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Abstract. Fractional PDEs have recently found several geophysics and imaging science applica-
tions due to their nonlocal nature and their flexibility in capturing sharp transitions across inter-
faces. However, this nonlocality makes it challenging to design efficient solvers for such problems.
In this paper, we introduce a spectral method based on an ultraspherical polynomial discretization
of the Caffarelli-Silvestere extension to solve such PDEs on rectangular and disk domains. We solve
the discretized problem using tensor equation solvers and thus can solve higher-dimensional PDEs.
In addition, we introduce both serial and parallel domain decomposition solvers. We demonstrate
the numerical performance of our methods on a 3D fractional elliptic PDE on a cube as well as an
application to optimization problems with fractional PDE constraints.

1. Introduction

Fractional partial differential equations (PDEs) have recently received a tremendous amount of
attention, which can be attributed to the flexibility of fractional operators in capturing long-range
effects, due to their nonlocal nature. In addition, they have fewer regularity requirements than
their classical counterparts. In particular, the fractional Laplacian has been successfully used as
a regularizer in imaging science in place of the total variation regularization [3, 4]. Moreover, the
fractional Helmholtz equation was derived in [32], using first principle arguments combined with a
constitutive relation, to model geophysical electromagnetism. Other applications include: Quasi-
geostrophic flow [13], phase field models [2, 3], porous media [14], and quantum mechanics [20].
Motivated by these applications, we introduce a new approach to solve the fractional PDE

(−∆)su = f in Ω

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ Rn is a bounded open domain with boundary ∂Ω, and s ∈ (0, 1) is the fractional
exponent. The operator (−∆)s denotes the spectral fractional Laplacian, whose rigorous definition
will be provided in Section 2. The nonlocality of the fractional Laplacian makes it challenging to
realize in practice [11, 29]. However, several approaches exist. For example, the authors in [28] use
a spectral discretization in space and discuss computing the spectrum of the Laplacian to realize the
fractional Laplacian. Unfornately, computing the spectrum of an operator in general domains can
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be expensive. Whereas, the authors in [10] discuss an alternative approach based on the so-called
Kato formula. Here, spatial discretization is carried out using the finite element method. For the
standard problem such as (1.1), the Kato formula approach is desirable, but is delicate, especially
when lower-order terms are present [32].

Another popular approach is based on the so-called Caffarelli–Silvestre extension. This extension
was originally introduced by Caffarelli and Silvestre in [11] for the case of unbounded Ω and was
extended to bounded domains by Stinga and Torrea in [29]. The main idea is to rewrite the
nonlocal problem (1.1) as a local problem in one additional spatial dimension (i.e., the domain
of the resulting local problem is Ω × (0,∞) with dimension n + 1). This idea was exploited in
[24], where the authors introduced a finite element method (FEM) to solve the extended problem
on a bounded domain Ω × (0, R) with R < ∞. The choice of R in [24] is motivated by the fact
that the solution in the extended direction decays exponentially. Recently, the authors in [7, 23]
introduced hp-FEM that reduces the complexity of the (n + 1)-dimensional problem to log-linear
with respect to the number of degrees of freedom in Ω. We also mention that an interesting hybrid
FEM-spectral method based on approximation of the Laplacian eigenvalues was considered in [1].

An additional issue with the Caffarelli–Silvestre extension is that the solution in the extended
dimension suffers from low regularity when s 6= 1/2. As a result, spectral methods do not provide
the typical exponential convergence. This has been thoroughly investigated in [12], where the
authors use generalized Laguerre functions as a basis in the extended dimension to solve a weak
formulation of (1.1). To overcome this regularity issue and improve the convergence rate, the
authors apply an enrichment technique for spectral methods. The convergence rate improves, as
the enrichment terms are included, but the matrices for the discretized problem are generally dense.
In addition, the system becomes ill-conditioned, and if there are too many singular terms included,
the convergence rate can deteriorate significantly due to ill-conditioning. Finally, we mention
extensive work on numerical methods for fractional PDEs with different fractional derivatives such
as Riemann Liouville. See, for example [34], and the review article [21].

The goal of this paper is to introduce a new efficient and robust spectral method to solve frac-
tional PDEs based on the Caffarelli–Silvestre extension. For simplicity, we present our method for
n = 2 on two types of domains: disks and rectangles. By utilizing a tensor equation solver, our
method is easily generalized to even higher dimensions. For example, as shown in our numerical
examples in Section 5, our method directly applies to n = 3 on a cube. In addition, with spherical
polar coordinates, our method can solve the problem on a ball. Our spectral method utilizes ultra-
spherical, Chebyshev, and Fourier polynomial discretizations. The resulting discrete systems are
tensor equations, which we solve with a direct solver based on the real Schur decomposition. For
the disk domain, we rewrite the extended problem in polar coordinates and use the Double Fourier
Sphere (DFS) method [33] to overcome the singular behavior when the extended dimension z = 0.

Using DFS, z = 0 is no longer treated as a boundary. Afterward, we consider two cases: (i) z1/s can

be approximated well by a polynomial; (ii) z1/s cannot be approximated well by a polynomial. The
former case occurs, for example, when 1/s is an integer. In the latter case, we employ piecewise
polynomials over subdomains. In this manuscript, we focus on fewer subdomains with higher poly-
nomial degrees for simpler systems to solve. One can alternatively choose to use more subdomains
with lower polynomial degrees [6]. For our numerical results, we use chebfun [16] to automatically
generate the subdomains. We then solve the extended PDE directly using ultraspherical, Fourier,
and Chebyshev spectral discretizations for the radius, angle, and extended direction. For rectan-
gular domains, we spectrally discretize the extended PDE with ultraspherical polynomials in the
space domain and Chebyshev polynomials for the extended direction. In addition, when z1/s is
approximated by a piecewise polynomial, we design a domain decomposition solver that handles
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each piece independently. As a result, this solver is easily parallelized. The convergence analysis for
ultraspherical spectral methods can be found in [26]. In practice, we use the polynomial coefficients
of the solution to determine if the solver has converged. Specifically, when a coefficient falls below
a given threshold (e.g., we choose 10−10 in this paper), we terminate the spectral method and use
the result as the discrete approximation of the solution to the fractional PDE.

In all numerical examples and for all values of s, we observe exponential convergence with just
a few degrees of freedom. In this sense, the potential benefits of our method are clear. Addition-
ally, the proposed approach has several other advantages over the existing spectral methods. We
can combine our spectral methods on rectangles with the ultraspherical spectral element method
(UltraSEM) [17] to develop solvers on polygonal domains with unstructured quadrilateral or trian-
gular meshes. To be specific, we can partition the general domain Ω into quadrilateral subdomains,
convert them into rectangles with a change of variables, and apply our solver. As a result, the total
number of degrees of freedom is the sum of those used on each subdomain. Finally, when n = 2,
we emphasize that our method can be generalized to solve fractional PDEs of the form:

Lsu = f in Ω

u = 0 on ∂Ω,
(1.2)

where the operator L is the general elliptic operator Lu = −∇ · (A∇u) + cu. Here, A ∈ R2×2 is
matrix function that is symmetric and positive definite and 0 ≤ c ∈ R is a function. This is feasible
due to [17]. However, [17] only considers the case with n = 2, motivating our restriction to n = 2
in (1.2).

