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1 Introduction

One of the most fascinating objects in physics are black holes. Black holes have been
observed at the center of many galaxies and play a central role in astrophysics [1, 2].
Aside from astrophysical black holes, black holes are often also a consequence of early
universe dynamics such as hybrid inflation [3-10], phase transitions [11-20] or topological
defects [21, 22]. In fact, in many of these scenarios there are so many black holes produced
that they become the dominant energy density of the entire universe [23-29].

While a black hole dominated era may seem like a phenomenological disaster, it turns
out that due to Hawking radiation [30-32], black holes evaporate and the universe even-
tually transitions into the standard early universe radiation dominated regime [33-39]. As
compared to more standard reheating mechanisms, reheating the universe through black
hole evaporation is a rather unique process. The reason for this is two-fold.

Firstly, as a black hole evaporates, its temperature rises until the black hole becomes
a Planck mass and Planck temperature object. As such, black hole evaporation depends
in part on ultraviolet physics. Secondly, a black hole is extremely massive and thus serves
as a heat source. It heats up the surrounding plasma to large temperatures creating a



temperature profile around the black hole that can also reach temperatures close to the
Planck scale.! Due to the large radius of this profile, the effects of the surrounding plasma
may be more significant than the black hole itself.

In this article, we present one example, monopole production, where the hot plasma
surrounding a black hole is more important than the black hole itself. Monopoles are
another object of great interest to particle physicists [40-42]. They are especially relevant
given that they are a generic prediction of quantum field theories and feature in many
well motivated models such as Grand Unified Theories [43-46]. Aside from their magnetic
charge, the other property of monopoles is that as composite objects, their physical radius
is larger than their Compton wavelength. This mismatch means that monopole production
coming from Hawking radiation is always exponentially suppressed [47]. By the time that
black holes are hot enough to produce monopoles without a Boltzmann suppression, the
black hole is smaller than the monopole meaning that the emission of monopoles is still
exponentially suppressed.

However, monopole production by the plasma surrounding the black hole is not expo-
nentially suppressed. Because the plasma surrounding the black hole has a radius much
larger than the black hole, it can easily produce many monopoles via the Kibble-Zurek
mechanism [48-50]. Close to the black hole, the plasma is hot enough that symmetry is
restored. After the black hole evaporates, this hot region slowly cools down. At some point,
it undergoes a symmetry breaking phase transition. Regions of space separated by more
than a correlation length all choose their vacua independently and monopoles are created
by accident.

Monopole production from evaporating black holes can be extremely efficient. As an
example, we show that if the universe was reheated by black holes and monopoles were
produced by a second order phase transition, the monopole over-production limits the
reheat temperature to be
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Despite the very low reheat temperature of the universe and the very large scale associated
with the phase transition, Tpr, producing the monopole, monopoles can still very easily
over-close the universe. The re-introduction of the monopole problem in this context occurs
because even if the average temperature is low, the temperature around the black holes
themselves is still very large.

There are reasons to believe [51] that as the black holes reach Planck scale masses
that Hawking radiation is modified and possibly even stops completely. As long as the
temperature of the phase transition producing the monopoles is lower than the temperature
at which Hawking radiation ceases, then monopole production by the plasma would be
completely unaffected. There may however be other constraints that one needs to take
into account such as over-closing the universe with remnants.

'Even if there was originally no radiation around the black hole, once O(1) of the black holes have
started to evaporate, the universe is effectively reheated and there is a large bath of particles for the rest
of the black holes to heat up.



Depending on the model dependent properties of the monopoles, bounds even stronger

than eq. (1.1) can also be obtained. The Parker bound [52] on monopoles destroying
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galactic magnetic fields gives the constraint Try < 500 GeV ( Tex . The stronger

1015 GeV
and slightly more uncertain improvements on the Parker boundl[OE)S,GSZ] imply even stronger
bounds on Try. If the monopoles catalyze baryon number decay with geometric cross
sections, there are extremely strong bounds on their abundance [55-57]. In this case, the
bounds on the reheating temperature are so strong as to be excluded by BBN. Thus baryon
number violating monopoles and reheating via black hole decay are mutually exclusive.

