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Abstract—In this work, we consider the problem of deriving
and incorporating accurate dynamic models for model predic-
tive control (MPC) with an application to quadrotor control.
MPC relies on precise dynamic models to achieve the desired
closed-loop performance. However, the presence of uncertainties
in complex systems and the environments they operate in poses
a challenge in obtaining sufficiently accurate representations of
the system dynamics. In this work, we make use of a deep
learning tool, knowledge-based neural ordinary differential
equations (KNODE), to augment a model obtained from first
principles. The resulting hybrid model encompasses both a
nominal first-principle model and a neural network learnt from
simulated or real-world experimental data. Using a quadrotor,
we benchmark our hybrid model against a state-of-the-art
Gaussian Process (GP) model and show that the hybrid model
provides more accurate predictions of the quadrotor dynamics
and is able to generalize beyond the training data. To improve
closed-loop performance, the hybrid model is integrated into a
novel MPC framework, known as KNODE-MPC. Results show
that the integrated framework achieves 60.2% improvement in
simulations and more than 21% in physical experiments, in
terms of trajectory tracking performance.

I. INTRODUCTION

The advent of model predictive control (MPC) has enabled
control processes to take advantage of the rapid advancement
in optimization techniques and the computational power of
modern hardware [1]. The ability to optimize over accurate
dynamic models and incorporate various constraints has
bestowed model predictive controllers with feasibility and
stability guarantees for complex control tasks [2]. However,
identifying accurate dynamic models remains a central chal-
lenge to MPC. Building accurate first-principle models often
requires domain expertise and deep physical insights into the
systems. Even for experts, modeling can be a daunting and
tedious task when the system or its operating environment is
complex.

Recent advances in machine learning algorithms have
enabled efficient discovery of coherent patterns in complex
data. Neural networks (NNs) have been used for various
tasks in computer vision, natural language processing, and
recommender systems. Most recently, a new family of neural
networks — neural ordinary differential equations (NODE),
has been shown as an effective tool for extracting dynamic
models from data. NODE approximates a continuous-depth
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Fig. 1. Schematic of the KNODE-MPC framework, applied to a quadrotor

system. The NN accounts for residual or uncertain dynamics in the system,
and is combined with a model derived from first principles to form a
KNODE model. The KNODE model is then incorporated into a MPC
framework, where optimal control commands are generated and applied
to the quadrotor.

neural network which is used to directly model differential
equations. Knowledge-based NODE (KNODE) was pro-
posed to leverage NODE’s compatibility with first principles.
It combines first-principle models and NNs into hybrid mod-
els to improve the open-loop prediction accuracy of nonlinear
dynamic models [3]. However, it is unclear whether such
hybrid models could improve the closed-loop performance
of robotic systems in the real world.

In this work, we use KNODE to model the dynamics
of a quadrotor. In particular, we utilize the neural network
in the hybrid model to account for residual and uncertain
dynamics within the system. This hybrid model is then in-
corporated into a model predictive control framework, known
as KNODE-MPC. A schematic of the proposed framework
is depicted in Fig. 1. We demonstrate that the integrated
framework not only provides better predictions of future
states, but also improves the closed-loop performance in both
simulations and real-world experiments.

II. RELATED WORK

In recent years, increasing data availability has fueled
rapid development in data-driven system identification. One
body of work aims to extract the governing equations of
dynamic models directly from data [4], [5], [6]. A major
contribution uses sparse regression to reconstruct dynamic
models from a predetermined library of basis functions [4].
This method has been shown as an effective alternative to
system identification [7]. However, a fundamental challenge
to this method lies in coming up with the library of functions.
If the correct basis functions are missing from the library, the
sparse regression fails to identify the correct dynamic model.



Such methods also do not scale well to high-dimensional
systems as the library of functions can become unreason-
ably large. This prevents deployment on real-world systems,
which are very often high-dimensional.

