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We propose a low-rank tensor approach to approximate linear transport and nonlinear 
Vlasov solutions and their associated flow maps. The approach takes advantage of the fact 
that the differential operators in the Vlasov equation are tensor friendly, based on which 
we propose a novel way to dynamically and adaptively build up low-rank solution basis 
by adding new basis functions from discretization of the PDE, and removing basis from 
an SVD-type truncation procedure. For the discretization, we adopt a high order finite 
difference spatial discretization and a second order strong stability preserving multi-step 
time discretization. We apply the same procedure to evolve the dynamics of the flow map 
in a low-rank fashion, which proves to be advantageous when the flow map enjoys the 
low rank structure, while the solution suffers from high rank or displays filamentation 
structures. Hierarchical Tucker decomposition is adopted for high dimensional problems. 
An extensive set of linear and nonlinear Vlasov test examples are performed to show the 
high order spatial and temporal convergence of the algorithm with mesh refinement up 
to SVD-type truncation, the significant computational savings of the proposed low-rank 
approach especially for high dimensional problems, the improved performance of the flow 
map approach for solutions with filamentations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we propose a novel approach that aims to overcome the curse of dimensionality in grid-based methods 
when solving the high-dimensional nonlinear Vlasov equation as a kinetic description of collisionless plasma. For simplicity, 
we focus on the following simplified rescaled Vlasov-Poisson (VP) system

∂ f

∂t
+ v · ∇x f + E · ∇v f = 0, (1.1)

E(x, t) = −∇xφ(x, t), −�xφ(x, t) = ρ(x, t) − ρ0, (1.2)

which describes the probability distribution function f (x, v, t) of electrons in plasma. Here E is the electric field and φ is the 
self-consistent electrostatic potential. f couples to the long range field via the charge density, ρ(x, t) = ∫

f (x, v, t)dv, where 
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we take the limit of uniformly distributed infinitely massive ions in the background. Observe that the Vlasov equation (1.1)
is a six-dimensional nonlinear transport equation in phase space. Among many existing challenges for deterministic Vlasov 
simulations (e.g. multiscale features, nonlinearity, formation of filamented structures), the curse of dimensionality and the 
associated huge computational cost have been a key obstacle for realistic high-dimensional simulations. Note that the cele-
brated particle-in-cell method can generate qualitative results with reasonable computational cost in high dimensions, while 
the inherent statistical noise of such a method prevents accurate capture of physics of interest [27]. Hence, most existing 
deterministic schemes are only applicable to reduced lower-dimensional models (d ≤ 3) in the literature. The sparse grid 
approach is considered as a viable framework for dimension reduction in the Vlasov simulations, yet the computation can 
still be very expensive for large d (e.g., d = 6) as the curse of dimensionality is not be fully removed [3,26,36]. Another 
related approach is the reduced order modeling (ROM) [2]: typically a low-dimensional reduced subspace is constructed in 
an offline training phase for approximating the solution manifold. Then the surrogate solution for any desired parameter 
can be computed very efficiently from the reduced model in the online phase. The nonlinear Vlasov models are hyperbolic 
in nature, thus may not have low-rank/low-dimensional structures, if snapshot of solutions are taken at different instances 
of time, as opposed to parabolic problems in a reduced order modeling framework. It is related to the slow decay of the 
Kolmogorov N-width of the solution manifold for transport-dominated problems [19].

Inspired by the existing understanding of the low-rank solution structure for the Vlasov dynamics, as well as the obser-
vation that the differential operator in the Vlasov equation (1.1) can be represented in the tensorized form, in this paper we 
consider a novel way to (a) dynamically and adaptively build up low-rank solution basis, and (b) determine the low-rank 
solutions in a tensor format with well-established high order finite difference upwind weighted essentially non-oscillatory 
(WENO) method coupled with the SSP multi-step time discretizations [16], which offers more computational savings com-
pared with the SSP multi-stage RK method in the low-rank tensor framework. We will first demonstrate our proposed idea 
for a 1D1V Vlasov-Poisson system. Compared with the recent work on dynamic tensor approximations with constant rank 
such as [14,15,8,9], our proposed approach is based on a procedure of adding from RHS of PDEs and removing basis by SVD 
truncation; hence not only the basis, but also the rank of the solution are dynamically evolving. Motivated from the filamen-
tation phenomenon of the Vlasov solution, we propose a low-rank approach to evolve the flow map of solution, followed by 
fetching solution values at the feet of characteristics. Such an approach displays advantages for problems whose flow maps 
are of low rank, yet their solutions are not necessarily of low rank. However, further development is needed in a more gen-
eral setting, e.g. in handling general boundary conditions. Then we discuss the extension to general high-dimensional cases 
in light of the Hierarchical Tucker (HT) decomposition. The HT format [21,17] is motivated by the classical Tucker format 
(also known as the tensor subspace format) [38,7]. It is developed by considering a dimension tree and taking advantage 
of the hierarchy of the nested subspaces and associated nested basis. A quasi-optimal low-rank approximation in the HT 
format can be computed stably via the hierarchical high order singular value decomposition (HOSVD) [21,17,20]. The HT 
format attains a storage complexity that is linearly scaled with the dimension, hence striking a perfect balance between 
data complexity and numerical feasibility. We note that an alternative way of representing low-rank tensor is via the tensor 
train (TT) format [31], which can be thought of as a special type of the HT format, which has a degenerate dimension tree 
and enjoys a simpler structure. In this paper, we focus on the HT format, with a balanced dimension tree that separate the 
physical space x and phase space v dimensions. We also solve Poisson’s equation in the HT format by adopting a low-rank 
conjugate gradient method [18].

There have been a few pioneering works in exploring the low-rank solution structure of the Vlasov equation with tensor 
decompositions. These include the low-rank semi-Lagrangian (SL) method in the TT format developed in [25]; a low-rank 
method based on the canonical polyadic (CP) format developed in [10]; the method proposed in [14,15] in seeking a set 
of dynamic low-rank bases by a tangent space projection. Moreover, in [22] the HOSVD is applied to analyze and compress 
high-dimensional gyrokinetic datasets generated by a full-rank spectral method, leading to efficient data compression es-
pecially in velocity domain. In [8,9], dynamic tensor approximations for high dimensional linear and nonlinear PDEs are 
proposed based on functional tensor decomposition and dynamic tensor approximation. There are recent work on low-rank 
methods with asymptotic preserving property for multi-scale models [11,12,6]. Compared to existing works in low-rank ap-
proximation to kinetic solutions, our approach adopts the classical high resolution methods such as finite difference scheme 
with WENO reconstructions and the strong stability preserving time integrators under the low-rank framework, leading to 
high order accuracy up to the SVD truncation error. Compared to the dynamical low-rank approach [14], the proposed low-
rank tensor approach in this paper will have the rank adaptivity through the adding and removing basis procedure, while 
the dynamical low-rank approach [14,8,9] has a fixed rank. More recently, rank adaptivity is realized under the dynamical 
low-rank approximation framework in a series of works [4,5,29], for which extra basis is added from its history at previous 
time steps, followed by a SVD-type truncation to remove their redundancy.