A reheat temperature this low is very impactful as it strongly favors reheat temper-
atures lower than the scale at which electroweak sphalerons are active. This limits the
available baryogenesis mechanisms and pushes one to consider black hole assisted baryoge-
nesis mechanisms [30, 37, 58—67]. Additionally, many models of black hole production in
the early universe produce only a sub-population of black holes, e.g. a popular scenario is
when primordial black holes are dark matter [27, 68, 69]. Evaporation of a sub-population
of primordial black holes provides a mechanism for producing a sub-dominant populations
of monopoles.

In section 2, we derive the temperature profile of the plasma surrounding a black hole in
the early universe. In section 3, we calculate how many monopoles are produced per black
hole. In section 4, we place a bound on the reheat temperature coming from monopole
over production if the universe was reheated by black holes. In section 5, we discuss the
approximations under which our calculations are valid. Finally, we conclude in section 6.

2 Temperature profile around a black hole

In this section, we derive the temperature profile around a black hole evaporating in the
early universe. We will describe how a black hole heats up the plasma surrounding it and
how this hot region of space cools after the black hole evaporates.

2.1 Radiation transfer

To set the stage, we first present the derivation of the equations governing the transfer
of energy in a relativistic thermal system. The discussion in this section will be a terse
summary of the material presented in ref. [70].

The starting point is a quantity called the specific intensity, I, (7, 3,t), which is the
energy emitted per area per solid angle per time per frequency. For simplicity, we will work
in the plane approximation where quantities vary in z but not in x and y. The specific
intensity is related to the more familiar quantities such as a systems total energy density
(p), radiation pressure (P), and energy flux (J,) by
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The energy emitted in a direction § has its power modulated by
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where j, is the power being emitted in the § direction and A = 1/no is the scattering
length. The first term gives the absorption of radiation passing through the thermal bath
while the second gives the power emitted by the bath itself. Often, eq. (2.1) is written in
terms of the optical depth parameter by dr = —dz/A = —cos 6 ds/X. Written in terms of
the optical depth, eq. (2.1) becomes

cos 9% =1, — \j,. (2.2)
This equation can be further simplified by multiplying by cos# and integrating over solid
angle and frequency. A thermal system emits radiation isotropically so that [dQcos@ j, =
0, leaving

dP Adp

J, = e (2.3)
where in the second equality we used the fact that in thermal equilibrium P = p/3. eq. (2.3)
shows how the energy flux is related to temperature gradients. The final equation we will
consider is simply the conservation of energy

do_ 4. _ g (A6p> , (2.4)

dt dz 3
where we use eq. (2.3) in the second equality. This conservation equation governs how
a system heats and cools. In what follows we will be solving this conservation equation
with various initial conditions and boundary conditions corresponding to a black hole
evaporating and the subsequent cooling phase. In a relativistic thermal system \ oc 1/T

and p oc T, so eq. (2.4) is a differential equation that one can solve for the temperature
profile, T'(7, t).

2.2 Heating

In this subsection, we will solve eq. (2.4) subject to the condition that there is a black hole
providing a heat source at » = 0. In the cases we will be interested in, we are dealing
with regions close enough to the black hole that we can safely assume that the asymptotic
temperature is negligible.

Intuition for the problem can be built up by first starting with the case of a boundary
condition 7' = Ty at a radius ro. In this case, the equilibrium solution of eq. (2.4) can be
easily seen to be

T(r) = ()1/3 T, (2.5)

Thus we see that when in equilibrium, the temperature falls off rather slowly when far
from the heat source. The above scaling can also be obtained by using the fact that in
equilibrium, the total energy leaving any radius must be the same. Using eq. (2.3) we have
47r?J, ~ T3, which should be radius independent, giving another way of finding eq. (2.5).

We now discuss the situation of interest. A black hole of mass Mgy initially starts off
emitting Hawking radiation at a temperature Ty from a radius ry,

T M = (2.6)
frd T o .
BH = S My BH = o Ten



where My, is Planck’s constant. The Hawking radiation receives grey body correction
factors so that the total energy emitted by the black hole is

dMpu _ Grg: My — . My
dt— 30720mMZ, T MZy

(2.7)

where Gy is the temperature and spin dependent grey body factor and g.(T') is the total
number of entropic degrees of freedom. For the Standard Model, we average over all
particles and find that Gy ~ 4. As a result of this emission, the black hole slowly evaporates
and its temperature as a function of time is

M? 1

Teu(t) = =2 : (2.8)
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In the rest of this sub-section, we will derive the temperature profile that results from a
time and space dependent boundary condition of this sort.

