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ABSTRACT: The detection of an oscillating pattern in the bispectrum of density perturba-
tions could suggest the existence of a high-energy second minimum in the Higgs potential.
If the Higgs field resided in this new minimum during inflation and was brought back to
the electroweak vacuum by thermal corrections during reheating, the coupling of Standard
Model particles to the inflaton would leave its imprint on the bispectrum. We focus on
the fermions, whose dispersion relation can be modified by the coupling to the inflaton,
leading to an enhanced particle production during inflation even if their mass during in-
flation is larger than the Hubble scale. This results in a large non-analytic contribution to
non-Gaussianities, with an amplitude fy1, as large as 100 in the squeezed limit, potentially
detectable in future 21-cm surveys. Measuring the contributions from two fermions would
allow us to compute the ratio of their masses, and to ascribe the origin of the signal to a
new Higgs minimum. Such a discovery would be a tremendous step towards understanding
the vacuum instability of the Higgs potential, and could have fascinating implications for
anthropic considerations.

KEYWORDS: Beyond Standard Model, Cosmology of Theories beyond the SM, Effective
Field Theories, Higgs Physics

ARX1v EPRINT: 1907.10624

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP01(2020)105


mailto:hook@umd.edu
mailto:jhuang@perimeterinstitute.ca
mailto:dracco@perimeterinstitute.ca
https://arxiv.org/abs/1907.10624
https://doi.org/10.1007/JHEP01(2020)105

Contents

Introduction and summary

Higgs field dynamics in the early universe

2.1
2.2
2.3

The Higgs potential during inflation
Higgs potential during reheating
Summary of the viable parameter space

Cosmological collider signature

3.1
3.2
3.3

How to estimate fnr
Outline of the calculation of fni,
Other operators

Result and implications

Calculation of the squeezed non-Gaussianity

Al
A2
A3
A4
A5

In-in formalism

Fermion loop amplitude

Fermion mode functions and dispersion relations
Approximation for the momentum loop

Time integrals

Higgs potential in the early universe

B.1
B.2

Higgs potential during inflation
Higgs dynamics during reheating

C Inflaton couplings and two point function

N O W W

oo Qo

10
13

15

19
19
20
22
24
25

27
27
29

29

1

Introduction and summary

The discovery of the Higgs boson at the Large Hadron Collider (LHC) completes the
Standard Model (SM) of particle physics. Since then, much research has been done to un-

derstand the Higgs potential at both low and high energies. Extrapolating the predictions

of the SM up to high energy scales, the quartic coupling of the Higgs becomes negative

around vy—g ~ 101 GeV [1-12]. An epoch of primordial inflation, which would address

many issues in cosmology [13-19], could have occurred at a high energy scale and can have

a very interesting interplay with the Higgs instability [20-30]. The common lore is that a

future measurement of the scalar tensor ratio r [31] confirming high scale inflation would

suggest that there is new physics below the scale vy—g to stabilize the Higgs potential. In

this paper, we take the opposite approach where we assume that during inflation the Higgs



is living at a new minimum wvyy at a scale well above vy—g. After inflation ends, the Higgs
boson returns to the standard electroweak minimum due to thermal effects. In this article,
we will explore the observational signatures associated with the Higgs living in its true
minimum during inflation.

In the SM, the Higgs potential is unbounded from below. In order to stabilize the
potential, we assume that the potential is stabilized by higher dimensional operators. In
particular, we will take the Higgs potential to be (see figure 1)

2 (HH)?
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(1.1)
This potential has the standard electroweak minimum as well as a true minimum at the
scale vyy ~ Agy. This scale Ay can originate from high energy dynamics such as Grand
Unification [32-35], String Theory, etc. .

After inflation, the Standard Model sector can be reheated to a temperature much
larger than the scale vyy. During this stage, the Higgs boson receives a thermal correction
to its potential that gives the Higgs a large positive mass around the origin and pulls
the Higgs field back to the origin. Very quickly, the Higgs decay rate becomes larger
than Hubble and it settles around the origin. Despite being in the true minimum during
inflation, the Higgs ends up in the electroweak minimum.

Such a scenario is interesting as it provides an opportunity to directly study the Higgs
vacuum structure at extremely high energy scales using non-Gaussianities. The most pro-
nounced effect due to non-inflaton particles during inflation originates from particles whose
masses are close to the Hubble rate. The SM fermions, with masses ranging from y.vyy
to ysvyy, provide a natural comb that spans more than five orders of magnitude. Some
of these fermions will have masses close to the Hubble scale during inflation, leading to
observable signatures in the cosmological collider physics program.

Cosmological collider physics provides a new window into the physics surrounding
inflation [36-46]. Measurements of the non-analytical pieces of the inflaton three point
function can provide information about new particles with masses that are close to the
Hubble scale. The signal strength depends on both the mass of the new particle as well
as its coupling to the inflaton. In this paper, we consider the lowest dimensional operator
coupling a shift symmetric inflaton with the SM,

_ Cfi 8}L¢ ﬁ,yuf)ﬁ fl
Ay

LD +oee, (1.2)
where ¢ is the inflaton and f; are the SM fermions.! This coupling acts like a chemical
potential for the broken axial symmetry. Thus, it is not surprising that this term can help
with particle production [48, 49]. We will work in the framework of effective field theory
of inflation [50, 51] and we will not specify an inflaton model.

Such a coupling breaks Lorentz symmetry for non-zero ng, modifies the fermion dis-
persion during inflation and leads to particle production during inflation with momentum

'We will postpone discussions about the d)Ff couplings of the inflaton as they can naturally be a loop
factor smaller than the fermion ones with their own distinct phenomenology [47].



as large as \; = Cl’iiqu, which can be much larger than Hubble. This greatly enhances the

number density of fermions produced during inflation and boosts the signal strength in
cosmological collider physics, leading to an fnr, that can be as large as

me\°~ Tm2
L =P (T) 22 exp [—Aé] < 100, (1.3)

in the squeezed limit, where P ~ 2 x 1077 is the dimensionless power spectrum of curvature
perturbations and \; = A;/H can be as large as O(60).

The paper is organized as follows. In section 2, we discuss in detail the Higgs dy-
namics during and after inflation. In section 3, we present both the calculation of the
non-Gaussianity and a way to estimate the size of the signal. In section 4, we discuss the
future prospect of the measurement of such a signal and the implications for physics beyond
the SM. In the appendices we collect most of the technical details and further crosschecks.
Appendix A contains a detailed exposition of the calculation for the non-Gaussian squeezed
bispectrum. Appendix B discusses some of the details of the Higgs dynamics during in-
flation as a result of direct Higgs couplings with the curvature and inflaton. Appendix C
discusses the back-reactions on the inflaton dynamics.

2 Higgs field dynamics in the early universe

It is well known that, if we extrapolate the running of the SM parameters up to high
energies, the Higgs quartic coupling turns negative around the scale vy—g ~ 10! GeV, so
that the minimum we live in right now is metastable. Beyond the scale of vy—g, new physics
can come in and save the theory from a runaway direction and create a new minimum of
the Higgs potential at some scale vyy. The recent upper limit on the tensor to scalar ratio
r < 0.06 [52] implies that

H <6108 GeV, (upper limit on r) (2.1)

so that H can still be much larger than the scale vy—g. During inflation, the Higgs field
background undergoes a random walk with kicks ~ H/(27) and could possibly have reached
the true minimum at a very large vacuum expectation value (vev) vyy for the Higgs field.
The true minimum has a large negative vacuum energy, and the corresponding anti-de
Sitter region would expand at the speed of light after the end of inflation [20-30]. If
inflation occurred at high energy scales, the fact that our observable Universe lies in the
electroweak vacuum would seem a very extreme accident and would beg for an explanation.
In this section, we describe a scenario in which the Higgs field sits in the true minimum wvyy
during inflation and settles back down to the electroweak minimum after reheating. We
sketch the Higgs potential during and after inflation in figure 1, and we describe in more
detail this scenario in the rest of this section.