This paper proposes a dynamic low-rank approach with HT decomposition for the high dimensional nonlinear Vlasov 
model, when applying the finite difference WENO method coupled with second order SSP multistep method as the high 
order discretization. The flow map approach is also developed and its effectiveness is demonstrated via several linear and 
nonlinear examples. The organization of the paper is the following. Section 2 illustrate the main spirit of the low-rank 
approach, as well as the low-rank flow map approach, via a simple 1D1V Vlasov model. Section 3 is on the extension to 
high dimensional problem using the HT decomposition of tensors. Section 4 presents extensive numerical results for linear 
hyperbolic equations and nonlinear kinetic models. Finally, the conclusion is given in Section 5.
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2. Low rank representation of Vlasov solution

Inspired by existing understanding of the low-rank solution structure for Vlasov dynamics (e.g. Landau damping and two-
stream instabilities) [25,14,10], as well as the observation that the differential operator in the Vlasov equation (1.1) can be 
represented in the tensorized form, we propose a novel way to dynamically and adaptively build up low-rank solution basis, 
and determine the low rank solutions in a tensor format. We will first demonstrate our proposed idea in a simplified 1D1V 
setting (d=2) using a high order spatial differentiation operator, coupled with a first order forward Euler time discretization. 
Here the high order spatial differential operator could come from the spectral collocation method [23] or flux-based finite 
difference approximation [35]. We will discuss the extension of the algorithm to high order temporal discretization, followed 
by extension to general 3D3V (d=6) problems by using the hierarchical Tucker decomposition of tensors [17] or tensor train 
decomposition [31]. Here and below, we denote d as the dimension of the problem.

2.1. A low rank Vlasov solver in a simplified 1D1V setting

We consider a simplified 1D1V VP system from (1.1)

∂ f

∂t
+ v

∂ f

∂x
+ E

∂ f

∂v
= 0, (2.1)

E(x, t) = −φx, −φxx = ρ − ρ0. (2.2)

Our proposed low rank Vlasov solver is built base on the assumption that our solution at time tn has a low-rank represen-
tation in the form of

f (x, v, tn) =
rn∑
j=1

(
Cn

j U (1),n
j (x)U (2),n

j (v)
)

, (2.3)

where 
{
U (1),n

j (x)
}rn

j=1
and 

{
U (2),n

j (v,n)
}rn

j=1
are a set of low rank unit length orthogonal basis in the x and v directions 

respectively, Cn
j is the coefficient for the basis U (1),n

j U (2),n
j , and rn is the rank of the tensor representation. For the Vlasov 

dynamics, we propose to adaptively update our low-rank basis, and hence the coefficient C , the basis U (1) , U (2) and the 
rank r are all time dependent with superscript n.

We choose to work with solutions on uniformly distributed N grid points in each dimension for U (1),n
j (x) and U (2),n

j (v)

respectively; thus f n in equation (2.3) with grid point discretization can be written in the following tensor product form 
and in a matrix form

f n =
rn∑
j=1

(
Cn

j U(1),n
j ⊗U(2),n

j

)
= U(1),nCn(U(2),n)�. (2.4)

Here columns of U(1),n , i.e., U(1),n
j , j = 1 · · · rn , are point values of U (1),n

j (x), j = 1 · · · rn at uniformly distributed N grid points 
in x-direction; similarly rows of U(2),n are point values of U (2),n

j (v) at uniform grids in v-direction. Cn is a diagonal matrix 
of size rn representing the coefficient for the tensor product basis. See Fig. 2.1 for illustration.

We consider a simple first order forward Euler discretization of (2.1), to illustrate the main idea in dynamically and 
adaptively updating basis and solutions.

1. Add basis. Consider forward Euler discretization of the Vlasov equation (2.1)

f n+1 = f n − �t(vDx( f
n) + En(x)Dv( f

n)). (2.5)
3
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Fig. 2.1. Remove basis. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Here Dx and Dv represent a high order locally mass conservative discretization of spatial differentiation terms. It could 
be the spectral collocation method [23] or the flux-based finite difference type numerical differentiation [35]. We also 
assume that En can be computed from (2.2) accurately and efficiently, see discussions on the used Poisson solver below. 
Thanks to the tensor friendly form of the Vlasov equation, f n+1 can be evolved from f n (2.4), and be represented in 
the following low-rank format:

f n+1 =
rn∑
j=1

Cn
j

[(
U(1),n

j ⊗U(2),n
j

)
− �t

(
DxU

(1),n
j ⊗ v �U(2),n

j + En �U(1),n
j ⊗ DvU

(2),n
j

)]
, (2.6)

where � demotes an element-wise multiplication operation. Here we see that the number of basis has increased from 
rn (for f n) to 3rn (for f n+1) in a single step update. In particular, a basis in f n , e.g. U(1),n

j ⊗ U(2),n
j has evolved into 

three basis with{
U(1),n

j ⊗U(2),n
j , DxU

(1),n
j ⊗ v � U(2),n

j , En �U(1),n
j ⊗ DvU

(2),n
j

}
. (2.7)

This step is illustrated in Fig. 2.1 (a). The computational cost of the ‘adding basis’ step is O(rN log(N)) if a global spectral 
differentiation is performed and is O(rN) if a local finite difference type numerical differentiation is performed.

2. Remove basis. If no basis is removed, then the rank of the tensor approximation would grow exponentially as time 
evolves. Hence, the removing basis procedure is crucial for the efficiency of the low-rank method. A SVD-type truncation 
procedure is proposed as follows. We start with the pre-compressed solution f n+1 from (2.6), see Fig. 2.1(a) in which 
the red and blue parts refer to the old and newly added basis, respectively. This new set of basis is not necessarily 
orthogonal; so we perform the Gram-Schmidt process, e.g., QR decomposition to orthogonalize the basis, see the cyan 
matrices in Fig. 2.1(b). Then we apply a truncated SVD to the product of three 3rn × 3rn matrices based on a prescribed 
threshold, see Fig. 2.1(b-c). In this step, the rank of f n+1 is being reduced from 3rn to rn+1. By combining the orthogonal 
matrices from QR decomposition and SVD, see the cyan and red matrices in Fig. 2.1(c), we obtain the compressed 
solution f n+1 with the updated basis U (1),n+1 and U (2),n+1, see Fig. 2.1(d). The computational cost of the ‘removing 
basis’ step is O(r2N + r3).

High order spatial discretization of Dx and Dv . Dx and Dv can be viewed as the differentiation matrices for the corre-
sponding variables. We perform fifth order finite difference method, derived from computing fluxes based on the upwind 
principle and taking flux differences to ensure local mass conservation [24]. In particular, with the upwind principle, one 
has to use different differentiation operator Dx for positive and negative v ’s. We let

v+ = max(v,0), v− = min(v,0), En,+ = max(En,0), En,− = min(En,0),

and let D±
x be the upwind differentiation operator in x-direction corresponding to v± respectively. Similarly, we let D±

v be 
the upwind differentiation operator in v-direction corresponding to En,± respectively. Thus, similar to (2.6) in the add basis 
step, we have, with the upwind differentiation operator,
4
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f n+1 =
rn∑
j=1

Cn
j

[(
U(1),n

j ⊗U(2),n
j

)
(2.8)

−�t
(
D+

x U
(1),n
j ⊗ v+ �U(2),n

j + D−
x U

(1),n
j ⊗ v− �U(2),n

j

+En,+ �U(1),n
j ⊗ D+

v U
(2),n
j + En,− �U(1),n

j ⊗ D−
v U

(2),n
j

)]
.