Analytical estimate. We first describe how to obtain an O(1) analytical estimate of the
profile before moving on to numerical solutions. There are two critical observations that
render black hole heating easy to estimate. The first fact is that in any thermal system,
energy diffuses out as a random walk. If there is a change at r = 0 at a time ¢ = 0, then
at a later time ¢ only radii smaller than 2 < At have noticed the change while all physics
outside of this radius have not noticed the change. The second observation is the simple
fact that when the black hole evaporates, it spends more time at lower temperatures than
it does at higher temperatures. Combined, these two observations allow one to treat the
heating process like an onion. At any given time, the black hole is in diffusion limited
thermal contact with a region of space around it. As the black hole evaporates, this region
of space shrinks. The final temperature profile at any given radius is set by when that
radius “freezes-out” and leaves equilibrium with the black hole.

To turn this intuition into a set of equations, we start with a black hole of temperature
Tgu. This black hole evaporates in a finite time tgyg ~ Mgl/TéH. In this time, the energy
can only diffuse out to a distance

2 Mr%l
g~ >\tBH ~ T(’l“d)TgH‘ (29)
We will make the approximation that everything inside of r4 is in equilibrium with the
black hole while everything outside of 74 is not in equilibrium and has been frozen in place
and is no longer changing. When we later consider cooling, it will become clear that the
cooling time is much longer than the heating time and that treating the temperature profile
outside of the radius r4 as constant is a reasonable approximation.

A consequence of this freezing-out assumption is that for radii r < r4, the temperature
profile should scale as T' ~ 1/ r1/3 as found in eq. (2.5). While for radii r > 74, the tempera-
ture profile is a fossilized memory of when the black hole was just leaving equilibrium with
that radius. Eventually the black hole has evaporated completely and the temperature
profile consists entirely of the frozen out part of the profile.



To determine the final temperature profile after the evaporation of the black hole, at
every radius, we find what its temperature was when it was just leaving equilibrium with
the black hole and set the final temperature to be that value. In equilibrium, the flux of
energy leaving the black hole is equal to the flux leaving the thermal bath. Applying this
to the radius r4, we have

dMgn
dt

~ T2y ~ Anrid, ~ rdT(rq)>. (2.10)
Combining eq. (2.9) and eq. (2.10) we arrive at the scaling

4
Mpl/ll
T(r) ~ (2.11)

T/
for all radii which have decoupled from the black hole.

There is a second derivation of this scaling where instead of requiring eq. (2.10), we
instead impose that the black hole’s mass is larger than the total energy stored in the region
rq. If the black hole mass is smaller, then that temperature is necessarily frozen out by
conservation of energy. This different argument also gives the scaling found in eq. (2.11).

Numerical calculation. To put O(1) numbers to eq. (2.11), we will solve eq. (2.4)
numerically. Unfortunately, the exact problem of interest has two aspects which makes it
difficult to solve numerically. The first is that the black hole shrinks as it evolves and a
boundary condition whose location rz is changing as a function of time is difficult to solve.
The second one is that the region right near the black hole is not in thermal equilibrium
with the radiation emitted by the black hole and thus would require other methods to
deal with.

To eliminate these problems, we consider a fixed radius, rg which is in thermal contact
with the black hole and use it as our boundary. Any surface which is in thermal contact
with the black hole has the same energy passing through it as what was emitted by the
black hole. This means

dM,
de ~ Ty ~ Amrd ey ~ 1T (ro)? (2.12)
T2/3
To

We can then solve eq. (2.4) with the boundary condition

2
T 9
T(ro,t) = To(t) = Ton (T_t> , (2.14)
which was obtained from eq. (2.12) using eq. (2.8). 7 is the characteristics lifetime of the
black hole and Ty is the initial temperature of the surface at r¢. To match our numerical
solution to the analytical approach, we repeat the analysis done in the analytic section
including a proportionality coefficient that will be determined numerically.



— t=0
t=0.91
t=0.99t

— t=0.9997 |

1 5 10 50 100 500 1000

(r/rg)

Figure 1. The temperature profile during the heating phase of a black hole like object. We
start from an equilibrium profile at ¢t = 0 of T(r) ~ r~/3. The temperature profile below the
diffusion radius remains in equilibrium with the black hole. As the diffusion radius gradually
shrinks, temperatures outside of it freezes out giving a profile of T'(r) ~ r~7/11 ag expected from
analytical arguments of this example.