2.1 The Higgs potential during inflation

There are a few assumptions about the Higgs potential that need to be satisfied in order
for us to observe today the signature of a high energy vacuum. For simplicity, we assume



Figure 1. Higgs potential at zero temperature (blue line) and at high temperature during the
reheating phase (red line). The Higgs field sits in the high energy minimum vy, during inflation,
and then returns back to the electroweak vacuum during the thermal phase of reheating, when
thermal corrections to the Higgs potential lift the minimum vy,. In reality, the (free) energy of
the Higgs decreases for |h| < T, and the thermal potential can be fit by a positive quadratic times
exponential term, plus a negative offset that we did not show explicitly in this figure for better
presentation.

that the new minimum for the Higgs field is generated by higher dimensional operators in
its potential, suppressed by a cutoff scale Ay. We write then the following Lagrangian for
the Higgs field:

1
Lhiges = (O H)'O"H—V(H),  V(H) = —piHH + M(HH)? + 5 (HTH)® . (22)
H
Let us write the Higgs doublet in the unitary gauge as H = (0, ”\‘/%}‘)T
of the Higgs potential is irrelevant, being 7 ~ O(100) GeV and its RG flow negligible. We

assume that )\, turns negative at high energies, so that the potential in eq. (2.2) has a true

. The mass term

vacuum of the Higgs potential at

4
Vyy = MAH7 Aoy = —Ap(voy) >0, (2.3)

where for the central measured values of m; and as we have A, yy ~ O(0.01). The uncer-
tainties on the RG evolution of the quartic Higgs coupling mainly come from the uncertainty
on the top quark mass, and at subleading order on the strong coupling constant and the
Higgs mass [53]. In this section, we assume that the RG running of gauge, Yukawa and
Higgs quartic (Ap) couplings is not affected by new physics between the weak scale and
Ay We postpone discussion of the effect of a Higgs coupling to curvature and the inflaton
to appendix B. These corrections can increase the Higgs field value during inflation and
can lead to interesting observable effects [54].

Depending on the Hubble rate, which we assume to be comparable to the current
bound (2.1), and the number of e-folds of inflation, the Higgs field can easily overcome the



barrier under the effect of quantum fluctuations, and reach its true minimum vy, within
a few e-folds. We assume that (h) ~ vyy throughout the ~ 60 e-folds of inflation that we
can potentially observe today.

Quantum fluctuations of (h). The Higgs field can fluctuate around vy, during infla-
tion by steps of order H/2m, which can lead to a fluctuation of the fermion masses during
inflation. In this paper, we will restrict our analysis to the case where these Higgs fluc-
tuations are negligible such that the statistical errors are reduced and the predictions are
much simpler. This requires that the Higgs mass squared at vyy is greater than 9H?/4. In
this case, fluctuations are exponentially suppressed. This leads to a constraint

9
8)‘h,UV

9 8
ZHQ < V"(vyy) = g)‘i%,uvA%-t = vy > H (no fluctuations at vyy) (2.4)
If the Higgs is subject to quantum fluctuations, but the spread in field values induced during
a number N 2 O(10) e-folds is not larger than vy, then the spatial variations of (h) on
the scales probed by present day experiments would still be small. The non-Gaussianity
estimates that follow are still valid, with some small quantitative differences,? as long as
VN N~O(10
voy 2 H o :( : H (small fluctuations around wvyy) (2.5)
T

No alterations of the inflationary dynamics. In order for the inflationary dynamics
not to be significantly affected by the negative Higgs energy density when (h) = vyy, the
sum of Vj,(vyy) and V,, = 3H2M3 must be positive:

6MpH
1/4
h,uv

4
Vi (voy)| = ’—27A27UVA§[ <3H’M?: = wyw< (Vg > |Val)  (2.6)

This constraint, for A, ;v ~ 0.01, turns out to be weaker than the requirement (2.9) that the
temperature is high enough to bring the Higgs vev back to the origin after inflation ends.

Lifting of the SM mass spectrum. Once the Higgs is in the UV minimum, the spec-
trum of all SM particles during inflation are solely determined by a single parameter A.
In terms of the Higgs vev vyy, we collect here the masses of the SM particles:

1
my, = Eyz Uuv
mp = 2)\h,UV Vyv

| (2.7)
mw = 592 Vuv

2

1
mz = ) g% +9%'UUV

We show in figure 2 the running of the coefficients appearing in the masses in eq. (2.7).

2This scenario could imply exciting distinctive signatures, like spatial variations of fxr.
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Figure 2. RG flow of the coefficients of the masses of the SM particles in terms of the Higgs vev.
The width of the lines in this plot is the larger than the current experimental uncertainty on the
SM parameters at the weak scale.

In figure 3 we show the lines in the parameter space corresponding to H = m; for the
SM fermions.

The wealth of massive particles due to the UV Higgs minimum spans five orders of
magnitude. Therefore, it is very likely that one or two of them will happen to have a mass
close to the Hubble scale. If we detected the signature of the presence of two or three
fermions with mass ratios resembling those of the Yukawa couplings, it would be a very
strong indication for the existence of a new Higgs minimum at high scales. We show how
to estimate and calculate the amount of non-Gaussianity that can arise due to these new

fermions in section 3.

2.2 Higgs potential during reheating

The Higgs field will need to find its way back to the symmetry preserving point h = 0 after
2 Vuv,

~

inflation. This happens if the universe reheats to high enough temperatures Ty
where thermal corrections to the Higgs potential can bring the Higgs vev from vy, back
to the origin. Reheating generates a thermal bath of SM particles which contribute to the
Higgs potential with a thermal mass [55-63]

1
Vi (h) ~ §KT2 h2e M CmT) e~ (.12, (2.8)

This contribution pushes the peak of the barrier in the Higgs potential to values equal
to roughly twice the temperature. With the addition of the thermal contribution to the
potential, the Higgs field rolls back and forth in the potential during the reheating phase
and decays into SM matter.

The requirement of the rescue of the Higgs field can be converted into a bound on
the maximum temperature reached during reheating. Assuming for simplicity instan-
taneous reheating, then all the inflaton energy density is completely converted at the
end of inflation into thermal radiation fluid at a reheating temperature Tyy given by



(72/30)g. T3, = 3H?>M3%, Mp being the reduced Planck mass and g, = 106.75 the number
of SM relativistic degrees of freedom at early times. From eq. (2.3) we get

Ay = Vuv < Trn
\/é)\ ~ \//\h uv
3/\h,uv ’

(6.5-1015GeV)< H )1/2

N 61013 GeV

This is the condition that ensures that the Higgs is rescued by thermal corrections during

(Higgs thermally rescued) (2.9)

reheating. By plugging Aoy ~ 0.01, we get that at most Ay < 101 GeV. Given that
the reheating temperature Tyy can be larger than the typical scale Ay of higher dimen-
sional operators, this calculation is not technically under control. However, ultraviolet
completions of the theory might not change the results significantly.

As explained in more detail in appendix B, the magnitude of the oscillations of the
Higgs field decreases rapidly and the Higgs very quickly relaxes to the origin. Therefore
the Higgs field eventually lays at the origin, provided that the initial condition (2.9) is
satisfied. We postpone more detailed discussions to appendix B.2.

2.3 Summary of the viable parameter space

We show in figure 3 the constraints in the plane (vyy, H) arising from the following con-
siderations:

1. gray line: upper bound on H from the constraint on r, see eq. (2.1);

2. blue lines, dashed: no quantum fluctuations of the Higgs at vy, see eq. (2.4), plug-
ging the running of Aj, yy for the central measured SM values; solid: small quantum
fluctuations, as in eq. (2.5);

3. green lines: presence of the instability (i. e. A(vyy) < 0) within the SM, for the
central measured values in as; and mj; and Oo or +20 deviations in my (for the

reference values, see [53]);

4. red line: energy scale during inflation giving a high enough temperature to rescue
the Higgs after inflation, assuming instantaneous reheating (see eq. (2.9));

5. purple line: Higgs negative energy density never overcoming the inflaton energy den-
sity (see eq. (2.6)); this constraint is weaker than the previous one.

In order to highlight the most interesting regions for the signature we discuss, we show
with thin black lines where the Hubble rate equals the mass of a SM fermion. We also
show with a thin brown line where the inflaton energy scale A4 during inflation, defined as
3H?>M? = Aé, is equal to Ay = \/WUUV.

As we will see, our signal is generically amplified for larger values of H, so that the most
promising region is the one around H ~ 102 GeV and vyy ~ 10'*—10'% GeV (corresponding
to Ay ~ 10'5 — 1016 GeV), for which H is close to the masses of the b and 7 fermions.
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Figure 3. Viable parameter space in the plane (vyy, H). The shaded regions are excluded due
to following constraints, listed also in the text: H allowed by the bound on r (gray), negligible
quantum fluctuations at h = v,y (blue), Higgs quartic turning negative within the SM (green),
high enough Tyy to rescue the Higgs (red), Higgs energy density smaller than the inflaton one
(purple). The thin black lines show where m; = H for the SM fermions. The thin dotted brown
line corresponds to the case in which the energy scale A4 of the inflaton is equal to Ayy.

3 Cosmological collider signature

In this section, we present the calculation, together with a more physical interpretation, of
the non-Gaussianity coming from SM fermions coupled to the inflaton. We focus on the
main steps of the calculation and move most of the details to appendix A. In section 3.3,
we discuss the effect of some other operators coupling the inflaton to the SM. Readers who
are mainly interested in the implications of the effect can skip section 3.2.

