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ABSTRACT
We present the first targeted measurement of the power spectrum of anisotropies of the radio synchrotron background, at
140 MHz, where it is the overwhelmingly dominant photon background. This measurement is important for understanding the
background level of radio sky brightness, which is dominated by steep-spectrum synchrotron radiation at frequencies below ν

∼ 0.5 GHz and has been measured to be significantly higher than that produced by known classes of extragalactic sources and
most models of Galactic halo emission. We determine the anisotropy power spectrum on scales ranging from 2◦ to 0.2 arcmin
with Low-Frequency Array observations of two 18-deg2 fields – one centred on the Northern hemisphere’s coldest patch of radio
sky where the Galactic contribution is smallest and the other offset from that location by 15◦. We find that the anisotropy power
is higher than that attributable to the distribution of point sources above 100 μJy in flux. This level of radio anisotropy power
indicates that if it results from point sources, those sources are likely at low fluxes and incredibly numerous, and likely clustered
in a specific manner.
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1 IN T RO D U C T I O N

A puzzling question to have recently emerged is the origin of the radio
background radiation. The background level of radio sky brightness,
which is due to some as of now unknown combination of integrated
extragalactic sources and a possible large-scale Galactic halo, is
dominated by steep-spectrum synchrotron radiation at frequencies
below ν ∼ 0.5 GHz, and at higher frequencies, it is present along
with the otherwise dominant cosmic microwave background (CMB).
An apparent bright low-frequency background was reported as early
as the 1960s (e.g. Bridle 1967) and 1980s (e.g. Haslam et al. 1982).
Interest in this background was renewed by the surprisingly high
absolute sky temperature at ν ∼ 3 GHz reported by the ARCADE 2
(Singal et al. 2011) stratospheric balloon experiment. Combining the
ARCADE 2 measurements from 3 to 90 GHz (Fixsen et al. 2011)
with several radio maps at lower frequencies from which an absolute
zero level has been inferred (recently summarized in Dowell & Taylor
2018) reveals a synchrotron background brightness spectrum

TBGND(ν) = 30.4 ± 2.6K
( ν

310 MHz

)−2.66±0.04
+ TCMB (1)

shown in Fig. 1, where TCMB is the frequency-independent contribu-
tion of 2.725 K due to the CMB. Following recent works, we refer
to this as the radio synchrotron background (RSB).

The reported bright background level is now in extreme tension
with estimates of its expected level from the known radio emission
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mechanisms in the Universe, as recently summarized in Singal et al.
(2018). Several works have considered deep radio source counts
and limited the integrated surface brightness from known classes
of extragalactic radio sources to only around one-fifth of the radio
background brightness level (e.g. Condon et al. 2012; Vernstrom et al.
2014), including recently at 144 MHz (Hardcastle et al. 2020). Thus,
to achieve the measured radio background level from point sources
would require an entirely new, incredibly numerous, heretofore
unobserved population of low-flux radio sources. As an alternative,
various types of diffuse extragalactic sources such as cluster mergers
(e.g. Fang & Linden 2016) and intergalactic dark matter decays
and annihilations in galaxies, clusters, and filaments (e.g. Fornengo
et al. 2011; Hooper et al. 2012) have been proposed. Alternatively,
a large, bright, roughly spherical synchrotron halo surrounding our
Galaxy could explain part of the background (e.g. Subrahmanyan
& Cowsik 2013). However, such a large, bright halo would make
our Galaxy unique among nearby spiral galaxies (Singal et al. 2015)
and would overturn our current understanding of the high-latitude
Galactic magnetic field (Singal et al. 2010).

One realm in which the RSB is almost completely unexplored is in
its anisotropy. Studies of temperature anisotropy power spectra have
helped confirm the source populations responsible for the cosmic
infrared (e.g. Ade et al. 2011; George et al. 2015) and gamma-ray
(e.g. Broderick et al. 2014) backgrounds, and have been the most
important component of CMB science thus far (e.g. Bennett et al.
2013).