On the other hand, neural networks have recently been
shown as an effective parameterization of dynamic models.
Stochastic neural networks were used to model residual
physics in contact models [8], and subsequently ContactNets
was proposed to model frictional contact behaviors [9].
Recurrent neural networks (RNNs) have been used to model
the dynamics of high-dimensional flows [10] and spatio-
temporally chaotic systems [11]. NODE was developed for
similar purposes but differs from RNNs by explicitly model-
ing differential equations from data [12]. Notably, NODE has
enabled various deep learning tools to facilitate system iden-
tification. For example, convolutional neural networks have
been used to reduce the dimensionality of high-dimensional
systems [3]. In particular, KNODE has demonstrated neu-
ral network’s generality by modeling a variety of systems
with nonlinear and chaotic dynamics, and has also shown
NODE’s compatibility with first-principle dynamic models
[3]. These developments have opened up new avenues for
system identification for MPC.

There are a number of works in the literature that integrate
data-driven models into a predictive control framework.
One approach to synthesizing models for MPC is through
Gaussian processes (GP) regression. In [13], GP regression is
used to learn the residual errors between the true and nominal
dynamics of a race car, accounting for prior knowledge
of the system. The authors in [14] extend this framework
to model residual dynamics in quadrotors. However, these
methods assume that the relationship between the residual
and true dynamics is known and this limits the nature of
uncertainties that these models are able to accommodate.
Another drawback of GP regression is computational com-
plexity. This implies the need to select a small number of
training data points that best represent the dynamics. Since
the dynamics are either unknown or uncertain, it is difficult to
select these points in practice. Another increasingly popular
approach that incorporates learning into MPC is model-based
reinforcement learning (MBRL). In [15], neural networks are
used to learn a dynamics model, which is then applied to a
MPC framework to solve iterative tasks. The authors in [16]
use MBRL to design low-level controllers using sensors on-
board the quadrotor. Compared to the approaches that use
GP regression and our proposed framework, these methods
do not account for prior knowledge of the system dynamics
and are therefore less sample-efficient.

Our contributions in this work are three-fold. First, we
employ KNODE to develop a high-fidelity quadrotor model
capable of capturing poorly understood uncertainties and
residual dynamics. The KNODE model combines prior
knowledge of the system dynamics with a neural ODE, and
provides a better representation of the quadrotor dynamics.
Second, we show that the KNODE model improves the
accuracy of state predictions significantly, over both the nom-
inal model, as well as a state-of-the-art GP-based prediction

model, which is similar to those described in [13] and [14].
In particular, we compare our framework against a more
general variant of these GP models that does not impose
any structural assumptions between the system uncertainties
and the true dynamics. Third, the hybrid model is integrated
into a novel model predictive control framework, known
as KNODE-MPC. Simulations and physical experiments are
conducted with KNODE-MPC to evaluate the improvement
in closed-loop performance. Empirical results show that the
framework outperforms a nominal model predictive con-
troller with a first-principle model.

III. METHODOLOGY

A. Quadrotor Dynamics

In this work, we use a six degrees-of-freedom quadrotor
system to illustrate our proposed KNODE-MPC framework.
The model used to describe this system is similar to that in
[17]. Denoting the mass and moments of inertia as m and
J = diag(Jye, Jyy, J-=), the dynamics of the quadrotor,
governed by its equations of motion, can be described as:
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where RY is the transformation matrix between the quadro-
tor body frame and the world frame. u; is the summation of
the motor forces, i.e., u; := Z?zl F; and us is the moment
vector that is related to the motor forces by
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where L is the arm length of the quadrotor and -y is the ratio
between the moment and thrust coefficient of the motors.
The orientation in terms of Euler angles velocities is related
to the angular velocities by
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By defining the state as x := [r7 T ¢ 6 ¢ wT|T €

R™, we have the following compact representation of the
quadrotor system,

x = f(x,u), )

with u = [u3 ul]? € R™ and f : R" x R™ — R
denotes a mapping given by (1), (2) and (4). In this work,
both quaternions and Euler angles are used interchangeably
to represent orientation.



B. Knowledge-based Neural ODEs

Although the nominal quadrotor model in (5) represents
the system with certain fidelity, it is generally not sufficient
for applications where a more accurate model is required.
For instance, the quadrotor experiences aerodynamic and en-
vironmental disturbances in flight, and these are not captured
by the nominal model. In addition, system parameters such
as the moments of inertia are inherently difficult to measure
or estimate. These uncertainties cause deviations between the
true dynamics of the system and those given by the nominal
model. The KNODE framework tackles this challenge by
learning these uncertainties and residual dynamics using a
data-driven approach. By combining prior knowledge of the
system with the learned dynamics, this hybrid model not only
improves accuracy, but is also more sample efficient [3].