3.1 How to estimate fnL

In this subsection, we briefly outline how one estimates non-Gaussianity in the context of
cosmological collider physics. As with many things, a good starting point is the definition.
Throughout this subsection, we introduce dimensionless quantities m = m/H, X\ = \/H.
In spatially flat gauge (R = (= —Hdp/ gi)), the two point function is

, 2 4
(co-m) = 5P =S5 (31)
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Figure 4. Feynman diagram for the contribution to the 3-point function of the inflaton from a
loop of SM fermions. Two SM fermions f are produced at an early time 73 through an interaction
with a soft inflaton fluctuation §¢, and annihilate at later times 77, 7o producing two hard inflaton
legs with ki1, ks > k3. The time propagation of the fermions f is at the origin of the non-analytic
term in the bispectrum of the inflaton.

where we denote by a dot the derivatives with respect to cosmic time. We also denote by 7
the conformal time defined as usual by d7 = dt/a. We adopt the primed notation, defined as

(56(kn) -~ 66(kn) ) = (2 35(Zk)<5¢ kr) - ¢(kn)>'. (3.2)

One of the dimensionless functions which characterizes non-Gaussianities is the dimension-
less shape S(k1, ko, k3),

;o ( >4PC
(C(k1)C(k2)C(R3))" = e S(k1, ke, k3). (3.3)

We will be interested in the non-analytic part of the squeezed limit (k1 ~ ko > k3)

S — S(kﬁl, k‘g, kg)non—analytic ) (34)
k3<ki~ks
We want to estimate the diagram shown in figure 4.
The first point to assess is what is the exponential suppression. Particle production
occurs when the adiabatic approximation fails. The exponential suppression associated

with adiabatic processes is

w? w?

™5 ~ e TdwaT (3.5)
The time scale 7 and the exponential suppression can be found by minimizing the ex-
ponential suppression. In our case, the leading terms in the dispersion relations for the
fermions are

= (ktH £ \)? +m? (3.6)

Taklng the large A limit and mlmmlzmg, we get that the exponential suppression is w? /& ~
m?/ X which occurs when k7 ~ X with a width of order . Our first goal is to consider the



large A limit and obtain the exponential suppression in this limit. This is clearly

2

m”

S~e X o (3.7)
12 A
The next limit we wish to consider is the small m limit. In this limit
n ~ K26k ~ m)\z‘ . (3.8)

m<1
The next thing to estimate is the momentum dependence of S. There is no quick trick we
know of to directly obtain the analytic pieces of the momentum dependence, so we focus on
the non-analytic contributions. The non-analytic piece comes from the propagators of the
fermions. Of the three propagators, one of them has a large momentum running through
it and thus is insensitive to the effects of Hubble and can be ignored. The two remaining
propagators each contain a factor of et ~ 7+ ~ E+« Thus we find that the scaling of

S ~ mA2 <k3>m (3.9)

the non-analytic piece is

k1
We are not aware of a simple way to estimate the non-imaginary part of the exponent of
k3/ky.

The last factors associated with the non-Gaussianities are the coupling constants.
There are three insertions of the inflaton so there is a factor of 1/ A‘;’c. Finally, by doing a
field redefinition, derivative interactions with the current can be shown to be proportional
to the mass. The hard propagator can be effectively integrated out giving only two mass
insertions. Thus there is an additional factor of m? in the small m limit. We arrive at our
final estimate of the non-Gaussianity

(3.10)

>1, m—0

The two estimates (3.7) and (3.10) of the non-Gaussianity, valid respectively in the limits
of large m?/ X and large )\ small m, have the scaling found in an explicit calculation.

3.2 Outline of the calculation of fnr

In this subsection, we present the main steps of the computation which leads to results
presented in figures 5, 6 and 7. The main Feynman diagram that contributes to the three
point correlation function is shown in figure 4 where the dashed lines represent the inflaton
perturbation d¢, the solid lines represent a SM fermion f and the vertex comes from the
interaction of eq. (1.2) (for detailed Feynman rules, see appendix A),
i fi

LD A

(3.11)

This coupling between the inflaton and the fermions leads not only to an interaction vertex
between d¢ and f but also to a correction to the dispersion relation of the SM fermions
when the inflaton slow-roll spontaneously breaks Lorentz symmetry:

= (k¥ \)? +m} (3.12)

~10 -



in flat space, where k = ||, \; = % and + marks states with different helicity. In the

following, unless stated explicitly, we consider a single fermion with cy, = 1, A = A; and
m = m;. The correction to the dispersion relation leads a modification of the fermion
mode functions us and vs. The solution reads (for a complete list of the mode functions,
see eq. (A.19))

TTL@WX/Z

vV =2kt

where & are again the helicity indices, W, ,(z) is the Whittaker function, and we remind

ug (k1) = Wi in(2ikT) (3.13)

the reader that dimensionless parameters with a tilde are defined as:

1 —~ ~ ~
g:_i_i)\, m=m/H, X=MH, [i=\/m2+A2 (3.14)

At late times (—k7 < 1), the mode function w4 has the following dependence on k7 (see
appendix A.3 for more details):

e™/2D (—2i0)

ug (kT :e_”/‘lﬁ%e’rxm =
+(k7) D(1+ i) — if)

(—=2k7)"* + (7 — ﬂ)] . (3.15)

This is to be compared with the late-time limit of a particle with an ordinary dispersion
relation where one gets the dependence of (—2k7)"™ in the large mass limit instead of
(—2k7)"™. This can be understood as a result of the abnormal “redshifting” of the fermions
during inflation in our case, where as the momentum of the fermion decreases, the frequency
quickly increases from O(m) to O(v'm? 4+ A?). This oscillation frequency turns into the
frequency of oscillation of k3/k; in the final result. Such a late time expansion is clearly
not valid around the dominant time of particle production when —k7 ~ x> 1, which
leads to a numerical difference between our result and that of [48] (see appendix A.5 for a
mathematical treatment of the discrepancy).

The physical process that happens during inflation is shown in figure 4. An inflaton
perturbation with a soft momentum k3 splits at some early time 73 into two fermions both
with momentum k ~ A and frequency w ~ m.? Then the fermions redshift and annihilate
back into inflaton perturbations at much later times 71, 2. The 3-point function of the
inflaton perturbation d¢ generated by this process is

(60(k1)00(F2)30(Fs) ) =
.\ 3 0 . . - 3
> abe <;\> ///_OO dﬁdedeFua(k‘bT1)Fub(k2772)ch(k3,T3)/(;17;]);52,/;?7

a,b,c==+1
(3.16)

3More precisely, the physical picture is that the fermions get produced at some time before 73 and shortly
after annihilate at 73, before their momentum gets significantly reshifted. For simplicity, we identify 75 with
the time of fermion creation.

- 11 -



where Fua(lgl, 71) (see eq. (A.9)) comes from the external leg of the inflaton perturbation
3¢(k1). The trace 4" originates from the fermion loop:

TP = —tr [U“aaDabaﬁ(plz,Tl,TQ) 'B”BDb 35(p23, T2, T3)0" WDcaya(p?ﬂ,T:s,Tl)}

—tr {U“ “Dacay(— p31,Tl,T3)UpWDb5( —P23, T3, T2)0 ﬁﬁDbaBa( P12772,T1)}
(3.17)

where D_, of (p, 71, T2) are the propagators of the fermions. The previous discussion moti-
vates us to split up the fermion propagators into the mode functions u and v, where u(k373)
and v(ksTs) can be expanded in the large A limit while the functions u(ks71) and v(ksTy)
can be expanded in the late time limit (—ks73 < 1). This allows us to turn the trace
in eq. (3.16) into functions over which we can perform the integral over the times 71, 7o
and 73 (see appendix A.5 for more details). These integrals are, as physically motivated,
dominated by regions where —k;7; ~ A. This suggests that our results are only valid for
momentum ratios

k ~
ks /ky = %2 <1/ (3.18)

This momentum ratio can be understood as the ratio of energies of a physical process where
the energy of the fermions is O(m) to start with (the momentum and energy of the inflaton
leg k3 is comparable to the energy of the intermediate fermions when they are produced
w(r3) ~ m), and O(V A2+ m?2) in the late time limit when the two fermions annihilate
(the momenta and energies of the inflaton legs k; ~ ko are comparable to the energy of
the intermediate fermions when they annihilate w(712) ~ VA2 +m?2).? This requirement
matches the expectation that the result we obtained in this calculation should not have an
enhancement of A? in the limit where the fermion exchange can be treated as a contact
operator. To conclude, the result of the full calculation at leading order in the squeezed
limit (accounting for two chiralities) is

i )‘fmk foa \ 2200
Sk ko k) TR 0N (,j) +oo (3.19)
up to a phase, with
sletoct)  Ne 12 <m>3X2 e™ I (—ift) 2T (2if0)3 (3:20)
Mo Ter S Ay T 20X+ @)POG(E - N) + 1)

for each SM fermion with color number N, (we recall that we have set cy, = 1, and it can
be restored by replacing every occurrence of 1/A¢ by ¢y, /Af). From now on we refer to

Jn1, as the amplitude of the clock signal fy; (clock) , defined in eq. (3.20) in agreement with

3
what done in [48]. In the limit where m — 0 and A — oo, the result scales as (A%) A2 at

4These discussion should provide an estimate of the leading dependence on X in the large X limit. As is
clear from the detailed calculation in appendix A, the m-dependence in the H < m < A case can be very
complicated as it can receive contributions from various sources.
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Figure 5. The signal strength due to a single Dirac fermion as a function of the fermion mass in
Hubble units. The solid, dashed and dotted blue lines show fyp, for different values of ¢/A?e <1

The signal strength increases as m? in the small mass limit and decreases exponentially when

(m/H)? becomes larger than A;iH

leading order, while in the limit where H < m?/\ < A, there is an exponential suppression

from the last factor in eq. (3.20)
2

™
- 3.21
exo |7 | (3:21)
both as expected from section 3.1. The result of the computation is summarized in figure 5.
We highlight the dependence of the signal strength on the fermion mass in Hubble units.
As expected, the signal strength is maximized when the exponent mm?/AH is O(1), and

the size of fxr, can be O(10) for perturbative coupling.

