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1 Introduction

Janus solutions provide holographic constructions of interface conformal field theories
(CFTs). In many known examples, the solutions are constructed by considering an AdSd
slicing of a (d+ 1)-dimensional space where the scalar fields depend non-trivially on the
slicing coordinate. One of the most well-known examples is the Janus solution of [1], which
is a deformation of the AdS5×S5 vacuum of type IIB and is given by an AdS4 slicing where
the dilation depends non-trivially on the slicing coordinate. The solution is dual to an
interface of N = 4 super Yang-Mills (SYM) theory where the coupling gYM jumps across a
co-dimension one interface [2]. This solution breaks all the supersymmetries, but a general
solution given by an AdS4×S2×S2 space warped over a Riemann surface can preserve half
the supersymmetries of the AdS5 × S5 vacuum [3] and is dual to supersymmetric interface
theories in N = 4 SYM [4–6]. For other examples of Janus solutions in type II and M-theory,
see e.g. [7, 8, 10].

– 1 –



J
H
E
P
0
3
(
2
0
2
2
)
0
5
7

Instead of constructing solutions in ten or eleven dimensions, it is often useful to
use lower-dimensional gauged supergravities since the ansatz and resulting equations are
simpler. Often the resulting solutions can be uplifted to higher dimensions, but even if the
uplift is not known the gauged supergravity solutions are useful for studying universal and
qualitative features of interface solutions. For an incomplete list of such solutions in various
dimensions, see e.g. [11–18].

A related construction is given by holographic RG-flows, which consider a Poincaré
slicing instead of an AdS slicing. If the solutions asymptotically approach two AdS vacua
with different cosmological constants, we can interpret this solution as an RG-flow from a
CFT in the UV to a CFT in the IR which is triggered by turning on a relevant deformation
in the UV [19–23]. On the other hand, for most examples of AdS-sliced holographic
interface solutions the CFTs on both sides of the interface are the same and differ only by a
marginal deformation (such as different values of gYM in the example discussed above) or a
position-dependent profile of the expectation value [8] or a source [9] of a relevant operator.

In [24, 25], the idea of a RG-interface in two-dimensional CFTs was proposed, where
the two sides of the interface are CFTs related by a RG-flow. The goal of the current paper
is to construct holographic solutions which realize this idea.1 We consider three-dimensional
N = 8 gauged supergravity with n = 4 vector multiplets, first discussed in [29]. This theory
has an AdS3 vacuum with maximal N = (4, 4) supersymmetry as well as two families of
AdS3 vacua with N = (1, 1) supersymmetry [30]. The theory gauges a SO(4) × SO(4)
symmetry of the SO(8, 4)/ SO(8) × SO(4) coset. The gauging depends on a continuous
parameter α where the superconformal algebra of the N = (4, 4) vacuum is given by
the “large” superconformal algebra D1(2, 1;α) × D1(2, 1;α), and the three-dimensional
supergravity is believed to be a truncation of M-theory on AdS3 × S3 × S3 × S1 [31–34].
In this paper, we primarily focus on the case α = 1 for which the expressions for the flow
equations are the simplest.

In [30], the Poincaré-sliced holographic RG-flow solutions were constructed for the
N = 8 gauged supergravity, which interpolate between the N = (4, 4) and N = (1, 1) vacua.
The goal of the present paper is to construct Janus solutions which realize the interface
between the same CFT at different points in the moduli space as well as RG-flow interfaces
between CFTs preserving different numbers of supersymmetries.

The structure of this paper is as follows. In section 2, we review the N = 8 gauged
supergravity theory we will be using in the paper and discuss the different supersymmetric
AdS3 vacua. In section 3, we derive the BPS equations for a Janus ansatz following
from the vanishing of the gravitino and spin- 1

2 supersymmetry variations. In section 4,
we solve the BPS equations for various truncations which make the analysis of the flow
equations manageable. For a Janus interface between the N = (4, 4) vacuum we find an
analytic solution, whereas for the RG-flow interfaces the flow equations can only be solved
numerically. We present the solutions and provide evidence for our interpretation of these
solutions as RG-flow interfaces. In section 5, we close with a discussion and open questions.
In appendix A, we present our conventions for SO(8) gamma matrices.

1See [14, 26–28] for work in this direction.
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2 Three-dimensional N = 8 gauged supergravity

In this section, we review the N = 8 gauged supergravity first constructed in [29]. The
theory is characterized by the number n of vector multiplets. The bosonic field content
consists of a graviton gµν , Chern-Simons gauge fields BMµ , and scalars fields living in a
G/H = SO(8, n)/ SO(8) × SO(n) coset, which has 8n degrees of freedom before gauging.
The scalar fields can be parametrized by a G-valued matrix L(x) in the vector representation,
which transforms under H and the gauge group G0 ⊆ G by

L(x)→ g0(x)L(x)h−1(x) (2.1)

for g0 ∈ G0 and h ∈ H. The Lagrangian is invariant under such transformations.
For future reference, we use the following index conventions:

• I, J, . . . = 1, 2, . . . , 8 for SO(8).

• r, s, . . . = 9, 10, . . . , n+ 8 for SO(n).

• Ī , J̄ , . . . = 1, 2, . . . , n+ 8 for SO(8, n).

• M,N , . . . for generators of SO(8, n).

