from both the experienced and inferred choice-outcomes asso-

ciations and utilized this information to make decisions on the

current trial. We compared the magnitude of regression coeffi-

cients between experienced and inferred outcomes over time

using a two-factor ANOVA. We found an expected main effect

of time (F[2,72] = 5.63, p < 0.01), showing that outcomes from tri-

als further in the past were less influential on the current choice.

The magnitude of the effects from the experienced outcomes

were not found to be significantly greater than those from

inferred trials, although there was a trend for experienced out-

comes to show greater influence on future choices (F[1,36] =

2.97, p = 0.09 BF10 = 0.91), and there was no significant interac-

tion between outcome type and time (F[2,72] = 2.34, p = 0.10,

BF10 = 0.52). Finally, the analysis showed no effect of the previ-

ous outcome’s reward magnitude on the subsequent trial’s

choice (t[36] = �1.03, p = 0.85), consistent with the fact that

they were generated randomly on each trial and there was no

advantage to tracking rewards between trials in our task. Taken

together, this analysis shows that subjects learned from both

experienced and inferred outcomes and that both directly expe-

rienced outcomes and inferred outcomes were integrated into

predictions for guiding future decisions in our task (results

were similar when incorporating the subjective value of each

outcome into the analysis; Figure S1).

To estimate subjects’ trial-by-trial beliefs about stimulus-

outcome associations, we fit each participant’s choices to a
Bayesian reversal-learning model (see STAR Methods) that uti-

lized the history of outcomes observed from their choices and

outcomes inferred from the system pair. The best-fitting

‘‘weighted-inference model’’ jointly estimates the stimulus-

outcome (transition) probability and the reversal probability and

included three free parameters: a, an indifference term capturing

the subjective preference for one outcome over the other; b, an

inverse temperature term capturing participants’ sensitivity to

differences in choice values; and g, an inference weight term,

which weighted the posterior belief in choice associations for

experienced relative to inferred outcomes, reflecting the amount

of information each subject derived from a directly experienced

outcome relative to an inferred outcome (see Equations 2, 3, 4, 5,

and 6; Table S1 for the distribution of parameter estimates).

We compared the ‘‘weighted-inference model’’ with two alter-

natives, which did not include g but instead assumed the partic-

ipants learned nothing from inference (‘‘no-inference model’’) or

learned perfectly from inferred and experienced information

(‘‘perfect-inference model’’), using Bayesian information crite-

rion (BIC) (Equation 8). The weighted-inference model was found

to best capture choice data across subjects compared with

these alternative models (lowest summed BIC across subjects),

although many subjects were better fit by the perfect-inference

model (Figure S4B). This shows that that the weighted-inference

model (BIC = 7,266.34) captured meaningful differences in par-

ticipants’ ability to infer from unobserved data (no-inference

model BIC = 7,401.76; perfect-inference model BIC =

7,278.12), generally consistent with the results of the logistic

regression analyses above (Figure 1E). We further confirmed

this finding using forward chaining cross-validation (CV) (k = 8;

Bergmeir and Benı́tez, 2012) to show that this model predicted

out-of-sample choices better than models that assumed either

no inference or perfect inference. Parameter recoverability for

the weighted-inference model is reported in Figure S9.

Finally, we tested whether subjects’ choices were a sigmoidal

function of the estimated expected value of each choice option

using the weighted-inference model (likelihood ratio test

[LRT] = 63.58, p = 1.53 3 10�15). Figure S1B shows the highly

significant results of a multilevel logistic regression model pre-

dicting the subjects’ choices given the expected value (Equa-

tion 5) difference between the two options on each trial.

Neural substrates of belief updating from experienced
and inferred outcomes
Our next analysis sought to identify the network of brain regions

that support updating of choice-outcome associations by

combining information from experienced and inferred outcomes

at the time of feedback. We defined the belief update from feed-

back as the Kullback-Leibler divergence (DKL) between prior and

the posterior beliefs after observing the outcome on each trial,

also called the ‘‘Bayesian surprise’’ (Iglesias et al., 2013; Schwar-

tenbeck et al., 2016). Because participants may learn through

both experienced and inferred outcomes, the total update on

a given trial is the sum of the DKL for experienced and inferred

choice-outcome associations (DSum
KL ; Equation 13). We used

DSum
KL as a parametric modulator of blood-oxygen-level-

dependent (BOLD) activity during feedback (see GLM 1) and

found clusters of positive effects in pre-supplementary motor
Neuron 110, 1–11, August 17, 2022 3



Figure 2. Network of regions that reflect additional update for in-

ferred information

Sagittal and coronal slices through t statisticmaps display brain regions whose

activity at feedback reflected the additional information gained from including

inferred information compared with only experienced information (DDiff
KL ). For

illustration, maps display regions at a threshold of t(36) = 2.71, p < 0.005,

uncorrected.
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area/dorsal anterior cingulate cortex (pre-SMA/dACC) (peak

voxel, [x,y,z] = [0, 18, 50], t[36] = 7.31), bilateral dorsolateral pre-

frontal cortex (dlPFC) (right, [x,y,z] = [46,24,48], t[36] = 5.90; left,

[x,y,z] = [36,8,36], t[36] = 6.22) and bilateral anterior insula (right,

[x,y,z] = [32, 26, 0], t[36] = 5.35; left, [x,y,z] = [�32, 22, 2], t[36] =

5.69), (all whole-brain cluster-corrected with permutation-based

threshold-free cluster enhancement [TFCE] [Smith and Nichols,

2009] at pTFCE < 0.05), suggesting that these regions encode up-

dates to the system of choice-outcome associations (Fig-

ure S1C; Table S2A; see Figure S1D for reward prediction error

[rPE] effects).

Next, we tested for regions that carried additional information

about updating derived from inferred information. We did this by

calculating the DKL for the ‘‘no-inference’’ model (DExp
KL ), which

quantified the update on the current trial if no inference occurred

(i.e., only experienced information was used in the update). We

then used the ‘‘weighted-inference model’’ to compute the DKL

given the subject-specific weighting of inferred information

(DWeighted
KL ). We computed the difference between these regres-

sors (DDiff
KL ; Equation 13) to quantify the additional updating that

occurs when inferred information is combinedwith directly expe-

rienced information to update beliefs. We used the trial-by-trial

estimates of DExp
KL and DDiff

KL as parametric modulators of BOLD

activity at the time of feedback (see GLM 2) to identify regions

that reflected the additional update gained from inference,

even while controlling for updates due to experienced outcomes

only. We found significant positive effects of DDiff
KL in clusters in

pre-SMA/dACC ([x,y,z] = [4, 20, 50], t[36] = 5.86), bilateral dlPFC

(right, [x,y,z] = [44, 26, 28], t[36] = 5.05; left, [x,y,z] = [�44, 24, 28],

t[36] = 5.22) and bilateral anterior insula (right, [x,y,z] = [32, 22,

�2], t[36] = 5.58; left, [x,y,z] = [�30, 22, �4], t[36] = 6.11) (Fig-

ure 2A; Table S2B). These results implicate this network in sup-

porting the additional updating of beliefs about transition proba-

bilities from inferred outcomes at feedback.

Recent studies have suggested that activity in the dopami-

nergic midbrain encodes prediction errors not only about reward

value but also about outcome identity or ‘‘task state’’ (Boorman

et al., 2016; Gershman and Uchida, 2019; Howard and Kahnt,

2018; Iglesias et al., 2013; Langdon et al., 2018; Sharpe et al.,

2017; Suarez et al., 2019). As such, we tested whether activity
4 Neuron 110, 1–11, August 17, 2022
in the dopaminergic midbrain, in particular the ventral tegmental

area (VTA), would also reflect the additional update of transition

probabilities based on inferred information (DDiff
KL ), using an inde-

pendently defined region of interest (ROI) over the VTA and sub-

stantia nigra (SN) (Diaconescu et al., 2017). Consistent with our

prediction, we found a significant positive effect of the combined

update at the time feedback was delivered in the VTA ([x,y,z] =

[2,�18,�10], t[36] = 3.99, pTFCE < 0.05, ROI corrected), indepen-

dent of rPE. Notably, we found no significant effect of the rPE

(Equation 7) in the same VTA/SN ROI (Figure S1D), consistent

with the fact that there was no incentive to learn from reward

magnitudes in our task and that subjects did not show a behav-

ioral effect of learning from rewardmagnitudes, as shown above.