The remainder of the paper is organized as follows. In Section 2, we review preliminary results
on fractional PDEs as well as the polynomial and tensor notation that we use in the subsequent
sections. In Section 3, we introduce the direct solver for the disk domain. In Section 4, we solve
the extended PDE on rectangles both directly and with a parallel domain-decomposition solver.
Finally, in Section 5, we demonstrate our method on two applications: solving the fractional elliptic
PDE on the cube, and solving a fractional PDE-constrained optimal control problem.

2. Notation and Preliminary Results

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary ∂Ω. Let −∆ be the L2(Ω) realization
of the standard Laplace operator with zero Dirichlet boundary conditions. It then follows that −∆
has compact resolvent and its eigenvalues can be arranged as 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · with
limk→∞ λk = ∞. Let us denote by ϕk ∈ H1

0 (Ω) the eigenfunctions corresponding to λk. These
eigenfunctions form an orthonormal basis of L2(Ω).

For s ≥ 0, we let

Hs(Ω) :=

u =
∞∑
k=1

ukϕk

∣∣∣∣∣∣ ‖u‖2Hs(Ω) :=

∞∑
k=1

λsku
2
k <∞, where uk =

ˆ
Ω
uϕkdx

 .

For a relation between Hs(Ω) and the classical fractional-order Sobolev space Hs(Ω), we refer to
[5, 15], and the references therein. We shall denote the dual of Hs(Ω) by H−s(Ω). Specifically in
this manuscript, we focus on 0 < s < 1. Now, to define the fractional Laplacian: (−∆)s is the
mapping

(−∆)s : Hs(Ω)→ H−s(Ω)

defined for all u ∈ Hs(Ω) by

(−∆)su =
∞∑
k=1

λskukϕk.
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To solve (1.1), we use the Caffarelli–Silvestre extension [11, 29]. This requires introducing an

extension variable ζ, and the change of variable z =
(
ζ
2s

)2s
. Then, the resulting problem aims to

find U : Ω× [0,∞)→ R that satisfies the following equation

∆xU + zαUzz = 0 in Ω× (0,∞),

U(x, z) = 0 on ∂Ω× (0,∞),

∂νU(x, 0) = dsf(x) on Ω× {0},
(2.1)

where α = 2− 1
s , and ds = s2s−1 Γ(1−s)

Γ(s) . Here, ∆x denotes the Laplacian with respect to the original

domain Ω and Uzz denotes the second derivative with respect to the extended dimension z. After
solving for U , we can recover the solution to (1.1) as u(x) = U(x, 0).

In general, approximating functions by polynomials on an unbounded domain is a challenging
problem. Motivated by the fact that the solution U in the z-direction decays exponentially [24]
(also confirmed by our numerical experiments), we consider the following truncated problem:

z(1/s)∆xU + z2Uzz = 0 in Ω× (0, R),

U(x, z) = 0 on ∂Ω× (0, R),

U(x,R) = 0 on Ω× {R},
∂νU(x, 0) = dsf(x) on Ω× {0},

(2.2)

whereR > 0 is the truncation parameter. In our numerical experiments, the choice ofR is motivated
by [24]. In particular, we set R = O(log(DoFΩ)) for the rectangular domains, where DoFΩ is the
total degrees of freedom used for Ω. Experimentally, we notice that for the disc domain it is more

appropriate to choose R = O(DoF
1/3
Ω ). We emphasize that the additional variable z introduced by

the extension requires that we solve a problem of one dimension higher. In particular, although Ω
is chosen to be rectangles or disks in this paper, we must solve (2.2) in hexahedron or cylinders.
In the subsequent sections, we review some basic polynomial bases for discretization and tensor
operations for the discrete operators.

2.1. Ultraspherical Polynomial Basis and Spectral Methods. Ultraspherical (or Gegen-

bauer) polynomials are a special family of polynomials that are usually denoted by C
(λ)
n (x). Here,

λ > 0 is a coefficient and n is the polynomial degree of x [25, Table 18.3.1]. They are orthogonal

on the interval (−1, 1) with respect to the weight function w(x) = (1 − x2)λ−1/2 and satisfy the
three-term recurrence [25, Table 18.9.1]

C
(λ)
0 (x) = 1,

C
(λ)
1 (x) = 2λx,

C
(λ)
n+1(x) =

2(n+ λ)

n+ 1
xC(λ)

n (x)− n+ 2λ− 1

n+ 1
C

(λ)
n−1(x).

(2.3)

For notational convenience, we use C̃
(λ)
n (x) to denote the L2(−1, 1)-normalized ultraspherical poly-

nomials with respect to the weight w(x). Two well-known classes of polynomials, Chebyshev
polynomials of the second kind and Legendre polynomials, are both special cases of ultraspherical
polynomials, with coefficient λ = 1 and λ = 1/2, respectively.
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2.2. Tensor Notations. We follow the notation for tensors found in [19], which we briefly re-
view now for the reader’s convenience. A tensor is a multidimensional array. We focus on three-
dimensional tensors, denoted by calligraphic upper case letters, such as X ∈ Cn1×n2×n3 . Compara-
tively, matrices are represented by upper case letters, such as X ∈ Cn1×n2 . We emphasize that the
following discussion directly extends to four-dimensional tensors, see Section 5.

To represent submatrices, and fibers and slices of tensors, we employ MATLAB notation. In
particular, “m : n” means that we take all integers between m and n, including m and n, and a
simple “:” means that we take all available indices. For example, A1:4,: is a submatrix ofA containing
the first four rows and all the columns. We also use the keyword “end” to indicate the last index.
For example, Aend,: represents the last row of A. Fibers are higher-order analogues of matrix rows
and columns, formed by fixing all but one index. A three-dimensional tensor X has column fibers
X:,j,k, row fibers Xi,:,k, and tube fibers Xi,j,:. Slices are two-dimensional sections of tensors made
by fixing all but two indices. A three-dimensional tensor X has horizontal slices Xi,:,:, lateral slices
X:,j,:, and frontal slices X:,:,k. The k-fold (or k-mode) product of a tensor X ∈ Cn1×n2×n3 with a
matrix A ∈ Cnk×nk is denoted by X ×k A, and defined elementwise as

(X ×1 A)i,j,k =

n1∑
i1=1

Xi1,j,kAi,i1 ,

(X ×2 A)i,j,k =

n2∑
i2=1

Xi,i2,kAj,i2 ,

(X ×3 A)i,j,k =

n3∑
i3=1

Xi,j,i3Ak,i3 .

(2.4)

The k-fold product corresponds to each mode-k fiber of X being multiplied by the matrix A.

3. Spectral Discretization for Fractional PDEs on a Disk

In this section, we solve (2.2) on a disk domain. Without loss of generality, we let Ω be the unit
circle. Otherwise, we can easily convert to this problem by scaling with the radius. We use polar
coordinates to rewrite (2.2) as

z1/s

(
Uρρ +

1

ρ
Uρ +

1

ρ2
Uθθ

)
+ z2Uzz = 0 in [0, 1)× [−π, π]× (0, R),

U(1, θ, z) = 0 on [−π, π]× (0, R),

U(ρ, θ,R) = 0 on [0, 1)× [−π, π],

∂νU(ρ, θ, 0) = dsf(ρ, θ) on [0, 1)× [−π, π].