Let the generators of G be {tM} = {tĪ J̄} = {XIJ , Xrs, Y Ir}, where Y Ir are the noncompact
generators. Explicitly, the generators of the vector representation are given by(

tĪ J̄
)K̄

L̄
= ηĪK̄δJ̄

L̄
− ηJ̄K̄δĪ

L̄
(2.2)

where ηĪ J̄ = diag(+ + + + + + + +− · · · ) is the SO(8, n)-invariant tensor. These generators
satisfy the typical SO(8, n) commutation relations,[

tĪ J̄ , tK̄L̄
]

= 2
(
ηĪ[K̄tL̄]J̄ − ηJ̄ [K̄tL̄]Ī

)
(2.3)

The gauging of the supergravity is characterized by an embedding tensor ΘMN (which
has to satisfy various identities [35]) that determines which isometries are gauged, the
coupling to the Chern-Simons fields, and additional terms in the supersymmetry transfor-
mations and action depending on the gauge coupling g. We will look at the particular case
in [30] where n ≥ 4 and the gauged subgroup is the G0 = SO(4) × SO(4) subset of the
SO(8) ⊂ SO(8, n). The embedding tensor has the entries,2

ΘĪ J̄ ,K̄L̄ =


αεĪ J̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {1, 2, 3, 4}
εĪ J̄K̄L̄ if Ī , J̄ , K̄, L̄ ∈ {5, 6, 7, 8}
0 otherwise

(2.4)

Note that the gauging depends on a real parameter α. As discussed in [30], the maximally
supersymmetric AdS3 vacuum has an isometry group,

D1(2, 1;α)×D1(2, 1;α) (2.5)
2We use the conventions ε1234 = ε5678 = 1.
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which corresponds to the family of “large” superconformal algebras of the dual SCFT. In
the following, we will consider the special case α = 1 for which D1(2, 1; 1) = OSp(4|2) and
the form of many quantities defined below are most compact. We expect that for generic
values of α the qualitative behavior of the solutions will be similar.

From the embedding tensor, the G0-covariant currents can be obtained,

L−1
(
∂µ + gΘMNBMµ tN

)
L = 1

2Q
IJ
µ X

IJ + 1
2Q

rs
µ X

rs + PIrµ Y Ir (2.6)

It is convenient to define the VMA tensors,

L−1tML = VMA tA = 1
2V
M
IJX

IJ + 1
2V
M
rsX

rs + VMIrY
Ir (2.7)

and the T -tensor,

TA|B = ΘMNVMAVNB (2.8)

The T -tensor is used to construct the tensors A1,2,3 which will appear in the scalar potential
and the supersymmetry transformations,

AAB1 = − 1
48ΓIJKLAB TIJ |KL

AAȦr2 = − 1
12ΓIJK

AȦ
TIJ |Kr

AȦrḂs3 = 1
48δ

rsΓIJKL
ȦḂ

TIJ |KL + 1
2ΓIJ

ȦḂ
TIJ |rs (2.9)

where A,B and Ȧ, Ḃ are SO(8)-spinor indices. Our conventions for the SO(8) Gamma
matrices are presented in appendix A.

We take the spacetime signature ηab = diag(+−−) to be mostly negative. The bosonic
Lagrangian and scalar potential are

e−1Lbos = −1
4R+ 1

4P
Ir
µ PIr µ +W − 1

4e
−1εµνρgΘMNBMµ

(
∂νB

N
ρ + 1

3gΘKLfNKPBLν BPρ
)

W = 1
4g

2
(
AAB1 AAB1 − 1

2A
AȦr
2 AAȦr2

)
(2.10)

The supersymmetry variations are

δχȦr = 1
2 iΓ

I
AȦ
γµεAPIrµ + gAAȦr2 εA

δψAµ =
(
∂µε

A + 1
4ω

ab
µ γabε

A + 1
4Q

IJ
µ ΓIJABεB

)
+ igAAB1 γµε

B (2.11)

The Einstein equation of motion is

Rµν − PIrµ PIrν − 4Wgµν = 0 (2.12)

and the gauge field equation of motion is

ePIr λΘQMVMIr = ελµν
(

ΘQM∂µBMν + 1
6gB

M
µ BKν

(
ΘMNΘKLfNLQ +2ΘMN fLNKΘLQ

))
(2.13)
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2.1 The n = 4 case

Let us focus on the case of four vector multiplets, i.e. n = 4. The symmetries consist of a
local G0 = SO(4)× SO(4) and a global SO(n = 4). Thus, the scalar potential only depends
on 8 · 4− 3 · 6 = 14 parameters out of the original 32. Moreover, we will only consider a
further consistent truncation outlined in [30] where the coset representative depends on
eight of the fourteen scalars.