Collectively, this suggests that the VTA BOLD signal aligns with

the instrumentally relevant variable to track in our task and,

importantly, incorporates inferred information based on knowl-

edge of the task structure (Figure 2B).

mPFC represents latent causes and assigns credit to
inferred outcomes
We hypothesized that the brain would reinstate the latent cause

using an efficient code that generalizes over stimuli and out-

comes governed by the same cause at feedback time. If partic-

ipants retrieve representations of structural relationships at

feedback to appropriately assign credit to the latent association,

we would expect to decode the representations associated with

the common causes that arise in trials where the systems’ pairs

led to opposite outcomes. To probe which brain regions as-

signed credit to a shared representation for shapes governed

by the same causal relationship (i.e., shapes that are part of

the same system), we performed a multivariate pattern analysis

(MVPA) on activity patterns at feedback, the critical time for

credit assignment. First, we trained pattern-based classifiers

(linear support-vector machines [SVM]) to classify the chosen

stimulus and its associated outcome identity at the time of feed-

back (e.g., A / O1) and then used the resulting feature weights

to decode from patterns of activation on trials where the system

pair led to the opposite outcome through the same causal

relationship (e.g., B / O2) (Figure 3A; see supplemental infor-

mationSTAR Methods for details on decoding procedure).

Importantly, this analysis controlled for both the shape stimulus

and outcome identity such that no sensory information, neither

the previous choice stimulus nor reward outcome identity, was

shared between training and test sets. Thus, decoding is only

possible if these events share information about the same causal

relationships that bind shapes in the same system.

We began by conducting a whole-brain searchlight analysis to

estimate decoding accuracy at each voxel in the brain (Kriege-

skorte et al., 2008). Based on our a priori hypotheses concerning

the lOFC and mPFC in credit assignment (Baram et al., 2021;

Boorman et al., 2013, 2016; Jocham et al., 2016; Tanaka et al.,

2008; Walton et al., 2010), we tested anatomically defined

ROIs (Glasser et al., 2016) of the mPFC and lOFC that were hy-

pothesized to contain these representations and used TFCE

(Smith and Nichols, 2009) to correct for multiple comparisons.

This analysis identified a significant cluster of voxels in the

ventral portion of the left mPFC ([x,y,z] = [�6,50,�10], t[36] =

3.54, pTFCE < 0.05 ROI corrected; Figure 3B; Table S3A).



Figure 3. Medial PFC carries representations of the latent cause to assign credit to inferred outcomes

(A) Illustration of the decoding procedure used to decode the latent cause. We first trained a linear SVM on specific shape-outcome combinations from each

system (e.g., A/O1 andC/O1) and then used it to classify the system pairs that led to the opposite outcome (B/O2 andD/O2). No information other than

the latent cause was shared between training and testing trials. In a separate analysis (E), we correlated the amount of information about the latent cause in each

trial (distance from SVM hyperplane) with the magnitude of updates estimated by the weighted-inference learning model (see multivariate analysis for details).

(B) Sagittal slice through t statistic map showing effects of decoding of the latent cause from analysis depicted in (A) in the mPFC (SVC within an a priori mPFC

ROI), displayed using the same conventions as Figure 2.

(C) Same as (B) but shows regions where themagnitude of information decoded about the latent cause was significantly correlated with DSum
KL (SVC inmPFCROI).

(D) Conjunction t statistic map showing overlapping regions of (B) and (C) (p < 0.05 uncorrected).

(E) Graphical description of the analysis shown in (C). We used the same decoding procedure as in (A) but calculated the distance between multivariate voxel

pattern on each trial and the hyperplane to compute the decodability of system representations at feedback on each trial. We then correlated this distance with

DSum
KL , a model-derived measure of the magnitude of the update for the latent cause at the time of feedback.
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However, we found no significant clusters in the lOFC bilaterally

(p > 0.05 uncorrected). Given a recent demonstration that ento-

rhinal cortex (EC) represents the abstracted task correlation

structure of stimulus-outcome associations (Baram et al.,

2021; Whittington et al., 2020) and its strong anatomical connec-

tionswith themPFC (Amaral et al., 1987; Barbas andBlatt, 1995),

we also performed post hoc tests in anatomically defined EC

(Amunts et al., 2005; Zilles and Amunts, 2010), which did not

show significant decoding (p > 0.05 uncorrected), highlighting

functional differences between the EC and mPFC.

To more directly test whether these representations of the

latent cause in mPFC relate to credit assignment during infer-

ence, we correlated the strength of representations of the latent

cause in the mPFC at the time of feedback with model-derived

estimates of the updates to outcome contingencies within

each system. We used the same SVM classifier to compute

the decodability of system representations at feedback during

each trial. We quantified the decodability of each representation

as its distance to the SVM hyperplane (Schuck and Niv, 2019)

and signed the distances such that correct classifications were
positive and incorrect classifications were negative. As before,

we defined the total trial-by-trial belief update as the DSum
KL be-

tween the prior and posterior beliefs after having observed an

outcome. This whole-brain analysis revealed a significant cluster

in mPFC (Spearman rank correlation; [x,y,z] = [8,46,�10], t[36] =

4.19; pTFCE < 0.05 ROI corrected; Figure 3C; Table S3B), which

overlapped with the main effect of latent cause decoding (Fig-

ure 3D; using the conjunction analysis with minimum statistics,

at p < 0.05 uncorrected compared with conjunction null; Nichols

et al., 2005). This finding shows enhanced representation of the

common causal relationship with greater updating for credit

assignment for both experienced and inferred outcomes at the

time of feedback.

lOFC and mPFC track positions in a latent association
space during learning
Our results have shown that themPFC contains a representation

of underlying causal relationships that are used to infer informa-

tion about related stimuli during feedback. Based on recent ev-

idence showing that the hippocampus and OFC may track the
Neuron 110, 1–11, August 17, 2022 5



Figure 4. Lateral OFC and medial PFC track

inferred positions within latent association

space during learning

(A) Conceptual illustration of the RSA procedure

used to test for estimated position within the latent

association space. We constructed a model RDM

that measured the dissimilarity of posterior beliefs

(DJS), estimated by the weighted-inference model,

across trials in separate blocks. Only trials in which

shapes from the same system were chosen by the

participant were compared across blocks. Sepa-

rate RDMs for each system were then compared

with neural RDMs computed from the ITI period of

the same trials, using the Euclidean distance be-

tween voxel activation patterns on these trials from

different blocks as the measure of dissimilarity.

Model and neural RDMs were then compared us-

ing linear regression (see ‘‘representational simi-

larity analysis of association space’’ for details).

(B) Axial and sagittal slices through t statistic map

displaying regions in which the model RDM was

significantly related to the neural RDM. Maps are

displayed with the same conventions as in Fig-

ure 2. The clusters survived small volume correc-

tion within an a priori defined lOFC ROI (axial slice)

and mPFC ROI (sagittal slice).

(C) Visualization of the relationship between

model-estimated reversal points and neural

pattern similarity. Dashed vertical line indicates a

reversal point, where 0 is the trial directly after a

reversal in the configuration of each system, as

estimated by the weighted-inference learner. Green line represents the neural similarity of the activation patterns in the lOFC on each trial immediately preceding

and subsequent to the reversal point, compared with a ‘‘template pattern’’—defined as the average pattern from trials with the same configuration as those prior

to the reversal point but from the other block. Red line shows the model-derived belief estimate on the same trials. Note the corresponding shift in the model

estimate and neural data from pre- to post-reversal.
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current position within a value or task space (Knudsen and

Wallis, 2020, 2021; Park et al., 2020; Schuck et al., 2016), we hy-

pothesized that these regions may track the ‘‘position’’ of sub-

jects’ current beliefs within an abstract ‘‘association space’’ for

each system. To test this hypothesis, we used representational

similarity analysis (RSA) to identify regions of the brain that

coded relative ‘‘positions’’ within the latent association space.

