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Abstract We provide a self-contained introduction to the essential aspects of non-supersymmetric beyond
the standard model (BSM). After a detailed review of the physical meaning of the hierarchy problem, we
introduce the key ingredients of the physics of Goldstone bosons necessary for many non-supersymmetric
new physics models. Next, we discuss the concept of collective symmetry breaking and present the main
elements leading to little Higgs/composite Higgs models. We then turn to extra dimensional theories. After
covering some of the basics of extra dimensional physics, we describe warped extra dimensions and explain
how the AdS/CFT correspondence leads to realistic RS models and the holographic minimal composite
Higgs model.
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1 Introduction: the hierarchy problem and
directions for solving it

The standard model (SM) of particle physics is an
extremely successful theory; it is capable of reproducing
the results of all experiments we have produced to date.
Nevertheless most particle theorists believe that the SM
is not the final theory, and that there should be physics
beyond the SM (BSM) and that physics should not lie
too far from the currently probed energy levels. The
main reason for this lies in the hierarchy problem: the
Higgs field responsible for electroweak symmetry break-
ing (EWSB) in the SM is quadratically sensitive to high
scales. Formally, this appears first as a quadratic diver-
gence in the one-loop contributions to the Higgs mass.
For a Higgs potential of the form

V (H) = −μ2|H|2 + λ|H|4, (1)
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the loops of Fig. 1 will contribute −μ2 → −μ2 + δμ2,
where

δμ2 =
Λ2

32π2

[
−6y2

t +
1
4
(9g2 + 3g′2) + 6λ

]
, (2)

where Λ is the cutoff of the theory (for simplicity
assumed to be universal for the various loops for now),
yt is the top Yukawa coupling, g, g′ are the SU(2) and
U(1) gauge couplings and λ is the Higgs self-coupling.
The minimum of the Higgs potential is at

〈H〉 =
(

0
v√
2

)
, v2 =

μ2

λ

and from the measured values of the W, Z masses we
know v = 246 GeV. Similarly, the physical Higgs mass
is

mh =
√

2λv = 125 GeV,

which implies λ = 0.13 ∼ 1/8. These measured val-
ues of v, λ are the results of the full quantum corrected
potential, which is supposed to include the quadrat-
ically sensitive shift to the mass parameter μ. If Λ �
TeV we would find δμ2 � μ2, giving rise to the so-called
hierarchy problem. The bare potential must be tuned
to cancel off the quantum corrections to get the correct
physical mass parameter, and the problem is worse the
higher the cutoff. In particular a cutoff Λ ∼ 10 TeV
gives rise to the so-called little hierarchy problem, while
a cutoff all the way at the Planck scale Λ ∼ MPl ∼ 1019

GeV would give rise to the big hierarchy problem.
As we have seen, the hierarchy problem is the

quadratic sensitivity of the Higgs mass (and the Higgs
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Fig. 1 The one loop corrections to the Higgs mass parameter in the SM. All three diagrams are quadratically divergent,
leading to the hierarchy problem

VEV) to new physics. The cutoff Λ is a physical mass
threshold where there must be new degrees of free-
dom to explain why the low-energy effective field the-
ory seizes to be the correct description at this scale.
As a corollary, any new mass scale (e.g. new particles
at a high scale) will feed into the Higgs potential at
some point. There are several important points that
we should clarify here regarding the hierarchy problem,
which often causes misunderstandings.

– In the above discussion we have been somewhat cav-
alier with the cut-off scale Λ2. One might worry (and
indeed many people do!) that the hierarchy problem
is merely an artifact of using a crude cut-off regula-
tor. However, those understanding effective theories
well realize quickly that the hierarchy problem is
not at all about various regularization schemes. As
in any good effective theory, Λ in our calculations
is merely standing in for the physical mass thresh-
old at which new heavy particles appear. You can
think of Λ as literally the mass of a new heavy par-
ticle (mNP ), and the “quadratically divergent” con-
tributions to the Higgs mass parameter simply as
log-divergent or finite contribution from the heavy
particle which are proportional to m2

NP . Moreover,
these contributions contain an imaginary part from
the new particle going on-shell, which is physical
and cannot be removed by regulation scheme. Thus,
using dimensional regularization (a scheme where
power law divergences are simply regulated to zero)
is really not a solution of the hierarchy problem.

– The hierarchy problem is really the sensitivity to
new scales. If there is no new scale there really is no
hierarchy problem. However, most physicists believe
that there are at least two issues that will force us to
extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a
Landau pole in the hypercharge gauge coupling at
exponentially large scales.