Here we see that the number of basis has increased from rn (for f n) to 5rn in the add basis step. WENO type reconstructions 
can be applied for those flux functions to avoid numerical oscillations due to under-resolution of Vlasov solutions. We note 
that other type of spatial discretizations are possible, such as the spectral method, with a global differentiation matrix [23]
can be applied. In this case, there is no upwind biased differentiation operator and the growth of basis is three folded, i.e. 
from rn (for f n) to 3rn . We also remark that, despite the growth of basis, in the removing basis step, the solution rank will 
remain low, if the solution displays a low rank structure.
High order temporal discretization. In the above procedure of ‘adding and removing basis’ for the Vlasov equation, the set 
of basis as well as their coefficients are being updated in each time step. Such an idea of updating the solution can be 
extended to high order accuracy in time by a strong stability preserving (SSP) multi-step method or a SSP multi-stage RK 
method [16]. For example, for a second order SSP multi-step method,

f n+1 = 1

4
f n−2 + 3

4
f n − 3

2
�t(vDx( f

n) + En(x)Dv( f
n)),

the rank will increase from rn to rn−1+5rn if an upwind differentiation such as (2.8) is used. For a third order SSP multi-step 
method

f n+1 = 11

27
f n−3 + 16

27
f n − 16

9
�t(vDx( f

n) + En(x)Dv( f
n)) + 4

9
�t(vDx( f

n−1) + En−1(x)Dv( f
n−1))

the rank will increase to rn−3 + 4rn−1 + 5rn in the “add basis” step if an upwind differentiation described above is used. 
The SSP multi-step methods have advantages, compared with the multi-stage RK methods, in that the rank expand per 
time step is much smaller, if no rank-truncation is performed at intermediate RK stages. Aggressive rank-truncation (with 
relatively large threshold for truncating singular values) at intermediate RK stages may lead to temporal order reduction, 
as the temporal accuracy of RK methods relies on delicate combination of RK intermediate solutions; while the mild rank-
truncation with small threshold will lead to a greater computational expense due to the faster growth of rank in the “add 
basis” step.
Poisson solver. To solve the Poisson equation, we first compute the charge density ρ(x, t) = ∫

f (x, v, t)dv − 1. In the low 
rank format, we have from (2.3)

ρ(x, tn) =
∫

f (x, v, tn)dv =
rn∑
j=1

(
Cn

j U (1),n
j (x)

∫
U (2),n

j (v)dv

)
, (2.9)

with its discretized version

ρn =
rn∑
j=1

Cn
j U(1),n

j �v
(
U(2),n

j · 1
)

. (2.10)

Here �v 
(
U(2),n

j · 1
)

is the application of mid point rule for velocity integration, which is spectrally accurate for smooth 
solution and the zero boundary condition. A fast Fourier transform, or a high order finite difference Poisson solver can be 
applied to the Poisson solver.
Algorithm flow chart. We organize the flow chart as Algorithm 1 below for the low rank approach with fifth order finite 
difference for spatial discretization and second order SSP multi-step method for time discretization for the 1D1V VP system.
Mass conservation and numerical stability of the algorithm. The proposed low rank algorithm is locally mass conservative 
in the “add basis” step, due to the flux difference form of the differentiation operator that we employ. However, the mass 
conservation is lost in the truncation step, thus the loss of global mass is up to the truncation threshold in the “remove 
basis” step. We note a recent development on the dynamic low rank algorithm with mass, momentum and energy conser-
vations [13], the idea of which can be incorporated for further conservative development of our proposed low rank tensor 
approach. The stability of the rank truncation algorithm is discussed in [33]. It is the consequence of the stability of the 
original time stepping algorithm and the stability of the rank-truncation algorithm in the L2 norm.
5
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Algorithm 1: Low rank approach with fifth order finite difference for spatial discretization and second order SSP 
multi-step method for time discretization for the 1D1V VP system.

1. Initialization:
(a) Initial distribution function f (x, v, t = 0) in a low rank format (2.4).

2. For each time step evolution from tn to tn+1.
(a) Compute ρ(x, tn) = ∫

f (x, v, tn)dv − 1 in the low rank format (2.10), followed by computing E(x, tn) from the Poisson equation (2.2) by fast 
Fourier transform or a high order finite difference algorithm.

(b) Add basis:

f n+1 = 1

4

rn−2∑
j=1

(
Cn−2

j U(1),n−2
j ⊗U(2),n−2

j

)
+ 3

4

rn∑
j=1

(
Cn

j U(1),n
j ⊗U(2),n

j

)

− 3

2
�t

rn∑
j=1

Cn
j

[(
D+

x U
(1),n
j ⊗ v+ �U(2),n

j + D−
x U

(1),n
j ⊗ v− �U(2),n

j

+En,+ �U(1),n
j ⊗ D+

v U
(2),n
j + En,− �U(1),n

j ⊗ D−
v U

(2),n
j

)]
.

(c) Remove basis as illustrated in Fig. 2.1 and update the rank rn+1, as well as U(1),n+1
j , U(2),n+1

j and coefficients Cn+1
j , for j = 1 · · · rn+1.

2.2. A low rank representation of Vlasov flow map in a simplified 1D1V setting

Let (X ∗(x, v, t), V∗(x, v, t)) be the x-v coordinate of feet of characteristics at t = 0 of the VP system originated from 
(x, v, t). (X ∗, V∗) satisfies the same characteristics evolution equation as the nonlinear VP system (2.1)-(2.2), with the 
initial conditions X ∗(x, v, t = 0) = x and V∗(x, v, t = 0) = v . Thus, (X ∗, V∗) satisfy the PDEs

X ∗
t + v ·X ∗

x + E ·X ∗
v = 0, X ∗(x, v, t = 0) = x, (2.11)

V∗
t + v · V∗

x + E · V∗
v = 0, V∗(x, v, t = 0) = v. (2.12)

Here E is the electrostatic field from the Poisson equation (2.2) in the VP system.
For the computational discretization, we work with the same set of uniformly distributed computational grid. With such 

a mesh, the initial conditions in (2.11) and (2.12) are rank one tensors

X ∗(t = 0) = x⊗ 1, V∗(t = 0) = 1⊗ v,

where x and v are coordinates of grid points for the corresponding direction. As the equations (2.11) and (2.12) enjoy the 
same tensor friendly structure as the original Vlasov equation (2.1), the same proposed low rank approach can be applied. 
In particular, X ∗ and V∗ at tn can be approximated in the form of

X ∗,n =
rnX∑
j=1

(
(CX )nj U (1),n

X , j (x) ⊗ U (2),n
X , j (v)

)
, (2.13)

V∗,n =
rnV∑
j=1

(
(CV )nj U (1),n

V, j (x) ⊗ U (2),n
V, j (v)

)
. (2.14)

From the fact that solution stays constant along characteristics d
dt f (x(t), v(t), t) = 0, we have

f (x, v, t) = f (X ∗,V∗, t = 0). (2.15)

Algorithm 2: Low rank flow map approach for the 1D1V Vlasov system.

1. Initialization:
(a) Initial distribution function f (x, v, t = 0).
(b) Rank one initial conditions for X ∗ and V∗: x ⊗ 1, 1 ⊗ v.