That is, we sought to identify brain regions that had increasingly

similar representations when subjects had increasingly similar

beliefs about the choice-outcome contingencies for each sys-

tem. We generated a model representational dissimilarity matrix

(RDM) that calculated the divergence (Jensen-Shannon diver-

gence (DJS); a symmetric measure of the distance between

distributions, Equation 14) between model estimates of the pos-

terior belief distributions about stimulus-outcome associations

in a system (e.g., q1) computed from our weighted-inference

learning model in each trial across sessions. We also generated

a RDM of neural similarity from activity patterns measured within

a searchlight during the inter-trial interval (ITI) by calculating the

Euclidean distance between voxel patterns in each trial across

sessions. We hypothesized that regions tracking one’s current

position in the association space would show increasingly

greater representational similarity for trials that had increasingly

similar posterior beliefs about the specific position of a configu-

ration of associations within a system. We reasoned that if

subjects were tracking the latent cause governing a system of
6 Neuron 110, 1–11, August 17, 2022
associations (A / O1, B / O2), then this coding should be in-

dependent of the specific choice made within that system (e.g.,

include both A [C] and B [D] choices for system 1 [2]) (see Fig-

ure 4A and STAR Methods).

We tested this hypothesis by constructing a general linear

model that predicted the values of the neural RDMwhile control-

ling for other possible explanations of neural similarity, using the

DJS model RDM along with 5 control RDMs. These alternative

RDMs controlled for the effect of the position in association

space of the unchosen system for the current trial as well as sim-

ilarity of the recently observed outcome, identity of the chosen

object, identity of the unchosen object, magnitude of the rPE,

and physical response made (see STAR Methods). We focus

on the ITI following recent evidence of positional coding in an ab-

stract value space during the ITI in monkey hippocampal single

unit recording (Knudsen and Wallis, 2021) and because subjects

theoretically benefit from tracking this information between trials

when no external task-related sensory stimuli are being pro-

cessed, but see Figure S2D for results during other phases of

the task. The RDM representing task ‘‘position’’ revealed signif-

icant effects in a network of regions, including the bilateral lOFC

(left lOFC, [x,y,z] = [�26, 30, �12], t[36] = 4.24, pTFCE < 0.05 ROI

corrected; right lOFC, [x,y,z] = [28, 28, �14], t[36] = 3.79,

pTFCE < 0.05 ROI corrected) and rostral mPFC ([x,y,z] = [4,

58, �4], t[36] = 4.56, pTFCE < 0.05 ROI corrected) (Figure 4A;

Table S4). Indeed, visualization of pattern similarity in the lOFC
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on the trials immediately before and after an inferred reversal

point support this finding by revealing a shift in representation

from the previous to the current belief state, in tandem with the

shift in model estimates (Figure 4C). This visualization showed

positive pattern similarity to the current state prior to the reversal

and shift to negative pattern similarity at the inferred reversal

point. Collectively, these findings show that the lOFC and rostral

mPFC track the current position in an abstract association space

that generalizes over choices in the same system.

DISCUSSION

Understanding how the brain uses abstracted internal models to

learn from unobserved but inferred outcomes is essential for un-

derstanding flexible behavior in complex environments. The cur-

rent experiment adds to a growing body of work showing that the

mPFC is critical tomaintaining compact and generalizable repre-

sentations of task-relevant variables (Baram et al., 2021; Beh-

rens et al., 2018; Constantinescu et al., 2016; Iordanova et al.,

2007; Morton et al., 2020; Samborska et al., 2021) but goes

further to show these representations support credit assignment

when outcomes can be inferred through shared hierarchical re-

lationships. Our results show that the mPFC selectively encodes

the shared causal relationship between hierarchically related

choice-outcome associations with a compact representation

and leverages this code to assign credit for unseen but inferred

choice-outcome associations. We also show that the mPFC

and lOFC code the subject’s belief about the current position

of the hierarchically related system within a common ‘‘associa-

tion space’’ for each system, suggesting that these regions are

integral for tracking the learner’s ‘‘position’’ within a latent asso-

ciation space as learning unfolds.

We designed a novel hierarchical reversal-learning task to test

the hypothesis that assigning credit for inferred outcomes de-

pends on the reinstatement of a generalizable neural representa-

tion that links both experienced and inferred causal relationships

(Liu et al., 2021). We found that a reversal-learning model that

assumed subjects’ updating benefited from detecting the true

underlying reversal structure of choice-outcome contingencies

best fit our behavioral data compared with alternative models.

This suggests that subjects may have leveraged their training

with the same task structure, but different stimuli, to efficiently

update coupled choice-outcome contingencies following a

reversal, but the extent to which each subject did so varied.

This finding dovetails with previous demonstrations in similarly

structured tasks (Boorman et al., 2016; Hampton et al., 2006)

and is consistent with theoretical notions of structure learning

(Gershman and Niv, 2010).

Prior evidence across species has implicated both the lOFC

and the mPFC in credit assignment (Boorman et al., 2013;

Chan et al., 2016; Jocham et al., 2016; Takahashi et al., 2011; Ta-

naka et al., 2008; Tsujimoto et al., 2009; Walton et al., 2010), but

the precise functional roles attributed to each region remained

unclear. Consistent with studies showing that the mPFC con-

tains condensed, low-dimension codes for structurally related

items in the environment (Constantinescu et al., 2016; Doeller

et al., 2010; Morton et al., 2020; Park et al., 2021; Samborska

et al., 2021; Wang et al., 2020), we found that mPFC, but not
lOFC, reinstated the shared latent cause that governed two

sets of stimulus-outcome associations in the same system.

Importantly, this effect could not be explained by either the out-

come’s identity or the identity of the chosen stimulus alone.

Further, we show that the decodability of these representations

in the mPFC increases when subjects updated their estimates to

a greater extent, which is consistent with prior work showing that

representations in themPFC are important for rapid updating be-

tween states (Klein-Fl€ugge et al., 2019;Muller et al., 2019). These

results suggest that generalized representations in themPFC are

used for credit assignment at feedback, directly linking knowl-

edge about causal structure to inference about unobserved out-

comes. Moreover, they provide novel evidence that cognitive

maps may be used to generate inferences about an untaken

choice based on knowledge about the underlying relational

task structure.

Our study also extends our understanding of the network of re-

gions involved in updating choice-outcome associations by

showing that these regions also support updating from inferred

outcomes using a model of the task’s hierarchical structure. A

network of regions’ activity reflected the full learning update

(DKL) from an outcome, including the VTA, pre-SMA/dACC,

dorsolateral PFC, ventrolateral PFC/lOFC, and anterior insula,

consistent with past studies investigating directly experienced

outcomes/stimuli (Boorman et al., 2016; Iglesias et al., 2013;

Schwartenbeck et al., 2016). These findings support the view

that dopaminergic precision-weighted prediction errors modu-

late both local cortical and long-distance cortico-cortical and

cortico-striatal synapses within a similar network of regions dur-

ing incremental learning (Stephan et al., 2015). Notably, dopami-

nergic neurons in the VTA are known to signal rPEs (Bayer and

Glimcher, 2005; Montague et al., 1996; Schultz et al., 1997),

but more recent work has suggested that this role extends to up-

dating value-neutral associations between states or outcome

identities. Indeed, activity in the VTA is modulated by errors in

the predicted outcome identity (Howard and Kahnt, 2018; Igle-

sias et al., 2013, 2021; Oemisch et al., 2019; Suarez et al.,

2019; Takahashi et al., 2017) and belief updating about the state

of associative relationships in the environment (Schwartenbeck

et al., 2016; Sharpe et al., 2017), which have been shown to

play a causal role in learning such value-neutral associations

(Langdon et al., 2018; Sharpe et al., 2017). Here, we show that

activity in the VTA quantitatively encodes precision-weighted

prediction errors about the state of hierarchically related

choice-outcome associations, integrating information from

both experienced and inferred outcomes. Furthermore, this

signal only reflected how much to learn about the instrumentally

relevant variable and did not track learning-irrelevant, but none-

theless rewarding, outcomes. We found no evidence that the

VTA signal incorporated the monetary reward value obtained

at feedback, which in our task is irrelevant for future behavior.

This is consistent with the absence of any effect of reward

magnitude on learning behaviorally. Taken together, our findings

highlight the importance of dopamine in updating model-based

associations through inference.