3.3 Other operators

Other operators coupling the inflaton to SM particles that can potentially lead to observable
effects during inflation are studied in [42]. Firstly, there can be operators that couple the
inflaton to spin-zero marginal operators of the SM in a shift-symmetric manner

£of ((aA‘i) 2) O& (322)
H

where f(x) is a polynomial function of x with order one coefficients. Similar couplings

between the Higgs and inflaton, in the absence of a large Higgs vev, lead to negligible
H4(Z.52
A%
Inflaton couplings to relevant operators in the SM can potentially lead to much stronger

contributions to fy,, smaller than O ( . These effects are unlikely to be observable.

effect. However, as we show in more detail with the following examples, the fermion

coupling we consider is the only coupling that can lead to large observable effects. This
can be ultimately seen as a consequence of the “hierarchy problem” of the Higgs boson.

~13 -



The case of HT#. An example of such interaction considered in [42] is the operator

_ 2(99)°

O
h2 A%{

HIN. (3.23)

This operator, similarly to the &, RH#H coupling, can be generated by integrating out SM
fermions, and leads to a contribution to the Higgs mass during inflation

,u2 C2§£2
h™ Tx2 ¢
AH

(3.24)
The operator Ops can lead to interesting changes to the Higgs potential during inflation
(see the companion paper [54] for more details) but is hard to observe: increasing the
coupling co simultaneously increases the strength of the signal, as well as the Higgs mass,
which suppresses exponentially the contribution of a Higgs boson loop to the bispectrum.
Therefore, in absence of Higgs mass tuning, the signal strength is likely quite small [42].
Such a conflict is a direct consequence of the hierarchy problem of the Higgs, which is why
it does not affect the signal of the fermions.

The case of HIDH. A special case of derivative coupling is the operator

0
O = U9 gt pugy (3.25)
Ay
which couples the inflaton to the Higgs current. Such an operator introduces a mixing

between the Higgs and the time component Z° of the Z boson in the form of

Im(c1)dgavuy /2

0
v hZz", (3.26)

where the explicit dependence on Z° is a sign of broken Lorentz symmetry. A large c;
coupling will also lead to significant changes to the UV potential of the Higgs. During
inflation, the Z° field will acquire a vacuum expectation value of order (61% 1/2, which
in turn leads to a mass and vev of the Higgs of the same order. As a result, also the
operator Op; is not likely to be observed, because the increase in the signal due to a larger
c1 is vastly overcome by a severe exponential suppression due to a larger Z mass.

The case of GG. The CP violating coupling between the inflaton and the gauge bosons

cGiGé, (3.27)
Ag

where G stands for a gauge boson of the SM gauge group SU(3)c x SU(2)r x U(1)y,
is secretly a derivative coupling, and can be generated if there is a gauge anomaly (see
appendix C). Particle production as a result of this coupling has been studied in depth
in the literature [47, 64, 65]. A large inflaton-gauge boson coupling leads to exponentially
growing production of the gauge boson and can strongly affect the inflaton dynamics. In
our case, if the fermion current the inflaton couples to is anomalous, an inflaton-gauge

— 14 —



a1,2,3 ¢ <
47 AfH ~ L.

This means that, in absence of some inherited anomaly, the couplings we write down is

boson coupling can arise at loop level, with a coupling strength AzH ~

unlikely to lead to significant production of the gauge bosons, especially the massless gluons
and photons.®

4 Result and implications

In section 3, we discussed the non-Gaussian signature that can arise from a single SM
particle with shift-symmetric couplings with the inflaton. As discussed in section 2.1,
the SM fermions provide a natural comb to scan the Hubble scale during inflation. In
figure 6, we show the particles (b, 7, ¢, p, s, d, u, e) that can contribute significantly to a
non-Gaussian bispectrum of the inflationary perturbations.

If the Hubble scale during inflation lies in the range (101 GeV ~ vy—g < H < vyy <
10%6 GeV), independently from the exact value of H, there is at least one SM particle which
can induce an fyi, 2 10. For much smaller Hubble scales (H < va—g), the first generation
of SM fermions (d, u, €) can also contribute to an observable signal. In this case, the
existence of the UV minimum wyy is not enough: if the Higgs field starts near the origin,
then it cannot go beyond the barrier during the observable O(60) e-folds of inflation. If
instead the Higgs field lies in the UV minimum vy, at the beginning of the last 60 e-folds
of inflation, we still get an observable effect.® In a wide range of the parameter space, as
a result of the close proximity of the Yukawa couplings of the SM fermions (see figure 2),
one can potentially see the effect of more than one fermion. In particular, as a result of the
infamous b — 7 unification” in the SM, both fermions can contribute with an fyr, = 100 in
some range of the parameter space.

The possibility of observing multiple fermions is very important for distinguishing our
signal from that of a generic fermion that couples with the inflaton in the same way. From
the observation of the amplitude and the frequency of the oscillatory signal, it is possible
to extract two independent quantities: the mass of the fermion in Hubble units m and the
strength of coupling in Hubble units X. If the fermions were to come from the SM, the
ratio of the measured m should be equal to the ratio of the Yukawa couplings of the two
fermions, as both the Hubble scale and the Higgs vev vyy cancel out:

=y ,
%, (4.1)
mj Yj

Besides a simultaneous measurement of two fermions, one has the chance to observe
fermions in combination with a non-zero scalar-to-tensor ratio r in the case of high scale
inflation. Future measurement of r can potentially extend the sensitivity to the Hubble

scale to as low as 8 x 10'2 GeV (assuming a sensitivity of o(r) ~ 10~3 with CMB-S4 [31]).

®Such an exponentially growing production is also cut off by the scattering or annihilations of gauge
bosons in the SM.

In the case where H < vx—o and the electroweak symmetry is unbroken at the start of the observable
O(60) e-folds of inflation, surprisingly, a unique signature can also arise. We study this case in a companion
paper [54].

"We thank Prateek for very emotional discussions.
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Figure 6. The size of fyr, that can generated by the production of SM fermions (f € {b,7, ¢, pu,
s,d,u,e} from bottom to top) during inflation as a function of the Higgs vev v,y in Hubble units
and the strength of coupling \ = ¢ /At H between the inflation and the SM fermions (we recall that
we are setting ¢y, = 1). In the range of the parameter space where H < |)\h7UV|1/ 2 vy = 0.1vyy the
fluctuations of the Higgs field around vy, are negligible, and a large fni, < 100 can be generated by
SM fermions when my/H is O(1). In the region above the dashed gray line, the observable signature
requires the Higgs field to be in the UV minimum vy at the beginning of the observable O(60) last
e-folds of inflation. In large portions of the parameter space, there is the possibility of observing
more than one fermion contributing with fnr, 2 10. We entertain the possibility of fnxr, =~ 100 to
account for the potential suppression coming from the different shape of non-Gaussianity compared
to commonly studied templates. In particular, as a result of the infamous b — 7 unification in the
SM, there is the possibility of observing both with strength fxr = 100. The couplings between the
SM fermions and the inflaton ¢; are chosen to be the same for all SM species (see appendix C for a
detailed discussion). The Yukawa couplings of the fermions are evaluated at a scale of 102 GeV.
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The fermions that can possibly be simultaneously measured through their non-analytical
contribution to the bispectrum in case of an observable scalar-to-tensor ratio can only be

8 As a result of a good measurement

the bottom quark and the 7-lepton (see figure 3).
of their mass ratio, we could know quite precisely the value of the scale vyy, due to the
close numerical vicinity of vy, and y, at high energies. This exciting possibility would have
extremely interesting implications for Grand Unification Theories [32-35], String Theory
and other UV dynamics.