The only direct constraints available in the literature on the
anisotropy of the RSB at the most relevant angular scales are
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Radio background power spectrum 115

Figure 1. The measured radio background brightness spectrum in radiomet-
ric temperature units reproduced from Dowell & Taylor (2018), as measured
by the few measurements and maps where an absolute zero-level calibration
was either explicit or obtained, including that work. The brightness shows
a clear power-law rise at frequencies below ∼10 GHz, above the otherwise
dominant CMB level represented by the dashed line.

from confusion noise limits at a few discrete scales and based
on measurements where considerations of the radio background
in particular were incidental. These include decades-old measure-
ments in the GHz range overwhelmed by the CMB by an order
of magnitude or greater, specifically based on observations made
with the Very Large Array at 8.4 GHz (Partridge et al. 1997) and
4.9 GHz (Fomalont et al. 1988), and the Australia Compact Telescope
Array at 8.7 GHz (Subrahmanyan et al. 2000). There are also recent
measurements of the sky power spectrum at 150 MHz in several
fields made with the Giant Metrewave Radio Telescope recently
presented in Choudhuri et al. (2020). The results presented there
are in a more limited angular scale range, and in fields with higher
Galactic diffuse emission structure contribution, than those presented
here, and did not directly address specifically the question of the
anisotropy power of the RSB. At larger angular scales than those
considered here, where the angular power is dominated by the large-
scale Galactic diffuse synchrotron structure, there are determinations
of the angular power at 408 MHz reported by La Porta et al.
(2018).

In this work, we present a power spectrum of measured
anisotropies of the RSB over the angular range from 2◦ to 0.2 arcmin
based on dedicated LOw-Frequency ARray (LOFAR; van Haarlem
et al. 2013) observations at 140 MHz of two 18-deg2 fields. Section 2
describes the observations and data reduction and analysis methods,
Section 3 presents the resulting power spectra, Section 4 explores
possible point source populations that could produce the measured
anisotropy power, and Section 5 presents a discussion. Appendix A
provides a reference for considering the conversion factors between
different computations and scalings of angular power that are relevant
when bridging regimes and methods of determination where different
conventions are in use.

Figure 2. Schematic representation of the coldest patch and secondary target
fields observed in this work in the context of a simple model of Galactic diffuse
radio emission consisting of an ellipsoidal plane-parallel component due to
the Galactic disc and a larger, spherical halo component, each centred on the
Galactic Centre. The coldest patch target field is in the direction of minimal
integrated line-of-sight total contribution from the two components in the
Galactic Northern hemisphere. Such two-component models of large-scale
diffuse Galactic radio emission are commonly utilized (e.g. Subrahmanyan
& Cowsik 2013; Singal et al. 2015).

2 O B S E RVAT I O N S A N D DATA R E D U C T I O N

We use data from 8 h of dedicated observing with LOFAR in high-
band antenna dual mode with Dutch stations only (23 core, 14
remote) in the band from 110 to 190 MHz on 2019 November
27. As optimally this measurement should be done on a region
with the minimum amount of Galactic diffuse foreground spatial
structure, we chose a field centred on the Galactic Northern hemi-
sphere ‘coldest patch’ (Kogut et al. 2011; 9h 38m 41s +30

◦
49

′
12

′′
,

l = 196.◦0 b = 48.◦0), the region of lowest measured diffuse emission
absolute temperature and thus where the integrated line-of-sight
contribution through the Galactic components is minimal. LOFAR
allows a simultaneous observation of an additional field offset by
15◦ in an adjacent 48-MHz wide band, so we chose a location
towards the North Galactic Pole from the coldest patch of 10h 25m 00s

+30
◦
00

′
00

′′
(l=199.◦0 b=57.◦9), which should have a slightly higher

but still nearly minimal total Galactic contribution. Fig. 2 shows
a schematic representation of the observed fields relative to a
commonly employed simple model of the Galactic diffuse radio
emission structure. The data cube consists of 666 baselines (all pairs
of correlations) with four linear polarization pairs per visibility in
243 frequency channels with 2-s integrations for a total of 1.4 TB of
data per target field. The 243 frequency channels are of equal width
of 180 KHz, and the filtering is done with a polyphase filter bank. In
addition to the target fields, we observed the flux calibrator 3C 295.

Because we are interested in scales that are much larger than the
effect of ionospheric activity, we only perform direction-independent
calibration, thereby avoiding the effect of signal suppression that
might incur during direction-dependent calibration. We have used
two different methods for direction-independent calibration and
imaging. The first approach is to use PREFACTOR,1 the standard
automated LOFAR direction-independent calibration pipeline (van
Weeren et al. 2016; Williams et al. 2016), which makes use of several
software packages, including the Default Pre-Processing Pipeline
(DP3; van Diepen, Dijkema & Offringa 2018), LOFAR SolutionTool

1https://github.com/lofar-astron/prefactor
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116 A. R. Offringa et al.

Figure 3. An image of the coldest patch target field resulting from the
imaging procedure discussed in Section 2. The synthesized beam measures
1.5 arcmin× 1 arcmin. This field contains 3.6-Jy source 4C 32.30, which can
be used for self-flux calibration, and an extended FR II galaxy (visible just to
the lower right-hand side of the middle of the field). All sources are removed
for power spectrum determination, as point sources manifest power on all
angular scales.