Energy passing through the surface at rg can only reach a finite distance during the
lifetime of the black hole. The lifetime of the black hole as a function of the temperature

at rqg is
Ton 9/2

te=T (%) . (2.15)

Within its lifetime, the energy can only diffuse up to a distance rq

9/2
2 Ca Ton

= coAt, = — 2.16
r7 = coA . COT(rd)T( T ) , (2.16)

where we have introduced a proportionality constant ¢y that will be determined numerically.
We have also defined ¢y as A(T') = 1/(no) = ¢\/T, which is a parameter that depends on
the microscopics of the theory and can be scaled out of the problem.

As before, we require that the flux emitted at ry is the same as the flux passing
through ry,

’l“ng) = T‘dT(Td)g. (2.17)

Combining eq. (2.16) and eq. (2.17), we find the scaling
7“0T03H)3/H -2/11

L (2.18)

T(r)= (coc)\)Q/11 (

We have solved eq. (2.4) numerically subject to the boundary condition shown in eq. (2.14).
Perhaps unsurprisingly, the numerical solution exhibits the scaling found in eq. (2.18) with

co = 0.59. (2.19)



The numerical solution is shown in figure 1 for various times. For simplicity, an initial
condition of T ~ 1 /rl/ 3 is assumed. Many of the features anticipated by the analytical
analysis are found here. First, all radii beyond r ~ 700rg are frozen to their initial values.
The black hole evaporates too quickly for the heat it deposits to diffuse past that radius.
The second feature that is present at all times and most visible for ¢ = 0.97, is that near
the black hole there is a region of space which is still in equilibrium with the black hole
and scaling as T' ~ 1/r'/3. The last visible feature, most easily seen for ¢ > 0.997, is the
freeze-out regime. The regions beyond r 2 50 rg have frozen out and subsequent evolution
is not changing its temperature profile.

The constant ¢y allows us to calculate eq. (2.11) for the problem of interest with
O(1) numbers, namely the heating profile of an evaporating black hole. To facilitate our
description of the calculation, we define new constants ¢y and c5 as

tBH = Cgipl p= C5T4. (220)

We can now re-derive eq. (2.11) in all of its full numerical glory

o 65322 1/11 M;)Ll/ll . 26, 1/11 M;Ll/ll -
(r) = ciey r7/11 = 0183 g«(T) r7/11 (221)

Where as before G is the Grey body factor of a black hole, g.(T) is the total number
of entropic degrees of freedom and ¢, characterizes the scattering cross section, o(7T") =
c2(T)/T?. The expectation is that c, will be of order a@ = g?/4m, but due to the large
number of possible final states, ¢, can be a bit larger than «. The main assumption we
have made so far is that is thermal equilibrium is maintained. Eventually the black hole’s
Hawking radiation will not be instantly absorbed by the thermal bath so that eq. (2.21) is
only valid for distances larger than some critical radius.

2.3 Cooling

Right after the black hole has evaporated, the temperature profile around it is of the form
T(r) = CM;‘I/ H /r7/1In this subsection, we describe how this temperature profile cools.

Analytical estimate. The temperature profile left after a black hole evaporates is IR
dominated so that it cools through an inverse of how it heated. Namely, the inner regions
cool faster than the outer regions. To see this explicitly, we can use eq. (2.4) to see that

E 3T

15/11
~ ~ p15/11, (2.22)
dE/dt ZVTY
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From this characteristic cooling time we see that the smaller r cool faster and the larger
r cool slower. As a result, the center of the profile cools first and reaches a constant
temperature. As the outer regions start to cool, this region of constant temperature slowly
expands in space while cooling off. As such, we will make the following approximation for



the form of the cooling profile.

T =T r<re (2.23)
41/11 ,\ /11
T = CT;’T =T (r> >, (2.24)

We take there to be a cooling radius r.(t) inside of which there is a uniform sphere of
constant temperature Ti,(¢). Outside of the cooling radius, the temperature is the same as
it was pre-cooling. Matching at the boundary relates

T ~ My /rI/1, (2.25)

We can find the functions r.(t) and T, (t) using conservation of energy. The region of
space inside of r.(t) is cooling at a rate

Z—f ~ 4m~§§vp ~r.To with ‘;—f ~ % ~ ri’tTél (2.26)
Combining eq. (2.25) with eq. (2.26), we find the time dependencies
£11/15 ‘A4§{15
re(t) ~ W Tin(t) ~ < (2.27)

Numerical calculation. How the profile cools is easy to solve numerically. We numer-
ically solve the conservation of energy equation, eq. (2.4), with the initial condition

T(r to) = To r <rp (2.28)

ro\ 7/11
T(T, to) =Ty <> T >Trg. (2.29)

r

We add a small region of constant Ty in the center of the initial profile to help deal with
r = 0. Our numerical results are insensitive to how one treats the r ~ 0 region.