(3.1)

To avoid the singularity at ρ = 0, we use the DFS method [33] to extend to ρ ∈ (−1, 1) by setting

Ũ(ρ, θ, z) =

{
U(ρ, θ, z) (ρ, θ, z) ∈ [0, 1)× [−π, π]× (0, R)

U(−ρ, θ + π, z) (ρ, θ, z) ∈ (−1, 0]× [−π, π]× (0, R)
,

f̃(ρ, θ) =

{
f(ρ, θ) (ρ, θ) ∈ [0, 1)× [−π, π]

f(−ρ, θ + π) (ρ, θ) ∈ (−1, 0]× [−π, π]
.

Notice that both Ũ and f̃ are now continuous at ρ = 0, which leads to simpler spectral discretization
with smaller polynomial degrees. From this point, we work directly with these “doubled” functions
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so that the singularity at ρ = 0 does not require additional consideration. The disk domain allows
us to assume that both the solution Ũ and the function f̃ have Fourier expansions:

Ũ(ρ, θ, z) ≈
m/2−1∑
k=−m/2

Ũk(ρ, z)e
ikθ and f̃(ρ, θ) ≈

m/2−1∑
k=−m/2

f̃k(ρ)eikθ.

In this way, we can decouple (3.1) into differential equations for each Fourier mode:

z1/s

(
(Ũk)ρρ +

1

ρ
(Ũk)ρ −

k2

ρ2
Ũk

)
+ z2(Ũk)zz = 0 in (−1, 1)× (0, R),

Ũk(±1, z) = 0 on (0, R),

Ũk(ρ,R) = 0 on (−1, 1),

∂νŨk(ρ, 0) = dsf̃k(ρ) on (−1, 1).

(3.2)

Following [18, § 4.1.2], we assume that the ansatz for Ũk is given by

Ũk(ρ, z) = (1− ρ2)ρmin(|k|,2)Ṽk(ρ, z), (3.3)

where the term (1−ρ2) incorporates the boundary condition Ũk(±1, z) = 0. Then, we solve for Ṽk.

The choice of the above ansatz only imposes partial regularity on Ũk, and we refer to [18, § 4.1.2]
for a detailed discussion on why it is challenging to impose full regularity.

Since the fractional exponent s can be any number between 0 and 1, the function z1/s makes
the development of solvers for (3.2) a challenging task for our spectral method. To overcome this
difficulty, we develop different solvers for varied values of s.

3.1. Polynomial Approximation of z1/s. We first consider the case in which s ∈ (0, 1) is such

that the function z 7→ z(1/s) can be approximated accurately by a polynomial of low degree. For
the discretized problem, the multiplication by z(1/s) is transformed into a matrix-matrix product.
Consequently, the polynomial degree is directly related to the discretization size, and the definition
of “low degree” in the above statement is related to the size of the discretized system one is capable
of solving. For example, one may interpret “low degree” to mean “degree less than 50”. In this
case, any value of s such that 1/s is an integer between 1 and 50 falls into this class.

To make the spectral discretization easier, we make the change-of-variables w = 2
Rz−1 ∈ (−1, 1).

In this way, the PDE in (3.2) becomes:(
R(w + 1)

2

)1/s
(

(Ũk)ρρ +
1

ρ
(Ũk)ρ −

k2

ρ2
Ũk

)
+ (w + 1)2(Ũk)ww = 0 in (−1, 1)2,

Ũk(±1, w) = 0 on (−1, 1),

Ũk(ρ, 1) = 0 on (−1, 1),

∂νŨk(ρ,−1) = Rdsf̃k(ρ)/2 on (−1, 1),

(3.4)

and we solve for

Ũk(ρ, w) = (1− ρ2)ρmin(|k|,2)Ṽk(ρ, w). (3.5)

Conventionally, one spectrally discretizes Ṽk with Chebyshev polynomials for both ρ and w, but the
matrices used to represent differentiation and function multiplication in the discretized equations
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are dense and hard to manipulate. Instead, we set

Ṽk(ρ, w) =

n1−1∑
i=0

n2−1∑
j=0

X
(k)
ij C̃

(3/2)
i (ρ)Tj(w), f̃k(ρ) =

n1−1∑
i=0

F
(k)
i C̃

(3/2)
i (ρ), (3.6)

where Tj(w) is the Chebyshev polynomial of the first kind of degree j, X(k) is the matrix of

coefficients of Ṽk in the C̃(3/2) basis, and F (k) is the vector of coefficients of f̃k in the Chebyshev
basis. Although C̃(3/2) is an uncommon polynomial basis, it is easy and efficient to transform
coefficients in the C̃(3/2) basis to Chebyshev coefficients [18]. Therefore, users of the solver do not
need to know about the special ultrashperical polynomial basis.

In this way, (3.5) indicates that we have three cases:

• If |k| ≥ 2, then Ũk = ρ2(1− ρ2)Ṽk, and (3.2) becomes:(
R

2

)1/s

(w + 1)1/s[ρ2(1− ρ2)(Ṽk)ρρ + ρ(5− 9ρ2)(Ṽk)ρ + (4− k2 + (k2 − 16)ρ2)Ṽk],

+ρ2(1− ρ2)(w + 1)2(Ṽk)ww = 0 in (−1, 1)2,

Ṽk(ρ, 1) = 0 on (−1, 1),

ρ2(1− ρ2)∂ν Ṽk(ρ,−1) = dsRf̃k(ρ)/2 on (−1, 1).

(3.7)

Following [18] on operations related to C̃(3/2) and [26] on operations related to Chebyshev poly-
nomials, (3.7) can be discretized to the following matrix equations:

(Mρ2D + 5MρMDu + (14− k2)M − 10I)X(k)(S2,0B1)T + (Mρ2M)X(k)(B2D2)T = 0

(Mρ2M)X(k)LT = H(k),
(3.8)

where D is a diagonal matrix representing the second derivatives of (1 − ρ2)C̃(3/2)(ρ), M is a
symmetric penta-diagonal matrix with 0 super and sub diagonals representing the operation of
multiplying C̃(3/2)(ρ) by (1−ρ2), Mρ2 = I−M represents the operation of multiplying C̃(3/2)(ρ)

by ρ2, Mρ is a tridiagonal matrix derived from the three-term recurrence (2.3) to represent the

operation of multiplying C̃(3/2)(ρ) by ρ, Du is a dense matrix representing the first derivatives

of C̃(3/2)(ρ), but MDu is tridiagonal [25, (18.9.8) & (18.9.19)], B1 represents the operation of

multiplying the Chebyshev polynomials T (w) by (R/2)1/s(1 +w)1/s, B2 represents the operation

of multiplying C(2)(x)—ultraspherical polynomials with coefficient 2—by (1+w)2, D2 represents

the second derivative of the Chebyshev basis, S2,0 converts the Chebyshev basis to the C(2) basis,

L =

[
T ′0(−1) T ′1(−1) . . .

T0(1) T1(1) . . .

]
,

and H(k) is a matrix with two columns:

H(k) =
[
−dsRF (k)/2 0

]
.