Finally, we show that a network of brain regions, including the

lOFC and mPFC, track the learner’s position in a latent associa-

tion space that generalizes over choice-outcome associations
Neuron 110, 1–11, August 17, 2022 7
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within a system. We found that the lOFC and rostral mPFC

showed relational coding corresponding to the position in the hi-

erarchically related choice-outcome association space such that

activation patterns were increasingly similar when the expecta-

tion and precision of beliefs about associations within a system

were more similar. This finding dovetails with recent studies

showing that relational position in a wide range of abstract

spaces is coded by themedial temporal lobe and OFC (Constan-

tinescu et al., 2016; Knudsen and Wallis, 2021; Park et al., 2020;

Theves et al., 2019). Here, we show that this coding scheme ap-

plies to a hierarchically general latent causal space in the lOFC

and mPFC that reflects both the certainty and confidence in

learned choice-outcome associations (Pouget et al., 2016).

Althoughwe did not find any significant effects on the hippocam-

pus at the thresholds used, there was a subthreshold correlation

in the head of the right hippocampus (pTFCE < 0.08 ROI cor-

rected, Figure S2A). Recent pioneering studies using closed-

loop theta stimulation in monkeys have identified a causal role

for hippocampal input to a homologous region of the lOFC (Brod-

mann area 13) during the ITI of a reward-guided learning task

(Knudsen and Wallis, 2020). A second study elaborated these

findings by showing that hippocampal neurons coded for direc-

tion dependent ‘‘positions’’ in themonkeys’ trajectory through an

abstract 3D value space (Knudsen and Wallis, 2021). Taken

together with our findings, this suggests that representations

of learning trajectories in the lOFC and mPFC may be derived

from hippocampal relational codes, which are input to these re-

gions through direct anatomical connections (Barbas and Blatt,

1995). In our study, these codes can be used for accurate credit

assignment and inference. Interestingly, significant coding of the

latent association space during the outcome phase was local-

ized to similar regions but was qualitatively weaker compared

with our results during the ITI phase, which could suggest that

this signal may have been ramping up at the time of the outcome

(see Figure S2C). Our findings support the theory that the OFC

represents an animal’s current position in a task space when

its position cannot be directly observed (Schuck et al., 2016;

Stalnaker et al., 2015; Wilson et al., 2014; Zhou et al., 2021)

and, more generally, connect with other findings showing that

the OFC plays a critical role in representing task-specific rela-

tional knowledge for model-based inference (Wang et al., 2020).

One key difference between recent previous work (e.g., Baram

et al., 2021) and the findings presented here concerns whether

prefrontal and entorhinal brain regions form unique or general-

ized codes for separate systems of relationships despite having

similar structures. For example, in Baram et al. (2021), the au-

thors found that when participants learned about choice-

outcome relationships with identical correlation structures, a

system of regions—including the EC and temporal parietal junc-

tion—carried generalized representations of the task structure

that were independent of the stimuli or ‘‘contents.’’ Further,

they found that the ventral mPFC carried rPE effect patterns

that were also specific to the correlation structure between stim-

uli and outcomes, suggesting that value error signals in this re-

gion are coded differently depending on how choice options

are inter-related. Our study, conversely, focuses on the role of

the mPFC in assigning credit for unobserved outcome identities

within a relational system. Thus, our data elaborate the role of the
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mPFC in inference and credit assignment by showing that it con-

tains specific representations of the latent cause for coupled

choice-outcome relationships that differentiate between sys-

tems despite sharing the same correlation structure and lever-

ages this knowledge to connect specific inferred outcome

identities to choice stimuli independently of their reward value.

We also found no evidence of system-specific representations

in the EC. Although these results are certainly not contradictory

to the findings in Baram et al. (2021), they point to a more flexible

role for the mPFC in credit assignment and generalization de-

pending on the needs of the task and highlight important differ-

ences with EC coding. Overall, our results show how compact

representations in the mPFC are utilized during structured

learning and afford insights into neural mechanisms that support

learning from inferred knowledge.

An intriguing open question is whether the lOFC would reacti-

vate specific individual past choices, as opposed to generaliz-

able latent causes with a common code, for credit assignment

to specific past choices. Previous work has shown that the

OFC reactivates choices, which led to the currently observed

outcome specifically at outcome time (Tsujimoto et al., 2009)

and may trigger the reactivation of sensory representations via

descending anatomical connections between areas of posterior

and lateral OFC and several sensory cortical regions (Carmichael

and Price, 1995; Cavada et al., 2000). Whether or not the same

mechanism underlies credit assignment for inferred stimuli is un-

known. Notably, we did not find any significant decoding of the

chosen stimulus identity alone at feedback anywhere in the brain

at our threshold used (pTFCE < 0.05). This finding is consistent

with our fMRI decoding and behavioral analyses showing that,

by and large, subjects treated stimulus-outcome associations

governed by the same cause as a unitary representation rather

than coding its individual associations distinctly. Future work

can elaborate these mechanisms by testing whether the appro-

priate inferred choices are reactivated in amodality-specific sen-

sory cortex during learning.

In conclusion, we find that the human brain represents latent

causes with compact representations in the mPFC, which sup-

ports updating during credit assignment to inferred relation-

ships. Further, relational codes in both the lOFC andmPFC track

learning positions along trajectories within an abstract associa-

tion space that generalizes over stimuli and rapidly update the

actor’s position as learning dynamically unfolds. Collectively,

these findings support a novel framework for understanding

how the human brain learns in hierarchically structured settings

that abound in the real world.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Forty subjects (25 females; mean age = 20.5) were recruited from the general population around University of California, Davis. None

of the participants reported a history of neurological or psychiatric disorders. Subjects either received either course credit or money

($15/hour) for participation in the experiment. Two subjects were removed due to excessive motion during scanning (head

movement > 3mm), while a third subject was removed for excessive dropout in ventral regions of the prefrontal cortex that are of

interest to this study. Thus, the final sample included 37 subjects (22 Females; mean age = 20.5). All procedures were approved

by the University of California, Davis IRB. Participants gave written consent before the experiment.

METHOD DETAILS

Task instruction
Subjects completed a ‘‘hierarchical-reversal-learning-task’’ in which they tracked associations between abstract shapes (choices)

and reward identities (outcomes) to optimize the possibility of larger rewards at the end of the experiment (Figure 1A). On each trial,

subjects were presented with 2 of 4 different fractal shapes from which to choose. Two numbers between 0 and 100 were presented
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at the top of the screen in unique colors. The color of the numbers corresponded to the identity of the gift-cards that the subject could

win, and the magnitudes corresponded to the point value of the reward on the current trial. For example, a pink ‘‘42’’ meant that

subjects could win 42 points on an iTunes gift-card while a green ‘‘58’’ meant they could win 58 points on a Starbucks gift card.

The cumulative number of points available on each trial was always equal to 100. Subjects were told that the point values were

randomly chosen on each trial and there was no point to tracking them.

Each shape had a certain probability of leading to one outcome and the inverse probability of leading to the other. For example, at

the start of the experiment shape ‘‘A’’ would lead to the Starbucks gift-card with probability q1 and the iTunes gift-card with prob-

ability 1-q1. However, these true probabilities would reverse such that a given shapewould lead to each outcomewith opposite prob-

abilities. Continuing with our example, after a reversal, shape ‘‘A’’ would lead to an iTunes gift card with probability q1 probability and

a Starbucks gift card with 1-q1 probability. The point values (reward magnitudes) for each outcome were generated randomly from

the range 0-100 on each trial, meaning that subjects did not need to track the rewardmagnitudes between trials. Instead, tomaximize

rewards, participants had to track the probability a shape would lead to each of the outcomes over trials and combine this with the

reward magnitudes associated with each outcome on the current trial to guide their decisions based on their subjective preference.

Crucially, the shapes were organized such that they formed 2 sets of inversely related ‘‘systems’’. Shapes within a system always

led to opposite outcomes and had inverted outcome probabilities. Shapes A and B were paired (system 1) and shapes C and D were

paired (system 2). The inverse relationships within a system allowed subjects to learn the probability that a shape would lead to a

specific outcome by observing the choice-outcome relationship of the other shape within the same pair. For example, experiencing

that shape A led to Starbuckswould also give you the knowledge that if shape Bwere available and it was chosen, the outcomewould

have been iTunes. The same relationship was true for shapes C andD. Between systems, observations were completely independent

of each other such that observing an outcome from choosing A or B gives no information about the likely outcomes of choosing

shapes C or D. These structural relationships between choice options and outcomes within a system, and the independence of items

between systems, was clearly explained to participants before the experiment began. Specifically, subjects knew that the probability

that shape A would lead to a particular outcome was the opposite probability that shape B would lead to that outcome, and the same

for shapes C and D. Subjects were tested on these relationships via a ‘‘matching task’’ during the practice session and once more

before the scanning session (see S5). Finally, during a debriefing session we asked subjects to name the inversely related pairs in

the task.