2. Evolution of f , X ∗ and V∗ from tn to tn+1.
(a) Compute ρ(x, tn) = ∫

f (x, v, tn)dv − 1, and then E(x, tn) from the Poisson equation (2.2) by fast Fourier transform.
(b) Use the low rank Algorithm 1 for (2.11)-(2.12) to update solutions from (X ∗,n, V∗,n) to (X ∗,n+1, V∗,n+1) in a low-rank form (2.13)-(2.14).
(c) f (x, v, tn+1) = f (X ∗,n+1,V∗,n+1, t = 0). (2.16)
6
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The flow map approach is advantageous for problems whose flow maps display low-rank structure, while their solutions 
are not necessarily of low rank. We demonstrate such advantages in several numerical examples in the following section. 
On the other hand, we note that the flow map approach has several computational issues to be addressed in a practical 
setting. Firstly, evaluation of the initial condition at feet of characteristics (2.16) requires analytic form of initial condition, 
or a low-rank form where an operator in the spirit of semi-Lagrangian interpolation is needed. Secondly, evaluation of the 
charge density ρ in a low-rank format with computational efficiency in a high dimensional setting needs to be developed. 
For example, while the flow map (X ∗, V∗) enjoys the low rank property, f (x, v, t) may not. In fact,

f (x, v, tn) = f (X ∗,n,V∗,n, t = 0)

is a composition of a nonlinear function f (x, v, t = 0) with low-rank flow maps (X ∗,n, V∗,n). To evaluate the charge density 
in a low-rank fashion without the need to evaluate f on the full grid,

ρ(x, t) =
∫

f (x, v, t)dv =
∫

f (X ∗,n,V∗,n, t = 0)dv (2.17)

is challenging. One possibility is to use some sampling algorithm to extract low-rank structure of f [1,30,34], yet such an 
attempt may be subject to some sampling errors. Finally when source terms are involved, such direct evolution of the flow 
map needs to be adjusted. These issues impose limitation on the applicability of the flow map approach to high dimensional 
nonlinear problems. Addressing these computational challenges will be subject to our future research.

3. A low rank high dimensional Vlasov solver by hierarchical Tucker decomposition of tensors

The tensor networks have become an effective tool to obtain a low-rank approximation for high-dimensional problems. 
One such tensor format is the HT format, which enable us to extend the proposed methodology to high dimensions allevi-
ating the curse of dimensionality. Below, as an example, we formulate a low-rank tensor algorithm for solving a 2D2V VP 
system (1.1).

ft + v1 fx1 + v2 fx2 + E1 f v1 + E2 f v2 = 0, (3.1)

where the electric field (E1, E2) is solved from the coupled Poisson’s equation.

3.1. Hierarchical Tucker decompositions [20]

In this paper, we employ the HT format to compress the high order tensors, aiming to alleviate the curse of dimension-
ality. The celebrated Tucker format ([38,7]) seeks to express an order d tensor a ∈RN1×···×Nd as

a =
r1∑
j1

· · ·
rd∑
jd

b j1,..., jd ·
(
U(1)

j1
⊗ · · · ⊗U(d)

jd

)
,

where U(μ) := {U(μ)

jμ
}rμjμ=1 provide frames (or a basis if {U(μ)

jμ
}rμjμ=1 are linearly independent) of linear space range(M(μ)(a)), 

μ = 1, . . . , d, and b ∈Rr1×···rd is called the core tensor that glues all the d frames. r = {rμ}dμ=1 is called the Tucker rank and 
we denote by r = max(r). The low-rank tensor approximation of a tensor in the Tucker format can be computed through 
the HOSVD with quasi-optimal accuracy. Let N = maxμ Nμ . The storage cost of the Tucker format scales O(rd + drN) with 
exponential dependence on dimension d. Hence, the Tucker format still suffers the curse of dimensionality and is only 
feasible in moderately high dimensions. The HT format is introduced to overcome the shortcoming. Denote the dimension 
index D = {1, 2, . . . , d} and define a dimension tree T which is a binary tree containing a subset α ⊂ D at each node. 
Furthermore, T has D as the root node and {1}, {2}, . . . , {d} as the leaf nodes. Each non-leaf node α has two children 
nodes denoted as αl and αr with α = αl

⋃
αr and αl

⋂
αr = ∅. For example, the dimension tree given in Fig. 3.2 can be 

used to approximate f (x1, x2, v1, v2) in (3.1) in the HT format. The efficiency of the HT format lies in the nestedness 
property [21]: for a non-leaf node α with two children nodes αl, αr , then

range(M(α)(a)) ⊂ range(M(αl)(a) ⊗M(αr)(a)), (3.2)

which implies that there exists a third order tensor B(α) ∈Rrαl×rαr ×rα , known as the transfer tensor, such that

U(α)
jα

=
rαl∑

jαl=1

rαl∑
jαr=1

B(α)
jαl , jαr , jα

U(αl)

jαl
⊗U(αr)

jαr
, jα = 1, . . . , rα. (3.3)

By recursively making use of (3.3), a tensor in the HT format stores a frame at each leaf node and a third order transfer 
tensor at each non-leaf node based on a dimension tree. Denote r = {rα}α∈T as the hierarchical ranks. The storage of 
7
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Fig. 3.2. Dimension tree T to express fourth-order tensors in the HT format.

the HT format scales as O(dr3 + drN), where r = max r. If r is reasonably low, then the HT format avoids the curse of 
dimensionality. In summary, the HT format is fully characterized by the three key components, including a dimension tree, 
frames at leaf nodes and transfer tensors at non-leaf nodes, see Fig. 3.2. The HT format is ideal for simulating tensor friendly 
high-dimensional PDEs such as the Vlasov equation, as it allows efficient implementations of many operators by the low-
rank method. These include addition of tensors, SVD-type truncation, element-wise multiplication (i.e., Hadamard product), 
and application of linear operators (e.g., spectral differentiation matrix) to tensors.

3.2. A low-rank tensor method in HT for the 2D2V VP system

Below, we formulate the low rank tensor method for solving the 2D2V VP system. We assume the solution f n at 
time step tn is expressed as the fourth-order tensor in the HT format with dimension tree T together with frames 
U(1),n, U(2),n, U(3),n, U(4),n at four leaf tensors, corresponding to directions x1, x2, v1, v2, respectively, and transfer tensors 
B(1,2,3,4),n, B(1,2),n, B(3,4),n , see Fig. 3.2. In particular,

f n =
r12∑

i12=1

r34∑
i34=1

B(1,2,3,4),n
i12,i34,1

U(1,2),n
i12

⊗U(3,4),n
i34

, (3.4)

with

U(1,2),n
i12

=
r1∑

i1=1

r2∑
i2=1

B(1,2),n
i1,i2,i12

U(1),n
i1

⊗U(2),n
i2

, i12 = 1, . . . , r12, (3.5)

and

U(3,4),n
i34

=
r3∑

i3=1

r4∑
i4=1

B(3,4),n
i3,i4,i34

U(3),n
i3

⊗U(4),n
i4

, i34 = 1, . . . , r34. (3.6)

Further, the electric field En
1 and En

2 are represented in the second order HT format. In the following, we discuss the details 
of low rank tensor method in the add basis, remove basis and Poisson solver steps of the algorithm.

1. Add basis.
(a) From the term v · ∇x f . We first focus on the Vlasov equation and consider the discretization of v1 · f nx1 . The treat-

ment of v2 · f nx2 is the same. Similar to the 1D1V case, to account for upwinding, we split v1 into v+
1 = max(v1, 0)

and v−
1 = min(v1, 0) and denote by D+

x1 and D−
x1 the biased upwind high order finite difference operators. Then 

v1 · f nx1 is approximated by the sum of two fourth-order tensors in the HT format denoted by (v+
1 ⊗ D+

x1 ) f
n

and (v−
1 ⊗ D−

x1 ) f
n . Both tensors have the same dimension tree, frames and transfer tensors as f n , except that 

(v+
1 ⊗ D+

x1 ) f
n has frame D+

x1U
(1),n in direction x1 and frame v+

1 �U(3),n in direction v1, and (v−
1 ⊗ D−

x1 ) f
n has frame 

D−
x1U

(1),n in direction x1 and frame v−
1 �U(3),n in direction v1, see Fig. 3.3 (a).