(LOSOTO; de Gasperin et al. 2019), and AOFLAGGER (Offringa, van
de Gronde & Roerdink 2012). Because this pipeline has not been
developed for power spectrum experiments, for verification we also
calibrate our data in a manual approach.

Manual calibration is only performed for the coldest patch field.
For manual calibration, we start with running AOFLAGGER to flag
outlying data points due to radio-frequency interference (RFI) con-
tamination and one outlying station. We perform initial flux and phase
calibrations for each sub-band using the flux calibrator observation,
which are then applied to the target fields. We image the target fields
with WSCLEAN (Offringa et al. 2014) with primary beam correction
and standard CLEAN settings to extract an initial point source model
for self-calibration. Specifically, we first run the source extractor
AEGEAN (Hancock, Trott & Hurley-Walker 2018) with a high flux
threshold of 9σ to extract a shallow model, containing about 300
sources. Following this, we run self-calibration using the model on
25 sub-bands and image at a higher resolution of 45 arcsec. We next
re-run AEGEAN with a lower flux threshold (7σ ), extracting 2396
sources.

Many of these sources are near the edge of the primary beam and
so are likely false detections. We cut out all sources that are at a
place in the image where the beam has less than 5 per cent gain,
reducing the model to 644 sources with almost no false positives.
Extended sources, including one prominent Fanaroff–Riley type II
(FR II) galaxy, are excluded from calibration. Source 4C 32.30 with
flux 3.6 Jy (Waldram et al. 1996) is near the middle of the coldest
patch target field and is used for flux calibration. Using these full
calibration solutions, we re-image the target field with WSCLEAN

with 20-arcsec resolution. An image of the coldest patch target field
is shown in Fig. 3.

The results of the automated and manual approach are found to be
similar on the coldest patch field, so we process the secondary target
field only with the automated approach using PREFACTOR. Before

making power spectra, we subtract the foreground sources using
a deep WSCLEAN multifrequency deconvolution using automasking
(Offringa & Smirnov 2017). The automasking ensures that all sources
≥7σ are subtracted to a 1σ level. To avoid subtracting a diffuse
component, we do not use multiscale CLEAN.

3 POW ER SPECTRUM

3.1 Full angular power spectrum

Our angular power spectrum pipeline is based on the pipeline
described by Offringa, Mertens & Koopmans (2019), which is origi-
nally written for the LOFAR Epoch of Reionization project (Mertens
et al. 2020). Our angular pipeline produces a power spectrum of
fluctuations from the source-removed target field images. We use the
central 4.3 deg2 of each target field image for the determination of the
angular power spectra. A quantitative discussion of the procedure for
forming a power spectrum from an interferometric image is presented
in Appendix A. The steps in making a power spectrum are as follows.

(i) Make naturally weighted images using multifrequency synthe-
sis from the source-subtracted data. We use WSCLEAN for this with
increased accuracy settings (see Offringa et al. 2019).

(ii) Convert the images of flux density into units of temperature
(kelvin) using equation (A17).

(iii) Take the spatial Fourier transform of the images and point
spread functions (PSFs) to create a grid in complex (u, v) space for
both.

(iv) Elementwise divide the complex uv images by the complex
value of the uv PSFs.

(v) Average the power in annuli and normalize these.

This method of determining the power spectrum, where we correct
for the (in our case, natural) image weighting function in uv space,
alleviates the need to perform a bias correction of the power spectrum.
Otherwise, image-based reconstruction of power spectra can give a
biased estimate of the true sky signal due to the correlated noise in
the image domain (Dutta & Nandakumar 2019).

The resulting power spectrum of fluctuations is shown in Fig. 4,
for both the coldest patch and secondary target fields. We also show
the spectrum of fluctuations calculated for twelve 4-MHz wide sub-
bands separately. The lowest frequency sub-band has approximately
17 times more power in these K2 units than the highest frequency sub-
band because of the spectral dependence of synchrotron radiation (cf.
equation 1), which is a bit over four times as bright in radiometric
temperature units (and thus around 17 times as bright in K2 units)
at 190 GHz than at 110 GHz. The angular power is lower in the full
bandwidth because of more complete uv coverage.