L =

 cosA sinA coshB sinA sinhB
− sinA cosA coshB cosA sinhB

0 sinhB coshB


A = diag(p1, p2, p3, p4) , B = diag(q1, q2, q3, q4) (2.14)

With this truncation, the scalar potential is3

g−2W = 1 +
4∏
i=1

cosh qi + 1
4

4∑
i=1

sinh2 qi −
1
4
∑
i<j<k

(x2
ix

2
jx

2
k + y2

i y
2
j y

2
k)−

1
2

( 4∏
i=1

xi +
4∏
i=1

yi

)2

xi = cos pi sinh qi , yi = sin pi sinh qi (2.15)

The Qµ and Pµ currents, excluding the gΘMNBMµ VNA term, are

QIJµ =



0 0 0 0 cosh q1∂µp1 0 0 0
0 0 0 0 0 cosh q2∂µp2 0 0
0 0 0 0 0 0 cosh q3∂µp3 0
0 0 0 0 0 0 0 cosh q4∂µp4

− cosh q1∂µp1 0 0 0 0 0 0 0
0 − cosh q2∂µp2 0 0 0 0 0 0
0 0 − cosh q3∂µp3 0 0 0 0 0
0 0 0 − cosh q4∂µp4 0 0 0 0


IJ

Qrsµ = 0

PIrµ =



sinh q1∂µp1 0 0 0
0 sinh q2∂µp2 0 0
0 0 sinh q3∂µp3 0
0 0 0 sinh q4∂µp4

∂µq1 0 0 0
0 ∂µq2 0 0
0 0 ∂µq3 0
0 0 0 ∂µq4


Ir

(2.16)

Using these matrices, we can check that the combination PIrµ VJKIr vanishes whenever the
indices J,K ∈ {1, 2, 3, 4} or J,K ∈ {5, 6, 7, 8}. This implies that there is no source for BMµ
in the gauge field equation of motion (2.13), so it is consistent to set BMµ = 0. We will
make this choice from now on.

2.2 Truncations and supersymmetric AdS3 vacua

In order to make our analysis more tractable, we make further truncations to reduce the
number of independent scalar fields.4 Below we consider three truncations, which together
explore the AdS3 vacua with N = (4, 4) and N = (1, 1) supersymmetry.

3We correct a small typo in the potential given in [30].
4These truncations are consistent due to internal rotational symmetry as shown in [30].
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2.2.1 Truncation 1

The first truncation is given by calling q1 = q, p1 = p and setting all remaining qi = pi = 0
for i = 2, 3, 4. The scalar potential is

W = g2

2 cosh2 q

2 (3 + cosh q) (2.17)

The N = (4, 4) vacuum is given by setting q = 0 and the vacuum potential is W0 = 2g2.

2.2.2 Truncation 2

The second truncation is given by setting all the qs and ps equal, i.e. qi = q, pi = p for
i = 1, 2, 3, 4. The scalar potential is

W = g2

8192
(
8103 + 6856 cosh 2q + 1452 cosh 4q − 8 cosh 6q − 19 cosh 8q

− 768(3 + cosh 2q) cos 4p sinh6 q − 128 cos 8p sinh8 q
)

(2.18)

The N = (4, 4) vacuum is given by q = 0 as before, and N = (1, 1) vacua are given by
q = ± sinh−1√2 and p = π(Z/2 + 1/4) which have a vacuum potential of W0 = 8g2.

2.2.3 Truncation 3

The third truncation is given by setting the first three qs and ps equal, i.e. qi = q, pi = p

for i = 1, 2, 3, and setting the remaining q4 = p4 = 0. The scalar potential is

W = g2

1024
(
690 + 768 cosh q + 309 cosh 2q + 256 cosh 3q

+ 30 cosh 4q − 5 cosh 6q − 96 cos 4p sinh6 q
)

(2.19)

The N = (4, 4) vacuum is given by q = 0 as before, and N = (1, 1) vacua are given
by q = ± sinh−1

√
2 + 2

√
2 and p = π(Z/2 + 1/4) which have a vacuum potential of

W0 = 2(1 +
√

2)2g2.

3 Janus flow equations

In this section, we present the equations of motion and supersymmetry variations for a
Janus ansatz where the three-dimensional metric is written as an AdS2 slicing and the
scalar fields only depend on the slicing coordinate. We will also set the Chern-Simons gauge
BMµ fields to zero, which is consistent as argued in section 2.1. Hence, the Janus ansatz is
given by

ds2 = e2B(u)
(

dt2 − dz2

z2

)
− du2 , BMµ = 0

qi = qi(u) , pi = pi(u) (3.1)

– 6 –
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The Ricci tensor has the non-zero components,

Rtt = −Rzz = z−2
(
1 + e2B(2B′2 +B′′)

)
Ruu = −2(B′2 +B′′) (3.2)

The prime ′ denotes a derivative with respect to the slicing coordinate u. The gravitino
supersymmetry variation δψAµ = 0 is

0 = ∂tε+ 1
2z γ0

(
γ1 −B′eBγ2 + 2igeBA1

)
ε

0 = ∂zε+ 1
2z γ1

(
−B′eBγ2 + 2igeBA1

)
ε

0 = ∂uε+ 1
4Q

IJ
u ΓIJε+ igγ2A1ε (3.3)

where we have suppressed the SO(8)-spinor indices of εA and AAB1 . There are two integra-
bility conditions which can be derived from the gravitino variations (3.3) in the t, z and
z, u directions respectively

0 =
(
1− (2geBA1)2 + (B′eB)2

)
ε

0 = 2igeB
(
A′1 −

1
4[A1,QIJu ΓIJ ]

)
ε+

(
− d

du
(
B′eB

)
+ (2geBA1)2e−B

)
γ2ε (3.4)

We can use the first integrability condition to express the second one as

2ig
(
A′1 −

1
4[A1,QIJu ΓIJ ]

)
ε+

(
−B′′ + e−2B

)
γ2ε = 0 (3.5)

The spin-1
2 variation δχȦ = 0 is(

− i2ΓIPIru γ2 + gAr2

)
AȦ
εA = 0 , r = 9, 10, . . . , 8 + n (3.6)