Consider the following representation of the true system
dynamics

x = fi(x,u, A(x,u)), (6)

where f; : R™ x R™ x RP — R" denotes the true dynamics.
The subscript ¢ denotes the true system. A : R” x R™ — RP
is a mapping from the state-input space to the uncertainty
space. Next, we parameterize the uncertainty A using an
NN with parameters 6. This represents part of the true
dynamics that are absent in the nominal model. With this
parameterization, the hybrid KNODE model (subscript h)
can be written as

X:fh(x,u, Ag(X,U)), (7)

where Ag is a neural network, and f;, includes both the
nominal model and its coupling with the neural network.
This framework is general enough to allow coupling between
different components of the state and input, and it is able
to accommodate uncertain forces and moments . Further-
more, compared to non-parametric methods like Gaussian
process (GP) regression, this parametric approach allows
training on large amounts of data while keeping the size
of the uncertainty model constant, and can potentially be
computationally faster during inference. Hence, by modeling
uncertainty in the dynamics, this hybrid model gives a more
accurate representation of the true system.

C. Model Predictive Control

An MPC framework uses an optimization-based approach
to generate a sequence of optimal control inputs in a receding
horizon manner. In its formulation, a model of the system,
together with state and input constraints, are considered
within an optimization problem of the following form,

N-1
minimize Z (szQ:cZ + uiTRqu) + 2l Py
i=1
subject to x4 = fd(xi,ui), Vi=0,...,N—1, (3)
r,eX, w,€eld, Vi=0,...,N—1,
xg = x(k),

where X and U are sets defining the state and input con-
straints and «(k) is the initial state to the optimization

problem at time step k. @, R and P are weighting matrices
for the stage, input and terminal costs respectively. At each
time step, (8) is solved to obtain a sequence of control inputs
u = [ug,...,uny_1]7 and wug is applied to the system.
The discrete-time model f; : R®™ x R™ — R" is derived
from a continuous-time counterpart using a numerical solver.
An explicit fourth-order Runge-Kutta method is applied to
obtain the predicted states x;43,¢ = 0,...,N — 1. In the
ideal case, the true dynamics in (6) are discretized, but since
the uncertainty is unknown, a discrete-time version of the
nominal model described in (5) is commonly used in this
framework.

There exist robust and stochastic MPC methods in the
literature that account for uncertainty by assuming that the
uncertainty is either bounded [18], [19] or characterized
by a probability distribution [20], [21]. However, these
approaches require additional assumptions on the nature
of the uncertainty, which can be challenging to ascertain
in practice. In most cases, the closed-loop performance is
sensitive to the accuracy of the model and hence, using the
KNODE model in (7) is expected to yield better closed-loop
system performance than a nominal model. This motivates
the KNODE-MPC framework, where a hybrid knowledge-
based NODE model is integrated into the MPC framework.

D. KNODE Training

While the KNODE framework is applicable to the general
case shown in (6), we shall focus on a more practical
scenario. Assuming that the uncertainty is separable from the
nominal dynamics, the true dynamics can then be expressed
as

x = fiy(x,u, A(x,u)) = f(x,u) + A(x,u), 9)

with the first component given by the nominal dynamics in
(5). Following the parameterization described in III-B, the
hybrid model that consists of both the nominal model and
neural network is given by

X = fp(x,u,Ag(x,u)) = f(x,u) + Ag(x, 1),

where Ag denotes the neural network. Training of Ay is
done with the trajectory data collected from closed-loop
simulations or experiments. The training process in our
work differs from [3] in that control inputs in the train-
ing data need to be injected into the model to make the
one-step-ahead predictions. Similar to [3], we first divide
up trajectory data from each time step, and then use the
state at each of these time steps as initial conditions to
make one-step-ahead predictions using (10). Specifically,
we consider a set of state observations and control inputs
O = [(x(ta),u(tr)), (x(t2), u(ta)), - , (x(tn), ultn)]7.
sampled at the times 7' = {¢1,ta,--- ,tx}. For a time step
t;, we compute the one-step-ahead prediction given by

(10)

tit1
X(tit1) = x(t;) + / f(x,u) + Ag(x,u)dt, (11)
t

where X(t;.1) denotes the state prediction at time ¢; 1. The
learning framework in this work performs the integration in