These measurements will have a contribution from the noise of
the instrument. To calculate this contribution, we extract Stokes V
visibilities and measure the differential variance between consecutive
Stokes V visibilities in time, multiply by 2, and assume that this is a
representative noise value for all visibilities. We calculate the noise
power spectrum by replacing all visibilities by randomly sampled
Gaussian values with the calculated variance, produce images, and
calculate a power spectrum from the images as described. The result
is shown as the dashed line in Fig. 4. Given that the noise power is at
least an order of magnitude below the measured power, clearly our
measured power is dominated by something other than the system
noise. Additionally, while one would expect the power in the full band
to be the average of the sub-bands for the case of noise-dominated
power, in this case with the noise contribution sub-dominant, the
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Figure 4. Measured anisotropy power spectrum of the radio sky centred at
140 MHz. Shown are curves for the full bandwidth of the coldest patch field
(field A) and the secondary field (field B), as well as for twelve 4-MHz wide
sub-bands of field A. The anisotropy in field A deduced by considering the
average noise per beam in the image with the synthesized beam tapered to 30-
arcsec FWHM is also shown and agrees at the relevant angular scale, given by
equation (4). We also show comparison levels inferred by the noise per beam
at 8.7, 8.4, and 4.9 GHz in different fields as calculated by Holder (2014)
and scaled here to 140 MHz assuming a synchrotron power law of −2.6 in
radiometric temperature units. The amount of angular power is ∼1.4 times
higher for field B compared to field A (in K2 units) across a range of angular
scales, as discussed in Section 5. All angular powers are expressed here in
the (�T )2

� normalization.

more complete uv coverage of the full band will result in lower
angular power.

3.2 Power from rms fluctuations

We can also calculate the power on a specific, discrete angular scale
in a completely different, complementary way, following a procedure
discussed in Holder (2014).

(i) The noise per beam in the image �SJy/PSF is measured with the
synthesized beam tapered to 30-arcsec full width at half-maximum
(FWHM). The noise level of this image is 720 μJy.

(ii) The beam is fitted to an elliptical Gaussian with major and
minor axes wmaj and wmin to calculate the synthesized beam solid
angle in radians,

�PSF = π(wmaj × wmin) ×
(

1

60

)2

×
( π

180

)
×

(
1

4 log 2

)
. (2)

(iii) The resulting temperature fluctuation �T is calculated by

�T = �SJy/PSF
10−26c2

2kBν2�PSF
, (3)

to achieve �T on the angular scale corresponding to a Gaussian beam
of 30-arcsec FWHM.

The fluctuation power calculated in this way is shown in Fig. 4
for the coldest patch target field. The angular scale corresponding

to a 30-arcsec FWHM Gaussian beam does not exactly match a 30-
arcsec spherical harmonic due to the beam taper, which is why the
rms measurement is not exactly placed at 30 arcsec (see the upper
horizontal axis in Fig. 4). To calculate the corresponding angular
scale, we have used the formula provided in Holder (2014), which
gives the � value corresponding to a particular synthesized beam
FWHM expressed in radians:

� = 2.35

FWHM
. (4)

We see that the fluctuation power calculated directly from the noise
per beam matches that determined from a full power spectrum at
the particular angular scale. We also show the fluctuation power
obtained in this way by Holder (2014) from the measurements of
Partridge et al. (1997), Fomalont et al. (1988), and Subrahmanyan
et al. (2000), scaling from the relevant GHz frequencies to 140 MHz
by a synchrotron power law of −2.6 in radiometric temperature units.

3.3 Power from potentially unremoved point sources

In order to quantify the contribution of potentially unremoved point
sources in the images to the measured angular power, we created
a Monte Carlo catalogue of simulated sources. We interpolate the
simulated sources on to a grid (using sinc interpolation) and simulate
visibilities from the resulting sky image to apply the instrumental
effects that affect the power spectrum (uv sampling and the primary
beam). We use the Image Domain Gridder (IDG; van Tol, Veenboer
& Offringa 2018) inside WSCLEAN to apply the time- and frequency-
dependent LOFAR primary beam. The resulting visibilities are
processed with our imaging and power spectrum generation pipeline.

We distributed the sources in flux (S) according to four models
presented in Franzen et al. (2016), based on their measured and
extrapolated deep source counts at 150 MHz, of the form

n(S) = dn

dS
= k1

(
S

Jy

)γ1

Jy−1 sr−1 for 0.01 < S < 6.0 mJy

= k2

(
S

Jy

)γ2

Jy−1 sr−1 for 6.0 < S < 400 mJy (5)

and randomly in RA and Dec., with frequency spectral indices
distributed normally around −2.6 in radiometric temperature units
with a standard deviation of 0.1. The parameters k1, k2, γ 1, and γ 2

are given for four models in table 2 of that work for the extrapolated
portion. The four models, which are identical in the number of high-
flux sources, but differ in the number of low-flux sources, result in
roughly the same amount of angular power at all scales, indicating
that the contribution to the angular power is dominated by the higher
flux sources in this flux range. We then introduce a simple sinusoidal
spatial clustering in both RA and Dec. on scales of 1 and 10 arcmin to
see whether clustering can have a significant effect on the observed
angular power resulting from this model, with results for one of the
models (model ‘A’) visualized in Fig. 5.