The results of the numerical simulation are shown in figure 2. As is evident, the numer-
ical solution satisfies our intuition about how cooling occurs. Namely, there is a region of
constant temperature that slowly expands as it cools off. Meanwhile the temperature out-
side this expanding sphere maintains its pre-cooling temperature. The result of a numerical
simulation is that the temperature of the plautau region falls as

7/15 T22/15 14/15
Tyn = T(ro,1) = 0.87 (gu(T)c2) T gt

o

TS (2.30)

Using the results of eq. (2.30) and eq. (2.21), we find that the late-time cooling profile is
8/15

M
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This equation tells us how fast the plasma surrounding the black hole cools through the
phase transition, which in turns determines the number of monopoles produced per black
hole. The longer the system remains in the symmetry restored phase, the fewer topological
defects produced.
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Figure 2. Temperature profile at different times where we have defined r.g = r.(tp). The initial
profile follows eq. (2.28). As time progresses, the constant temperature region slowly expands
without affecting the outside temperature significantly.

3 Monopoles from black holes

In this section, we apply our knowledge of the temperature profile around a black hole to
calculate the number of monopoles produced per black hole.

3.1 The Kibble-Zurek mechanism

The basic mechanism by which monopoles are produced is the Kibble-Zurek mechanism.
In this sub-section, we provide a brief review of the Kibble-Zurek mechanism as applied to
thermal systems that are slowly cooling down [50].

In many thermal systems, the high temperature limit involves a symmetry unbroken
phase while the low temperature limit involves a symmetry broken phase. Consider a hot
plasma in the symmetry unbroken phase. As a hot plasma cools, spontaneous symme-
try breaking occurs through the condensation of a scalar order parameter ®. When this
happens, ® randomly chooses an expectation value somewhere along its vacuum manifold.
Regions of space separated by distances longer than the correlation length & will obtain
different values of ®. By random chance, these regions of space can accidentally form
topologically non-trivial objects such as monopoles. As a result, in a region of size R

R3
&8

monopoles are created. It is not obvious what the value of the proportionality constant in

Ny ~ (3.1)

front of eq. (3.1) is, so for simplicity we will take it to be 1.

If the phase transition is first order, then over most of the parameter space a single
bubble will nucleate and devour the entire space R before a second bubble has a chance
to form. Depending on how this bubble interacts with the outside low temperature region,
there will be at best O(1) number of monopoles created. It is plausible that no monopoles
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will be created. In some corners of parameter space, either because the bubble nucleation
rate is highly sensitive to temperature or because the bubbles expand extremely slowly, it
is possible that & < R, however this is not generically the case and thus we will instead
consider second order phase transitions.

If the phase transition is second order, then we can have the situation where £ < R
and a much larger number of monopoles can be created. We can characterize how close a
second order phase transition is to the critical temperature TpT with a parameter €

T —Tpr

o (3.2)

€

It is sometimes also convenient to express this parameter in terms of the time to the phase
transition ¢ and the characteristic cooling time of the phase transition 7epa,
t

Tchar

€ ~v

(3.3)
The correlation length and time are
Enlpe™  Tomee (3.4)

where [y and 7y are typical time and length scales in the problem. The system freezes in
place when the time to the phase transition ¢ is of order the relaxation time

t~T Tehar€ S Toe H, (3.5)

where we have used eq. (3.3) and eq. (3.4). Solving for € and plugging it back into eq. (3.4),
we find

£~ o <Tchar> T+ . (3,6)
T0

In the case of a plasma slowly cooling in time, the correlation length and time are
governed by the mass of the radial mode. Expanding the mass squared in a Taylor series
around Tpr, we find