A special case is the signature from the top quark. As summarized in appendix B.1
and thoroughly discussed in [54], if the coupling of the top quark to the inflaton field is
large enough, the Higgs potential receives corrections by integrating out SM particles at
one loop, and from the interaction of the Higgs boson with the top quark density during
inflation. If these contributions are relevant for the Higgs potential, then its vev depends
not on the detail of the UV contributions but is fixed by the coupling between the top quark
and the inflaton, and the observable signature is described in [54]. If instead the Higgs
mass at vyy is not affected by these contributions, then the top quark can generate the
strongest signal when vyy/H < 100 (see figure 7). However, as it is apparent from figure 3,
most of the signal from the top quark (when m;/H = 1) lies in the range where the Higgs
field can quantum fluctuate or slow roll during inflation. The region where this fluctuation
can be important depends very strongly on the value of the Higgs mass and, as a result,
iﬁv”UV /H 2 1, the signal of the top quark is
the same as the other SM fermions. On the other hand, when )\i/ SVUUV /H <1, the Higgs
field value and, consequently, the SM fermion masses, could havé significant fluctuations

the quartic coupling of the Higgs. When A

during inflation. Therefore, different patches of the universe can potentially have signals
with different amplitude. We leave a study of how to compute and extract this signal from
data to future work.

The signature that we studied in this paper has the rare features that the signal
strength is largest when ks ~ ky/ 5\, deep in the squeezed limit, and the oscillatory part
of the signal has a frequency that is much larger than the mass of the populated par-
ticle in Hubble units. Both properties emerge as a result of the very uncommon “red-
shifting” of the fermions during inflation in presence of the modified dispersion relation
of eq. (3.6), while when k3 ~ kj, such enhancement disappears and the signal strength

is fnp, ~ A%A% /(2m)* < 1 from the UV contribution of the loop diagram in figure 8 [48].

These features imply that the search for these signatures will greatly benefit from measure-
ments of the large scale structure of the Universe [68-70], and in particular, the upcoming
program of 21cm cosmology [41]. This will provide us with potentially more modes than the
CMB, as well as a 3D map of the density perturbations in the Universe, which will be impor-
tant to uncover small signals, and to precisely measure the oscillation frequency. We post-
pone a more detailed study of the observability of our proposed signature to future work.

We would like to close with a final question for the reader. Would we take a different
view about the electroweak hierarchy problem if we were to find a new minimum in the
Higgs potential? What if we found a wealth of them?

8Simultaneously measuring bottom, 7 and charm would be more interesting as it can provide insight on
some of the harder to probe scenarios [66, 67].
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Figure 7. The same plot as figure 6, specialized to the top quark, assuming that the Higgs potential
is not significantly altered by the coupling of SM particles to the inflaton. Above the dotted, dashed
and solid gray lines, the Higgs fluctuations are exponentially suppressed for Higgs quartics Ap v
larger than the indicated value. The inset shows the running of the Higgs quartic Aj, yv as a function
of the RG energy scale, and its dependence on the uncertainty of the measurement of the top quark
mass at the LHC (see [53] for the reference values for m;).). The green solid line corresponds the
central value while the blue dashed and the red dotted lines show the +20 contours.

Acknowledgments

We thank Soubhik Kumar and Zhong-Zhi Xianyu for very helpful and instructive discus-
sions. We also thank Prateek Agrawal, Asimina Arvanitaki, Masha Baryakhtar, Arushi
Bodas, Xingang Chen, Neal Dalal, Savas Dimopoulos, Victor Gorbenko, Matthew John-
son, Gustavo Marques-Tavares, Mehrdad Mirbabayi, Moritz Miinchmeyer, Lisa Randall,
Antonio Riotto, Leonardo Senatore, Raman Sundrum, Zigi Yan for many useful discus-
sions. JH and DR thank the Stanford Institute for Theoretical Physics, and AH and JH
thank MIAPP and KITP Santa Barbara, for generous hospitality during the completion
of this work. This research was supported in part by Perimeter Institute for Theoretical
Physics. Research at Perimeter Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and Economic Development Canada and
by the Province of Ontario through the Ministry of Economic Development, Job Creation
and Trade. AH is supported in part by the NSF under Grant No. PHY-1620074 and by
the Maryland Center for Fundamental Physics (MCFP). This research was supported in
part by the National Science Foundation under Grant No. NSF PHY-1748958.

~ 18 —



A Calculation of the squeezed non-Gaussianity

In this appendix we show in some detail our estimate of the non-Gaussianity in the squeezed
limit. The outline of the calculation and the notation closely follow ref. [48], with some
differences in the late time expansion of the fermion wavefunctions and in the final result

for fNL-

A.1 In-in formalism

The calculation of correlation functions in cosmology requires a different treatment with
respect to the familiar one of quantum field theory. The key differences are that we usu-
ally want to compute correlation functions of fields evaluated at a fixed time, and not at
asymptotically large times. Also the Hamiltonian describing the field fluctuations depends
on time, because of the time dependence of the background fields. Finally, the condition
on the fields are imposed at very early times when (in the inflationary context) the rel-
evant modes are well within the Hubble radius and we recover the standard solutions in
Minkowski space.

We refer to [71-73] for a detailed treatment of the in-in formalism and references to
the original literature. We collect here just some relevant formula to set the stage for the
remainder of the calculation.

The expectation value for an operator Q(7) built out of the fields of the model evaluated
at a time 7 can be computed as [71, 72]

@) = (9] [Texp <z / HI(T')dT'ﬂ Q' () [Texp <_i / HI(T")dT"ﬂ ) (A1)

where Q! and Hy are the operator Q and the Hamiltonian in the interaction picture, |©)
is the vacuum state at an early time 7y, and 7', T denote the time- and anti-time-ordering
operators.

The expectation value can be equivalently formulated in terms of a path integral. If we
denote the fields ¢ of the Lagrangian . with a subscript & and & (standing respectively
for +1 and —1, and also denoted generically by a so called in-in index a;) depending on
whether the fields should be time- or anti-time-ordered (that is, depending on which of
the two time evolution operators in eq. (A.1) the fields come from), one can rewrite the
expectation value through functional derivatives of a generating functional [73]:

Tf
ZJg, Jo] = /990@@#?@ exp [Z/ dr' Pz (Llpa] — Llpa]) + Jave — Je@e] (A.2)
T0
1) 1)

a 7_) ot Pa 7_)n =~ i 5 ZJ,J
(Por (1, 71) 0, () = oo o S e 2L |

) A3
Jo=Jo=0 (A:3)

Within the usual perturbative treatment, we expand the exponential of the action and we
keep the leading order terms. Each occurrence of the action leads to a vertex carrying a time
integral, which will have to be eventually performed in the calculation of the expectation
value. Any vertex is characterized by a given in-in index a, and the final answer requires us
to sum over a = +1, —1. We refer the reader to [73] for a more comprehensive exposition
of Schwinger-Keldish diagrammatic calculations.
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Figure 8. Feynman diagrams showing the main contributions to the 3-point function for the
inflaton. The inflaton and fermion lines highlighted in red (blue) highlight the hard (resp. soft)
momenta in the squeezed limit.

A.2 Fermion loop amplitude

The main contribution to 3-point function of the inflaton comes from loop diagrams with
the exchange of a SM fermion. The two contributing diagrams are shown in figure 8.

We denote with a white square the inflaton field evaluate at late times (on the 7 =0
hypersurface in figure 4), and with a hatched circle the vertices, to understand the sum
the two contributions for each value of the in-in index associated to the vertex. We denote
in-in indices by a,b = +1 and @, S, in order to distinguish them from the fermion helicity
indices a,b = +1.

Vertices. The relevant terms involving the fermions fields in the Lagrangian density are
(in four-component notation)

zewﬁgﬁmﬁ—mﬁﬁ—xﬁmw%ﬁ, (A.4)

where ) = §,ehv* (we understand the gauge covariant derivative) and el is the vierbein
connection. Specialising to de Sitter metric (which corresponds to the background metric
during inflation up to corrections suppressed by the slow-roll parameters), we have \/—¢g =
at, P = a=19,65~*. After performing the redefinition f; = a’/ 2ﬁ- to factor out the dilution
of the fermion wavefunction due to the spacetime expansion, we get

zzﬁwam—wmﬂﬁ—2@¢mwm. (A.5)

The interaction term, when evaluated on the inflaton background, gives A—lfam = Aif87¢ 00

= a\ 0 where A = ¢/A;.
The interaction vertex appearing in the two diagrams in figure 8 is

C . —
Afz Oud fi° fi (A.6)
f

in four-component spinor notation, or c¢, /At 0,0 (f}: iE“fL,i—kf;r% ;0" [Rr,i) in two-component
fr,i
T

) . In the remainder of this appendix we work in the two-
R,i

spinor notation where f; = (

component notation.

—90 —



For the calculation of these Feynman diagrams we incorporate the derivative into the
inflation field. Each vertex carries then a factor

0
(ai) / de\f;U”da (A7)

where a = +1 is the in-in index related to the whether the vertex comes from the time
or anti-time ordered product. From now on, we set cy, = 1; it can be easily restored by
replacing each occurrence of 1/A¢ by ¢y, /Ay.