The clustering on a 1-arcmin scale has very little effect on the
measured angular power on any angular scale for this model or
any of the four. This is because 1 arcmin is considerably less than
the average separation of the higher flux sources, which primarily
contribute to the measured angular power. In fact, the clustering
added in this way on the 1-arcmin scale slightly reduces the angular
power on some angular scales because the angular power involves
circular averaging, while the sinusoidal variation has been added to
essentially rectangular RA and Dec. coordinates at this scale. The
10-arcmin clustering manifests an appreciable increase in angular
power on that particular scale. However, this only propagates to
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Figure 5. Measured power spectrum (for the coldest patch target field) and
the simulated full-pipeline anisotropy power spectrum resulting from (i) the
upper limit of potential unremoved point sources down to 100 μJy according
to a point source model presented in Franzen et al. (2016) discussed in
Section 3.3, (ii) the upper limit from the same Franzen et al. (2016) model with
sinusoidal clustering added on scales of 1 and 10 arcmin, (iii) potential point
sources down to nJy fluxes according to the point source model presented in
Condon et al. (2012) discussed in Section 4, which can reproduce the surface
brightness level of the RSB, and (iv) the same Condon et al. (2012) model
with sinusoidal clustering added on a scale of 1 arcmin.

some smaller angular scales, and we see from the 1-arcmin clustering
case that below a certain angular scale (somewhere between 10 and 1
arcmin), clustering in these models cannot add further angular power.

Given that we clean the images to a flux threshold well below
400 mJy with residuals of only around ∼20 mJy, and that the
contribution to the angular power is dominated by the higher flux
sources in these models, we emphasize that this modelled observed
power resulting from unremoved sources above 100 μJy is an
upper limit and likely a significant overestimate. This indicates that
unsubtracted point sources in the images above the flux detection
limit are not a major contributor to the measured angular power, and
that sources above 100 μJy generally cannot produce the measured
angular power on at least some angular scales.

4 POSSIBLE SOURCE POPULATION

With the angular anisotropy power of the radio sky being larger than
that can be accounted for by point sources above 100μJy, the question
arises as to what flux source count distributions [often denoted by n(S)
or dn

dS
] of faint point sources could give rise to the measured angular

power. As discussed in Condon et al. (2012), regarding the surface
brightness of the RSB, if it is indeed that given by equation (1), then
if originating from point sources, given the measured constraints on
the source counts above 10 μJy, those sources must be lower flux
and incredibly numerous. We will consider here the possibility that
the angular power as well is due to a large number of low-flux point
sources.

Condon et al. (2012) present three hypothetical low-flux point
source population flux distributions, which could provide the mea-

sured surface brightness of the RSB. These distributions are of the
approximate form

n(S) = A

S2
exp

(
−4 ln(2)

[
log(S) − log(Spk)

]2

φ2

)
Jy−1 sr−1, (6)

with the normalization A, width φ, and the flux of the peak
contribution to the background per log flux bin Spk given for the
three models. All three models feature a large number of low-flux
sources with values of Spk of approximately 0.03, 0.02, and 0.003
μJy and a density of sources on the sky exceeding that measured in
the Hubble Ultra Deep Field by at least an order of magnitude.

In a procedure similar to the simulation discussed in Section 3.3,
we simulate point source populations distributed in flux according to
equation (6) with frequency spectral indices distributed normally
around −2.6 in radiometric temperature units with a standard
deviation of 0.1 and run the resulting simulated sky through our
simulation, imaging, and power spectrum generation pipeline as
described there. We adopt the model with the smallest number of
sources, which still results in an average around 200 million sources
in 1 deg2, or 150 sources per pixel. Due to the very large number of
sources in this model, computing limitations requires the simulated
field of view to be smaller, 0.◦5 on a side, so the calculation of angular
power on angular scales larger than this is not possible. The resulting
power can still be calculated for most of the range of angular scales
of relevance depicted in, for example, Fig. 4. The result for sources
distributed randomly in RA and Dec. is shown in Fig. 5. It is seen
that because of the very large average number of sources per pixel,
the proportional variation in brightness among pixels is small and
therefore the resulting angular power in this isotropic model is low.
To preliminarily investigate the effects of clustering for this model,
we adopt the same simple sinusoidal clustering on a 1-arcmin scale
as discussed in Section 3.3, with results also shown in Fig. 5. In this
case, with the very large number of sources, the added clustering
increases the simulated observed angular power significantly on all
angular scales that are equal to and smaller than that of the clustering
scale (corresponding in this case to � ∼ 11 000). Thus, we conclude
that it is a possibility that with the appropriate clustering on many
angular scales over a wide range, the Condon et al. (2012) model of
many very low flux sources could reproduce the observed angular
power.