3.1 Eigenvectors of A1

It follows from (2.9) that A1 is a 8× 8 matrix which has eigenvectors

AAB1 n
(i)B
± = ±win(i)A

± , i = 1, 2, 3, 4 (3.7)

The eigenvalues wi determine whether a supersymmetric AdS3 vacuum can exist. In the
following we denote the positive supersymmetric eigenvalue w, which can be determined as
follows: for the AdS2-sliced metric given in (3.1), the AdS3 vacuum solution with potential
W0 is given by

Bvac(u) = ln cosh
(√

2W0u
)

√
2W0

(3.8)

which satisfies

B′2vac + e−2Bvac − 2W0 = 0 (3.9)

– 7 –
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When we expand the spinors εA in terms of the eigenvectors of A1, the first equation in (3.4)
implies for the spinor component associated with the eigenvalue w that

B′2 + e−2B − 4g2w2 = 0 (3.10)

For the AdS3 vacuum solution (3.8), this condition relates the eigenvalue evaluated at the
vacuum wvac to the potential W0 via

w2
vac = W0

2g2 (3.11)

As discussed in section 4 for truncation 1, A1 has eight eigenvectors n(i)
± for i = 1, 2, 3, 4

all with the same with eigenvalue ±w that satisfy the supersymmetry condition (3.11) for
the AdS3 vacuum with q = 0. Hence, this vacuum preserves N = (4, 4) supersymmetry.
On the other hand for truncations 2 and 3, there are only two eigenvectors n± with an
eigenvalue ±w that satisfy (3.11) for the AdS3 vacua with non-trivial values for the scalars.
Consequently, these vacua only preserve N = (1, 1) supersymmetry.

For the RG-flow solutions which interpolate between the different vacua, we expand
the spinors in the basis of the eigenspinors that correspond to the supersymmetric vacuum
when the scalars take their vacuum values. This implies that (3.10) can be solved for B′,

B′ = ±
√

4g2w2 − e−2B

= ±2gwγ (3.12)

where we defined the convenient combinations,

γ(u) =
√

1− e−2B

4g2w2 ,
√

1− γ2(u) = e−B

2gw (3.13)

which will be useful later on. The two signs in (3.12) are two branches of solutions which
for Janus solutions will be patched together — the numerical evolution usually breaks down
at B′ = 0 and this is the location where the two branches will be glued together.

3.2 AdS2 Killing spinors

The Killing spinors for a unit radius AdS2 with metric,

ds2
AdS2 = dt2 − dz2

z2 (3.14)

satisfy the following equation,

Dµζη = i
η

2γµζη , µ = t, z (3.15)

with η = ±1. The covariant derivatives on AdS2 take the form,

Dt = ∂tε+ 1
2z γ0γ1 , Dz = ∂z (3.16)

– 8 –
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Since the general spinor in AdS2 is a two-component spinor, the ζ± form a basis of two-
component spinors. Since spinors in three dimensions are also two-component spinors, the
ζ± are also a basis of the spinors in three dimensions. Note that γ2 = iγ# where γ2

# = 1 and

iγ2ζη = ζ−η , η = ±1 (3.17)

The general ansatz for εA is given by

εA =
∑
i

(
f

(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−

)
ζ+ +

(
g

(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−

)
ζ− (3.18)

For truncation 1 we have i = 1, 2, 3, 4, which label four eigenvectors of A1, whereas in
truncations 2 and 3 the index i is dropped.

3.3 First projector

With this ansatz for the spinors εA, the first two components of the gravitino variation,

0 = ∂tε+ 1
2z γ0

(
γ1 −B′eBγ2 + 2igeBA1

)
ε

0 = ∂zε+ 1
2z γ1

(
−B′eBγ2 + 2igeBA1

)
ε (3.19)

can be expressed as follows by using the properties of the AdS2 Killing spinors,

0 = i
{(
f

(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−

)
ζ+ −

(
g

(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−

)
ζ−
}

(3.20)

+ iB′e−Biγ2
{(
f

(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−

)
ζ+ +

(
g

(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−

)
ζ−
}

+ 2igweB
{(
f

(i)
+ n

(i)A
+ − f (i)

− n
(i)A
−

)
ζ+ +

(
g

(i)
+ n

(i)A
+ − g(i)

− n
(i)A
−

)
ζ−
}

(3.21)

Using iγ2ζη = ζ−η and the linear independence of the n(i)
± and ζ±, one obtains a set

of equations,

f+ +B′eBg+ + 2gweBf+ = 0
−g+ +B′eBf+ + 2gweBg+ = 0
f− +B′eBg− − 2gweBf− = 0
−g− +B′eBf− − 2gweBg− = 0 (3.22)

which are consistent if the integrability condition (3.10) holds. In terms of the γ(u) defined
in (3.13) we have

f+ =
√

1− γ2 − 1
γ

g+ , f− =
√

1− γ2 + 1
γ

g− (3.23)

3.4 Second projector

The spin-1
2 variation (3.6) can be rewritten in the following form[
− 1

2g
(
(Ar2)T

)−1(
ΓIPIru

)T
iγ2 + 1

]AB
εB = 0 , r = 9, 10, 11, 12 (3.24)

– 9 –
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Since PIru contains the first derivatives of the scalar fields, the flow equations for the scalars
can be derived from the condition of vanishing of this supersymmetry variation. The
projectors for r = 9, 10, 11, 12 take the form(

MABiγ2 + δAB
)
εB = 0 (3.25)