(11) numerically using the explicit fourth order Runge-Kutta
method. Next, to compute the mean squared error (MSE)
between the predictions and the ground truth, we define a
loss function as

N
1 . 2
L(0) := N_1 ZZ; [%(t:) — x(ti)llz, (12)
and the optimization problem is therefore given by
min L(0)
0 13)

st. x = f(x,u) + Ag(x,u),

where the constraint comprises of the dynamic model. To
train the hybrid model on multiple trajectories, we can sum
up the losses computed on each trajectory. Similar to [3],
[12], we solve the optimization task in (13) using the adjoint
sensitivity method which propagates gradients from the loss
function to the neural network parameters. The parameters
are then iteratively updated based on the gradients using
readily available optimizers like Adam [22]. The adjoint
sensitivity method has been noted as a memory-efficient
alternative to the conventional backpropagation [12] and its
proof can be found in [23].

E. Evaluation and Verification

In our experimental design and evaluation process, we set
out to answer the following questions about our proposed
KNODE-MPC framework. (a) How accurate are the state
predictions given by the KNODE model, as compared to
state-of-the-art data-driven models in [13] and [14]? (b) How
well does the KNODE model generalize beyond training
data? (c) How much improvement does the KNODE-MPC
framework provide, in terms of closed-loop trajectory track-
ing, compared to both the nominal MPC framework, as well
as a MPC framework that uses a GP model?

To evaluate the accuracy of state predictions and to verify
the generalization capability of the KNODE model, a gener-
alized variant of the model in [14] is used as a benchmark.
In [14], it is assumed that the relationship between the
uncertainties and equations of motion are known and this
is incorporated as user-defined selection matrices within the
model (see Section III-C of [14]). The model also assumes
that the uncertainties are decoupled and only allows for
scalar mappings between the body velocities and acceleration
disturbances in each of the axes (see Section III-E of [14]).
These assumptions are often difficult to ascertain in practice.

In this work, we implement a general version of this
GP model that removes these assumptions, which can be
compactly represented as

o = feplc,w) = flx,u) + o ([XD |

. (14)

where f(x,u) represents the nominal model in (5) and p
denotes the mean posterior of a GP. A nominal model that
does not account for uncertainty is also included in our tests
as a baseline. To demonstrate the effectiveness of both data-
driven models, we incorporate nonlinear components into the

true dynamics and compare the prediction accuracy across
three models; the nominal, KNODE and GP models from (5),
(10) and (14) respectively. More details on these nonlinear
components are given in Section IV-A. Quantitatively, we
want to measure the spatial similarity between the true
and predicted trajectories and this can be evaluated using
a distance metric generated by the dynamic time warping
(DTW) algorithm [24]. The DTW algorithm is implemented
using the tslearn package [25]. For evaluation of the closed-
loop trajectory tracking performance of KNODE-MPC, we
compare it against two frameworks, a nominal MPC frame-
work, as well as a MPC framework that uses the GP model,
which we denote as GP-MPC. The nominal MPC framework
uses a model that does not consider uncertainty such as
aerodynamic forces or environmental disturbances in its
formulation. The closed-loop trajectories obtained from all
three frameworks are compared against the planned trajectory
using the same distance metric and these comparisons are
done in both simulations and physical experiments.

IV. EXPERIMENTS AND RESULTS
A. Setup

Simulations: A nominal quadrotor model is constructed
using the equations of motion given in (5). An explicit
5% order Runge-Kutta method (RK45) with a sampling
interval of 2 milliseconds is used for numerical integration
to generate dynamic responses of the quadrotor. We assume
that the model predictive controller has access to perfect
measurements of the quadrotor dynamics. The MPC archi-
tecture is implemented in CasADi [26] and the optimization
routine generates optimal thrust and moment commands.
These commands act as inputs to the quadrotor model,
which simulate the closed-loop responses. Two classes of
trajectories are considered in the simulations; circular and
lemniscate trajectories. Both the GP and KNODE models
are trained on circular trajectories of radii 3m and 6m only,
without lemniscate trajectories. A circular trajectory of radius
4m is used as validation data. These data are collected at a
commanded speed of 1m/s. To model uncertainty within the
system, nonlinear aerodynamic drag effects from the fuselage
and rotors are incorporated into the true quadrotor dynamics.
Inspired from [14], the drag effects are formulated as