¢ : 1 (3.7
T ~ ~ ~ . .
’ T dm?(T T
)\ D (T~ Tpy)  TPTVE
Thus we are interested in the scenario where lp, 70 ~ 1/7 and v = pu = 1/2 so that eq. (3.6)
gives
g
&= = (Trenar)'/?, (3.8)

where ( is a proportionality constant and without considering a specific model, it is impos-
sible to specify the value of 8. In the case of a weakly coupled scalar whose thermal mass
comes from a quartic coupling (A), we have g ~ 1/ A/3 and so 8 can potentially be para-
metrically larger than O(1) in the small A limit. When estimating monopole production
later on, we will take 8 = 1 with the understanding that there is some model dependence
in the estimate.
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3.2 Kibble-Zurek around black holes

We are now in a position to estimate how many monopoles are produced per black hole.
The mechanism of monopole production is that each black hole heats up the surrounding
plasma to a temperature profile shown in eq. (2.11). After the black hole has evaporated,
it cools down with a characteristic time scale shown in eq. (2.27). As the plasma cools past
the phase transition temperature, the Kibble-Zurek mechanism generates some number of
monopoles. As mentioned before, if the phase transition was first order, then there are
generically at most O(1) and possibly no monopoles produced per black hole.

The more interesting case is if the phase transition was second order. Let us take the
phase transition to occur at a scale Tpp. Using eq. (2.11), the radius of the region with
T > Tpr is
My

/7"
PT

Rpr ~ (3.9)

Meanwhile, the characteristic timescale associated with cooling can be read off of eq. (2.27)

8/7
Tchar ™ pl . (310)
T,

Using eq. (3.8), we find that the number of monopoles produced per black hole is

R3 M, 4/7
N,, ~ —EL (p) . 3.11
& Tpr (3:-11)

Thus a significant number of monopoles can be potentially produced per black hole.

4 Bounds on reheating from black holes

In this section, we place reheating bounds on the scenario where the decay of a population
of black holes with the same mass reheats the universe. Because each black hole can
produce many monopoles, monopoles have the possibility of overclosing the universe.

We estimate the bounds on the reheating temperature in two steps. We first omit all
O(1) numbers in order to emphasize the scaling behavior. Afterwards, we redo the estimate
using all of the O(1) numbers.

If black holes are responsible for reheating the universe, the black holes decay when

4 8

g2 Trn 1 My
2 2 6

My tgy Mgy

(4.1)

Using this, the number density of black holes over the number density of photons is given by

n T 5/3
@H:§?N<IM> | (42)

My

Bounds on overclosing the universe can be obtained by requiring that the energy density in
monopoles, M N,,Ypy is smaller than roughly five times the energy density in baryons [71],
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mpYp. Taking the mass of the monopole M to be 100 Tpr and using eq. (3.11) for N,
we find the bound on the reheat temperature to be

1015 Gev' ) /%
PT >

Tri < 500 GeV ( O(1) Estimate. (4.3)

This shows that we can expect a very strong bound on the reheat temperature in these
scenarios.

Now we produce a more refined estimate by keeping all O(1) numbers. Using the
results of section 2, eq. (3.9) and eq. (3.10) with O(1) numbers become

2 \ VT (YT
Rpr = 0.07 (Ca ! ) e
9« Toy

8/7
17 [ M
Tenar = 0.008 (c}fg:ZG%) ( 1{3}/7).
TPT

(4.4)

Using these equations, we can calculate the numerical coefficient in eq. (3.11) and find

Gf 1/7 M, 4/7
N,, = 0.044 P . 4.
00 (Cé?gf) (TPT) (4.5)

For the last step, we assume that black holes decay instantaneously when H = 1/tpy.
Using the fiducial values Gy = 3.8, g.(Tp1) = 108, ¢ = 1/10 and M = 25Tpr at the
unification scale, we arrive at

15 9/35
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Thus we see that having a large reheat temperature runs the risk of over-producing
monopoles.

5 Realm of validity

In this section, we discuss the various approximations that go into our result and the
limitations placed on our result by these approximations.

5.1 Model dependent factors

Many of our results depend to some degree on the model dependent factors cq, 3, g«(T)
and Gy. Of these, it is expected that g, and Gy change by at most O(1) and thus do not
change the final results by much. On the other hand, it is possible for ¢, and S to change
by more than an order of magnitude and can thus change the final result more significantly.

As mentioned before, a major source of uncertainty comes from the correlation length
at criticality, £. B appears as a proportionality constant in eq. (3.8) and its value depends
on the Grand Unified Theory under consideration. The expectation is that 5 2 O(1).
While the exact value of § is unknown, the parametric dependence of our final reheat
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temperature on 3 is easily calculated. A larger correlation length decreases the abundance
of magnetic monopoles which makes the bound on Try weaker. It is easy to verify that
the monopole abundance decreases by an amount 1/3% which weakens the bound on the
reheat temperature by 5%° in eq. (4.6).