For consistency, the matrix must satisify MABMBC = δAC . Plugging in the ansatz (3.18)
for the spinors εA, we get

0 =
(
f

(i)
+ n

(i)A
+ + f

(i)
− n

(i)A
−

)
ζ+ +

(
g

(i)
+ n

(i)A
+ + g

(i)
− n

(i)A
−

)
ζ−

+MABiγ2
{(
f

(i)
+ n

(i)B
+ + f

(i)
− n

(i)B
−

)
ζ+ +

(
g

(i)
+ n

(i)B
+ + g

(i)
− n

(i)B
−

)
ζ−
}

(3.26)

Using the fact that the eigenvectors can be orthonormalized,

n
(i)A
+ n

(j)A
+ = δij , n

(i)A
− n

(j)A
− = δij , n

(i)A
+ n

(j)A
− = 0 (3.27)

and projecting onto n(i)
± gives

f+ +M++g+ +M+−g− = 0
g+ +M++f+ +M+−f− = 0
f− +M+−g+ +M−−g− = 0
g+ +M+−f+ +M−−f− = 0 (3.28)

where we define

M++ = nA+M
ABnB+ , M−− = nA−M

ABnB− , M+− = M−+ = nA+M
ABnB− (3.29)

If there is more than one n± (as in truncation 1) the M±±,M±∓ have to take the same
form for all n(i)

± , which is a consistency condition. Using (3.23) it can be shown that
equations (3.28) can only5 be satisfied if we have

M++ = γ , M−− = −γ , M+− = M−+ =
√

1− γ2 (3.30)

The relations (3.30) for the matrix MAB given in (3.24) provide first-order flow equations
for the scalar fields. Note that the second integrability condition for the gravitino variation
in (3.4) is also the form of (3.25). For all the solutions which we find, this condition is
automatically satisfied and does not constrain the flow further.

4 Janus and RG-flow solutions

In this section we obtain the flow equations and solve them. Only for truncation 1 are we
able to solve the system analytically. For truncations 2 and 3 we solve the resulting flow
equations numerically.

5We can also have M+− = M−+ = −
√

1− γ2, which gives a similar solution. For example, in section 4.1
for truncation 1, this sends p(u)→ p(−u). This resolves an ambiguity in the definition of our eigenvectors,
as we can freely send n+ → −n+ or n− → −n−.
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4.1 Truncation 1

For the truncation to a single scalar described in section 2.2.1, the matrix A1 takes the form,

A1 =



0 0 0 cos p cosh2 q
2 0 0 sin p cosh2 q

2 0
0 0 − cos p cosh2 q

2 0 0 0 0 sin p cosh2 q
2

0 − cos p cosh2 q
2 0 0 − sin p cosh2 q

2 0 0 0
cos p cosh2 q

2 0 0 0 0 − sin p cosh2 q
2 0 0

0 0 − sin p cosh2 q
2 0 0 0 0 − cos p cosh2 q

2
0 0 0 − sin p cosh2 q

2 0 0 cos p cosh2 q
2 0

sin p cosh2 q
2 0 0 0 0 cos p cosh2 q

2 0 0
0 sin p cosh2 q

2 0 0 − cos p cosh2 q
2 0 0 0


(4.1)

We have four pairs of eigenvectors n(i)
± for i = 1, 2, 3, 4 with the same eigenvalues ±w, where

w = cosh2 q

2 (4.2)

so the supersymmetry condition (3.11) is satisfied for the vacuum where q = 0. The pairs
of eigenvectors are

n
(1)
+ =

{
1√
2 , 0, 0,

cos p√
2 , 0, 0,

sin p√
2 , 0

}
, n

(1)
− =

{
0, 0, 0,− sin p√

2 , 0,−
1√
2 ,

cos p√
2 , 0

}
n

(2)
+ =

{
0, 1√

2 ,−
cos p√

2 , 0, 0, 0, 0,
sin p√

2

}
, n

(2)
− =

{
0, 0, sin p√

2 , 0,
1√
2 , 0, 0,

cos p√
2

}
n

(3)
+ =

{
0, 0,− sin p√

2 , 0,
1√
2 , 0, 0,−

cos p√
2

}
, n

(3)
− =

{
0,− 1√

2 ,−
cos p√

2 , 0, 0, 0, 0,
sin p√

2

}
n

(4)
+ =

{
0, 0, 0,− sin p√

2 , 0,
1√
2 ,

cos p√
2 , 0

}
, n

(4)
− =

{
1√
2 , 0, 0,−

cos p√
2 , 0, 0,−

sin p√
2 , 0

}
(4.3)

Given the eigenvectors, we can compute the M++ and M+− matrix elements for the matrix
in (3.24) for any pair of n(i)

± . Note that for this truncation, only the flow equation for index
r = 9 is nontrivial while the others are identically vanishing. Then (3.30) gives us flow
equations for the scalars q and p. The remaining flow equation for the metric factor B
comes from (3.12). The flow equations are

q′ = −gγ sinh q , p′ = g
√

1− γ2 , B′ = ±2gγ cosh2 q

2 (4.4)

which solve the equations of motion. We can solve for a flow where p(0) = p0, q(0) = q0
are arbitrary and B′(0) = 0, which is equivalent to γ(0) = 0. This first-order system can
be rewritten using the function γ in lieu of B, in which case the third equation above is
replaced with

γ′ = 2g(1− γ2) (4.5)