B _ B B
Dtolal - Drotor + Dfuselage? (15)
B — T B
where Drotor - [CD,rotor» CD,rotor; 00] s Dfuselage

—Cpsign(vg) vy /m with vg = RW[i ¢ 2]T. The super-
scripts B and W represent the body and world frames. We
note that a more representative model of the aerodynamic
effects can be obtained if prior knowledge of these dynamics
is available. For instance, the authors in [27] combined
blade element momentum theory with a neural network to
learn the aerodynamic effects. Here, it is assumed that these
uncertain dynamics are absent in the nominal model and
are to be learnt by the GP and KNODE models. We would
also highlight that these simulated uncertain dynamics only
manifest in the translational dynamics of the quadrotor and
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Fig. 2. Schematic of the experimental setup: The Crazyflie experimental

platform operating with a Vicon motion capture system. KNODE-MPC
publishes control commands through the Crazyflie ROS server and into
the commander module on-board Crazyflie.

incorporating uncertain rotational dynamics is part of our
future work.

The KNODE model uses a two layer neural network
architecture with 64 and 16 hidden units each. A hyperbolic
tangent function is used as the activation function. Each of
the two trajectories in the training data has a duration of
8s and 4000 data points. The GP model is trained using
the scikit-learn package [28] and uses a kernel consisting
of the product of constant and radial basis function (RBF)
kernels. Eighty data points, sampled at regular intervals,
are used for training. The inputs for the training data are
data samples containing the state-input vector [x u]”, while
the training labels are the differences between the true and
nominal state derivatives, i.e., AL := fyp(x,u) — f(x,u).
With the trained models, simulations are conducted along
both types of trajectories to evaluate the prediction accuracy
of the KNODE model against the nominal and GP mod-
els. To assess generalization performance, the models are
tested on trajectories beyond the training data. These include
circular and lemniscate trajectories of different radii and
speeds. Lastly, to test closed-loop performance, the KNODE-
MPC framework is simulated on circular and lemniscate
trajectories of various radii and speeds and is compared
against both the nominal MPC and GP-MPC frameworks.

Physical Experiments: We use the open-source Crazyflie
2.1 quadrotor [29] as the experimental platform. An image
of a Crazyflie is shown in Fig. 2. The Crazyflie, together
with motion trackers, weighs 32g and has a size of 9 cm?.
The software architecture is developed using the CrazyROS
wrapper [30]. A laptop running on Intel i7 CPU acts as the
base station and communication with the Crazyflie is done
via the Crazyradio PA at an average rate of 500 Hz. To obtain
pose information of the quadrotor, we use a Vicon motion

capture system which communicates with the base station via
a Vicon bridge and publishes at an approximate rate of 98Hz.
Linear velocities are estimated from the positions obtained
from the Vicon, while accelerations and angular velocities
are measured from the accelerometers and gyroscope sensors
on-board the quadrotor. This experimental setup is depicted
in Fig. 2.

To train and validate the KNODE and GP models, data
is collected by flying the Crazyflie with the nominal MPC
framework along circular trajectories of radii 0.5 and Im at
a speed of 0.5m/s, each for a duration of approximately 76
seconds and 39990 data points. We pre-process the linear
velocity data using a fifth order Butterworth low pass filter
before training. Similar to the simulation setup, the nominal,
KNODE-MPC and GP-MPC frameworks are implemented
in CasADi and run on the base station. The KNODE model
in physical experiments uses a one-layer neural network
with 32 hidden units and the hyperbolic tangent activation
function. The GP model in physical experiments uses the
same kernel as the one in simulations and it uses eighty
equally sampled data points for training. The frameworks
generate three-dimensional acceleration commands and run
on top of a geometric controller [17], as well as attitude and
thrust controllers within the Crazyflie firmware. For each of
the three frameworks, we conduct test runs along circular
trajectories of three different radii at a speed of 0.5m/s
to evaluate closed-loop trajectory tracking performance. We
further evaluate velocity generalization performance of the
frameworks by conducting tests at a speed different from
that in the training data. We refer the reader to the video in
the supplemental materials for a better understanding of the
physical experiments.