– For a while, it was popular to play with the idea
that the terms in Eq. (2) actually cancel each other.
This used to be known as the “Veltman condition”,
which would have singled out a very particular value
for the Higgs mass. However, we can easily see that
even if the mass had turned out to be the magical
value (which it did not) this would not have solved
the hierarchy problem. As we discussed in Eq. (2) Λ
is merely a stand-in for the mass of a heavy particle
that will ultimately regulate these loops. However,
this can numerically be different for the three dia-
grams, thus one should really be talking about the
gauge cut-off scale Λg, the fermion cut-off scale Λf

and the Higgs cut-off scale ΛH , which could all be
different by O(1) factors or even more. Thus it is
not really meaningful to talk about a Veltman-like
condition, unless some symmetry ensures that all
these cut-off scales are equal.

– A simple way to phrase the hierarchy problem is the
fact that the Higgs mass term μ2|H|2 is a relevant
operator, which grows towards the IR. The Wilso-
nian formulation of the hierarchy problem then is
that it is difficult to choose a RG trajectory which
in the IR flows to the correct Higgs mass: most tra-
jectories will miss a light physical Higgs mass, and
an immense tuning is needed to hit the right Higgs
mass parameter in the IR. Note, that the Higgs mass
parameter is the only relevant operator in the SM.

– Finally, we should remark that the hierarchy prob-
lem is specific to elementary scalars. The reason is
that fermions and gauge bosons have a new symme-
try appearing in the Lagrangian when the mass goes
to zero. For example for fermion masses in 4D one
has a new chiral symmetry appearing in the m → 0
limit, which will protect the fermion masses from
large unsuppressed corrections, and ensure that the
correction is proportional to the mass itself: Δme ∝
me log Λ

me
. Similarly, for gauge bosons there is an

unbroken gauge symmetry appearing in the MW →
0 limit, which will ensure ΔM2

W ∝ M2
W log Λ

MW
.

The simplest demonstration of the the hierarchy
problem would be to introduce yet another scalar S
(never mind for now that that scalar would have its
own hierarchy problem). Introducing this scalar along
with a quartic coupling with the Higgs

λS |H|2|S|2

will result in a loop correction for the S particle giving
rise to

δμ2 =
λS

16π2

[
Λ2

UV − m2
S log

Λ2
UV

m2
S

+ O(m2
S)

]
. (3)

We can see that even if we drop the Λ2
UV term there will

be an explicit quadratic dependence on m2
S the mass

of the new heavy particle, from log divergent or finite
contributions, which is exactly the hierarchy problem.
This dependence will be there irrespective of how one
regulates this loop. One may wonder if the hierarchy
problem can be avoided by not coupling the new physics
directly to the Higgs scalar. One obvious example would
be to use some heavy fermions that are charged under
the SM but do not directly have a Yukawa coupling with
the Higgs. While one loop corrections are in this case
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Fig. 2 Corrections to the Higgs mass for the case when
new heavy fermions charged under the SM are added

indeed avoided, the quadratic sensitivity to the Higgs
mass will show up at two loops (see Fig. 2):

δμ2 ∝ g4
SM

(16π2)2
m2

Ψ .

By now we should be convinced that the hierarchy
problem is a serious issue which should be resolved one
way or another in a theory more complete than the
SM. The leading approach toward solving it has been
to assume that new physics actually shows up early:
around the TeV scale rather than at the scales where it
ultimately must show its face (like the Planck scale or
the Landau scale) since the required fine-tuning is more
severe the higher the energy scale the issue is addressed.
We will see that the new TeV-scale physics can have a
form that will make the Higgs insensitive to any fur-
ther higher energy scales of new physics. The two most
common choices for the new physics at the TeV scale
that actually makes the Higgs insensitive to high scales
are:

– Supersymmetry. In this case, we introduce a fermion
↔ boson symmetry (“supersymmetry”) which
relates the SM Higgs to its fermionic partner. This
symmetry will ensure that the chiral symmetry of
the fermionic partner also protects the Higgs itself
from quadratic sensitivity to high scales. For an
introduction to supersymmetry see for example [1].

– Composite Higgs [2–8]: there is no true elementary
scalar, rather the Higgs is a bound state of some
more fundamental, strongly interacting fermions.
This idea eliminates the largest part of the quadratic
sensitivity as a form factor shuts off corrections to
the Higgs mass above the compositeness scale Λ,
thus effectively lowering the cutoff to Λ ∼ TeV. It
will be useful for the Higgs to be identified as a
Goldstone boson to ensure that the Higgs is natu-
rally lighter than the strong dynamics.