External inflaton lines. The correlator of the inflaton field 0,,¢ from each vertex with
the same field evaluated at late times 7 = 0 is computed by taking the derivative of the so
called boundary-to-bulk correlator G,(k,7) = (¢*)(r, k)$(0, k)), where the in-in index a
(with the evaluation of ¢ for a = +1 and ¢* for a = —1) distinguishes whether the vertex
comes from the time or anti-time ordered product:

2

Ga(k (1 — iakr)e™* (A.8)

T
where a = +1. Then for each external leg with Lorentz index p and in-in index a we get
the following function:

= aTGa H2 kQT iak
Fafr) =772 =2 | . iakr A9
palk, ) (ikGa> 243 (ik(l —iakr) ) € (8.9

Fermion loop. Let us fix the notation for the fermion wavefunction, postponing a more
detailed discussion about the solution to section A.3. We switch to the two-component
notation, denoting both fr; and fr; by v, and we expand 1 into eigenfunctions of the
3-momentum,
N N\ (D) ik N\t (D) p—ik
valrd) = | a2 [osr asBT e xes(r Bal(Re ] (A10)

s=+1

where « is a spinor index and s the helicity index, as and al are the annihilation and
creation operators satisfying [as(k), ai,(l;:")} = (21)36, 5 63 (k—K'). We denote the positive
and negative frequency components of the fermion ¥ by £ and y, with respective mode
functions u, and vs (we define v through x' so that both u and v have positive energy)
and helicity eigenstate spinors hq s:

€a,s(T, E) = Z us(kT) ha,S(E) )

L . (A.11)
X4 (k) = us(kr) h4(R).
s==1
The normalisation condition for the helicity eigenfunctions are
G- khs(k) = skhg(k), hi(k)hg(k) =0ss, > ho(k)hi(k) =1, (A.12)

s==1
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and are satisfied by the following expressions for hS(E) where k = k(sin @ cos ¢, sin 0 sin ¢,

(%) o~ qin @
- COS2 e e SlIl2
he () = (ei%mg) . ho(R) = ( cos? ) . (A.13)

We postpone to section A.3 a derivation of the fermion mode functions u+, v+ and dis-

cosf):

persion relations. The propagators appearing in the amplitude associated to the diagrams
in figure 8 are of the type (fa(Tl,E)fTB(Tg,E». We denote them by Dabaﬁ(E, T1,72) and
take the following form depending on the in-in indices a, b associated to the two fermion
functions. If the two fields come both from the time or anti-time ordered product, then an
Heaviside function enforces the ordering.

D@@O/B(E, 71,72) = Ea(T1, K)EP (72, K)O(T1 — 72) — X2 (72, ) X (71, B)O(r2 — 71)

D@eaé(];a T, T2) = _XTB(TQ, E)Xa(T1, k) (414
Dowd” (B 71, 72) = Ea(r, B)EP (72, F)

Dooa’ (B, m1,m) = —x (72, F)xa (71, R)O(r1 — 72) + Ea(r1, D)EP (72, )O(r2 — 71)

The two diagrams shown in figure 8 give the two following fermion traces (we include here
the Pauli matrices coming from each vertex in eq. (A.7))

TP = —tr [E“daDabaB(ﬁu, 7-17TQ)EV'B’BDch’y(ﬁQ&7-277-3>Ep;WDca'yd(ﬁ3lv7—377-1)}

—tr [E”MDacafy(*ﬁ:sl,Tl, Ts)Ewacbvg(*ﬁQ:a, 73,7’2)5yﬁﬁDbaﬁa(*ﬁlz,7’2,7'1)}
(A.15)

Final amplitude. We can finally write down the full expression for the fermion loop
contribution to the three-point function:

<5¢(E1)5¢(E2)5¢(/;’3)> _ "
.\ 3 0 . ) ) d3 V
aﬂb;il b <‘/§> ///oo dridradrsFua(ky, 71) Fub(k2, 72) Fpe (K3, 73) / (27r()13 Tioe »

where the external lines F),, and the fermion trace 7..” are defined in eq. (A.9) and (A.15),
and ¢ = pio.

A full analytical solution to the time and momentum integrals in eq. (A.16) is not
possible, due to complicated form of the fermion wavefunctions. In the next sections we
discuss the relevant approximations that allow us to obtain an estimate of this contribution
in the squeezed limit ki, ks > ks and A > m.

A.3 Fermion mode functions and dispersion relations

We derive now the equations of motion and their solution for the fermions. Starting from
the Lagrangian density in eq. (A.5) evaluated on the inflaton background,” and defining the

9For this section, and in particular for the derivation of the fermion mode functions, we write the
inflaton coupling to the fermions as a¢/Ay = aX to highlight the time dependence, whereas for the rest of
the computation we write it in terms of the conformal time 0, ¢ to directly compute the external inflaton
lines F,.
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mode functions as in egs. (A.10) and (A.11), we obtain the following equations of motion
for ugs and vg:

.

s + (£k — al)ut = amog

o ( ) (A.17)

wy — (£k — a)vy = amug
These equations can be rewritten into two separate second order differential equations for
uw and v:

up —aHuy + [(kFaX)? + a®m® L iaHk|uy =0,

A.18
vl — aHV! + [(k:Fa)\)2+a2m2$iaHk] vy =0, ( )

where / denotes derivatives with respect to conformal time 7, and H = a’ = a/a where °
denotes a derivative with respect to cosmic time ¢. These equations of motion show explic-
itly the dispersion relation introduced and discussed in eq. (3.6) in section 3.2 (obtained in
the approximation \,m > H). Their solutions are given by the Whittaker functions W:

m 671')\/2 i 671')\/2
us (k1) = \/%W_,_M W(szr) vy (k1) = — W+7_M m(2z/~c7‘) )
ie 77r/\/2 mefﬂX/Q '
u_(kt) = _(2ikT), v_(kT) = ——=W . —(2ikT)

1/_2]{;7- + iR /—okt —7—&-1)\ e

we remind the reader that dimensionless parameters with a tilde are defined as:

m=m/H, X=MAH, Jj=\m?+\ (A.20)

We collect here some useful formule to treat the late time expansion of the Whittaker
functions (see e. g. [74]). There is a connection formula between the Whittaker functions
W and M,

L'(2p)
L(3+p—k)
A useful formula to expand the Whittaker functions M around z = 0 for —2u ¢ N (which
is always the case for us) is

Wien(z) = My, —p(2) + (1 <> —p) - (A.21)

z,5+H S _ o= 3%, 50 2 k
M,W(z)—e2z2 Z 1+2H ® 25 = e72%22 <1—|— g z—i—...), (A.22)
where (a)s = I'(a+s)/T'(a) is the Pochhammer symbol. We have written the first subleading
term in the expansion around z = 0 because we want to check the goodness of the late
time expansion up to —k7 < g, which is the relevant range for one of the time integrals in
our calculation. Some properties of the Gamma functions will be useful:

1
I'(1+ia) =ial(ia),  |T(ip)| "= ﬁe*”“"/? : (A.23)

I
From these equations, we can derive the late time expansion of the fermion mode functions,
in the limit of small k7. We keep the first subleading term in the expansion, and we
underline the terms for which the leading term is not a good approximation for —k7 < p in
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the limit A > m, but just until —k7 < 1. We also highlight the terms that are exponentially
suppressed in the limit A > m which is relevant for us.

e~ /2T (2i7) ol 1=i(=N) . S
m(—?lm’) # <1+1_2Z,ﬁ2zk7'> +(u<—>—,u)]

e~"R/2T (26 (A L

W_(X)’;)(—zm)w <1+1(_*§ﬁ)2¢k7> Ee —M)]
szefgﬂ;p

e~ TR/2D(2i]1)
L(i(fi+)))

us (kr) = e kT em N 2= T

u_(kt)= e g2 T

. Y [ s~ —i(n 3\/ ~ —~
1)+(]€7‘) — otk mA/2, T [ (—2]{7‘)_“” (1—}—171(_'[12—’;,11)21']?7') —i—(M > —u)]

3

v_(kT)= e~V 26— F

e~ TR/ (2i1)
P(1+i(fi— X))

1—i(i+\)

(—2k7) " <1+ T 2i/€7’) + (4> —ﬁ)]

AT _3nX /2
(A.24)
We’ll comment about the underlined terms in section A.5, when discussing how in our limit
A > m the time integral over 73 selects only terms for which the early time expansion is

valid up to —k7 < fi.

A.4 Approximation for the momentum loop

A full solution to the momentum and time integrals in the amplitude of eq. (A.16) is very
hard. We now motivate an approximation for the loop momentum integrals that allow us
to perform the time integrals in the next section.

Looking at figures 4 and 8, we can see that the vertex at the early time 73 involves a soft
inflaton leg with momentum k3, and two fermions which give the largest contribution to the
signal when they have a momentum pa373 ~ p3173 ~ A yielding a soft frequency of order m.
The integration over 73 is dominated by k373 ~ by (as we will see in next section), so that the
larger contribution to the 3-point function comes from configurations where po3 ~ p3; ~ k3.
We draw them accordingly with the same blue color in the Feynman diagrams.