One can find a visualization of these operational matrices in Appendix A.
• If |k| = 1, then Ũk = ρ(1 − ρ2)Ṽk. Using the same matrix notation, the discretized matrix

equation is:

(MρD + 3MDu − 6Mρ)X
(k)(S2,0B1)T + (MρM)X(k)(B2D2)T = 0

(MρM)X(k)LT = H(k).
(3.9)
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• If k = 0, then Ũk = (1− ρ2)Ṽk, and the discretized version of (3.2) is:

(Mρ2D +MρMDu − 2Mρ2)X(0)(S2,0B1)T + (Mρ2M)X(0)(B2D2)T = 0

MX(0)LT = H(0).
(3.10)

We can merge the linear equation with the linear constraint into one matrix equation in all three
cases, see for instance [31] for a similar approach. It is desirable to keep the structure and the
sparsity of the matrices related to ultraspherical discretization while solving the equation. However,
due to the variable s, we do not know the spectrum of the matrices associated with the Chebyshev
basis, which is essential if we want to use fast iterative solvers such as an alternating direction
implicit (ADI) method [9]. Therefore, we treat all matrices as general dense matrices and solve
all matrix equations with the Bartels–Stewart algorithm [8]. Nevertheless, QZ decompositions on
sparse penta-diagonal matrices are cheaper and more stable than general dense matrices. Thus,
we gain from using ultraspherical polynomials. The solutions X(k) can be transformed to the
Chebyshev coefficient matrix for both variables, and then they form the frontal slices of the solution
Z to the discretized DFS version of (3.1). Finally, the coefficient matrix that represents the solution
of (1.1) can be calculated via

Z ×2

[
T0(−1) T1(−1) · · ·

]
.

We summarize this solver in Algorithm 1.

Algorithm 1 Fractional PDE solver on the unit disk — Polynomial approximation of z1/s

1: Input: The coefficient matrix F of f after DFS extension in Chebyshev and Fourier bases.
2: Output: The coefficient matrix W of the solution u in Chebyshev and Fourier bases.
3: Convert the columns of F into coefficients in C̃(3/2) basis.
4: while maxiX

(k)
i,n2

> 10−10 for any k in (3.6) do
5: Increase n2

6: Solve (3.8), (3.9), and (3.10) for X(k).

7: Stack all X(k) in the tube direction to form Z.
8: end while.
9: Calculate W = Z ×2

[
T0(−1) T1(−1) . . .

]
.

10: Convert the columns of W into coefficients in Chebyshev basis.

Remark 3.1 (Numerical convergence). As a test, consider s = 1/2 so that the extended PDE is
a Laplace equation on a cylinder. When f = J0(s01ρ), where J0 is the first Bessel function of the
first kind, and s01 is the first nonzero root of J0, the solution is

U =
1

s01 cosh(s01R)
J0(s01ρ) sinh(s01R(1− z)/2).

Figure 1 shows the reduction of approximation error obtained by our adaptive solver.

3.2. Piecewise Polynomial Approximation of z1/s. The more challenging case is when z1/s is
not well-approximated by a polynomial. For these values of s, we approximate z1/s with piecewise
polynomials, i.e.,

z1/s ≈ pi(z), zi ≤ z ≤ zi+1, (3.11)



SPECTRAL, TENSOR AND DOMAIN DECOMPOSITION METHODS FOR FRACTIONAL PDES 9

DoF (extended direction)

E
rr

or

Figure 1. Solving fractional PDE for f = J0(s01ρ) and s = 1/2 on the unit disk
with our spectral solver. By increasing the degrees of freedom in the extended
direction, the error between the analytic and numerical solutions decreases.

where pi is a polynomial for 0 ≤ i ≤ `− 1, z0 = 0, and z` = R. Then, on the interval (zi, zi+1), we
have that

pi(z)

(
(Ũ

(i)
k )ρρ +

1

ρ
(Ũ

(i)
k )ρ −

k2

ρ2
Ũ

(i)
k

)
+ z2(Ũ

(i)
k )zz = 0 in (−1, 1)× [−π, π]× (zi, zi+1),

Ũ
(i)
k (±1, z) = 0 on (zi, zi+1),

with bottom and top boundary conditions
Ũ

(0)
k (ρ, z1) = φ̃1(ρ),

∂νŨ
(0)
k (ρ, z0) = dsf̃k(ρ),

∂νŨ
(0)
k (ρ, z1) = ψ̃1(ρ),


Ũ

(`−1)
k (ρ, z`−1) = φ̃`−1(ρ),

Ũ
(`−1)
k (ρ,R) = 0,

∂νŨ
(`−1)
k (ρ, z`−1) = −ψ̃`−1(ρ),

and 
Ũ

(i)
k (ρ, zi) = φ̃i(ρ),

Ũ
(i)
k (ρ, zi+1) = φ̃i+1(ρ),

∂νŨ
(i)
k (ρ, zi) = −ψ̃i(ρ),

∂νŨ
(i)
k (ρ, zi+1) = ψ̃i+1(ρ),

1 ≤ i ≤ l − 2, (3.12)

where φ̃i and ψ̃i are implicitly defined. We use these implicit boundary conditions to ensure that
Ũi can form an overall continuous solution. On intersection surfaces, solutions on the two sides
have identical Dirichlet conditions and opposite Neumann conditions.

On each interval, we perform a change of variables to produce similar PDEs as (3.4). These
PDEs can be discretized into m` matrix equations. We solve on all intervals simultaneously by
combining the matrix equations corresponding to the same Fourier mode into one equation. We
use the matrix notation from Section 3.1 and get the following three matrix equations:
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• If |k| ≥ 2, then we have:

(Mρ2D + 5MρMDu + (14− k2)M − 10I)Y (k)ET1 + (Mρ2M)Y (k)ET2 = 0

(Mρ2M)Y (k)BT
z = H(k). (3.13)

• If |k| = 1, then we have:

(MρD + 3MDu − 6Mρ)Y
(k)ET1 + (MρM)Y (k)ET2 = 0

(MρM)Y (k)BT
z = H(k). (3.14)

• If k = 0, then we have:

(Mρ2D +MρMDu − 2Mρ2)Y (0)ET1 + (Mρ2M)Y (0)ET2 = 0

MY (0)BT
z = H(0). (3.15)

In the matrix equations above, we set

Y (k) =
[
X

(k)
0 · · · X

(k)
`−1

]
,

where X
(k)
j is the kth Fourier mode solution on (zj , zj+1). The first column of H(k) is −dsRf̃k(ρ)/2

and all other columns are zero. E1 and E2 are block diagonal matrices with diagonal blocks
S2,0Bi and KiD2, respectively, where Bi represents the multiplication of pi and Ki represents the

multiplication of the Chebyshev basis by (w + zi+1+zi
zi+1−zi )

2. In addition, we set

Bz =



P−1

2
z1
P1 − 2

z2−z1P−1

Q1 −Q−1

2
z2−z1P1 − 2

z3−z2P−1

Q1 −Q−1

. . .

Q1


,

where P−1 = [T ′0(−1) T ′1(−1) · · · ], P1 = [T ′0(1) T ′1(1) · · · ], Q−1 = [T0(−1) T1(−1) · · · ], and Q1 =

[T0(1) T1(1) · · · ]. Then, we can form X0 from Y (k) and obtain the coefficient matrix of the solution
u of (1.1).