(5.1)

105 Gev' ) /¥
Tpr ) '

Tri < 672 GeV 535 (

The other important model dependent quantity is c,, which characterizes the typical
size of the scattering cross sections. ¢, is important because scattering is responsible for
the diffusion of energy, which affects the profile. We have defined the typical interaction
cross section o as

Q
oN

Q
Il
|

(5.2)

3

in the high energy limit. Larger ¢, give shorter diffusion lengths and so that energy
diffuses out more slowly. As a result, in equilibrium the temperature distribution changes
more gradually and there is a larger volume at higher temperature. But larger ¢, (slower
diffusion) also hinders cooling which makes the correlation length at freeze out at larger
values. Between these two effects, the effect on the correlation length is stronger as can be
seen in eq. (4.5). As a result of this, the final bound on the reheat temperature scales as

11/14 4/35 15 9/35
Tru < 672 GeV §7/° (%glgf)) (?g) (10¢,)6/% (mﬂie\/) . (5.3)

As will be shown later, a critical assumption of our derivation is that the thermal bath
is in equilibrium with the evaporating black hole. The validity of this assumption is ¢,
dependent and may be where the uncertainty in ¢, is most important.

5.2 Hierarchy of length scales

In our previous derivation, it was tacitly assumed that Rpp > & and & > ry,, where 7, is
the size of the monopole. In this subsection, we discuss the validity of these assumptions.
Our work is based on the premise that an evaporating BH will heat up a large volume of
the surrounding plasma, where the phase transition can take place and produce topological
defects. This assumes that the size of the region that attains temperatures above Tp is
larger than the correlation length, namely Rpr > &. In the limit that Rpr < &, then
like first order phase transitions, either O(1) or zero monopoles will be produced and our
estimate would need to be modified.

The second inequality comes from the fact that the monopole is an extended object
with a characteristic length scale r,,. We assumed that one monopole was produced per

volume &2, an assumption only valid if € > r,,. In the limit £ < 7, there is one monopole

3

3 instead of &3, and the estimate must be modified.

produced per r
The temperature dependence of Rpr and £ can be seen in eq. (3.8) and eq. (3.9),

namely Rpr ~ T; P?TH/ " and &~ T, 13}219/ 21 Meanwhile, the radius of the monopole scales
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with its mass as r, ~ TPTTl. Putting in the relevant pre-factors, we find

2a; 17 M4l/7 R M81/21
Rpr = 0.07 < ) Tﬁﬁ £ =0.20 (ca g*Gf) # : (5.4)

9= PT PT
From this, we see that Rpr falls off fastest with increasing phase transition temperature
while £ and r,,, decrease more slowly. Depending on the value of ¢.(7") and ¢,, one of either
Rpr > & or € > ry, is more important. Combining the two, we find that as long as

1 2 ;a4 /0. 3
1.37 x 10'6 GeV (g(%i)) (3§> (0376) , if g.(T)2(T) > 0.63
Ter < : 5/8 1/a “ o/4
(T3 o .
1.37 x 10'6 GeV (g(m?)) (?é) (0%76) , otherwise
' ' 5.5)

our assumptions (Rpp > £ > ry,) are valid. For our fiducial parameters, g.(T)c
the conditions are safely satisfied for Tpr < 6.1 x 10 GeV.

5.3 Thermal equilibrium

Throughout our work, we have assumed thermal equilibrium. There are several areas where
the approximation of thermal equilibrium break down. For example if the temperature is
changing on length scales shorter than the scattering length, then it is clear that thermal
equilibrium is breaking down. In the context of monopole production, the most important
and constraining assumption that was made was the assumption that the energy emitted
by the black hole is in thermal equilibrium with the surrounding plasma.

The Hawking radiation emitted by the black hole only reaches thermal equilibrium
when it has lost all of its energy. All of the Hawking radiation eventually scatters and loses
its energy, so for a large enough radius, we expect the thermal equilibrium condition to
hold. We will thus assume the equilibrium configuration to hold until some critical radius
r¢n inside of which the system is not in thermal equilibrium. The equilibrium temperature
distribution can be found by requiring that the power passing through the temperature
distribution match the power emitted by the black hole, rT(r)3 ~ T3.