The two produced fermions are then redshifted, and due to the dispersion relation (3.6)
they quickly increase their energy to w ~ p. Thus the vertices at late times involve a
hard momentum exchange (the inflaton legs have a standard dispersion relation), and the
momentum flowing along the third fermion line is of order pjs ~ ki ~ ko (shown in red
in the Feynman diagrams). We approximate therefore the corresponding propagator with
the one in flat space.

We can finally write down an explicit parametrization for the internal momenta. We
choose the following orientation for the momenta l;/:z (the orientation of Eg is not important
for the result):

—

k1 =(0,0,k), kg ~ —k1 = (0,0, —ky), ks = (0,0, ks) . (A.25)

— 24 —



The internal momenta satisfy the conditions ¢ = pis = Ky + Pog and P31 — Pag = Eg, and the
most relevant regime for the fermion production is |pag| ~ [ps1]| ~ |ks|, so that the three
vectors P31, pas, k3 approximately form an equilateral triangle and pio ~ kq:

_ _ V3 V3 1 . V3 V3.1
P12 = (an’kl)a p23 = k3 <COS¢, 7SID¢,—§ y P31= k3 7COS¢, 7SID¢),§

2
(A.26)
This configuration is roughly obtained when p3; spans an annulus of radius and height of
order k3, so that we approximate the momentum integral to

d3 k3 27
/ (2;)13 =5 73)3 /0 de. (A.27)

A.5 Time integrals

We have now all the ingredients to perform the calculation of the amplitude (A.16). The
first step is computing the trace and the integral over ¢, leaving us with the time integrals
over 73, T2, T1 (where 73 < T2, 7’1).

The integrals are dominated by times of order —k;7; ~ f, and this can be shown as
follows. Let us denote z; = k;7; for i = 1,2,3. Each time integral includes an exponential
e from the external lines in eq. (A.9), together with a possible factor of x;. At early
times, the Whittaker functions in the fermion mode functions go to zero and the integral
does not receive a sizable contribution. We can then perform a late time expansion as in
eq. (A.24), and we get a term (—z;)*# (and an exponential =% that we leave aside for a
moment, since it does not affect this argument). The oscillating integral

0
/ eiw"(—xi)iiﬁdxi (A.28)
—0o0

can be related to I'-functions by a contour integral. When the two signs are opposite, the
integral is exponentially suppressed by e~ compared to when the signs are the same. We
can also see from here how the oscillating feature (k3/k;)*2%# emerges from the calculation.
The fermion propagators for the soft lines involve fermion mode functions like w4 (k371 2)
which in the late time limit contain factors (k37'172)i“7. When writing the integral in
dimensionless variables x; = k;7;, a term (ks3/ kl)iiﬁ is left. We obtain one such factor for
both the integrals over 7 and 7. The physical interpretation of this factor as related to
the propagation of the two fermions was illustrated in section 3.1.

Returning back to the exponential e~*7 in the fermion functions (A.24), this is
negligible for the mode functions involving late times, w4 (k37 2), v+ (ks7i2), because
kst = %(lﬁ’i’l) ~ Z—fﬁ < . It plays a role though in the integral over 73 for the mode
functions uy (k373), v4(ks7s), in order to have an expansion reliable up to —ksms < [
This aspect was not considered in [48], and constitutes the difference between our results
(whereas we have closely followed their procedure in the rest of the calculation). When

considering the integral over 73, the largest contributions come from the pieces containing
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either'® e=™*s™sq (kyr3)vy (kss) or eT*s™y% (ksrs)v (k3s). In both cases, the dominant
terms in the expansion (A.24) are the ones containing (—ks73) %, where the sign in the
exponent agrees with the sign in the exponential e=3%#37, The mode functions u_ (k373),
v_(ksm3) do not contribute, because their prefactor of (—ks73)~*# is exponentially sup-
pressed for large A > . In conclusion, we need to perform the two following integrals
over x3 = k373 (together with their conjugates):

0
/_ daz us (z3)vy (23)e™™ = c3, (A.29)
0
| stz e = im) = - 51 - 2, (A.30)
mew(X—ﬁ)lﬁ(Qiﬁ) g in £€ﬂ_~ s
T+ i+ A+ N)) <4> 3¢z (A.31)

We notice that the factor in squared brackets in c3 tends to exp (—27r(ﬁ—X)) ~exp (—771%2 / X)

in the limit m?2 /X — 00. This leads to the final exponential factor in fyr, in the afore-
mentioned limit, which was to be expected from the arguments exposed in section 3.1. We
also observe that the integral in eq. (A.30) has an enhancement of ;z with respect to the
integral in (A.29), and gives the leading contribution.

The remaining integrals in 77, 79 involve similar integrals as the ones collected in
eq. (A.29) and (A.30):

/ day (—2a1) et = 27 e A/2D(1 — ifi) (A.32)

0
/ day (—2w1) " Fe ™ (izy) = 27 Hie™ /2T (1 —ifi) - (1 — ifi) . (A.33)
—0o0

We have now all the ingredients to perform the calculation of the amplitude. In the final
expression, the dominant term in the limit X — 0o turns out to scale as XQWL?’, in agreement
with the expectations of section 3.1, and contains an oscillating phase (k3/k;) 2.

We can finally convert the 3-point function of the inflaton fluctuations d¢ into the
observable shape S(ki, ko, k3)

(¢RI RS)) = (2mP6® (Fu+ Fa+ Fs ) (CROCFRIC(RS)) (A.34)
(¢RI Rs)) = e S 1 ko) (A.35)
kik3ks T '

of the 3-point function of the curvature perturbation ¢, which in the flat gauge can be
written as ( = —Héqﬁ/d.).

The final result that we obtain for the contribution to the squeezed shape from one
SM fermion (accounting for two chiralities, and the respective color factor N.) is, up to a

10The enhancement of a particular helicity (in this case s = +1) is related to the sign of the inflaton
coupling to fermions A = ¢/Ay, which acts as a chemical coupling favouring the production of a given
helicity mode.
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constant phase,

k42 - - k4k: H
S(ky, ko k3) = —13 —L3 (

iz (CECEE) = 5l (5
A>m

ha<hy b NCPC_1/2 <m>3:{2 ﬁe”AF(—iﬁ)QF(Qi/];)3 _ <k3>22w (A.36)
67 Ay 27D (i (u—i—)\)) I'(1+i(a—X)) \Fk1

>3<5¢</¥1>5¢<122>5¢<E3>>'=

The second to last term in eq. (A.36) tends to exp (—27r(ﬁ - X)) ~ exp (—777712/}:> in the

limit A — oo, m2/A — .

B Higgs potential in the early universe

In the early universe, the Higgs potential changes in several ways. The main effect is that
the Higgs mass can be changed drastically, an effect not un-related to the Electroweak Hier-
archy problem. During inflation, higher dimensional operators, particle production, and a
non-minimal coupling to gravity can all change the Higgs mass in an inflating background.
During reheating, thermal corrections are crucial in bringing the Higgs field back to the
electroweak minimum. In this appendix, we discuss in more detail some of these effects.

B.1 Higgs potential during inflation

£RHMTH coupling. The Higgs Lagrangian in eq. (2.2) should include a non minimal
coupling of the Higgs to the Ricci scalar ERHIH. The order of magnitude of &, due to
its RG flow, cannot be smaller than 1072, We choose a sign convention such that during
inflation the contribution to the Higgs potential is V}, D —6£ H2h?. By adding this term to
the Lagrangian (2.2), the vev of the Higgs field h during inflation is

1/2
1 36£H? 4 9¢H? &gt
:,/ MovA 1 =/ = Apoviy | 1+ ——5+0 .
Vyv h,uv ’H(z 2 +)\%LUVA2 ) 3 h,uv 'H( +2)\%UVA%+ Aé_[
(

B.1)

The impact of the non minimal coupling is small as long as

Ap vy ea (29) A\ H -
< < T10% (oY : B.2
¢ H? ( 0.01 6- 1013 GeV (B:2)
LA A L . . .
If &€ < — 36 = the positive mass removes the UV minimum; using eq. (2.9), this can
be rephrased as saying that the UV minimum is removed if £ < —3 (m)il (%)

Another effect of a large positive mass is that if £ < —3/16 then the positive mass term is
large enough to damp the quantum fluctuations and the Higgs field would not move from
the origin during inflation.

If [€| Z O(10), then the {R term during preheating (when the inflaton rolls around the
minimum) switches from positive to negative values at each oscillation, and can source a
tachyonic instability for the Higgs [75]. Due to the assumption of instantaneous reheating,
as well as the large initial field value vyy, this issue is not important in our situation.
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In summary, we can identify the following regimes of interest for &:

1. £ < —3/16: the Higgs is stabilized at the origin, making it more likely that the Higgs
is sitting at the origin instead of the UV minimum during inflation.

2. =3/16 < ¢ < 102 (6_101[;(;(3\,)71 <%’fé"1‘">: the effect of the non minimal coupling is

small.