5 D ISCUSSION

We have carried out a dedicated measurement with LOFAR to
determine the anisotropy angular power of the radio background
at 140 MHz on angular scales ranging from 2◦ to 0.2 arcmin. As
discussed in Section 2, our results stem from 8 h of observing of
two fields with a minimal amount of Galactic diffuse foreground
structure. As shown in Section 3, both the direct method of imaging,
removing sources, and calculating the power spectrum, and the
method of considering the noise per beam in the image with the
synthesized beam tapered to a specific width yield a measured
angular power that is more than that would result from point sources
above 100 μJy, either distributed randomly spatially or clustered.
As shown in Fig. 4, the angular power is also at least an order
of magnitude larger than that inferred from measurements at GHz
frequencies.

Our measured angular power is around a factor of ∼3 (in the �T
normalization) lower than that reported by Choudhuri et al. (2020)
in the angular scales of overlap (in the range 102 ≤ � ≤ 3 × 103),
applying equation (A12) to convert into the plotted C� units of their
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fig. 1. They observe four fields at a variety of Galactic latitudes
and longitudes, with all looking through significantly more Galactic
structure than the fields in this work. Their reported angular power
differs somewhat at various reported � values over their different
fields, but this manifests no apparent correlation with the amount of
Galactic structure along a line of sight, indicating that the discrepancy
between their fields, and more relevantly with the results here, may be
due to instrumental effects and analysis considerations. Interestingly,
our measured angular power quite closely matches the modelled
angular power of unsubtracted point sources below 50 mJy reported
in Choudhuri et al. (2020).

The angular power measured here is due to a combination
of that due to extragalactic sources, that due to structure in
Galactic diffuse emission, and, in principle, that due to possible
considerations such as RFI, sidelobe pickup, and residual power
from subtracted sources stemming from calibration errors. The
lack of artefacts in the visibilities indicates that RFI is not a
significant contributor to this measurement, and we do not see
evidence of sidelobe pickup in the images, as the sidelobe po-
sitions are frequency-dependent and would thus present as shift-
ing patterns in each sub-band. With currently available LOFAR
analysis techniques, we cannot absolutely rule out a contribution
from the residual power from subtracted sources stemming from
calibration errors. In particular, making power spectra at larger
scales presents a particular calibration challenge in this regard, as
also found by epoch-of-reionization measurements (Barry et al.
2016; Patil et al. 2016; Sadarabadi & Koopmans 2018). Future
development of LOFAR analysis techniques may allow a more
precise determination of this, but these are beyond the scope of
this work.

We can estimate the contribution due to structure in Galactic
diffuse emission by noting that the measured angular power in
the secondary field is systematically a factor of ∼1.4 higher in
the (�T)2 normalization than that in the coldest patch field, as
seen in Fig. 4, and thus a factor of ∼1.2 higher in the (�T)
normalization. This is, quite tellingly, the same as the square of
ratio of the average absolute brightness in radiometric temperature
(K) units for the two regions that we calculate using the Haslam et al.
(1982) map averaging over pixels within 4◦ from the field centres
(1.2 ± 0.1). As the differences in absolute brightness are due solely to
differences in lines of sight through the Galactic diffuse components
(as visualized in Fig. 2), this is a strong indication that the proportion
of angular power in (�T) units due to Galactic structure tracks the
proportion of absolute brightness due to that structure, for lines of
sight in this general direction of minimal Galactic structure and
likely for general lines of sight far away from the Galactic plane. A
number of considerations point to the extragalactic component being
overwhelmingly dominant (by at least a factor of 5) in terms of the
absolute temperature of the background (e.g. Singal et al. 2015) so
we believe that the extragalactic component dominates the measured
angular power in the coldest patch field by approximately this factor.
Stated another way, the normalized angular power

(
�T
T

)
for both

fields is the same, indicating that the contribution to the angular
power from Galactic structure is sub-dominant when considering
these fields since it is the component that varies spatially between
the two fields.