However, subjects did not have any prior knowledge about choice-outcome associations, and when reversals in choice-outcome

associations occurred, or how many times reversals would occur (three times for each system, see Figure 1A). Subjects only knew

that the outcome probabilities could ‘‘switch’’ throughout the task. Therefore, subjects needed to infer both associative contingency

for each choice and when reversals had occurred from their choices and outcome histories during experiments.

Stimuli
Four visually distinct unfamiliar fractal images were chosen such that the visual similarity between any two items were minimal and

were presented to all participants as choice options. Images for system 1 and those for system 2 were randomized across

participants.

Two types of reward identities (two gift cards images) were chosen from 7 different gift-cards from stores familiar to participants:

Best-Buy (blue), Barnes and Noble (tan), iTunes (pink), Regal (purple), REI (orange), Sephora (white), and Starbucks (green). The two

reward identities were chosen prior to the fMRI experiment based on participant’s preference ratings. Subjects rated their preference

level for each of these gift cards presented in a random order on a 1-100 scale. A pair of gift-cards having the minimum difference

among four most highly preferredwere selected per individual participant. These two gift-cards were assigned to outcome 1 (O1) and

outcome 2 (O2), counterbalanced across subjects, and presented during fMRI experiment. This procedure allowed us to minimize

potential biases from initial preferences in choices during the reversal learning task, while maintaining a high desirability for each

outcome. All stimuli in each phase were presented on a computer running Psychopy v1.84 (Peirce, 2009).

Task-Schedule and Procedure
We generated two separate schedules that determined which choice options (shapes) would be presented on each trial and when

reversals would occur. In this experiment, there were six possible unique combinations of four choice stimulus on any trial. In the

experiment schedule, none of the same combination was repeated twice in consecutive trials. Further, we optimized the schedule

such that an ideal Bayesian learner (perfect inferencemodel; see Computational models) would choose each shape and receive each

outcome approximately equally, given an equal preference between outcome identities. This was important because it minimized the

potential for sampling bias in planned multivariate analyses (see multivariate analyses). Each schedule had predetermined reversal

points where the choice-outcome associations switched (e.g., q1 1-q1 and 1-q1 q1) for a given system. During fMRI experiments

system 1 reversed every 40 trials starting from the first trial onwards, while system 2 reversed every 40 trials starting from the 20th trial

onwards, making the state of each system independent of each other. The independent reversal points of two systems made it so

participants were not able to learn the choice-outcome associations of one system from that of the other.

Subjects completed two blocks of 80 trials (160 trials total). Before the fMRI experiment, subjects were instructed that one trial

would be chosen at random to count ‘‘for real’’ and would be used to calculate the subjects reward for the experiment. This makes

each choice independent. Therefore, participants need to make an optimal decision for every trial to maximize their rewards. At the
Neuron 110, 1–11.e1–e9, August 17, 2022 e2
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end of experiment, we randomly selected one trial and gave a reward proportionate to the number of points earned on the specific gift

card received on that trial. The minimum reward given was $5 while the maximum value was $25.

Behavioral Training
To familiarize subjects with the task, all subjects completed a behavioral training session before the fMRI experiment. After behavioral

training participants performed the fMRI experiment on different day within a week. The task used for behavioral training was the

same with the fMRI task except for slight modifications to aid learning. During behavioral training, the experimenter guided subjects

through the first 30 practice choice trials to ensure that subjects understood the task, then left participants to complete the rest of the

trials on their own. In addition, to ensure that subjects tracked the relationship between paired stimuli, subjects were tested every

10th trial on the relationship between shapes, by asking them to connect shapes in the same pair with a single line (Figure S3).

The subjects received feedback via the line color - an incorrect pairing resulted in the line turning red, while a correct pairing turned

the line green. During behavioral training participants learned the task with the same fractal images assigned to the same systems.

However, we used 2 faux outcome identities (Zappos and Netflix) that would not be available for rewards during the fMRI experiment.

Participants who understood the task well and performed well (model fit negative log-likelihood <130) were invited to return for fMRI

experiments. Among 48 participants who initially enrolled the experiment, 40 participants participated in fMRI experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computational models
Weighted-Inference learning model

Wedesigned a Bayesian computational model to predict the choice of participants in each trial t based on one’s choice and outcome

history and available choice options and rewardmagnitudes of the current trial (see Arulampalam et al., 2002; Boorman et al., 2016 for

related models). Since the true probability of the associative contingencies cannot be observed, themodel estimated, in aMarkovian

fashion, the subjective belief that choosing a given shape (S) would lead to outcome 1 (O1), and by definition led to outcome 2 (O2)

with the inverse probability which is denoted as follows:

pðS/O1Þ = qs
pðS/O2Þ = 1 � qs (Equation 1)

Choice-outcome contingencies for all shapes were modeled as separate distributions, but beliefs about contingencies for shapes

in the same system were related through an inference term (g where 0 < g < N), which takes account to what extent an individual

participant learns and updates qs from direct experiences (the outcome y after choosing S) compared to that from inferred outcomes

(the outcome y0 if you had chosen S0 where, S and S0 are paired in the same system; if y is O1 then y0 is O2). On each trial t, the pos-

terior belief about qs is computed using Bayes rule, as follows:

p
�
qs;t

��y1:t�f(p
�
yt
�� qs;t

�
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�
qs;t

��y1:t� 1; vS
�
,g if directly experienced

p
�
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��qs0 ;t

�
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�
qs0 ;t
��y01:t� 1; vS

�
, 1
�
g if inferred

(Equation 2)

where vS is the probability that a reversal in the associative contingencies has occurred (see Equation 4). That is, g = 1 for an ideal

learner who can take advantage of the structural relationship (pðS/ytÞ = pðS0 /y0tÞ) and learn from inferred outcomes as much

as they learn from experienced outcome. Therefore, a participant with a higher level of g is more likely learn from direct experiences

(S/yt) but less likely to learn from inferred outcomes (S0/y0t). After each observation the model updated the associative contin-

gencies in a Markovian fashion, such that the posterior probability depended only on the belief about the most recent state of the

associative contingencies (qs;t� 1) and the likelihood of a reversal (vt� 1). This is because the prior, qs;t� 1, captures themost likely state

given the full history of previous choices and outcomes without needing to store the history of outcomes or statistics of the environ-

ment. The single trial update is then reflected in the following equation:
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qs;t; vt

��y1:t� = p
�
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��qs;t

� Z � Z
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�
qs;t� 1; vt� 1

��y1:t� 1

�
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�
p
�
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��qs;t� 1; vt
�
dqs;t� 1 (Equation 3)

After each trial, the probabilities were normalized such that they remained bounded between 0 and 1.

We took into account the probability that the contingency of the system associated with the current choice (S) is reversed (vS =

pð Js;t = 1Þ) when computing the prior, pðqs;t

��y1:t� 1Þ. The term vS indicated the subjects’ belief that choice-outcome contingencies

had reversed ðJs;t = 1Þ for the chosen shape, S and assumed this probability was constant but unknown. Taken together, the prior

belief of the associative contingency for a chosen shape remained the same as the posterior of the previous trial (pðqs;t� 1Þ) with the

probability 1 � vS (if no reversal has occurred) or flipped to the inverse probability (1- pðqs;t� 1Þ) with the probability vs (if a reversal has

occurred). Therefore, the prior ðqtjy1:t� 1Þ after observing an outcome on trial t-1, but before the beginning of a new trial t, is obtained

by the following transition function:
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A second normalization step was done after applying the transition probabilities vs to the posterior probabilities of the current trial,

such that the probability of all possible transitions equals 1. Note that vS was defined and updated independently per four possible

choice options. However, due to the inherent design of the underlying task structure, vSfor shapes within the same system should be

more correlated than vS of the other system. Finally, note that the reversal probability is fixed during the experiment but unknown to

participants.

For each participant, we initialized the model with a uniform prior over the entire parameter space at the onset of the task. All in-

tegral computations are performed using numerical grid integration.