3. € > 102 ( 6_101@[ GeV)_l ()E)hdi‘) vyy is brought to larger values, roughly at UL(JEV) ~
2¢1/4\/HAy,. Given the milder dependence on Ay than eq. (2.3), in this case the
condition for the Higgs to be rescued by thermal effects becomes Ay < £71/2.2.

1017 GeV.

For definiteness, we assume that we are dealing with the second case, in which £ is irrelevant.
The third scenario of very large and positive £ can be more naturally described as a direct
coupling between the Higgs and the inflaton.

Higgs inflaton coupling and particle production. The observability of the direct
couplings Op; and Ops between the Higgs and the inflaton is studied in subsection 3.3.
Here, we mainly discuss the effect of these operators on the Higgs potential.

Such direct couplings between the inflaton and the Higgs can be generated by inte-
grating out fermions who couple directly to the inflaton:

L (0)*HIH. (B.3)

During inflation, this coupling would generate a correction to the Higgs potential propor-
tional to A2 ~ 102H? > H? for the parameter space of interest to us. If the ¢; couplings are
of comparable size, the top quark dominates and the correction to the Higgs mass would
be u% - (@)2

Another important effect comes from particle production during inflation. The observ-
able effects will be discussed in more detail in a companion paper [54]. The main effect
on the Higgs potential comes from the same fermion condensate discussed in section 3.1.
Unlike thermally produced particles, which generically lead to symmetry restoration, the
fermions produced through the inflaton coupling will generate a negative squared mass

term for the Higgs in the form of!!

2\2 2
2 Y; A7 Neyi m(yih)

%

Such a mass term, in the limit where A > H, will induce a Higgs vev during inflation that
is of order VAH > H?, which is one of the many reasons why we study predominantly
the case where vyy > H. This contribution is not important when we can see the signal
from the SM fermions lighter than the top quark. The case in which this term in the Higgs
potential is important is the subject of [54].

11YWe did not manage to compute the full integral in de Sitter space to reproduce the coefficient in front
of (yih)2 /AiH in the exponent, but since this exponential factor arises from the same particle production
suppression as in the case of the 3-point function of the inflaton, we expect the final result to be similar.
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B.2 Higgs dynamics during reheating

In this subsection, we discuss the Higgs dynamics after the universe reaches the maximal
temperature Ty.x. In absence of a concrete model for inflation, we stay agnostic about
the mechanism that produces an instantaneous reheating, though it can easily be arranged
by a waterfall field that couples strongly to the SM sector in hybrid inflation models [76].
As explained in the main text, reheating generates a thermal bath of SM particles which
contribute to the Higgs potential with a thermal mass [55-63]

1
Vi (h) ~ ?QT? h2eh/2rT) | (B.5)

where Kk = 1%9% + 1—16 g+ %y? + %)\h is approximately 0.12. For Tiax 2 vuv, the exponential
factor is lifted and the UV minimum vy, of the Higgs potential disappears if

1/2

A
ROV gy (B.6)

Trnax Z ‘
K

For the small Ap, vy ~ O(1072) at the energy scales relevant in this paper, this is automat-
ically satisfied when Ty ax = vyy. This is the condition shown in figure 3 as a constraint on
the parameter space (infering the relation between H and Ti,.x by assuming instantaneous
reheating).

After the temperature of the SM bath has reached Tiyax, the Higgs field starts to
oscillate around h = 0 while the amplitude of the oscillations decreases due to the Hub-
ble friction and interactions with the SM thermal bath [55]. The Higgs field redshifts
like radiation both when the potential is dominated by the thermal correction, and when
the field value is small enough that the quartic coupling is positive and dominates the
Higgs potential. In both cases, the ratio between the amplitude of the Higgs oscillation
and the temperature of the thermal bath remains constant, which ensures that the Higgs
background finally lands in the electroweak minimum.

The Higgs oscillation amplitude also decreases as a result of its interaction with the SM
bath or simply the decay into lighter particles. This decay of the amplitude of the Higgs
field is dominated by its interaction with the electroweak gauge bosons in the thermal bath.
The rate I'y, can be found to be [55]

391"

I'y=——
256mTmy

~1073T (B.7)

where m?p = kT2 is the thermal mass of the Higgs. This rate becomes faster than the
Hubble rate soon after reheating, so that the amplitude of the oscillations of the Higgs
background decays very quickly and the Higgs sits at the electroweak minimum soon after

reheating.

C Inflaton couplings and two point function

In this appendix, we discuss the relation between the couplings ¢; of the inflaton to the SM
fermions from a UV perspective, assessing the implications for the 2-point function of the
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SU@B) SU@2) Uy U)p-r u()
e 1 1 1 1
Q= <d> 3 2 8 +3 g cost + g sind
u® 3 1 —% —% —%cos&—%sin@
de 3 1 % —% %COSQ—%SiH@
N 1 1 :
L= ( ) 1 2 —3 -1 —5cosf —sin@
e
ec 1 1 1 +1 cos@ +sinf

Table 1. Charges of the SM fermions content under U(1)’ = (cos@ U(1)y +sinfU(1)p_1) in two
component spinor notation.

inflaton. We also summarize some other consistency conditions that the parameters need
to satisfy.
In principle, the inflaton can couple to each individual SM fermion independently, in

the form of

CAI“; Flo"F,, (C.1)

LD OudTh = 0,6
F;

where F; = Q, u€, d°, L, e® are the SM fermions in two component notation with charges
under the SM gauge group collected in table 1. However, if the current J. g corresponds to
a U(1) symmetry that is anomalous, either the SM gauge group is broken, or the inflaton
¢ would receive a UV sensitive correction to its kinetic term from the 3-loop diagram

sz 92 2 A* 2
67 (16%) <1gfr2> (Af) (99)° (C.2)

where g; and g; are SM gauge couplings. This is analogous to the minimal mass gauge

bosons receive if the symmetry is anomalous [77]. Such a contribution can change the
dynamics of the inflaton if the ratio between the cutoff A, and the scale Ay is significant.'?
The absence of an anomaly also ensures that there is no significant production of gauge
bosons through the coupling %GG’

The only universal (i. e. flavour independent) anomaly-free U(1) extensions of the
Standard Model are U(1)y and U(1)p_r, and their linear combinations U(1)’. The charges
of the SM fermions under U(1)" are given in table 1, while the corresponding coefficients
of the vector and axial vector currents for the fermions are reported in table 2. The choice
we made in the main text of the paper where all ¢;’s are identical up to a sign for each
individual family, is, as a result, a point that is preferred by UV considerations.

In the end, let us comment on the effect of the fermion density on the motion of
the inflaton. The fermion density induces a correction to the equation of motion for the

12T reality, this might simply mean that there cannot be too much axion monodromy [78] or clock-
working [79], which is not necessarily a requirement.
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SM fermion f Vector current Axial current
up quarks % cosf + % sin 6 % cos 6
down quarks —% cosf + % sin 6 —% cosf
leptons —% cos ) — sin 6 —% cos

Table 2. Coefficients of the vector and axial vector bilinear currents for the SM fermions f
(in four component notation). The coeflicients ¢y (vector) and ¢4 (axial) are obtained from the

coefficients of the left handed (cr) and right handed (cg) fermions in the SM via ¢, Py, + cgrPr =

crtc —cp+c __ cr+tc _ —cr+c
L2R+ L2 R75:>CV_ L2R7CA_ L2 R

inflaton [49]:

6+ 3H6 = ~V'(9) + LTLT S (C:3)

In order for the fermions to not significantly affect the dynamics of the inflaton, the fol-

lowing requirement needs to be satisfied
2 42
. CrmMmf, — Cf,m 1)\
Ho 2 Ty f o = explmmi, /\iH), (C.4)
f f

which is equivalent to the requirement

o\ (m3
ct, A
ci ( /{% ) <)\j} exp[—ﬂm%/)\iﬂ]) <1 (C.5)

This is easily satisfied as both terms in brackets are smaller than 1.

One additional worry regarding the fermion density is the annihilation of the fermions
into massless gauge bosons or lighter fermions right when they are produced. Annihi-
lations into massless gauge bosons or fermions with a normal dispersion relation can
only happen between fermions whose spatial momenta are nearly opposite with modu-
lus |k| &~ A > m. Therefore, the annihilation rate is O(gim/4m), much smaller than the
Hubble expansion rate.

Similarly, annihilations into lighter SM fermions with a dispersion similar to the one
of the annihilating fermions has a cross section

4 4
/R (C.6)
47T(k1 — k2)2 4

~

if the fermions were not exactly back to back. This suggest an annihilation rate into light
fermions similar to the one into gauge bosons, and therefore should also be negligible. In re-
ality, since the lighter fermions that the heavy fermions can annihilate to are likely also pro-
duced with a high density, Fermi-blocking can forbid this annihilation entirely, for the same
reason why the ¢-channel scattering of fermions cannot thermalize a Fermi-degenerate gas.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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