– Goldstone’s theorem [9]. If a global symmetry is
spontaneously broken, massless scalars, “Gold-
stone bosons” will appear, whose masses will
be protected and remain vanishing by Gold-
stone’s theorem. This will be the crucial idea
used throughout these lectures. While Gold-
stone’s theorem is a universal ingredient in many
of these models, the actual implementation can
be slightly different (though as we will see all of
these models are actually related to each other).

– Warped extra dimensions [10]: in this case the varia-
tion of the fundamental energy scale along the extra
dimension will lead to a solution to the hierarchy
problem. As we will see using the AdS/CFT cor-
respondence this picture is actually dual to that of
a composite Higgs. Just as it was useful to have a
Goldstone composite Higgs, it is important to have
the extra dimensional analogue:

– Gauge–Higgs unification [11–19]: here the scalar
is an extra dimensional component A5 of the the
gauge field. We will see that by the AdS/CFT
correspondence this is the idea that the Higgs
is identified with a Goldstone boson of a sponta-
neously broken global symmetry. The ultimately
most successful and calculable models actually
combine all of these ingredient into what is now
known the holographic minimal composite Higgs
model.

Besides the traditional supersymmetry or composite
Higgs approach there are also more radical ideas for
solving the hierarchy problem which we list here.

– Technicolor/Higgsless models [20–23]. In this case
there is actually no Higgs particle. A condensate of
the strong dynamics directly breaks the electroweak
symmetry. While conceptually one of the most beau-
tiful ideas, it is now clearly disfavored by the dis-
covery of the SM-like Higgs boson. These models
also had difficulty obtaining small corrections to the
electroweak precision observables. Higgsless models
were extra dimensional versions of technicolor using
AdS/CFT, and are more under control as they are
calculable.

– Large extra dimensions [24]. In these models the
weak scale is actually the true fundamental scale
(analogous to MPl) where gravity becomes strongly
interacting, and thus there is no weak-Planck scale
hierarchy problem to begin with. But it does pre-
dict interesting gravity-related phenomena at the
TeV scale like production of mini black holes. The
main drawback of such models is that the radius of
the extra dimensions has to be exponentially larger
than the fundamental length scale, which is hard
to explain in a model with just one fundamental
scale (that is the issue of radius stabilization is now
equivalent to the original hierarchy problem).

– Anthropic explanations in the multiverse [25,26]. A
popular way out of the hierarchy problem is to spec-
ulate that we live in a multiverse of many universes,
where the fundamental constants vary from one uni-
verse to the other. In most universes the Higgs mass
would indeed be very large, but that would also
result in a universe without chemistry and hence
no life. It is no wonder then that we end up liv-
ing in a universe where the Higgs mass is small and
allows us to wonder about possible solutions to the
hierarchy problem. While this approach may indeed
be the correct one, we will likely never know. By
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definition the multiple universes can not be experi-
mentally accessed.

– Relaxion [27] type mechanisms. A very interesting
recent idea is that while the Higgs mass parame-
ter is currently very small, it has not always been
like that in our Universe. A field called the relaxion
has been continuously scanning the possible Higgs
mass as the Universe expanded. When the Higgs
mass square parameter switched sign, electroweak
symmetry breaking happened, which triggered the
end of the rolling of the relaxion and the scanning
of the Higgs mass, leaving us stuck in a seemingly
fine-tuned vacuum.

– There are several other more exotic ideas for solving
the hierarchy problem. For an excellent overview,
see [28].

In these lectures, we will be focusing on the composite
Higgs (CH) solution: it is one of the simplest and most
plausible ones, with very concrete predictions for the
LHC or higher energy colliders. There are many other
excellent reviews on CH models [29–33].