(b) From the term E · ∇v f . We start from discussing the discretization of En
1 · f nv1 . Since E

n
1 is expressed in the HT 

format, we propose the following splitting strategy:

E+
1 := 1

2

(
En1 + α11x1 ⊗ 1x2

)
, E−

1 := 1

2

(
En1 − α11x1 ⊗ 1x2

)
, (3.7)

where α1 = maxx1,x2 |En
1| is the maximum absolute value of En

1 over the physical domain. The entries of E+
1 and E−

1
are nonnegative and nonpositive respectively. Furthermore, E+

1 and E−
1 are still in the HT format. Then, En

1 · f nv1 is 
approximated by the sum of two tensors (E+

1 ⊗ D+
v1 ) f

n and (E−
1 ⊗ D−

v1 ) f
n . In particular, assume E+

1 has frames 
E+,(1) and E+,(2) in direction x1 and x2 and transfer tensor B(1,2) ,
1 1

8



W. Guo and J.-M. Qiu Journal of Computational Physics 458 (2022) 111089
Fig. 3.3. (a) The added tensor from v1∂x1 f ; (b) the added tensor from the term E1∂v1 f in the HT format.

E+
1 =

r1,E∑
j1=1

r2,E∑
j2=1

B(1,2)
E+
1 , j1, j2

E+,(1)
1, j1

⊗ E+,(2)
1, j2

. (3.8)

Then, E+
1 ⊗ D+

v1 · f n has a similar tree structure as f n with new frames E+,(1)
1 �U(1),n , E+,(2)

1 �U(2),n . From (3.5) and 
(3.8), E+,(1)

1 �U(1),n has r1r1,E frames with entry-wise multiplication

E+,(1)
1, j1

�U(1),n
i1

, j1 = 1, · · · r1,E , i1 = 1, · · · r1.
Correspondingly, the transfer tensor becomes B(1,2)

E+
1

⊗K B(1,2),n with size r1r1,E × r2r2,E , where ⊗K denotes the 

generalized Kronecker product [20]. In addition, the frames in the v1 direction are replaced with D+
v1U

(1),n . See 
Fig. 3.3 (b) for illustration of the added tensor due to E1∂v1 f . A similar extension can be done for the tensor from 
En
2 · f nv2 .

When a second order SSP time integration method is used, then f n+1 is approximated by f n , together with about 
ten additional tensors in the adding basis step. We hence need to remove redundant basis to avoid exponential rank 
increase, meanwhile not compromising much accuracy.

2. Remove basis. We employ the standard hierarchical HOSVD for removing basis, which is implemented in the Matlab 
toolbox htucker [28,37]. The procedure is similar to the case of d = 2, which consists of orthogonalizing the frames 
and transfer tensors, computing the reduced Gramians and the associated eigen-decomposition with truncation (de-
pending on the truncation threshold and the maximal rank allowed) at all nodes in the dimension tree, and then 
obtaining the truncated HT tensor f̃ n+1 with updated frames and transfer tensors. Such a truncation procedure costs 
O

(
dNr2 + (d − 2)r4

)
, without exponential dependence on d, and ensures quasi-optimal truncation accuracy ([17])

‖ f n+1 − f̃ n+1‖2 ≤
√
2d − 3‖ f n+1 − fbest‖2,

where fbest is the best approximation to f n+1 with the hierarchical ranks bounded by those of f̃ n+1. We can further 
combine the addition and truncation procedures for improved efficiency and stability, which is proposed in [37].

3.3. Low rank method for solving Poisson’s equation

Now, we formulate a low-rank Poisson solver compatible with the Vlasov solver above. First, we need to compute the 
macroscopic charge density ρn from f n , that is

ρn
i1,i2

= �v1�v2

⎛
⎝∑

i ,i

f nii ,i2,i3,i4

⎞
⎠ − ρ0, (3.9)
3 4

9
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Fig. 3.4. The contraction of the f in the HT format to obtain ρ via (3.9).

with ρ0 is the charge density of constant ion background. Notice that the cost of direct summation scales as O(N4), suffering 
the curse of dimensionality. As f n is represented in the HT format, (3.9) can be computed via tensor contraction with cost 
O(rN + r3). In particular, we first sum each frame vector in U(3) and U(4) and obtain S(3) and S(4) , both of which are row 
vectors of size r3 and r4, respectively. See Fig. 3.4 (a). Then, we recursively merge the nodes enclosed by the dashed polygon 
in Fig. 3.4 (a) and obtain a single node with transfer tensor B(1,2)

ρ in Fig. 3.4 (b). Once the ρ is computed in the HT format, 
we adopt a low-rank conjugate gradient (CG) method proposed in [18] for solving the Poisson equation (2.2). Assuming 
the discretization of Laplacian with the spectral method, we have the linear system Aφ = b, where A = D2

x1 ⊗ I + I ⊗ D2
x2

denotes the Laplace operator with spectral differentiation matrices D2
x1 , D

2
x2 in the tensor product form. Note that the 

low-rank CG method requires truncation for each iteration to avoid exponential rank increase.

4. Numerical results

In this section we present a collection of numerical examples to demonstrate the efficiency and efficacy of the proposed 
low-rank tensor methods for simulating linear and nonlinear transport equations in high dimensions. In the simulations, 
fifth order upwind finite difference methods are employed for spatial discretization, together with a second order SSP 
multi-step method denoted by SSPML2 for temporal discretization. The numerical solutions of high dimensions are repre-
sented in the HT format [20]. Below, we denote the low-rank method for approximating the solution as “low rank tensor 
approach” and the method for the flow maps as “flow map approach”. We compare the performance of both approaches 
for linear and 1D1V VP system. For the 2D2V VP system, we only apply the low rank tensor approach, due to the compli-
cation/high computational cost in evaluating the charge density for the flow map approach. In all numerical examples, the 
SVD truncation threshold is taken as the relative tolerance. We take a small relative tolerance for smooth solutions, while a 
larger one for solutions with growing rank to avoid rapid increase in the rank, hence with affordable CPU and memory cost.