The solution is

γ(u) = tanh(2gu)

tanh q(u)
2 =

√
sech(2gu) tanh q0

2
tan[p(u)− p0] = tanh(gu) (4.6)
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Figure 1. (a) pq parametric plot, (b) plot of q, (c) plot of p, (d) plot of the metric function B as
functions of the AdS2 slicing coordinate u for truncation 1. The colors denote three different values
for q0. p0 = 0 for all three plots. The behavior of p is the same for all three examples.

which gives the metric factor

eB(u) = cosh(2gu)
2g sech2 q(u)

2 (4.7)

This is a Janus solution which approaches the N = (4, 4) vacuum at the two endpoints
u → ±∞. We note that the flow equation is the same for each pair of eigenvectors n(i)

±
and hence the solution preserves eight of the sixteen supersymmetries of the N = (4, 4)
vacuum. We present plots for three choices of the parameters q0 = 0.5, 1.0, 1.5 in figure 1
and set p0 = 0 for all three. The qualitative behavior is very similar for all three choices
and corresponds to a Janus interface which interpolates between different values of p(u)
as u→ ±∞.

4.2 Truncation 2

Recall that the truncation presented in section 2.2.2 sets all the qi equal and pi equal. The
matrix A1 takes the form,

A1 =



0 0 0 a1 + a3 0 0 0 0
0 −2a3 −a1 + a3 0 a2 0 0 a2
0 −a1 + a3 −2a3 0 −a2 0 0 −a2

a1 + a3 0 0 0 0 0 0 0
0 a2 −a2 0 2a3 0 0 −a1 + a3
0 0 0 0 0 0 a1 + a3 0
0 0 0 0 0 a1 + a3 0 0
0 a2 −a2 0 −a1 + a3 0 0 2a3


(4.8)
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where we define, for this truncation,

a1 = 1
8(3 + cos 4p)(1 + cosh4 q)

a2 = 1
8(3 + cosh 2q) cosh q sin 4p

a3 = 2 cos2 p sin2 p cosh2 q (4.9)

The eigenvectors and eigenvalues can be obtained by considering the matrix (A1)2 first.
There are two eigenvalues, the first is (a1 + a3)2 which is six-fold degenerate but does
not satisfy the condition (3.11) for the N = (1, 1) vacuum. The second eigenvalue is
4a2

2 + (a1 − 3a3)2 which is two-fold degenerate and does satisfy (3.11) for the N = (1, 1)
vacua. The corresponding eigenvectors of (A1)2 take the form

v1 =
{

0, 1√
2 ,−

1√
2 , 0, 0, 0, 0, 0

}
, v2 =

{
0, 0, 0, 0, 1√

2 , 0, 0,
1√
2

}
(4.10)

Let

w =
√

4a2
2 + (a1 − 3a3)2 (4.11)

be the positive eigenvalue of A1. One can reduce the A1 matrix on the subspace spanned
by v1, v2 and find that the (not yet normalized) eigenvectors v± of A1 with eigenvalue ±w
are given by

v± = 2a2v1 + (−a1 + 3a3 ± w)v2 (4.12)

The flow equations take the form of a first-order system of ordinary differential equations
for the functions p(u), q(u), and B(u). These equations do not take a simple form and
are too unwieldy to be presented here. Using Mathemtica, we have checked that the flow
equations imply that the equations of motion are satisfied as well as the second integrability
condition of the gravitino variation (3.5).

The flow equations can be numerically integrated.6 In figure 2 we present some examples
for the numerical solutions of the flow equations. By fine-tuning initial conditions we can
produce flows that (i) look like the Janus solutions in truncation 1 plotted, in red in figure 2,
(ii) connect N = (4, 4) and N = (1, 1) vacua, plotted in blue in figure 2, and (iii) connect
two N = (1, 1) vacua which are related by flipping signs of p, plotted in orange in figure 2.
In the pq parametric plot in figure 2(a), the locations of the N = (1, 1) vacua p = ±π

4 ,
q = sinh−1√2 are denoted by black dots. Note that for the N = (4, 4) vacuum where q = 0,
the asympototic value p is a modulus which can take any value, hence the flow towards the
N = (4, 4) can end at any point on the p-axis at q = 0.

In the numerical integration, the N = (1, 1) points are repulsive and require fine-tuning
in order to obtain flows that approach these points. This can be explained as follows. The
choice g = 1/2 sets the N = (4, 4) vacuum potential to W0 = 1/2 and the AdS3 length scale

6We use the method described in [14]: we choose the location p(0), q(0) of a turning point where B′ = 0
and use the flow equations to determine p′(0), q′(0). These values provide the initial conditions for the
second order equations of motion to give p(u), q(u) and B(u).
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Figure 2. (a) pq parametric plot, (b) plot of q, (c) plot of p, (d) plot of the metric function B as
functions of the AdS2 slicing coordinate u.

to unity. For the N = (1, 1) point, the vacuum potential becomes W0 = 2 and the AdS3
length scale is L = 1/2. Taking the linear expansion around the N = (1, 1) point,

p(u) = π

4 + δp(u) +O
(
δp2
)

q(u) = sinh−1√2 + δq(u) +O
(
δq2
)

(4.13)

the mass-squares for the δp and δq fluctuations are

m2
pL

2 = 5
4 , m2

qL
2 = 21

4 (4.14)

Using ∆(∆− 2) = m2L2, the scaling dimensions of the corresponding dual operators are

∆p = 5
2 , ∆q = 7

2 (4.15)

In our AdS-sliced coordinates, the boundary is given by the two AdS2 components at
u = ±∞, which are joined together at the z = 0 interface. The coordinates (z, u) can be
mapped to Fefferman-Graham coordinates (ρ, x) where the boundary is located at ρ = 0.7

7Recall that the AdS3 metric in Poincaré coordinates,

ds2 = − dρ2 + dt2 − dx2

ρ2

is related to an AdS2-sliced metric by the coordinate change,

z =
√
x2 + ρ2 sinhu = x/ρ .