2 Goldstone bosons

Throughout these lectures we will often be identify-
ing the Higgs boson with Goldstone bosons of a spon-
taneously broken global symmetry. Thus it is impor-
tant to first understand the properties of Goldstone
bosons in detail. Goldstone’s theorem tells us that
whenever there is a spontaneously broken global sym-
metry there should be a corresponding massless scalar
field, the Goldstone boson (GB), sometimes called the
Nambu–Goldstone boson (NGB). The physical intu-
ition is pretty simple: due to the global symmetry the
minimum of the potential is either unique (in which case
there is no spontaneous symmetry breaking) or degen-
erate (in which case there is spontaneous symmetry
breaking). In this way, a spontaneously broken global
symmetry ensures the presence of a degenerate valley at
the bottom of the potential (see Fig. 3). The Goldstone
bosons are the fields parametrizing the motion along
this valley. More formally, we would say the the Gold-
stones span the coset G/H. This term is borrowed from
group theory, where the coset G/H marks the group G
with the elements in H identified with the identity. By
Goldstone’s theorem, these fields are exactly massless.
Indeed, because of the vacuum degeneracy, there should
be zero energy cost move along the valley of the poten-
tial implying a vanishing mass term along this direction.
Note that the unbroken generators of the original global
symmetry annihilate the vacuum, while the broken gen-
erators are the ones generating the movement along the
valley of inequivalent vacua. This simple observation
forms the basis of writing effective GB Lagrangians,
also known as chiral perturbation theory (since it was
first developed for the theory of pions, which arise from
the breaking of the SU(2)L × SU(2)R chiral symme-
tries of the strong interactions), or in its most powerful

Fig. 3 Illustration of the Goldstone mode rolling at the
valley at the bottom of the potential

form as the Callan–Coleman–Wess–Zumino (CCWZ)
formalism [34]. Here we will only discuss chiral per-
turbation theory which involves less formalism and is
slightly more intuitive, but once the reader is familiar
with that developing the full CCWZ formulation will
be straightforward.

2.1 Non-linear Goldstone fields

The first important fact about the effective theory for
the GB’s is that it does not matter what the actual
origin of symmetry breaking and the GB’s actually is:
there could be an elementary scalar developing a VEV,
but there could equally well be some strong dynamics
(like QCD) giving rise to a vacuum condensate. For
the effective GB Lagrangian this does not matter. The
heavy degrees of freedom (usually some radial modes,
like the Higgs itself in the SM) are integrated out, and
chiral perturbation theory fixes the effective Lagrangian
for the GB’s only. Where exactly the heavier degrees
of freedom reside will depend on whether the theory is
coupled strongly or weakly. As we will see for a strongly
interacting theory the heavy degrees of freedom are all
expected to lie at the cutoff scale of the theory. If the
heavy degrees of freedom are weakly coupled, they can
appear far below the cutoff. This will play an important
role in composite Higgs models and we will discuss this
issue in detail.

Let us now explicitly identify the lowest term in the
chiral Lagrangian. We assume that the global symmetry
G is spontaneously broken to H by some VEV Σ0 (the
exact origin of Σ0 does not matter). The NGBs are
conveniently parameterized in the NGB matrix:

UNGB = eiΠa(x)T a/f , (4)

where the index a labels broken generators, f is the
pion decay constant determined by the magnitude of
the VEV Σ0, and the ratio Πa/f can be interpreted
as the angle of transformation in the broken direction.
This matrix acts on the VEV Σ0 to rotate it along the
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broken directions:

Σ = UNGB [Σ0] . (5)

The exact way that UNGB acts on the VEV depends on
it is representation under the global symmetry G. For
example:

Σ = UNGB [Σ0] = UNGB Σ0 for Σ0 in the fundamental ,

Σ = UNGB [Σ0] = U†
NGB Σ0 UNGB for Σ0 in the adjoint .

(6)

The simplest example that can illustrate this is QCD
and the chiral Lagrangian. The QCD Lagrangian in
terms of quarks is of course well known:

LQCD = −1
4
Ga

μνGa μν +
∑

i

q̄i(i /D − mq)qi . (7)

The most important aspect for us from this Lagrangian
is that in the mq → 0 limit the theory has a chiral
global symmetry G = SU(3)L × SU(3)R (the classical
global symmetry is even larger U(3)L × U(3)R, one of
the two additional U(1)’s is baryon number, while the
axial U(1) is anomalous). While the QCD Lagrangian is
usually written in terms of 4-component Dirac fermions,
for the purpose of understanding the symmetries it is
better to think of it in terms of 2 component Weyl
spinors.1 A Dirac spinor can be written as

Ψ =
(

χ
ψ̄

)

where χ is a left handed (LH) and ψ̄ a right-handed
(RH) 2-component Weyl spinor. Since the conjugate of
a RH spinor is a LH one we can immediately see that
χ, ψ are both two-component LH spinors, with χ trans-
forming as 3 and ψ as 3̄ of SU(3)QCD. In this language
the fermionic Lagrangian can be written as

Ψ̄(i /D − m)Ψ = iψ†
α̇σ̄μα̇αDμψα + iχ†

α̇σ̄μα̇αDμχα

−m(ψαχα + h.c.). (8)