4.1. Linear transport problems

Example 4.1. (Accuracy and efficiency test) We first consider the advection equation with constant coefficients

ut +
d∑

m=1

uxm = 0, x ∈ [−π,π ]d

with periodic conditions. We first consider a smooth initial condition with d = 4

u(x, t = 0) = exp
(
−2(x21 + x22)

)
sin(x3 + x4),

which can be expressed as a rank-two tensor in the CP format. Since the exact solution remains smooth and low-rank over 
time, we are able to test the accuracy and efficiency of the low-rank tensor method with a properly chosen truncation 
threshold ε. In the simulation, we set the same mesh size N in each dimension and ε = 10−6 and compute the solution 
up to T = 2π . In Table 4.1, we report the L2 error and associated order of convergence for the low-rank method. The fifth 
order linear FD method with upwinding is employed. Second order accuracy is observed due to SSPML2 used. In Fig. 4.5, 
we report the time history of the hierarchical ranks of the solution in the HT format for N = 128. It is observed that the 
hierarchical ranks of the solution stay very low and bounded by 3, making the method extremely efficient. Furthermore, 
CPU cost is 4.2 s, 7.8 s, 14.2, 30.1 s, 65.3 s for N = 16, 32, 64, 128, 256, which grows linearly with the mesh size N . This 
contrasts strongly with the traditional full-rank counterpart which usually grow at the rate of O(2d+1). It is known that 
the sparse grid approach is incompetent in approximating Gaussian functions in high dimensions [32], while this example 
demonstrates the efficiency of the proposed low-rank tensor approach in this regard.
10
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Table 4.1
Example 4.1, d = 4. t = 2π . 
Convergence study.
N L2 error order

16 2.56E-02
32 5.76E-03 2.15
64 1.41E-03 2.04
128 3.52E-04 2.00
256 8.09E-05 2.12

Fig. 4.5. Example 4.1. The time evolution of hierarchical ranks of the solution in the HT format. (a) d = 4 for a smooth initial condition, N = 128, ε = 10−6, 
t = 2π . The rank histories of r1 and r2 overlap each other all the time, as well as r12, r34, r3 and r4.. (b) d = 2 for a cross-shaped initial condition, N = 128, 
ε = 10−5, t = 2π .

Fig. 4.6. Example 4.1 with a cross-shaped initial condition. d = 2. ε = 10−5. t = 2π . N = 128. (a) Initial condition. (b) Numerical solution at t = 2π .

Example 4.2. (Linear advection of a solution with discontinuities) We consider a 2D linear transport equation ut +ux +uy =
0 with a 2D discontinuous cross shape initial condition on [−π, π ] × [−π, π ] as plotted in Fig. 4.6 (a). It takes the value 1
in the cross shape region and 0 otherwise. Periodic boundary condition is used. The solution is a linear advection of a cross 
shape with unit velocity in both x and y direction. Due to the periodic boundary condition, when the solution moves out 
of the boundary, it will re-enter from the other side of the domain. The fifth order WENO method is employed for spatial 
discretization. The numerical solution is computed up to t = 2π and is plotted in Fig. 4.6. Note that the solution remains 
11
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Table 4.2
Example 4.3, d = 2. t = 2π . Low rank 
tensor approach.
N L2-error order rank

16 3.29E-02 16
32 6.16E-03 2.42 17
64 3.85E-04 4.00 18
128 2.88E-05 3.74 22
256 9.07E-06 1.66 28

Fig. 4.7. Example 4.3. N = 128, ε = 10−5. (a) Contour plot of the numerical solution by the low rank tensor approach, t = 2π . (b) The time history of the 
numerical ranks.

a rank-two tensor over time despite being discontinuous, see the right plot in Fig. 4.5. It is observed that the low-rank 
structure of the solution is well captured by the method.

Example 4.3. For this example, we simulate the following 2D solid-body-rotation problem

ut − yux + xuy = 0, (x, y) ∈ [−π.π ]2

and compare the performance of two approaches. In particular, we consider two sets of initial conditions, including a smooth 
Gaussian hump

u(x, v, t = 0) = exp(−x2 − 5y2),

and the non-smooth cross-shaped function considered in previous example. For the smooth initial condition, we report 
the convergence study of low rank tensor approach for the L2 error and orders of accuracy in Table 4.2. We employ the 
fifth order linear FD method with splitting for spatial discretization and let ε = 10−7 for truncation. We compute the 
solution up to t = 2π , i.e. one full evolution. Second order accuracy is observed as expected. In addition, the numerical 
rank of the solutions remains relatively low and independent of mesh size N . Similar convergence behavior is observed for 
the flow map approach and hence omitted for brevity. We then consider the discontinuous initial condition and employ 
the fifth order WENO FD method with splitting for spatial discretization. In Fig. 4.7, we report the numerical results and 
the time evolution of the numerical rank of the low rank tensor approach with mesh size N = 128 up to t = 2π . It is 
observed that the numerical solution suffers severe representation rank explosion, which is more pronounced with a finer 
mesh. Furthermore, the numerical solution exhibits spurious oscillations due to the Gibbs phenomenon, and due to global 
nature of the basis in the low-rank representation, the WENO methodology becomes less effective in controlling spurious 
oscillations. In Fig. 4.8, we report the contour plots of the solution together with the time history of the numerical rank 
of flow map X ∗ . Note that the flow maps are smooth and remain very low-rank regardless of the solution profile. It is 
observed that the proposed flow map method is able to capture the low-rank structure of the flow map and high quality 
results are obtained. In Table 4.3, we report the convergence study of the flow map approach for X ∗ and second order 
convergence is observed as expected.
12
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Fig. 4.8. Example 4.3. N = 128, ε = 10−5, t = 2π . (a) Contour plot of the numerical solution by the flow map approach. (b) The time history of the numerical 
rank of X ∗ .

Table 4.3
Example 4.3, d = 2. t = 2π . The flow 
map approach. Convergence for X ∗ .

N L2-error order rank

16 1.47E-03 2
32 3.66E-04 2.00 2
64 9.15E-05 2.00 2
128 2.29E-05 2.00 2

Table 4.4
Example 4.4, d = 2. t = T . The low 
rank tensor approach.
N L2-error order rank

16 1.90E-02 16
32 3.00E-03 2.66 17
64 1.92E-04 3.96 18
128 7.30E-06 4.72 22
256 7.32E-07 3.32 28

Example 4.4. We consider the swirling deformation flow, governed by the linear transport equation

ut −
(
cos2

( x

2

)
sin(y)g(t)u

)
x
+

(
sin(x) cos2

( y

2

)
g(t)u

)
y
= 0, (x, y) ∈ [−π,π ]2

where g(t) = π cos
(
πt
T

)
, and T = 1.5, with periodic boundary conditions. We consider the same two initial conditions as 

in the previous example. Note that the solution profile would be deformed along the flow maps and return to its initial 
state at time t = T . Note that the underlying flow maps remain smooth and low-rank over time. We let ε = 10−5 for the 
truncation. The convergence study is summarized in Table 4.4 for low rank tensor approach. (See Fig. 4.9.) Second order 
of convergence is observed. Then, we consider the discontinuous cross-shaped initial condition. Similar to the solid body 
rotation example, the solution develops misaligned discontinuous structures which are high-rank by nature. In Fig. 4.10, we 
report the contour plots of the solutions at t = T /2 and t = T with mesh size Nx × Ny . The time evolution of the numerical 
rank of the solution is reported in the first plot of Fig. 4.11. It is observed that the method suffers severe rank explosion, and 
the numerical solution develops spurious oscillations due to the Gibbs phenomenon. Meanwhile, since the flow maps are 
smooth and of low rank, flow map approach is able to generate a high quality result without oscillations, see Fig. 4.10. In 
addition, the numerical rank remains very low, leading to significant computation savings, see the second plot in Fig. 4.11.

4.2. The 1D1V Vlasov-Poisson system

Example 4.5. Consider a linear 1D1V VP system with a given electric field E(x) = 1
2 sin(πx). The initial condition is a smooth 

Gaussian hump
13
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Fig. 4.9. Example 4.4. Nx × Ny = 128 × 128, ε = 10−5. The low rank tensor approach. (a) Contour plot of the numerical solution, t = T /2. (b) Contour plot 
of the numerical solution, t = T .

Fig. 4.10. Example 4.4. Nx × Ny = 128 × 128, ε = 10−5. The flow map approach. (a) Contour plot of the numerical solution, t = T /2. (b) Contour plot of the 
numerical solution, t = T . (c) The time history of the numerical ranks of the solution.

u(x, v, t = 0) = exp(−20(x2 + v2)).