We then used the prior belief, in the associative contingencies, pðqs;t

��y1:t� 1Þ; to compute the expected value of a given shape (ESÞ
on each trial according to the following formula:
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p
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(Equation 5)

where awas a free parameter and reflected a subject’s preference for one outcome (O1) over the other (O2) (0<a<N), andMO1
t and

MO2
t indicated the reward magnitudes of the outcome available in the current trial, t. We then predicted the choice of a participant

between the two available shapes (ES1 and ES2) on each trial according to a SoftMax function:

pðS1Þ =
eES1b

eES1b + eES2b
(Equation 6)

where the free parameter b, captured the level of sensitivity of choices to expected values (inverse temperature; 0< b<N).

Finally, when the outcome was revealed, the reward prediction errors (rPE) were computed as follows:

rPE = R � ES where R =

(
MO1

t ,a if yt = O1

MO2
t ,a� 1if yt = O2

(Equation 7)

Alternative models

We tested the weighted-inference learning model against two additional models which made alternative assumptions about

how subjects updated the posterior belief from the inferred outcomes. In the first alternative model, named the ‘‘perfect-

inference model’’, g was fixed to 1 in Equation 2, resulting in equal and optimal integration for experienced and inferred outcomes

(gexp= ginf=1). In the second alternative model, called the ‘‘no-inference model’’, we assumed that participants did not take the struc-

tural relationship between shapes in the same system into the updates. Specifically, we set ginf = 0 while gexp = 1 in Equation 2.

Therefore, an agent using no-inference model only learned from experienced outcomes but not from inferred outcomes.

Parameter estimates

The weighted-inference learning model has three free parameters, a; b, and g, and the two alternative models have two free param-

eters, a; and b. We fit all three models independently for each subject using custom Markov Chain Monte Carlo (MCMC) code in

MATLAB R2018a. Model parameters were bounded by the following: [0<a<2], [0<b<1], and [0<g<100], and were initialized at

a=1 b=.5, and g=1. In each case, these starting values represent no bias in the parameter (e.g., a=1 means no preference for either

choice). Each model was fit to maximize the likelihood of a subject’s choices given model estimates of the expected value of each

choice on each trial (Equation 6).

Model Comparisons

To test potential overfitting, we compared the goodness of fit for eachmodel type using the sumof the Bayesian Information Criterion

(BIC) over subjects. This gave us an overall measure of howwell these data were fit by eachmodel at the group level, while penalizing

models that added additional free parameters.

BIC = k,lnðnÞ � 2lnbL (Equation 8)

where k is the number of parameters in the learning model, n is the number of choices (i.e., trials) the subject made, and lnbL indicates

the log-likelihood of each model.

Forward chaining cross-validation

We also tested if the weighted-inference model better predicts out-of-sample data. In the current study, a subject’s belief that any

choice would lead to a specific outcome is dependent on the observations and inferences made in the preceding trials. That is the

choice at the trial t cannot be predicted from any randomly sampled trials but only from y1:t� 1. To account for the time-dependence of

our data, we applied a forward chaining cross validation (CV) (Bergmeir and Benı́tez, 2012), which iteratively fits data from the earliest

time points and uses the fittedmodel to predict later time points. We began by fitting themodel on the first 20 trials of the experiment,

then tested the model on choices made in the 20 trials that came immediately after (trials 21 through 40). In the next iteration, we

trained on the first 40 trials, and tested on choices made in the subsequent 20 trials (trials 41 through 60). This process continued

in steps of 20 until the last iteration which trained on the first 140 trials and then were tested on the last 20 (total of 8 folds). We

summed together the negative log-likelihood returned from each test set to determine which model performed best.
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Model-free analysis of choice history on decisions
To test whether subjects showed a behavioral effect of learning on choice, we fit logistic regression models estimating the effects of

past choice-outcome observations on which itemwas chosen at the current trial t. The regression model included the effect of expe-

rienced choice-outcome association going three trials back (denoted tE � n), and inferred choice-outcome relationships going three

trials back (denoted tI � n), such as the following:

ln



pðchosenÞ

pðunchosenÞ
�

= b0 + b1wtE � 1otE � 1 + b2wtE � 2otE � 2 + b3wtE � 3otE � 3 + b4wtI � 1otI � 1 + b5wtI � 2otI � 2 + b6wtI � 3otI � 3 + b7M
obt
tE � 1

(Equation 9)

where n is the n-th previous trial that object was chosen, up to 3 previous experiences. For example, tE � 1 means the outcome

directly experienced the last time they chose the current shape. The same notation is used for previously inferred outcomes. In

this study, participants were presented with two choice options among four shapes in each trial. This means that the chosen option

in the current trial may not be available in the previous trial. As such, if current choice S or the paired shape, S0 was not available in the

previous trial, then tE � 1 or tI � 1 was the last trial when S or S0was chosen, respectively. We fit separate regression models for the

choices of each of four shapes for each subject. For experienced trials, the value of each of these regressors was 1 if currently consid-

ered choice led to the desired outcome n-trials back and -1 if it did not. Thus:

OtE � n =

�
1 if StE � n led to the desired outcome
� 1 if StE � n led to the undesired outcome

(Equation 10)

We also included contextual, counter-factual information about the other option in the experienced regressors. For example, if the

subject were choosing between choices A and C but choose C and got the desired outcome, this may deter them from choosing

shape A the next time A and C are available. We included this information for completeness with respect to all the experienced in-

formation that could influence the choice of a shape on any given trial.

For inferred trials, the regressor had a value of 1 if the system pair (i.e., B when participants’ choice is A in the current trial) led to the

undesired outcome n trials back, such that

OtI � n =

(
� 1 if S0

tI � n led to the desired outcome

1 if S0
tI � n led to the undesired outcome

(Equation 11)

because this indicates that the currently considered shape should lead to the desired current.

We assumed that participants would desire the outcome with higher magnitude between O1 and O2. To test the effects of greater

desirability in previous choices in the current decision, we assigned the difference in reward magnitude (wtE � n =
��MO1

tE � n
� MO2

tE � n

��)
as a weight on each regressor. We did not consider the subjective preference of one outcome type over the other (a in the model,

Equation 5) for themodel free regression analysis. However, we repeated the analysis using a to moderate the value of each stimulus

(Equation 5) to test if subjective preference produced any changes in these results. Finally, Mobt
tE � 1

represents the influence of the

magnitude of the reward obtained the last time subject chose the currently considered choice.

After fitting separate regressionmodels for each fractal shape, we averaged together the regression coefficients (b) across shapes,

representing the subject specific influence of previous decisions on the current choice.

MRI data Acquisition
Data was acquired using Siemens Skyra 3 Tesla scanner. We used gradient-echo-planar imaging (EPI) pulse sequence, with a multi-

band acceleration factor of 2, and set the slice angle of 30� relative to the anterior-posterior commissure line, minimizing the signal

loss in the OFC region (Weiskopf et al., 2006). We acquired 38 axial slices, 3mm thick with the following parameters: repetition time

(TR) = 1200 ms, echo time (TE) = 24 ms, flip angle = 67�, field of view (FoV) = 192mm, voxel size = 33 33 3 mm3. Contiguous slices

were acquired in interleaved order. We also acquired a field map to correct for potential deformations with dual echo-time images

covering the whole brain, with the following parameters: TR = 630 ms, TE1 = 10 ms, TE2 = 12.46 ms, flip angle = 40�, FoV =

192mm, voxel size = 33 33 3 mm3. For accurate registration of the EPIs to the standard space, we acquired a T1-weighted struc-

tural image using a magnetization-prepared rapid gradient echo sequence (MPRAGE) with the following parameters: TR = 1800 ms,

TE = 2.96 ms, flip angle = 7�, FoV = 256mm, voxel size = 1 3 1 3 1 mm3.

Preprocessing
Preprocessing of the data was done in SPM12 (Wellcome Trust Centre for Neuroimaging) in MATLAB (2018b Matworks). Data were

preprocessed using the default options in SPM. Imageswere slice-time corrected and realigned to the first volume of each sequence.