By construction, the first two columns of D2 are 0. As a result, E2 has 2` scattered zero columns.
This property is undesirable when using the solver in [31]. Instead, we permute the columns of E2

so that the first 2` columns are 0, and permute E1, Y (k), Bz and H(k) accordingly. After solving
the permuted matrix equations, we can easily obtain the original solution. We note that the two
solvers are, in fact, equivalent for different values of s. The solver in this subsection can be thought
of as a generalized version of the solver in Section 3.1, where the solution only has one piece and
no implicit boundary conditions are needed. This generalized solver is described in Algorithm 2.

Remark 3.2. In our numerics, we use Chebfun [16] to automatically partition the extended direc-

tion and to approximate the map z 7→ z1/s with Chebyshev polynomials on each domain with desired
accuracy level, i.e., to determine pi and zi in (3.11). Chebfun only divides the domain when a high
degree polynomial cannot achieve the resolution, so the piecewise polynomial approximation tends
to have as few pieces as possible. From the above discretized systems, one notices that more pieces
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Algorithm 2 Fractional PDE solver on the unit disk — Piecewise approximation of z1/s

1: Input: The coefficient matrix F of f after DFS extension in Chebyshev and Fourier basis.
2: Output: The coefficient matrix W of the solution u in Chebyshev and Fourier basis.
3: Convert the columns of F into coefficients in C̃(3/2) basis.
4: while maxi

(
X

(k)
j

)
i,n

(j)
2

> 10−10 for any k or j do

5: Increase n
(j)
2 .

6: Construct the matrices in (3.13), (3.14), and (3.15), and permute E1, E2, Y (k), Bz and H(k)

such that the first 2` columns of E2 are zero columns while the equations still hold.
7: Solve for Y (k).
8: Stack X

(k)
0 to form X0.

9: end while.
10: Calculate W = X0 ×2

[
T0(−1) T1(−1) . . .

]
.

11: Convert the columns of W into coefficients in Chebyshev basis.

lead to more complicated matrix equations to solve. Consequently, it is beneficial to use Chebfun

for approximations. Figure 2 shows the number of polynomial segments needed to approximate the
map z 7→ z1/s on (0, 10) for varying s ∈ (0, 1) with an accuracy of 10−12 using Chebfun. If we
strive for machine precision, the numbers need to be larger. However, we found in practice that
10−12 gives sufficiently accurate PDE solutions. Comparatively, it is also possible to partition the
z-direction into more segments so that z1/s can be approximated by a low degree polynomial on each
interval. For this way of partitioning, we point the readers to [6] for more details.

4. Spectral Discretization for Fractional PDEs on a Rectangle

In this section, we solve (1.1) in the unit square (−1, 1)2 by spectrally discretizing the truncated,
extended PDE (2.2). General rectangles are straightforward to scale to unit squares by a change-
of-variables and are thus easy to solve with the same method. It is also worth noting that the solver
can be easily generalized to higher-dimensional domains. To this end, we demonstrate the solver
application on a cube in Section 5.

s

N
u

m
b

er
of

p
ie

ce
s

Figure 2. The number of segments for a piecewise polynomial approximation of
z1/s on (0, 10) with accuracy 10−12.
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We first introduce a direct solver that is similar to the solvers in Section 3. The direct solver,
can encounter efficiency issues as the equations become large when z1/s needs to be approximated
by a piecewise polynomial with many pieces. In those scenarios, we design a parallelizable solver
using domain decomposition in Section 4.2.

4.1. Direct Solver. We first approximate z1/s as an `-piece piecewise polynomial (3.11), with the
simplest case being ` = 1. On each interval (zi, zi+1), we have the PDE:

pi(z)
(
U (i)
xx + U (i)

yy

)
+ z2U (i)

zz = 0 in (−1, 1)× (−1, 1)× (zi, zi+1),

U (i)(±1, y, z) = 0 on (−1, 1)× (zi, zi+1),

U (i)(x,±1, z) = 0 on (−1, 1)× (zi, zi+1),

with bottom and top boundary conditions
U (0)(x, y, z1) = φ1(x, y),

∂νU
(0)(x, y, z0) = dsfk(x, y),

∂νU
(0)(x, y, z1) = ψ1(x, y),


U (`−1)(x, y, z`−1) = φ`−1(x, y),

U (`−1)(x, y,R) = 0,

∂νU
(`−1)(x, y, z`−1) = −ψ`−1(x, y),

and 
U (i)(x, y, zi) = φi(x, y),

U (i)(x, y, zi+1) = φi+1(x, y),

∂νU
(i)(x, y, zi) = −ψi(x, y),

∂νU
(i)(x, y, zi+1) = ψi+1(x, y),

1 ≤ i ≤ l − 2, (4.1)

where φi and ψi are implicitly defined to ensure continuity of the entire solution. We employ the
change the variables w = 2

zi+1−zi (z − zi)− 1 on (zi, zi+1), and assume the ansatz:

U (i) = (1− x2)(1− y2)

n1∑
p=0

n2∑
q=0

n
(i)
3∑

r=0

X (i)
pqrC̃

(3/2)
p (x)C̃(3/2)

q (y)Tr(w),

f =

n1∑
p=0

n2∑
q=0

FpqC̃
(3/2)
p (x)C̃(3/2)

q (y),

(4.2)

where C̃
(3/2)
p (x) is the pth normalized ultraspherical polynomial with coefficient 3/2, Tr(w) is the

rth Chebyshev polynomial, X (i) is a 3D tensor, and F is a matrix. As before, X (i) and F contain
the coefficients of U (i) and f in C̃(3/2) and Chebyshev basis, respectively. We can then write the
discretized problem as a tensor equation by stacking X (i) in the tube direction to form Y:

Y ×1 A×3 E1 + Y ×2 A×3 E1 + Y ×1 A×2 A×3 E2 = 0,

Y ×1 M ×2 M ×3 Bz = G, (4.3)

where A = D−1M , the first frontal slice of G is −dsRF/2 and the remaining slices are zero, and all
other matrices are defined in Section 3. In order to use a tensor analogue of the solver in [31], we
first perform a column permutation on E1, E2 and Bz, and a frontal slice permutation on Y and G
so that the first 2` columns of E2 are zero and (4.3) still holds.