We test the accuracy for both approaches for t = 0.75 and t = 1.5. The reference solution is computed by solving the char-
acteristic equation with very small time step. Note that the solution profile will deform into a thinner and thinner structure 
over time. In Tables 4.5-4.6, we report the convergence study by setting ε = 10−5 and 10−7. It is observed that, for low 
rank tensor approach, once the solution is well resolved, high order accuracy can be observed. In the meantime, the nu-
merical rank of the solution becomes larger and larger due to the deformation of the solution, and the error magnitude 
increases by comparing the results at t = 0.75 and t = 1.5. On the other hand, the underlying flow maps are smoother 
and lower rank than the solution. The flow map approach is able to capture the very low-rank structure of the flow map 
and generate more accurate approximation. In particular, by choosing a large truncation parameter, i.e. ε = 10−5, the er-
ror from the discretization is dominated by the truncation error in the tensor decomposition, as opposed to low rank 
tensor approach. Furthermore, the truncation error accumulates over the time integration, observing that error increases 
the mesh is refined. If a smaller truncation parameter, i.e. ε = 10−7, then the discretization error dominates the trunca-
tion error, and high order convergence for the approximations of the flow map as well as the solution is observed. (See 
Fig. 4.12.)
14
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Fig. 4.11. Example 4.4. The time history of the numerical ranks of the solution for low rank tensor approach (left) and the flow map approach (right).

Table 4.5
Example 4.5, d = 2. The low rank tensor approach.

ε = 10−5 ε = 10−7

t = 0.75

N L∞-error order rank L∞-error order rank

16 9.01E-02 13 9.01E-02 16
32 1.36E-02 2.73 19 1.36E-02 2.73 25
64 8.65E-04 3.98 21 8.17E-04 4.06 31
128 3.16E-04 1.45 20 4.67E-05 4.13 33

t = 1.5

N L∞-error order rank L∞-error order rank

16 2.94E-01 16 2.94E-01 16
32 2.46E-01 0.26 25 2.46E-01 0.26 31
64 6.78E-02 1.86 41 6.78E-02 1.86 48
128 6.80E-03 3.32 45 6.70E-03 3.34 67

Table 4.6
Example 4.5, d = 2. The flow map approach.

ε = 10−5 ε = 10−7

t = 0.75

N error of X error of f rank error of X order error of f order rank

16 8.12E-05 2.13E-04 8 5.72E-05 2.11E-04 8
32 1.43E-04 2.76E-04 7 1.43E-05 2.00 1.75E-05 3.59 10
64 2.23E-04 5.04E-04 7 3.98E-06 1.84 4.75E-06 1.88 10
128 3.90E-04 3.90E-04 7 1.29E-06 1.62 2.11E-06 1.17 10

t = 1.5

N error of X error of f rank error of X order error of f order rank

16 1.60E-03 1.32E-02 12 1.70E-03 1.31E-02 16
32 4.12E-04 1.20E-03 12 1.73E-04 3.29 1.00E-03 3.71 18
64 8.09E-04 1.60E-03 12 2.54E-05 2.77 3.56E-05 4.81 18
128 1.50E-03 2.60E-03 11 3.92E-06 2.70 5.21E-06 2.77 18

Example 4.6. We consider the 1D1V Landau damping with initial condition

f (x, v, t = 0) = 1√
2π

(1 + α cos (k x))exp

(
− v2

2

)
,

where k = 0.5. The computation domain is set as [0, Lx] ×[−Lv , Lv ], where Lx = 2π
k and Lv = 6. We let truncation threshold 

ε = 10−5 and compute the solutions up to t = 40. We first set α = 0.01, resulting in the weak Landau damping. In Fig. 4.13, 
we plot the time evolution of the electric energy and the numerical ranks of the solutions for both approaches. It is observed 
15
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Fig. 4.12. Example 4.5. Nx × Nv = 64 × 64. (a) Contour plot of the numerical solution by the low rank tensor approach, t = 1.5, ε = 10−7. (b) Contour plot 
of the numerical solution by the flow map approach, t = 1.5, ε = 10−7. (c) Contour plot of flow map X ∗ by the flow map approach, t = 1.5, ε = 10−7. (d) 
The time evolution of the numerical ranks.

that both methods can accurately predict the damping rate of the electric energy. Further, the numerical ranks remain very 
low over time, indicating that the methods are able to capture the underlying low-rank structure of the solution efficiently. 
We then set α = 0.5, creating the strong Landau damping. It is well-known that the nonlinear effect will dominate the 
dynamics, and the filamented structures will gradually develop in the phase space over time. In Fig. 4.14, we report the 
time evolution of the electric energy and numerical ranks of the solutions. It is observed that the rank of the flow map 
is smaller than that of the numerical solution from the low rank tensor approach. In the meantime, the numerical results 
from the flow map approach are found to have better resolution than that from the low rank tensor approach, see Fig. 4.15. 
Last, we report the CPU cost for comparison of the low rank tensor approach and the traditional full grid approach. The CPU 
times for the weak Landau damping are 13.0 s, 22.4 s, 49.2 s for mesh size 32 × 64, 64 × 128, and 128 × 256, respectively, 
for the low rank tensor approach, and for the strong Landau damping are 17.3 s, 52.8 s, and 135.2 s. The full grid CPU times 
for both weak and strong examples are 6.8 s, 41.3 s, and 243.7 s. Notice that for low rank weak Landau damping problem, 
the CPU time only doubles with mesh refinement; while for the full grid method the cost grows about 6-fold. For the strong 
Landau damping, due to the rank increase in time, the CPU time grows about 3-fold with mesh refinement. For the flow 
map approach, the CPU times for the weak Landau damping are 16.4 s, 34.8 s, and 86.3 s for mesh size 32 × 64, 64 × 128, 
and 128 × 256 respectively, and for the strong Landau damping are 25.5157 s, 73.5 s, and 200.8 s, respectively. Note that 
the cost for the flow map approach is higher than that for the low rank tensor approach, mainly due to the evaluation of 
the charge density in a not necessarily low rank fashion (2.17).
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Fig. 4.13. Example 4.6. Weak Landau damping 1D1V. ε = 10−5. The time evolution of the electric energy (a) and ranks (b) for the low rank tensor approach. 
The time evolution of the electric energy (c) and ranks (d) for the flow map approach.

Example 4.7. We consider the 1D1V two-stream instabilities with initial condition

f (x, v, t = 0) = 2

7
√
2π

(
1+ 5v2

)
(1+ α ((cos(2kx) + cos(3kx)) /1.2+ cos(kx)))exp

(
− v2

2

)
,

where α = 0.01 and k = 0.5. We compare the performance of both approaches for the long term simulations. We set 
ε = 10−6. In Fig. 4.16, we plot the time evolution of the numerical rank of the solutions. It is observed that the rank of the 
flow map is much smaller than that of the solution when t ≤ 20. After that, the flow map rank starts growing to capture the 
underlying nonlinear dynamics, leading to improved efficiency. In Fig. 4.17, we report the contour plots of the solutions by 
both approaches at t = 30 and t = 40 with mesh size Nx × Nv = 128 × 256. Both methods can generate high quality results 
and flow map approach structures are well captured. Furthermore, the flow map approach is able to resolve finer solution 
structures, which is ascribed to the fact that the flow maps are smoother than the solution itself for this example.