We realigned to correct for motion using a six-parameter rigid body transformation. Inhomogeneities in the field were corrected using

the phase of non-EPI gradient echo images at 2 echo times, which were co-registered with structural maps. Images were then

spatially normalized by warping subject specific images to the reference brain in the MNI (Montreal Neurological Institute) coordinate

systemwith 2mm isotropic voxels. Finally, for the univariate analysis images were spatially smoothed using a gaussian kernel with full

width at half maximum of 8mm.
e5 Neuron 110, 1–11.e1–e9, August 17, 2022
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Univariate fMRI Analysis
To model BOLD activity in each voxel we used a GLM with four different regressors; the choice period (a boxcar, from the choice

onset including the duration of .5s plus the reaction time of decisions), the button press (a stick function), the reward expectation

period (a boxcar including jittered ISI) and the reward feedback phase (a 2 second boxcar). In the first GLM (GLM 1), we included

the decision difficulty of each trial as a parametric regressor at the choice period. The decision difficulty was computed as the inverse

of the expected value difference between options. See below:

jES1 � ES2j� 1 (Equation 12)

In addition, we computed the model-based belief updates to the choice-outcome associations after the outcome was observed in

each trial and inputted this as a parametric regressor at the feedback phase. This belief update was calculated as the Kullback-Lei-

bler divergence (DKL) between the prior and posterior belief in qs;t (Equation 1) for the chosen shape (S),

DKLðtÞ =

Z
ln

 
p
�
qs;t

��y1:t�
p
�
qs;t

��y1:t� 1

�!p�qs;t

��y1:t� dqs;t (Equation 13)

The DKL reflected changes in the model estimated ‘‘beliefs’’ about which choice led to which outcome (gift card identity) as par-

ticipants progressed through learning. The DKL for each shape was computed using numerical integration and then shapes in the

same system were summed together system to generate DSum
KL . Six motion regressors were included as regressors of no interests

in the model to account for translation and rotation in head position during the experiment. From the first-level analysis, contrast im-

ages of parameter estimates from regressors of the DSum
KL were estimated for each participant and inputted for the one sample t-test in

the second level analysis.

We performed an additional GLM (GLM 2) to distinguish the neural activity reflecting the additional information gained from infer-

ence in belief updates at the time of feedback. To address this, we computed theDKLfrom the no-inferencemodel (DExp
KL ) in addition to

DKL which was estimated from the weighted-inference model given the subject specific weighting of inferred outcomes. We then

generated DDiff
KL by subtracting DExp

KL from the DKL of the weighted-inference model (DDiff
KL = DWeighted

KL � DExp
KL ). Thus, DExp

KL this would

account for the update that comes from experiencing outcomes alone (i.e., no inference), whereas DDiff
KL contained the additional up-

dating that occurs when both inferred outcomes are integrated into a new belief. GLM2 was the same with the GLM1 except that we

inputted two parametric regressors at the feedback phase.

Group-level statistical inference
Group level testing was done using a one-sample t-test (df=36) on the cumulative functional maps generated by the first level anal-

ysis. All first level mapswere smoothed prior to being combined and tested at the group level. To correct formultiple comparisons, we

used Threshold-Free Cluster Enhancement (TFCE) which uses permutation testing and accounts for both the height and extent of the

cluster (Smith and Nichols, 2009). All parameters were set to default parameters (H=2, E=0.5) and we used 5000 permutations for

analysis. In all ROI based analyses and whole brain analyses we report effects that surpassed a pTFCE<.05 threshold.

We first performed group-level inference on independent anatomical ROIs, then performed exploratory whole brain analyses. For

ROI analyses, we first extracted voxels from each ROI in each subject’s first-level activation map, averaged the maps together, then

applied small volume TFCE correction. We used this analysis method for testing univariate effects of updating in VTA, decoding the

latent cause of each system in mPFC and testing which regions represented association space. All other analyses were corrected for

multiple comparisons at the whole brain level.

Multivariate Analyses
The MVPA analysis aimed to identify regions of the brain that coded knowledge of the relationship between system pairs - the un-

derlying structure of the task. To test this, we estimated the BOLD activity patterns during the feedback phase using unsmoothed

preprocessed images. The feedback period was modeled as a boxcar that had a constant duration lasting 2 seconds from the feed-

back onset of each trial. No parametric modulators were added.

Each trial was labeled according to which shape was chosen and which outcome received from that choice (St/yt). Our main

hypothesis of this study was that subjects would use knowledge about the underlying relationships between shapes in a system

to make inferences of unobserved outcomes at feedback. If participants retrieve representations of these structural relationships

at feedback to appropriately assign credit learned from experiences to the latent association, we could expect to decode the rep-

resentations associated with the common causes that arise in trials where the systems’ pairs led to opposite outcomes (S0
t/ y0t).

For example, trials where one shape in the pair lead to outcome one (e.g., A/O1) should share the same causes (e.g., q1) with trials

where the other shape in the same system led to the opposite outcome (e.g., B/O2).

Importantly, to make sure that the activity patterns are not associated with the outcomes (O1 or O2) presented on the screen but

are associated with the latent causes (q1or q2, i.e., the reward contingency in the system 1 and 2), we organized training and testing

labels in a way to control for visual information. Specifically, we trained a shape against another shape which shared the same out-

comes but did not share the causes (e.g., A/
q1

O1 vs. C/
q2

O1) to identify the activity patterns specifically associated with the causes.
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Subsequently, we tested theses activity patterns on independent data sets which included the shapes that did not share the outcome

with the training shapes but share the causes (e.g., B/
q1

O2 vs.D/
q2

O2). As this example showed, no sensory information was shared

between training and testing sets that could influence the classifier to bias the results. See table for the full list of eight training and

test pairs.
Training and Testing scheme of Linear Classifier for Latent Cause Decoding

Training set Test set

A/
q1

O1 vs. C/
q2

O1 B/
q1

O2 vs. D/
q2

O2

A/
q1

O1 vs. D /
1�q2

O1 B/
q1

O2 vs. C /
1�q2

O2

A /
1�q1

O2 vs. C /
1�q2

O2 B /
1�q1

O1 vs D /
1�q2

O1

A /
1�q1

O2 vs D/
q2

O2 B /
1�q1

O1 vs C/
q2

O1

B /
1�q1

O1 vs C/
q2

O1 A /
1�q1

O2 vs D/
q2

O2

B /
1�q1

O1 vs D /
1�q2

O1 A /
1�q1

O2 vs C /
1�q2

O2

B/
q1

O2 vs C /
1�q2

O2 A/
q1

O1 vs D /
1�q2

O1

B/
q1

O2 vs D/
q2

O2 A/
q1

O1 vs C/
q2

O1
This table shows all combinations of training (left column) and testing (right column) trial sets used for decoding the latent cause at

the time of feedback. Capital letters denote the chosen shape (A,B,C or D). Arrows followed by ‘‘O1’’ or ‘‘O2’’ indicate which outcome

each shape led to on that trial. Note that training and test stimuli are matched for outcome identity so that no visual information can be

used by the classifier to separate representations. Finally, letters above each arrow denote the latent cause (p or q) being decoded,

indicating the system each stimulus belongs to (system 1 or system 2, respectively).

We then used a searchlight procedure to identify regions of the brain that contained representations of the underlying structure of

the environment. Each searchlight consisted of a 5x5x5 voxel cube placed around a centroid voxel in the brain. Each centroid was

required to values in at least 10 of the surrounding voxels to be considered for further processing and were then standardized by

z-scoring the beta values within each searchlight.

The data were subset such that only the relevant trials were used for a particular classifier (see table), then split by blocks into a

training set and a test set. We used LIBSVM (Chang and Lin, 2011) to fit linear SVMswith training data, which we then used to classify

data points from the test set. We iterated through this process for each of 2 blocks and for each of 8 combinations of training and test

labels, then computed the mean decoding accuracy (average proportion of correct classifications) across all 16 classifiers for each

voxel. The mean decoding accuracy for each voxel was compared to a voxel specific null distribution which was estimated with the

same procedure while randomly assigning the labels over 100 permutations at each searchlight. The mean classification accuracy of

this null distributionwas subtracted off the classification accuracy of each searchlight to give us ameasure of how reliably information

about the latent cause could be decoded above chance. The resulting maps were then spatially smoothed using a gaussian kernel

with full width half maximum of 8mm.

Group-level analyses were preformed using a one-sample t-test on accuracy maps across subjects (see Group-level Inference).

For this analysis we focused on a priori defined ROIs in lOFC and mPFC (see Regions of interest (ROI) analyses) and corrected for

multiple comparisons within each ROI using small volume correction TFCE. The threshold for significance remained the same

(pTFCE <.05)

Decoding of Latent Cause Correlated with Belief Updates
To test whether the strength of the neural representations followed beliefs in specific choice-outcome contingencies, we correlated

the probability that representations for the latent cause could be decoded on each trial with trial-by-trial belief updates in choice-

outcome relationships. We used the same decoding procedure mentioned above to classify voxel patterns at feedback in each trial

(see Multivariate Analyses), but additionally calculated the distance of each pattern from the hyperplane that divides categories. Dis-

tances were obtained using the equation specified on the LIBSVM webpage (https://www.csie.ntu.edu.tw/�cjlin/libsvm/faq.html).