B. Simulation Results

To establish the accuracy of state predictions, simulations
are conducted along circular and lemniscate trajectories of
different radii, ranging from 2 to 7 meters and across
different commanded speeds from 0.5 to 1.75 m/s. The
3D DTW position errors between the predicted trajectories
and the true trajectory are plotted in Fig. 3. For clarity,
the errors obtained from the KNODE and GP models are
normalized by those from the nominal model. It is observed
from Fig. 3 that both the KNODE and GP models are
able to account for the nonlinear aerodynamic drag effects
included in the true dynamics and provide accurate predic-
tions. Considering an overall median error computed over
all trajectories across different radii and speeds, both models
outperform the nominal model by over 80%. Examining
both circular and lemniscate trajectories, the accuracy of
the KNODE model is higher than that of the GP model,
with a 19.1% improvement in the overall median prediction
error. Although the GP model provides good predictions in
some of the test cases, it has a relatively large variation
across trajectories of different radii, as shown in Fig. 3(c)
and (d). On the other hand, the variation of the accuracy of
the KNODE model is small across trajectories of different
radii and moderate across trajectories of different speeds,
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which suggests that the KNODE model is capable of both
interpolating within and extrapolating outside of its training
domain consistently. For lemniscate trajectories, the KNODE
model outperforms the GP model by 45.5% in terms of
the median prediction errors. As lemniscate trajectories are
geometrically different from the circular trajectories in the
training data, these results further ascertain the generalization
capability of the KNODE model.

Next, closed-loop simulations using nominal MPC,
KNODE-MPC and GP-MPC are conducted along circular
and lemniscate trajectories of different radii and commanded
speeds. Results are plotted in Fig. 4. The trajectory tracking
errors for KNODE-MPC and GP-MPC are normalized by
those obtained with nominal MPC. Compared against nomi-
nal MPC and GP-MPC, KNODE-MPC improves the median
trajectory tracking errors by 60.2% and 67.8%, computed
across all test cases. Although an anomaly is observed
for the trajectory under KNODE-MPC at radius 5Sm and
speed of 1.5m/s, the smaller variation across the remaining
test cases demonstrates the consistency and effectiveness of
the integrated KNODE-MPC framework in the presence of
uncertain dynamics. This further demonstrates the general-
ization capability of the KNODE-MPC framework, since the
models are only trained with data at radii of 3 and 6m, with
a commanded speed of 1m/s. From these results in Fig. 4,
we note that the integration of the GP model described in
Section III-E with MPC does not necessarily yield better
closed-loop performance, even though the open-loop state
predictions are sufficiently accurate, as shown in Fig. 3. On
the other hand, the KNODE model, which is more consistent
in state predictions, provides better closed-loop performance,
upon integration with MPC.

Fig. 5 provides a qualitative comparison between the
closed-loop trajectories under the three frameworks. Since
the model in the nominal MPC framework does not account
for residual or uncertain dynamics, the quadrotor trajectory
deviates from the planned trajectory, with position errors
accumulating over time. On the other hand, the KNODE
model compensates for the residual dynamics and allows

TABLE I
SAMPLE COMPLEXITY OF KNODE-MPC.

Training Data Fraction 1/16 1/8 1/4 172 1
DTW error [%)], radius=3m 102.7 | 76.6 | 63.4 42.0 26.2
DTW error [%)], radius=4m 101.0 | 85.0 | 535 29.5 28.9

Training Time [s] 876 955 1103 | 1426 | 1890

DTW errors [%], normalized against nominal MPC
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Fig. 4. Heat maps of the closed-loop trajectory tracking errors under
the GP-MPC and KNODE-MPC frameworks, along circular and lemniscate
trajectories of different radii and speeds.

the quadrotor to follow the planned trajectory more closely,
while outperforming the GP model.

Additionally, we performed experiments to quantify the
sample efficiency of training the KNODE model in simula-
tion. Five KNODE models are trained on different fractions
of the training data specified in Section IV-A, and the result-
ing models are evaluated for closed-loop DTW trajectory
tracking errors on circular trajectories with radii of both
3m and 4m. The errors are normalized against those from
nominal MPC. Results are shown in Table 1. The errors decay
as the fraction of data used for training approaches 1 for both
radii. Furthermore, it is observed that the training time scales
linearly with the number of training data.