If the angular power measured here is due to low-flux radio
point sources, they must be very numerous, paralleling the situation
when considering the surface brightness of the radio background.
As discussed in Section 4, we simulated the angular power resulting
from a source count distribution representing a very large number
of sources below 1 μJy, which, as shown in Condon et al. (2012),

could potentially provide the level of surface brightness of the RSB.
We found that this source distribution when distributed randomly
spatially contains low angular power due to the large number of
sources per pixel, but could possibly reproduce the angular power
of the RSB measured here given the proper detailed clustering on
a wide range of angular scales. It is our intention to continue this
modelling in a future work in order to determine the precise clustering
parameters for very large numbers of low-flux sources, which could,
possibly, result in the angular power spectrum observed here, and to
explore the implications of such a population.
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APPENDIX A : R ELATIONS BETWEEN
MEASURES O F ANGULAR POWER O F
TEMPERATURE ANISOTROPIES

In this appendix, we present the scaling relationships between two
normalizations for the angular power of temperature anisotropies,
and derive which arises naturally from power spectra obtained from
interferometric observations.

A1 Power spectrum normalizations and multipole moments

Note on notation and dimensions: Square brackets [ ] will indicate
‘dimensions of’. Here, in order to keep track of factors of the angular
scale � and normalization factors of π in quantities, we will follow
factors of � and π by a quasi-dimensionality. That is, to encompass
both dimensions with physical units and these normalization factors,
we will refer in this work to ‘quasi-dimensionality’ to encapsulate
both. Definitions of relevant quantities have been obtained from
Ryden (2006), Lesgourgues (2013), and Jackson (1998).

The temperature fluctuation, or deviation from the average tem-
perature, at a point on the sky in the direction n̂ or, equivalently, at
angular coordinates (θ , φ), denoted by δT, can be expressed with the

spherical harmonic functions and their coefficients:

δT (θ, φ) ≡ T (θ, φ) − 〈T 〉 =
∑
�,m

al,mYl,m(θ, φ). (A1)

The ‘angular correlation function’ C(θ ) is an average of the product
of δT (n̂) values in directions separated by the angle θ :

C(θ ) = 〈
δT (n̂) δT (n̂′)

〉
n̂·n̂′=cos(θ )

. (A2)

Therefore, quasi-dimensionally,

[C(θ )] = [δT ]2 . (A3)

C(θ ) can be expressed as a sum of Legendre polynomials and
‘multipole moment’ coefficients C�:

C(θ ) = 1

4π

∑
�

(2� + 1) C� P�(cos θ ). (A4)

To assess the quasi-dimensionality of the Legendre polynomials, we
can use the spherical harmonic addition theorem

P�(cos θ ) = 4π

2� + 1

∑
m

Y�,m(θ, φ)Y ∗
�,m(θ ′, φ′). (A5)

Now we must note that any sum over m for a given � runs from
−� to +� and so has 2� + 1 terms and therefore such sums have a
quasi-dimensionality of [2� + 1]. Therefore, quasi-dimensionally,

[P�(cos θ )] = [4π] [Y�,m(θ, φ)]2. (A6)

To evaluate the quasi-dimensionality of the spherical harmonics
Y�, m(θ , φ), we can note simply that Y0,0 = 1√

4π
so that [Y�,m(θ, φ)] =[

1
4π

]1/2
, so [P�(cos θ )] = [ ]; the Legendre polynomials are quasi-

dimensionless. Returning to equation (A4), we have

[C�] =
[

4π

2� + 1

]
[C(θ )] =

[
4π

2� + 1

]
[δT ]2 . (A7)

The multipole moments C� are the variance (mean of the squares) of
the spherical harmonic coefficients:

C� = 〈∣∣a�,m

∣∣2〉 = 1

2� + 1

∑
m

∣∣a�,m

∣∣2
, (A8)

where again the sum over m for a given � has a quasi-dimensionality
of [2� + 1]. Thus,

[C�] = [
a�,m

]2
, (A9)

and, utilizing equation (A7), we have

[a�,m] = [C�]1/2 =
[

4π

2� + 1

]1/2

[δT ] . (A10)

We note that this does not imply that [δT] as expressed in equa-
tion (A1) is ‘quasi-dimensionless’ with respect to factors of � – i.e. it
does not imply that [δT] has no natural scaling with � – rather we are
just tallying the conversion factors between the quasi-dimensionality
of various quantities.