The linear constraint Y ×1 M ×2 M ×3 Bz = G in (4.3) can be rewritten as Y ×3 L = H, where

L = SBz =
[
I L̃

]
such that the leftmost 2` × 2` submatrix of L is the identity matrix, and
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H = G ×1 M
−1 ×2 M

−1 ×3 S. Then, (4.3) can be combined into a single equation:

Y ×1 A×3 (E1 − (E1)1:2`L) + Y ×2 A×3 (E1 − (E1)1:2`L) + Y ×1 A×2 A×3 (E2 − (E2)1:2`L)

= −H×1 A×3 (E1)1:2` −H×2 A×3 (E1)1:2` −H×1 A×2 A×3 (E2)1:2`, (4.4)

where (E1)1:2` represents the first 2` columns of E1. Since the first 2` columns of E2 are 0 and the
leftmost 2`× 2` submatrix of L is the identity, we know that the first 2` frontal slices of Y do not
influence the solution. Therefore, we can solve for Y2, which contains the rest of the frontal slices,
by solving a smaller Sylvester equation:

Y2 ×1 A×3 R1 + Y2 ×2 A×3 R1 + Y2 ×1 A×2 A×3 R2

= −H×1 A×3 (E1)1:2` −H×2 A×3 (E1)1:2`, (4.5)

where R1 is the first

(∑
i

(
n

(i)
3

)
− 2`

)
rows of (E1)

2`+1:
∑

i

(
n
(i)
3

) − (E1)1:2`L̃, and R2 is the first(∑
i

(
n

(i)
3

)
− 2`

)
rows of (E1)

2`+1:
∑

i

(
n
(i)
3

). After computing Y2, it is then straightforward to use

the linear constraint to calculate the first 2` frontal slices by Y1 = H− Y2 ×3 L̃.
Since we do not know the behavior of the spectrum of R1 and R2, we use a tensor analogue of

the Bartels–Stewart algorithm [8] to solve for Y2. To be specific, we take real Schur decompositions
of the pairs of matrices using the QZ decomposition [8], and then solve for each column fiber of Y2.

Finally, we recover X (0) as the first n
(0)
3 frontal slices of Y, convert it to the Chebyshev coefficient

tensor Z and get the coefficient matrix of the solution of (1.1) by Z ×3

[
T0(−1) T1(−1) . . .

]
.

This direct solver on a unit square is summarized in Algorithm 3.

Algorithm 3 Direct fractional PDE solver on the unit square

1: Input: The coefficient matrix F of f in Chebyshev basis.
2: Output: The coefficient matrix W of the solution u in Chebyshev basis.
3: Convert both columns and rows of F into coefficients in C̃(3/2) basis.
4: while maxp,q

∣∣∣X (i)

p,q,n
(i)
3

∣∣∣ > 10−10 for any i in (4.2) do

5: Increase n
(i)
3 .

6: Solve (4.5) for Y2 and compute Y1 = H− Y2 ×3 L̃.

7: Stack Y1 and Y2 in the tube direction, and form X (0) to be the first n
(1)
3 frontal slices of Y.

8: end while.
9: Calculate W = X (0) ×2

[
T0(−1) T1(−1) · · ·

]
.

10: Convert both columns and rows of W into coefficients in Chebyshev basis.

Remark 4.1 (Numerical convergence). As a numerical example, we consider the case that u =
sin(πx) sin(πy) + sin(2πx) sin(2πy), then f = (2π2)s sin(πx) sin(πy) + (8π2)s sin(2πx) sin(2πy) by
the spectral definition. Figure 3 (Left) shows the coefficient decay along the extended direction
of the discretized tensor solution for different values of s. This plot demonstrates that when the
algorithm terminates, the coefficient of the polynomial terms of the discretized solution is small
enough. Figure 3 (Right) shows the accuracy improvements of our adaptive algorithm. With the
increase of polynomial degree to approximate the extended domain, we obtain a reduction of error
between the numerical and analytic solution.
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Figure 3. Solving the fractional PDE for f = (2π2)s sin(πx) sin(πy) +
(8π2)s sin(2πx) sin(2πy) and different values of s on Ω = (−1, 1)2 with our spectral
solver. Left: the largest coefficient in magnitude on each slice along the extended
direction in the discretized solution, i.e., the largest Xpqr when r is fixed in (4.2).

When s = 2/5 and s = 4/7, z(1/s) is approximated by piecewise polynomials with
two pieces. The coefficient patterns show the decay of both pieces. Right: the
accuracy achieved with different degrees of freedom in the extended direction. For
s = 1/4, we achieve sufficient coefficient decay within five iterations. For s = 4/7,
we require two iterations and for s = 2/5, the coefficients of a 28 × 28 × 121 dis-
cretization decay below 10−13 in the first iteration, resulting in a single point on the
plot.

Remark 4.2 (Numerical convergence for non-compatible datum). As another example, we consider
a non-compatible case with f = 2 and s < 1/2, leading to low regularity of the solution to the
fractional PDE [24, Sec. 6.3]. Figure 4 shows the coefficient decay along the extended direction of
the discretized tensor solution for different values of s. Again, when the algorithm terminates, the
coefficient of the polynomial terms of the discretized solution is small enough, and the number of
coefficients to achieve this decay is smaller than that in Remark 4.1.

4.2. Domain Decomposition Solver. In the previous section, we solved (1.1) on the unit square

by jointly solving (4.1) for all segments. However, the solution of (1.1) only corresponds to X (0),
the solution on the first domain. Therefore, we design a domain decomposition solver, inspired by
the hierarchical Poincaré–Steklov method [22], to solve only for X (0).

Suppose we know the Robin boundary conditions for X (0) and Dirichlet boundary conditions
for all other X (i). It is then straightforward to write a tensor equation for each X (i) in the form
of (4.4):

(X (i) ×1 A+ X (i) ×2 A)×3 (Ci − (Ci)1:2Li) + X (i) ×1 A×2 A×3 (M2 − (M2)1:2Li)

= −H(i) ×1 A×3 (Ci)1:2 −H(i) ×2 A×3 (Ci)1:2, (4.6)

where Ci = S2,0Bi, M2 = KiD2, L0 = N0

[
P−1

Q1

]
= [I L̃0], Li = Ni

[
Q−1

Q1

]
= [I L̃i] for i > 1,

H(i) = G(i) ×1 M
−1 ×2 M

−1 ×3 Ni, and the two frontal slices of G(i) correspond to the boundary
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Figure 4. Solving the fractional PDE for f = 2 and different values of s < 1/2
on Ω = (−1, 1)2 with our spectral solver. The plot shows the largest coefficient in
magnitude on each slice along the extended direction in the discretized solution, i.e.,
the largest Xpqr when r is fixed in (4.2). When s = 2/5, z(1/s) is approximated by
a piecewise polynomial with two pieces. The coefficient patterns show the decay of
both pieces.

conditions of X (i) that are assumed to be known. This means that, once we have G(i), we are able
to solve for X (i).

Equation (4.6) allows us to construct a solution map S(i) ∈ Rn1n2n
(i)
3 ×2n1n2 :

S(i) = −[(Ci − (Ci)1:2Li)⊗ I ⊗A+ (Ci − (Ci)1:2Li)⊗A⊗ I + (M2 − (M2)1:2Li)⊗A⊗A]−1

(((Ci)1:2Ni)⊗ (I ⊗A+A⊗ I)), (4.7)

such that vec
(
X (i)

)
= S(i) vec

(
G(i)
)

, where vec
(
X (i)

)
reshapes all elements in X (i) to a vector.

In addition, we define the Dirichlet-to-Neumann (DtN) map K(i) ∈ R2n1n2×2n1n2 by

K(i) =
2

zi − zi−1

[P−1

P1

]
⊗ I ⊗ I

S(i).

The map K(i) converts the Dirichlet boundary conditions G(i) into the Neumann values B(i) on the
boundaries.