– 14 –
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Let us consider the boundary at u→ +∞. In the (ρ, x) coordinates, the metric factor B
has the expansion eB = ρ−1 + O

(
ρ0) near the boundary. But in the (z, u) coordinates,

from (3.8) the expansion near the boundary is B = u/L+ · · · . Therefore, the asymptotic
form of the coordinate change (ρ, x) 7→ (z, u) takes the form,

eu = ρ−L + · · · (4.16)

The linearized flow equations around the N = (1, 1) point are

δp′ = −5δp+ · · ·
δq′ = 3δq + · · · (4.17)

which are solved by δp ∼ Cpe−5u and δq ∼ Cqe3u, or in terms of ρ,

δp ∼ Cpρ5/2 δq ∼ Cqρ−3/2 (4.18)

These asymptotic forms are consistent with the scaling dimensions in (4.15), as we either
have solutions that scale as ρ∆ or ρ2−∆. We see that the q scalar diverges as we approach
the N = (1, 1) point as ρ→ 0 unless we fine-tune the coefficient Cq to zero. This is identified
with turning off the source for an operator with scaling dimension larger than 2 on the
boundary CFT.

A similar counting as before shows that the flow preserves two of the four supersymme-
tries of the N = (1, 1) vacuum. Therefore, we have RG-flow interfaces between a CFT with
central charge c(4,4) and a CFT with central charge c(1,1), where [36, 37]

c(1,1)

c(4,4) =

√√√√W
(4,4)
0

W
(1,1)
0

= 1
2 (4.19)

4.3 Truncation 3

The analysis of the flow equations and their solutions for truncation 3 proceeds very similarly
to the one for truncation 2, presented in the previous section. The matrix A1 takes the
form,

A1 =


0 0 0 (a1−a2+b2)cosp 0 (−a1+a2+b1)sinp 0 0
0 −2a1 cosp (a1+a2−b2)cosp 0 (a1+a2−b1)sinp 0 0 2a2 sinp
0 (a1+a2−b2)cosp −2a1 cosp 0 −2a2 sinp 0 0 (−a1−a2+b1)sinp

(a1−a2+b2)cosp 0 0 0 0 0 (a1−a2−b1)sinp 0
0 (a1+a2−b1)sinp −2a2 sinp 0 2a1 cosp 0 0 (a1+a2−b2)cosp

(−a1+a2+b1)sinp 0 0 0 0 0 (a1−a2+b2)cosp 0
0 0 0 (a1−a2−b1)sinp 0 (a1−a2+b2)cosp 0 0
0 2a2 sinp (−a1−a2+b1)sinp 0 (a1+a2−b2)cosp 0 0 2a1 cosp


(4.20)

where we define, for this truncation,

a1 = 1
2(1 + cosh q) cosh q sin2 p , a2 = 1

2(1 + cosh q) cosh q cos2 p

b1 = 1
2(1 + cosh q)(1 + cosh2 q) sin2 p , b2 = 1

2(1 + cosh q)(1 + cosh2 q) cos2 p (4.21)
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Figure 3. (a) pq parametric plot, (b) plot of q, (c) plot of p, (d) plot of the metric function B as
functions of the AdS2 slicing coordinate u for truncation 3.

As with trunctation 2, there are two eigenvalues of (A1)2: one with six-fold degeneracy that
does not satisfy (3.11), and one with two-fold degeneracy that does. This eigenvalue is

w2 = 1
64 cosh4 q

2
(
175−224cosh q+140cosh2q−32cosh3q+5cosh4q+24cos4p sinh4 q

)
(4.22)

The corresponding eigenvectors of A1 with eigenvalue ±w are

v± =
(
−(3a1 + a2 − b2) cos p± w

)
v1 + (a1 + 3a2 − b1) sin p v2 (4.23)

where v1, v2 are defined as before in (4.10). The flow equations once again do not take a
simple form and must be solved numerically. In figure 3 we present some examples for the
numerical solutions of the flow equations for truncation 3, which exhibit very similar features
to the solutions of the flow equations for truncation 2. By fine-tuning initial conditions we
can produce flows that (i) look like the Janus solutions in truncation 1, plotted in red in
figure 3, (ii) connect N = (4, 4) and N = (1, 1) vacua, plotted in blue in figure 3, and (iii)
connect two N = (1, 1) vacua which are related by flipping signs of p, plotted in orange in
figure 3. In the pq parametric plot given in figure 3(a), the location of the N = (1, 1) vacua
p = ±π

4 , q = sinh−1
√

2 + 2
√

2 are denoted by black dots.
The N = (1, 1) points are again repulsive. With g = 1/2, the N = (1, 1) vacuum

potential is W0 = (1 +
√

2)2/2 and the AdS3 length scale is L =
√

2 − 1. The linear
expansion around the vacuum yields the following mass-squares for δp and δq fluctuations,

m2
pL

2 = 1 , m2
qL

2 = 2 + 2
√

2 (4.24)
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which correspond to the scaling dimensions,