Equation (A10) tells us that in order to express the temperature
fluctuation power at a given angular scale � in terms of the multipole
moment, we would need

(δT )� =
√

2� + 1

4π

√
C�. (A11)

However, a standard normalization scheme used in the CMB litera-
ture (e.g. Ade et al. 2011) is to express the temperature fluctuation
angular power multiplied by different factors of the angular scale
�, resulting in a measure of the fluctuation power, here denoted by
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(�T)�, which would be constant across values of � in the case of an
invariant spectrum of Gaussian random fluctuations:

(�T )� ≡
√

�(� + 1)

2π

√
C�. (A12)

With equations (A11) and (A12), we see that the relation between
the two normalizations of the temperature fluctuation power is

(�T )� =
√

2�(� + 1)

2� + 1
(δT )� . (A13)

We note that the quantities (δT)� and (�T)� can be scaled to
be normalized by the average temperature so that they express a
fractional deviation from it, and are then denoted by

(
δT
T

)
�

and
(

�T
T

)
�
,

respectively. We will now show that the power spectra produced from
interferometric observations most naturally have a normalization of
(�T )2

� .

A2 Power spectra from interferometric observations

To determine that the power spectra determined from interferometric
observations are in the (�T )2

� normalization, we first consider that the
power spectrum relates to T̃ , the Fourier transform of the temperature
field, as

P (k) ≡ A
∣∣T̃ (k)

∣∣2
, (A14)

where A is the physical area of the field (in Mpc2). In this equation,
the Fourier transform is defined with a ‘1/N’ normalization:

T̃ (2πk) ≡ 1

NxNy

∑
x

T (x)e−i2πk·x . (A15)

When a ‘number of image pixels’, NxNy, is used, this is defined as
the effective number of pixels. The definition for NxNy is

NxNy = �A

�PSF
, (A16)

where �A is the primary beam solid angle and �PSF is the synthesized
beam solid angle. For completeness, flux density per beam (Jy/PSF)
is converted into temperature (kelvin) as

T (x) ≡ SJy/PSF(x)
10−26c2

2kBν2�PSF
, (A17)

where S is in Jy/PSF and T in kelvin. If equations (A16) and (A17)
are substituted into equation (A15), then �PSF cancels out:

T̃ (2πk) = 10−26c2

2kBν2�A

∑
x

S(x)e−i2πk·x . (A18)

Therefore, bringing everything together and assuming as input a
correctly normalized image in units of temperature T (x), we have

P (2πk) = A

∣∣∣∣∣ 1

NxNy

∑
x

T (x)e−i2πk·x
∣∣∣∣∣

2

. (A19)

The power spectrum is often expressed in so-called dimensionless
units (e.g. Ali-Haı̈moud, Meerburg & Yuan 2014), which, perhaps

confusingly, ends up with physical units of squared temperature
(e.g. K2). The dimensionless power spectrum relates to the two-
dimensional power spectrum as follows:

�2(k) = P (k)
k2

2π
. (A20)

Substituting equation (A19) into equation (A20), we have

�2(2πk) = 2πk2A

∣∣∣∣∣ 1

NxNy

∑
x

T (x)e−i2πk·x
∣∣∣∣∣

2

. (A21)

The units for the transverse distance are arbitrary in this equation, as
they cancel out through k2A. If we chose p to be the dimensionless
counterpart of k such that A = 1, then

�2(2π p) = 2π| p|2
∣∣∣∣∣ 1

NxNy

∑
x

T (x)e−i2π p·x
∣∣∣∣∣

2

. (A22)

In a small-angle approximation, the Fourier transform of T can be
related to spherical harmonic coefficients using T̃ ( p) = a(�p, mp):

�2(2π p) = 2π| p|2 ∣∣a(�p, mp)
∣∣2

,

�2( p) = | p|2
2π

|a(�p, mp)|2,

�( p) = | p|
√

1

2π
|a(�p, mp)|2, (A23)

and thus the power in the spherical harmonic degree corresponding
to the normalized wave vector p can be expressed as

�(�,m) = �̂

√
1

2π
|a(�, m)|2, (A24)

where �̂ = � in the small-angle approximation. For any appreciable
�,

√
�2 ≈ √

�(� + 1), and so

�(�,m) →
√

�(� + 1)

2π
|a(�, m)|2. (A25)

From equations (A11) and (A12), we have

(�T )� =
√

�(� + 1)

2π
[a�,m], (A26)

and so we see that

[�(�,m)] = [(�T )�]. (A27)

So the power spectra produced in this analysis, and also in anal-
yses typical in 21-cm cosmology, when computed directly with
equation (A22), are naturally in the (�T )2

� normalization. Applying
equation (A10) to equation (A26), we see that the physical units of
�2 will indeed be squared temperature (e.g. K2).
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