Patterns that are more distant from the hyperplane can be thought of as having more information about a category, and those

that are closer to the hyperplane as having less information (Schuck and Niv, 2019). We then signed the distance of each point ac-

cording to whether the predicted category label was correct (+ for correct, – for incorrect), and averaged the distance from each rele-

vant decoding scheme.

The signed distances to the hyperplane and the magnitude of the DKL from the weighted-inference model were correlated using

Spearman’s rank correlation, in each voxel throughout the brain.We used Spearman’s correlation as a conservative measure against

outliers or nonlinear relationships that could bias the results. The correlation values were normalized using a Fisher transform and the

resulting maps were spatially smoothed using a Gaussian kernel with full width at half maximum of 8mm. Group level analyses were
e7 Neuron 110, 1–11.e1–e9, August 17, 2022
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preformed using a one-sample t-test on correlation values, thenwe applied TFCE correction to volumeswithin preselected ROIs. The

same thresholds were applied for group level statistical correction (pTFCE <.05).

Representational similarity analysis of association space
Weused RSA to look for regions of the brain that tracked the position of each systemwithin an abstract association space as learning

unfolded. If participants represented the state of each system as ‘‘positions’’ within an abstract association space, then we should

observe similar neural representations when subjects occupy similar regions of the association space. For example, if subjects

believe that the configuration of system 1 is A/O1 and B/O2with probability q1=.80, the neural representation of this belief should

be highly similar to a trial where participants believe system 1 is in the same configuration but q1=.75. However, the neural similarity

should be more dissimilar if q1=.55, and yet more dissimilar if subjects believe that the configuration of system 1 has been reversed

(A/O2 and B/O1;q1=.15). Note that while this example gives point estimates of q1, the true contingencies were defined as belief

distributions which includes the confidence of each belief. Such increases in the dissimilarity of voxel patterns would suggest that

neural representation is coded as an abstract value space, because it shows that distal points in the association space are repre-

sented with proportionately dissimilar activity patterns. As in previous work, we focused our analysis during the time of the ITI (Knud-

sen and Wallis, 2021).

To test this, we estimated the BOLD activity patterns during the ITI phase using unsmoothed preprocessed images. The ITI period

was modeled as a boxcar and no parametric modulators were added. We created model representational dissimilarity matrices

(RDMs) for each system (S) which measures the dissimilarity of seven factors of each trial (t) that could give rise to dissimilarity in

neural representations. All RDMs were constructed such that they represented the dissimilarity of these factors between trials in

separate blocks. The first two model RDM’s captured similarity of belief distributions across trials which were separated into the be-

liefs of the ‘‘task-relevant association’’ and ‘‘task-irrelevant association’’. The task-relevant association RDM included the trial-by-

trial dissimilarity between beliefs about S. This included the trials in which participants used their belief about reward contingency

to choose a particular shape and subsequently updated the belief with the given feedback. Therefore, the size of the task-relevant

RDM corresponded to the number of trials in which a participant chose a shape associated withS in block 1⨉ those trials in block 2.

The task-irrelevant association RDM included the beliefs about reward contingencies for S, but it included the trials in which

participants did not choose a shape associated with S, but needed to hold the representation for potential future or pending trials.

Therefore, the size of the task-irrelevant RDM corresponded to the number of trials in which a participant chose a shape that was not

associated with S in block 1 ⨉ those trials in block 2. We computed the model RDMs of the task-relevant and -irrelevant contin-

gencies in each of two systems.

To compute the trial-by-trial dissimilarity between two belief distributions across sessions, we used the Jensen-Shannon Diver-

gence (DJS) between distributions. This metric is commonly used to measure the dissimilarity between two distributions

(D1 and D2Þ: Note that DJS is symmetric. That is, DJSðD1jjD2Þ is the same with DJSðD2jjD1Þ unlike the KL divergence. We computed

DJS by combining DKL of each distribution to their mean distribution ( ~D) using numerical integration:

DJSðD1kD2Þ =
1

2
DKLðD1k ~DÞ+ 1

2
DKLðD2k ~DÞ where ~D =

D1 +D2

2
(Equation 14)

We included 5 additional model RDM’s to control for alternative possible explanations of neural similarity. These were as follows:

the identity of the chosen shape (CS), the identity of the unchosen shape (US), choice location (right or left side; CL), the outcome

identity (OI), and the signed reward prediction error (rPE) computed by the weighted-inference model (Equation 7). All of these model

RDMs were binary matrices except for the rPE matrix, in which the dissimilarity was computed as the absolute difference in rPE’s

between trials. All analyses were conducted separately per system (see Figure S2E for correlation matrix).

We then followed the same searchlight procedure as with the MVPA (5x5x5 voxel cube around a centroid voxel), at each centroid

generated a neural RDM by calculating the Euclidean distance between voxel activities for trials in each session, after standardizing

voxel activity within the ROI. We then regressed the neural similarity matrix against each of the model RDM’s (Flesch et al., 2021;

Parkinson et al., 2017) using the following GLM:

neuralRDMS = b0 + b1D
S
JS rel + b2D

S
JS irr + b3CS

S + b4US
S + b5CL

S + b6OIS + b7rPE
S (Equation 15)

All predictors were z-scored before fitting the GLM. Each subject’s resulting DS
JS rel beta maps were averaged across systems to

produce a single estimate of the correlation between system specific belief similarity and neural similarity. Group level analyses were

preformed using a one-sample t-test on smoothed beta values. We applied TFCE correction to volumes within preselected ROIs at

pTFCE <.05 threshold for group level statistical correction.

To visual this analysis and create Figure 4C, we performed the following procedure: first, we split the data into a left-out run and a

visualized run. For the left-out run, we created two ‘‘template patterns’’ that represented the average multivariate pattern for each of

the two possible configurations for a given system. For example, we created a template pattern for the state of system 1when A/O1

and B/O2 ( q1 ) by averaging the activity in each voxel across trials in which the weighted-inference model indicated this belief was

true. The same was done for all other possible configurations of each system ( 1 � q1 ; q2 ; 1 � q2 Þ: These template patterns were

then used as a comparison for trials in the visualized block, pre- and post-reversal. Reversal points were identified as trials that

subjects had a different belief about the configuration of a system compared to the trial before it (e.g., q1flipped to 1 � q1Þ. All
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reversal points were required to have at least 3 prior trials in which the same belief was held by the learning model (e.g., q1) and three

trials after when the configuration changed ( 1 � q1Þ. We then compared these trials to the template pattern that matched the belief

prior to the reversal, such that if prior to the reversal the learner’s belief was that q1was true, the neural pattern of those trials was

compared to the template pattern for q1 : Similarity patterns were compared using spearman’s rank correlations. However, no sta-

tistical inference was conducted on the correlations, as they were only used to visualize the analysis conducted in Figure 4B.

Regions of interest (ROI) analyses
Regions of interest in prefrontal cortex were generated from anatomically defined regions in the Human Connectome Project Dataset

(Glasser et al., 2016). The lOFC ROIs corresponded to bilateral area BA13 (index 92) and for the mPFC we used BA10 (index 65). We

included these regions because they have been previously implicated in credit assignment for causal choices, particularly in similar

contingency learning tasks (Boorman et al., 2013, 2016; Jocham et al., 2016). To understand the role of dopaminergic regions of the

midbrain in inferential updating, we looked at the ventral tegmental area (VTA) which has previously been linked to updating choice-

outcome association (Boorman et al., 2016; Gershman and Uchida, 2019; Howard and Kahnt, 2018; Iglesias et al., 2013). Here, we

used an anatomical VTA\SN ROI taken from a previous study linking the VTA to social updating about the trustworthiness of advice

from others (Diaconescu et al., 2017). The EC defined by Juelich atlas allowed us to choose the threshold of images based on prob-

ability. To define ROIs in the EC, we binarized the probabilistic map in which the minimum threshold was 0 and the maximum

threshold was 10. Note that ROIs were defined independently from the current task.
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