∆p = 1 +
√

2 , ∆q = 2 +
√

2 (4.25)

The linearized flow equations around the N = (1, 1) point are

δp′ = −(3 + 2
√

2)δp+ · · ·
δq′ = (2 +

√
2)δq + · · · (4.26)

which are solved by δp ∼ Cpe−(3+2
√

2)u and δq ∼ Cqe(2+
√

2)u, or in terms of ρ by substituting
eu ∼ ρ−L,

δp ∼ Cpρ1+
√

2 δq ∼ Cqρ−
√

2 (4.27)

These asymptotic forms are consistent with the scaling dimensions in (4.25). Again, we see
that the q scalar diverges as ρ→ 0 unless we fine-tune the coefficient Cq to zero, which turns
off the source for an operator with scaling dimension larger than 2 on the boundary CFT.

A similar counting as before shows that the flow preserves two of the four supersymme-
tries of the N = (1, 1) vacuum. Therefore, we have RG-flow interfaces between a CFT with
central charge c(4,4) and a CFT with central charge c(1,1), where

c(1,1)

c(4,4) =

√√√√W
(4,4)
0

W
(1,1)
0

=
√

2− 1 (4.28)

5 Discussion

In the paper, we constructed new solutions of three-dimensional gauged supergravity. The
solutions produced describe interface CFTs holographically. We considered three different
truncations of the scalar fields which are associated with three different supersymmetric
AdS3 vacua with N = (4, 4) and N = (1, 1) supersymmetry. The solution in the first
truncation is a Janus solution that is very similar to the one found in [38] for a simpler three-
dimensional gauged supergravity. The CFTs on both sides of the interface are deformations
of the N = (4, 4) vacuum with a source for a marginal operator turned on as well as a
position-dependent expectation value for a relevant operator. The interface preserves half
of the sixteen supersymmetries of the N = (4, 4) vacuum.

The solutions for the other two truncations represent RG-flow interfaces in the sense
that the solutions we find have different CFTs on each side of the interface. For example, we
find solutions where the interface connects the N = (4, 4) CFT (with a marginal operator
and relevant expectation value) and the N = (1, 1) CFT (with an irrelevant source). Note
that there is no clear distinction between the UV and the IR in the RG-flow Janus solutions,
since both sides put together form the boundary of the asymptotically AdS space. This is
to be contrasted with a Poincaré-sliced RG-flow solution, where the AdS boundary with
the larger curvature radius (or central charge) is viewed as describing the UV CFT. A
irrelevant source is turned on near the N = (1, 1) asymptotic AdS, which means that, from
the perspective of the flow, this constitutes a repulsive direction. To find a flow that comes
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very close to the N = (1, 1) vacuum, we have to fine-tune our initial conditions, which
corresponds to fine-tuning the source of the irrelevant operator.

We have worked in truncations where the dynamics of the eight scalar fields qi, pi for
i = 1, 2, 3, 4 are reduced to the dynamics of two scalars q, p, where in all three cases q = 0
corresponds to the N = (4, 4) vacuum. Hence, we could find interface CFTs of the N = (4, 4)
CFT with one of the N = (1, 1) CFTs. In this truncation, we cannot find an interface
solution connecting the two distinct N = (1, 1) vacua. For such a solution, we would have
to consider the flow equations with at least four independent scalars. The fine-tuning of
the initial conditions to produce the interface solution would also be more challenging.

The SO(4)× SO(4) gauging depends on a real parameter α and in this paper we have
only considered the case α = 1 which simplifies the expression of the Ai matrices and the
scalar potential. We expect that the solutions for other choices of α behave qualitatively
the same, since the supersymmetric vacua exist for other values of α. Nevertheless, it would
be interesting to check this expectation. It would also be interesting to consider holographic
observables such as the entanglement entropy around the interface or correlation functions.
We plan to investigate some of these questions in the future.
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A SO(8) Gamma matrices

We are working with 8× 8 Gamma matrices ΓI
AȦ

and their transposes ΓI
ȦA

, which satisfy
the Clifford algebra,

ΓI
AȦ

ΓJ
ȦB

+ ΓJ
AȦ

ΓI
ȦB

= 2δIJδAB (A.1)

Explicitly, we use the basis in Green-Schwarz-Witten [39],

Γ8
AȦ

= 1⊗ 1⊗ 1 , Γ1
AȦ

= iσ2 ⊗ iσ2 ⊗ iσ2

Γ2
AȦ

= 1⊗ σ1 ⊗ iσ2 , Γ3
AȦ

= 1⊗ σ3 ⊗ iσ2

Γ4
AȦ

= σ1 ⊗ iσ2 ⊗ 1 , Γ5
AȦ

= σ3 ⊗ iσ2 ⊗ 1
Γ6
AȦ

= iσ2 ⊗ 1⊗ σ1 , Γ7
AȦ

= iσ2 ⊗ 1⊗ σ3 (A.2)

The matrices ΓIJAB , ΓIJ
ȦḂ

and similar are defined as antisymmetrized products of Γs with the
appropriate indices contracted. For instance,

ΓIJAB ≡
1
2(ΓI

AȦ
ΓJ
ȦB
− ΓJ

AȦ
ΓI
ȦB

) (A.3)
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