As the radiation emitted by the black hole with energy E passes through the plasma,
it loses energy through its interaction as described in eq. (2.1)

O.E=-noFE~T° (5.6)

While the number density of the thermal bath scales as n ~ T2, the cross section of a high
energy particle scales as o ~ 1/s ~ 1/TE resulting in a constant energy loss of order T2
when moving through the plasma. Hawking radiation loses all of its energy after traveling
a distance

TsHu 1
T(ren)? T Ty

Since 9, F ~ —T?2, high energy particles travel longer before they thermalize. Averaging

Tth ~ (57)

over the energies in the relativistic limit, we get the following O(1) factors
1.3 x 10°

Tth ~
Tgu

(g*(T)ci) T T(ra) ~ 0.004 Ty g.(T)2. (5.8)
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From this, we can see that unless one is interested in temperatures close to Tgy, the
assumption of thermal equilibrium is good.

We can finally use eq. (5.8) to find a maximum for Tpp. Given that we assumed that
the system was in equilibrium when Tpt froze out, we can require that Rpt > r, when
the Tpr froze out. Imposing this requirement gives

«(T)c2
Tpr < 1.94 x 1015 (91(_(]2;&) GeV. (5.9)

which is satisfied for our choice of Tpr.

5.4 Evaporation of black holes

If thermal equilibrium was maintained all the way to the surface of the black hole, then the
evaporation of the black hole would be greatly affected. In thermal equilibrium, radiation
into and out of the black hole would roughly balance and only temperature gradients give
rise to an outflow of energy. As was demonstrated in the previous subsection, the area
right outside of the black hole is not in thermal equilibrium with the black hole itself. As a
result, its temperature is lower than the black hole temperature, see e.g. eq. (5.8). Thus the
energy falling into the black hole, T]Q_;)HT (7¢n)4, is subdominant to the energy being emitted
by the black hole, r4,;Thy. As such, we can treat the black hole as evaporating the same
as it would in vacuum.

5.5 Reaching thermal equilibrium

When the black holes first start evaporating, they are not in equilibrium with the external
radiation. In this subsection, we estimate the time it takes for the plasma surrounding the
black hole to reach an equilibrium state.

When the thermal profile is close to the equilibrium profile, the black hole’s ability to
heat the surrounding plasma is limited by diffusion. Following the argument in section 2.2,

we find
A1/15

72~ At T~ (5.10)

Mé/us'

As long as the black hole is depositing energy in a radius smaller than rg4, then in a time
t, the region of space with r < rg will be in equilibrium with the black hole.

Initially, the plasma surrounding the black hole has an initial temperature Try. The
Hawking radiation emitted by the black hole loses all of its energy after a distance, see

eq. (2.1),

(5.11)

T; TI%H.
This is the radius at which the black hole first starts to deposit its energy. As the temper-
ature rises, it deposits energy closer and closer to the black hole. As long as r; < r4(t), the
black hole will have reached equilibrium with the plasma immediately around it. Equil-
brium is first reached when r; ~ r4(t;) giving

Té?{/n M;/ll

30/11
TRy

t; ~

(5.12)
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When black holes are reheating the universe, t; and Try are set by the lifetime of the
black holes and Hubble. Comparing the two timescales, we find

Tsu 3/11
t; ~ tBH <.7WP> < tpu (5.13)
showing that the plasma around the black hole does indeed have time to reach equilibrium
with the black hole. For our choice of parameters, the O(1) number in eq. (5.13) is 0.9,
which validates our assumption that the black hole reaches thermal equilibrium with its
surrounding.

6 Conclusion

In this article, we explored the evaporation of black holes in the early universe and showed
how they heat up the surrounding plasma. This plasma can reach temperatures much
larger than the ambient temperature and can have effects more significant than that of the
black hole itself. As an example, while monopole production by black hole evaporation is
negligible, monopole production by the surrounding plasma can be very significant. This
efficient mechanism of monopole production can be significant enough that it can easily
overclose the universe if the reheat temperature is larger than Try = 500 GeV. Such a low
reheat temperature motivates black hole centric mechanisms of baryogenesis.

The evaporation of black holes in the early universe is an intriguing possibility. We have
only listed a single scenario where the plasma surrounding the black hole has a significant
effect. It would be interesting if there are other situations where this plasma is important.
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