We solve for each column of S(i) by solving a tensor Sylvester equation:

S(i)
j ×1A×(Ci−(Ci)1:2Li)+S(i)

j ×2A×3 (Ci−(Ci)1:2Li)+S(i)
j ×1A×2A×3 (M2−(M2)1:2Li) =W(i)

j ,

where S(i)
j the jth column of S(i) reshaped to an n1 × n2 × n(i)

3 tensor, and W(i)
j is the jth column

of ((Ci)1:2Ni) ⊗ (I ⊗ A + A ⊗ I) reshaped to an n1 × n2 × n
(i)
3 tensor. This suggests that the

computation of S(i)
j is a parallelizable process. We can calculate the operator K(i) by

K(i)
j =

2

zi − zi−1
S(i)
j ×3

[
P−1

P1

]
,

where K(i)
j is the jth vector of K(i) reshaped to a 2× n1 × n2 tensor.
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Our goal is to use the solution operator S(0) to solve for X (0). Thus, we must obtain the implicit
Dirichlet boundary condition. Next, we show that we can carefully merge the solution maps S(i)

and DtN maps K(i). As a result, we obtain solution maps and DtN maps that work on several
domains simultaneously, and these merged maps can help us find the desired boundary condition.

The boundaries for each domain consist of one upper surface and one lower surface so that we
can separate the boundary conditions into two parts and the DtN operator into four parts, i.e.,

vec
(
G(i)
)

=

G(i)
v

G(i)
u

 , vec
(
B(i)

)
=

B(i)
v

B(i)
u

 , K(i) =

K(i)
v,v K

(i)
v,u

K
(i)
u,v K

(i)
u,u

 .
Then we can follow [22] to merge the solution and DtN operators:

S(i,i+1) =
(
K(i)
u,u −K(i+1)

v,v

)−1 [
−K(i)

u,v K
(i+1)
v,u

]
,

K(i,i+1) =

K(i)
v,v 0

0 K
(i+1)
u,u

+

 K
(i)
v,u

K
(i+1)
u,v

S(i,i+1),

so that

G(i)
u = G(i+1)

v = S(i,i+1)

 G(i)
v

G(i+1)
u

 ,
 B(i)

v

B(i+1)
u

 = K(i,i+1)

 G(i)
v

G(i+1)
u

 .
In other words, given the Dirichlet boundary conditions on the lower surface of the ith domain and
the upper surface of the (i+ 1)st domain, K(i,i+1) enables one to compute the Neumann conditions

on those surfaces, and S(i,i+1) allows one to calculate the Dirichlet condition of the overlapping
surface.

We need G(0)
u or G(1)

v to compute X (0). To achieve this, we can merge the operators for
X (1), . . . ,X (`−1) to get S(1,`−1) and K(1,`−1), and then merge them with S(0) and K(0) in the
final step. In particular, there are two ways of merging the operators:

(a) Starting from the top piece, we form S(`−1) and K(`−1). We then iterate downwards from
i = ` − 1 to i = 0, form new operators for each piece, and merge them with the operators
from the previous iteration. This is merging in a sequential way.

(b) Since the maps for each piece are independent, we can form the operators on all domains
in parallel. Then, we merge in a hierarchical manner, merging two of them simultaneously,
and these merging operations are parallelizable.

In summary, this domain decomposition solver is Algorithm 4.

Remark 4.3. We can also use domain decomposition to construct a parallel solver for the disk do-

main. The solution operator S(i) ∈ Cn1n
(i)
2 m×2n1m on the ith domain takes in the Dirichlet boundary

coefficients on the top and the bottom surfaces, and returns the coefficients of Ũ (i). Although we can-

not construct S(i) in one setting due to partial regularity, we discover that row
(

(k − 1)n1n
(i)
2 + 1

)
to row

(
kn1n

(i)
2

)
of S(i) corresponds to the (k − 1 −m/2)th Fourier mode of the solution. In this

way, we can construct these rows with the linear system converted from the generalized Sylvester
equation. It is then straightforward to construct the DtN map K(i) from S(i), and we can use the
hierarchical Poincaré–Steklov method described for the rectangle domain.
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Algorithm 4 Domain decomposition fractional PDE solver on the unit square

1: Input: The coefficient matrix F of f in Chebyshev basis.
2: Output: The coefficient matrix W of the solution u in Chebyshev basis.
3: Convert both columns and rows of F into coefficients in C̃(3/2) basis.
4: while maxp,q

∣∣∣X (i)

p,q,n
(i)
3

∣∣∣ > 10−10 for any i in (4.6) do

5: Increase n
(i)
3 .

6: Form solution and DtN maps on each domain.
7: Merge the maps to get S(1,`−1) and K(1,`−1).
8: Merge with S(0) and K(0) to get solution tensor X (0) on the first domain.
9: end while.

10: Calculate W = X (0) ×2

[
T0(−1) T1(−1) · · ·

]
.

11: Convert both columns and rows of W into coefficients in Chebyshev basis.

5. Numerical Example and Application to Optimal Control Problems

In this section, we present two examples. In the first example, we extend our 2D solver to 3D to
solve the fractional elliptic PDE on Ω = (0, 1)3. The second example is an optimal control problem
with a fractional PDE constraint.

5.1. Fractional PDE on the Cube. We can extend our solver from Section 4 to solve fractional
PDEs on the unit cube. Using ultraspherical polynomials for the cube dimensions and Chebyshev
polynomials for the extended direction, the discretized problem is the following:

Y ×1 A×2 A×4 E1 + Y ×2 A×3 A×4 E1 + Y ×1 A×3 A×4 E1 + Y ×1 A×2 A×3 A×4 E2 = 0,

Y ×1 M ×2 M ×3 M ×4 Bz = −dsRF/2, (5.1)

where Y is formed by stacking 4D tensor solutions of the discretized problem on each interval
along the fourth dimension, F is a 3D tensor representing the polynomial coefficients of the initial
condition, and all other matrices have been defined in Section 4.

We solve (5.1) by merging the linear constraint into the tensor equation and using a 4D Bartels–
Stewart algorithm analogue to obtain the solution directly. For a numerical example, we consider
the simple case that f = (3π2)s sin(πx) sin(πy) sin(πz) + (12π2)s sin(2πx) sin(2πy) sin(2πz) so that
the analytic solution is u = sin(πx) sin(πy) sin(πz) + sin(2πx) sin(2πy) sin(2πz). Figure 5 (Left)
shows the coefficient decay along the extended direction of the discretized tensor solution for differ-
ent values of s. This plot shows that the coefficient of the discretized solution is small enough when
the algorithm finishes. Figure 5 (Right) shows the accuracy improvements in our adaptive algorithm
when we increase the degrees of freedom by allowing higher polynomial degrees to approximate the
solution in the extended direction. Similar to the problem on the square, polynomial coefficients of
the discretized solution decay exponentially along the extended direction, which allows us to find
an accurate numerical solution with only a few degrees of freedom.