C. Physical Experimental Results

To verify closed-loop performance, all three frameworks,
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Fig. 5. 3D trajectories under the nominal MPC, GP-MPC and KNODE-
MPC frameworks, on a segment of a circular trajectory of radius = 6m and
at a speed of lm/s.



namely nominal MPC, KNODE-MPC and GP-MPC, are
tested in physical experiments. First, the frameworks are
tested with a circular trajectory of radius 0.5m at a speed
of 0.5m/s. This trajectory is part of the training data and
improvements over nominal MPC are to be expected for
both KNODE-MPC and GP-MPC. We conduct 15 runs for
each framework, with a total of 45 runs. Statistics of the
planar DTW trajectory tracking errors are plotted in Fig 6.
The colored bars represent the median across 15 runs for
each framework and the ends of the black error bars denote
the 25" and 75™ percentiles. The results obtained from all
runs are plotted with circles. Comparing the median errors,
we observe a 34.1% improvement for KNODE-MPC over
nominal MPC and 12.4% improvement over GP-MPC.

Next, the generalization ability of KNODE-MPC is inves-
tigated using trajectories beyond its training dataset. Three
test scenarios are considered. For the first two scenarios, the
planned trajectories have radii of 0.3m and 1.25m, which
differ from training trajectories, which have radii of 0.5m and
1m. These trajectories have a commanded speed of 0.5m/s. In
the third scenario, a speed of 0.3m/s is commanded and this
is to investigate generalization in velocity for KNODE-MPC
and GP-MPC. A total of 135 test runs are conducted, fifteen
runs for each framework and for each of the three scenarios.
Fig. 7 depicts the statistics of the planar trajectory tracking
errors for these test runs. KNODE-MPC outperforms nomi-
nal MPC in all three cases with an overall improvement of
21.0%, in terms of the combined median trajectory tracking
error. This combined median error is computed by consid-
ering errors from all 135 runs, which are illustrated with
circles in Fig. 7. Notably, KNODE-MPC also performs better
than GP-MPC across these scenarios by 14.6%, in terms of
the overall median trajectory tracking error. Analyzing the
results for each of these scenarios, it is observed that the
performance of KNODE-MPC is more consistent than that
of GP-MPC. In particular, even though GP-MPC performs
better than nominal MPC for the second and third scenarios,
it performs worse in the first scenario. On the other hand,
KNODE-MPC performs better than nominal MPC under all
three scenarios. The differences in performance improvement
between simulation and physical experimental results can
be attributed to the different control architectures between
the two setups. In particular, the KNODE-MPC framework
in simulations generate control commands to actuate the
quadrotor directly, while in physical experiments, it runs
on top of the geometric controller and low-level controllers
within the firmware, and it does not have direct control over
the quadrotor dynamics.

V. CONCLUSION AND FUTURE WORK

In this work, we presented the KNODE-MPC framework
with an application to quadrotor control. The knowledge-
based, data-driven model, KNODE, provides a more accurate
representation of the system dynamics, as compared to a
state-of-the-art GP model. By incorporating KNODE into the
MPC framework, the predictive controller generates optimal
control commands that yield better closed-loop performance.
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Fig. 6. Performance on training trajectory: Statistics for nominal MPC,
KNODE-MPC and GP-MPC along a circular trajectory of radius 0.5m
across 15 runs for each framework. The top of the bars represent the median
and the ends of the error bars depict the 25" and 75" percentiles. The
trajectory tracking errors for each of the runs are illustrated with circles.
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Fig. 7. Generalization performance: Statistics for the three frameworks
under three scenarios that are used to ascertain generalization ability. For
each of these scenarios, 15 runs were conducted for each framework. The
top of the bars represent the median and the ends of the error bars depict
the 25" and 75" percentiles. The DTW errors for each of the runs are
illustrated with circles.

This framework is tested extensively in simulations and
physical experiments. Results show significant improvements
in terms of state predictions, as well as closed-loop trajectory
tracking. Given its flexibility, the framework can be applied
to robotic systems operating in complex and uncertain en-
vironments such as marine robots or robotic teams. In the
near future, we would like to extend this framework to an
online learning setting, where the KNODE model can be
updated and refined in real-time, which can further improve
the performance of closed-loop control tasks.
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