4.3. The nonlinear 2D2V Vlasov-Poisson system

Example 4.8. We first consider the 2D2V weak Landau damping with initial condition

f (x,v, t = 0) = 1

(2π)d/2

(
1+ α

d∑
cos (kxm)

)
exp

(
−|v|2

2

)
, (4.1)
m=1
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Fig. 4.14. Example 4.6. Strong Landau damping 1D1V. ε = 10−5. The time evolution of the electric energy (a) and ranks (b) for the low rank tensor approach. 
The time evolution of the electric energy (c) and ranks (d) for the flow map approach.

where d = 2, α = 0.01, and k = 0.5. We set the computation domain as [0, Lx]2 ×[−Lv , Lv ]2, where Lx = 2π
k and Lv = 6. We 

simulate the problem using the low rank tensor approach and report the numerical results in Fig. 4.18. It is observed that 
the low-rank method is able to predict the correct damping rate of the electric energy and capture the low-rank structure of 
the solution. The hierarchical ranks remain low, leading to significant efficiency of the low-rank method. CPU time is 76.8s, 
117.5s, and 265.6s for mesh size N2

x × N2
v = 162 × 322, 322 × 642, 642 × 1282, respectively. Similar to Example 4.1, the CPU 

time scales linearly with respect to N , as the proposed method is able to efficiently capture the low-rank solution structures. 
The time histories of the relative error in the total partial number and the total energy are plotted in Fig. 4.19. It is observed 
that the proposed method is able to conserve the physical invariants up to the scale of the truncation threshed ε.

Example 4.9. In this example, we consider the strong Landau damping with the initial condition (4.1) and d = 2. The param-
eters are the same as in previous example except α = 0.5. Unlike the weak case, the nonlinear effect would play a dominant 
role and the solution would gradually develop filamented structures. Note that the VP system enjoys a well-known time 
reversibility property; that is we evolve the VP system from initial condition f (x, v, t = 0) to t = T and flip the velocity 
variable, i.e., f̃ (x, v, T ) = f (x, −v, T ), and then continue the evolution of the VP system for f̃ up to t = 2T and obtain 
f̃ (x, v, 2T ). Then, f̃ (x, v, 2T ) = f (x, v, t = 0). We can make use of the time reversibility property for the accuracy test. In 
particular, we let T = 1 and compare the approximation of f̃ (x, v, 2T ) with the initial condition. The truncation threshold 
is set to be ε = 10−6. The convergence study is summarized in Table 4.7. Second order of convergence is observed. Then we 
consider the long term simulation of the strong Landau damping. We set ε = 10−3 and rmax = 32, and compute the solution 
W. Guo and J.-M. Qiu Journal of Computational Physics 458 (2022) 111089
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Fig. 4.15. Example 4.6. Weak Landau damping 1D1V. Contour plot of the solution. ε = 10−5. t = 30. The low rank tensor approach with Nx × Nv = 64 × 128
(a) and Nx × Nv = 128 × 256 (b). The flow map approach, Nx × Nv = 64 × 128 (c) and Nx × Nv = 128 × 256 (d).

Fig. 4.16. Example 4.7. Two-stream instabilities 1D1V. d = 1. ε = 10−6. The time evolution of the numerical rank of the solutions.
19
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Fig. 4.17. Example 4.7. Two-stream instabilities 1D1V. Contour plot of the solution. ε = 10−6. Nx × Nv = 128 × 256. The low rank tensor approach at t = 30
(a) and t = 40 (c). The flow map approach t = 30 (b) and t = 40 (d).

Table 4.7
Example 4.9. d = 2. T = 1. ε = 10−6. 
Low rank tensor approach.
N2

x × N2
v L2-error order

162 × 322 5.19E-02
322 × 642 3.62E-03 3.84
642 × 1282 5.11E-04 2.82
1282 × 2562 1.57E-04 1.71

up to T = 30. In Fig. 4.20, we plot the time histories of the hierarchical ranks with three mesh sizes N2
x × N2

v = 322 × 642, 
642 × 1282, and 1282 × 2562. It is observed that the hierarchical ranks increase over time to capture the underlying fila-
mented structures before reaching rmax . The CPU time is 438.9s, 1278.7s, and 2606.4s which scales linearly with N . Note 
that for this example the total computational cost is dominated by the hierarchical HOSVD truncation. We set the same 
rmax and hence the cost for truncation is similar for the three meshes. In Fig. 4.21, we plot the 2D cuts of the solutions 
at (x2, v2) = (2π, 0) and (x1, x2) = (2π, 2π) at t = 5, 15, 30 with mesh size N2

x × N2
v = 1282 × 2562. It is observed that 

the proposed method is able to capture the main structure of the solution. In Fig. 4.22, we report the time histories of the 
electric energy the relative errors in total mass and energy.
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Fig. 4.18. Example 4.8. Weak Landau damping 2D2V. d = 2. ε = 10−6. The low rank tensor approach. (a) The time evolution of the electric energy. (b) 
Hierarchical ranks for mesh N2

x × N2
v = 642 × 1282. For uniform meshes N2

x × N2
v = 162 × 322, 322 × 642, 642 × 1282.

Fig. 4.19. Example 4.8. Weak Landau damping 2D2V. d = 2. ε = 10−6. The low rank tensor approach. The time evolution of the relative errors. (a) total 
particle number, (b) total energy.

5. Conclusion

In this paper, we proposed a novel low-rank tensor approach to approximate transport equations in high dimen-
sions with application to Vlasov simulations. In particular, the solution is represented in the low-rank HT format, and 
the associated basis is dynamically and adaptively updated by the proposed adding and removing basis procedure. High 
order spatial and temporal discretizations are employed for accurate capture of complex solution structures. For the 
transport problems that do not exhibit low-rank structures, we further propose to solve the associated flow maps in 
a similar low-rank fashion, which may enjoy the desired low-rank structures. We plan to extend the approach to the 
Vlasov-Maxwell system and other kinetic models with relaxation/collision terms, such as the BGK model. We also plan to 
address the open problems associated with the novel flow map approach, such as extension to general boundary condi-
tion.
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Fig. 4.20. Example 4.9. Strong Landau damping 2D2V. Hierarchical ranks. d = 2. ε = 10−3. rmax = 32. Low rank tensor approach. (a) N2
x × N2

v = 322 × 642. 
(b) N2

x × N2
v = 642 × 1282. (c) N2

x × N2
v = 1282 × 2562. For all three plots, r12 and r34 are close, r1 and r2 are close, and r3 and r4 are close.
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Fig. 4.21. Example 4.9. Strong Landau damping 2D2V. d = 2. ε = 10−3. rmax = 32. Uniform meshes N2
x × N2

v = 1282 × 2562. Low rank tensor approach. (a) 
2D cut at (x2, v2) = (2π, 0) t = 5. (b) 2D cut at (x1, x2) = (2π, 2π) t = 5. (c) 2D cut at (x2, v2) = (2π, 0) t = 15. (d) (x1, x2) = (2π, 2π) t = 15. (e) 2D cut 
at (x2, v2) = (2π, 0) t = 30. (f) (x1, x2) = (2π, 2π) t = 30.
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Fig. 4.22. Example 4.9. Strong Landau damping 2D2V. d = 2. ε = 10−3. rmax = 32. Low rank tensor approach. (a) The time evolution of the electric energy. 
(b) The time evolution of the relative errors in total particle number. (c) The time evolution of the relative errors in total energy.
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