5.2. Optimal Control Problem. We consider the optimization problem given by

min
(u,q)

{
J(u, q) :=

1

2

ˆ
Ω
|u− ud|2 +

α

2

ˆ
Ω
|q|2
}
,

subject to (−∆)su = q in Ω, (5.2)

where ud is a given function and α is the control penalty parameter. We solve this problem via a
direct solver. Specifically, we express the optimality condition as two fractional PDEs, discretize
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Figure 5. Solving the fractional PDE for f = (3π2)s sin(πx) sin(πy) sin(πz) +
(12π2)s sin(2πx) sin(2πy) sin(2πz) and different values of s on Ω = (−1, 1)3 with
our spectral solver. Left: the largest coefficient in magnitude on each slice along
the extended direction in the discretized solution, i.e. the largest coefficient when
the fourth index of the discretized tensor solution is fixed. When s = 2/5, z(1/s) is
approximated by a piecewise polynomial with two pieces. In this case, the coefficient
patterns show the decay of both pieces. Right: the accuracy achieved with different
degrees of freedom in the extended direction. When s = 1/4, the algorithm per-
forms five iterations, increasing the degrees of freedom along the extended direction
to achieve sufficient decay of the coefficients. On the other hand, when s = 2/5, the
solution admits sufficient coefficient decay in the first iteration because the adaptive
solver adds additional degrees of freedom.

both, combine them into one tensor equation and obtain the best u and z directly. In particular,
we solve

(−∆)su = − 1

α
p,

(−∆)sp = u− ud,
(5.3)

where we have eliminated the so-called gradient equation. For simplicity, we consider solving (5.3)
directly on the unit square. Let U and P be the coefficient tensors for the extensions of u and p,
respectively. Then, U and P satisfy the following tensor equations:

U ×1 A×3 E
(u)
1 + U ×2 A×3 E

(u)
1 + U ×1 A×2 A×3 E

(u)
2 = 0,

U ×3 B
(u)
y = G(u),

P ×1 A×3 E
(p)
1 + P ×2 A×3 E

(p)
1 + U ×1 A×2 A×3 E

(p)
2 = 0,

P ×3 B
(p)
y = G(p), (5.4)

where the first frontal slice of G(u) is dsz1
2α P×3

[
T0(−1) . . . T

n
(p)
3

(−1) 0 . . . 0
]
, the first frontal

slice of G(p) is −dsz1
2

(
U ×3

[
T0(−1) . . . T

n
(u)
3

(−1) 0 . . . 0
]
− Ud

)
, and Ud is the coefficient

matrix of ud. To distinguish between matrices used in the equations for u and p, we use superscripts
(u) and (p). The matrices E1, E2 and By are defined in Section 4. We can then rearrange (5.4) so
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that we only have one tensor Sylvester equation and a linear constraint:

Y ×1 A×3

E(u)
1

E
(p)
1

+ Y ×2 A×3

E(u)
1

E
(p)
1

+ Y ×1 A×2 A×3

E(u)
2

E
(p)
2

 = 0,

Y ×3 By = G,

(5.5)

where Y is formed by stacking U and P along the tube direction, G is a zero tensor except for the
last frontal slice of 1

2dsz1Ud,

By =



B
(u)
y (1) −dsz1

2α

[
T0(−1) . . . T

n
(p)
3

(−1) 0 . . . 0
]

B
(u)
y (2 : end)

B
(p)
y (2 : end)

dsz1
2

[
T0(−1) . . . T

n
(u)
3

(−1) 0 . . . 0
]

B
(p)
y (1)


,

and B
(u)
y (i) is the ith row of B

(u)
y . We can then solve for Y, get U and P, and calculate the

coefficient tensor Q of q by Q = − 1
αP.

For numerical demonstration, we take Ω = (−1, 1)2, α = 10−2, and ud = (1+α(2π2)2s) sin(πx) sin(πy).
The analytic solution of (5.2) with this data is u = sin(πx) sin(πy) and q = (2π2)s sin(πx) sin(πy).
Figure 6 shows the performance of our adaptive direct solver. As demonstrated, our method gen-
erates accurate numerical solutions for both u and q with only a few degrees of freedom in the
extended direction.

L
2

E
rr

or

DoF (extended direction)

Figure 6. Solving the optimal control problem (5.2) with different values of s for
α = 10−2, ud = (1 + α(2π2)2s) sin(πx) sin(πy) and Ω = (−1, 1)2. As the degrees
of freedom in the extended direction increase, the approximation of both u and
q improves. When s = 1/4, we perform four iterations, which add more degrees
of freedom along the extended direction, before our algorithm terminates. When
s = 2/5, our first trial guarantees enough decay in the coefficients for both u and q,
resulting in a single point for each on the plot.
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6. Conclusions

In this paper, we present a spectral method that uses ultraspherical and Fourier polynomials
to solve fractional Laplacian equations on square and disk domains via the Caffarelli–Silvestre
extension. Based on the value of the fractional exponent s, we decompose the PDE along the
extended domain. We show a direct method that finds solutions on all sub-domains through one
tensor equation, and a parallelizable domain decomposition solver generated from the hierarchical
Poincaré–Steklov method. Numerical tests suggest that coefficients of the solutions decay exponen-
tially along the extended direction, and we can recover accurate discretized solutions with a few
degrees of freedom. Our method is easily generalized to problems of higher dimensions, such as
solving fractional PDEs on cubes, and it can be used to accurately compute solutions of optimal
control problems. For future work, we will develop spectral solvers for fractional operators with
variable coefficients (1.2) through the extension scheme, yielding an approach that can be used to
solve more general PDEs and optimal control problems as in [27].

Appendix A. Visualization of Matrices in Ultraspherical Discretization

In this appendix, we provide the readers with some details of the matrices we use during dis-
cretization in Sections 3 and 4.

• D is a diagonal matrix representing second derivative of (1 − ρ2)C̃(3/2)(ρ), with diagonal
elements Dj,j = −(j(j + 3) + 2).
• M is a symmetric penta-diagonal matrix with 0 super and sub diagonals representing mul-

tiplication of 1− ρ2 in C̃(3/2) basis, with elements

Mj,j =
2(j + 1)(j + 2)

(2j + 1)(2j + 5)
, Mj,j+1 = 0, Mj,j+2 =

−1

(2j + 3)(2j + 5)

√
(j + 4)!(2j + 3)

j!(2j + 7)
.

• B1 and B2 are two banded matrices representing multiplications in different ultraspheri-
cal polynomial basis, where the bandwidth is determined by the degree of the polynomial
approximation in the respective basis. In addition, B1 can be shown to be a Toeplitz-plus-
Hankel-plus-rank-1 operator [26], and both B1 and B2 satisfy three-term recurrence [30,
Chpt.6].
• D2 represents second derivative of Chebyshev basis, with the form

D2 =


0 0 2

3

4

. . .

 .

Here, elements of D2 on the diagonal and first upper top diagonal are all 0.
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• S2,0 converts Chebyshev basis to C(2) basis, and can be calculated by S2,0 = S1S0, where

S0 =



1 0 −1/2

1/2 0 −1/2

1/2 0
. . .

1/2
. . .

. . .


, S1 =



1 0 −1/3

1/2 0 −1/4

1/3 0
. . .

1/4
. . .

. . .


.
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[22] P. Martinsson. The hierarchical Poincaré–Steklov (HPS) solver for elliptic PDEs: A tutorial. arXiv preprint

arXiv:1506.01308, 2015.
[23] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler. hp-finite elements for fractional diffusion. SIAM J. Numer.

Anal., 56(4):2345–2374, 2018.



22 T. SHI, H. ANTIL, AND D.P. KOURI
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