In this last form, the appearance of the chiral symme-
tries in the m → 0 limit is pretty straightforward to see:
since it is only the mass term connection χ and ψ in the
massless limit, we have the independent rotations

ψ → ψ U†
R, χ → UL χ

leaving the Lagrangian invariant where UL,R are inde-
pendent 3 by 3 unitary matrices. Since the resulting
SU(3)L×SU(3)R global symmetry is physical it should
be realized on the spectrum of QCD (i.e. the compos-
ites should form multiplets of the full SU(3)L×SU(3)R

1 For a review of 2 component spinors, see [35].

symmetry). However, only one SU(3) is actually real-
ized on the spectrum, which is Gell-Mann’s SU(3)V

leading to the eightfold way [36]. Hence we conclude
that the dynamics of QCD must be breaking the
SU(3)L × SU(3)R → SU(3)V by forming a quark con-
densate as a result of the strong dynamics:

〈q̄q〉 = 〈q̄LiqRj + h.c.〉 ∝ δijΛ
3
QCD .

This structure of the condensate will ensure that
SU(3)V remains unbroken, while SU(3)A is broken,
resulting in 8 GB’s, forming the pseudo-scalar octet
π± ,0,K±,K0, K̄0 and η. However they are not true
Goldstone bosons: the SU(3)A axial symmetry is exact
only in the mq → 0 limit. For finite quark masses there
will be small explicit breaking terms which will ren-
der the octet to be pseudo-Nambu–Goldstone bosons
(pNGBs) rather than true Goldstone bosons, lifting the
masses of the pions and the other members of the octet.

How do the electroweak gauge interactions fit into
this picture? The SU(2)L × U(1)Y electroweak gauge
symmetry can be embedded into the chiral global sym-
metries of the strong interactions: SU(2)L × U(1)Y ⊂
SU(3)L × SU(3)R × U(1)B . Clearly SU(2)L can just
be identified with the upper left two by two corner
of SU(3)L, which will transform the (uL, dL) quarks
into each other. Incorporating the strange quark is
slightly more complicated since as we know (cL, sL)
also form an SU(2)L doublet, but the charm mass is
large mc > ΛQCD and hence it is integrated out from
the low-energy effective theory. The proper description
would be to start with four quarks and an SU(4)L

chiral symmetry, embed the SU(2)L weak interactions
twice into this SU(4), then turn on a large charm quark
mass and integrate it out before confinement and chiral
symmetry breaking is implemented. We will not follow
through this procedure explicitly, but instead focus on
the SU(2)L subgroup of SU(3)L. Similarly, hypercharge
can be embedded into the chiral symmetries as

Y = TR3 +
B

2
.

As the electroweak symmetries are weakly gauged, they
also explicitly break the global symmetries of QCD (and
hence split the charged and neutral pion masses).

2.2 The low-energy effective Lagrangian for QCD

Let us now proceed and start explicitly constructing
the effective Lagrangian for QCD. Since the conden-
sate breaking the global symmetries 〈q̄q〉 is a bidoublet
under SU(3)L × SU(3)R we will take for Σ0 a bifunda-
mental VEV

Σ0 = f

(1
1

1

)

and act on this VEV with the broken global symme-
tries. A bifundamental transforms generically as Σ0 →
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ULΣ0U
†
R. Of course for us Σ0 is a constant, and it will

be left invariant for UL = UR, that is the vector-like
SU(3)V transformations of Gell-Mann. On the other
hand the axial elements can be identified by UR = U†

L,
leading to the non-linearly realized pion field

Σ(x) = eiΠaT a/fΣ0eiΠaT a/f = e2iΠaT a/f , (9)

where Πa(x) is now the Goldstone boson field identified
with the members of the pseudo-scalar octet of QCD.
How do the pions transform under the unbroken and
the broken global symmetries? Let us first look at the
case of the unbroken symmetries:

Σ(x) → UV Σ(x)U†
V .

Linearizing Σ(x) in the pion fields, we find

ΠaT a → UV ΠaT a U†
V (10)

yielding the usual linearly realized transformation of
an adjoint under SU(3)V . However, under the broken
symmetries the transformation will turn out to be non-
linear! For this case

Σ(x) → UA Σ(x)UA = e2iΠ′
aT a/f (11)

The broken transformations can be themselves written
as UA = eicaT a

where the ca are the global transforma-
tion parameters. Expanding both sides in powers of the
pion field (as well as powers of the gauge transformation
parameter) we find

Πa′T a = ΠaT a + fcaT a + O(Πa)2. (12)

This is a very important equation which tells us that

– To leading order the pions have a shift symmetry
Πa → Πa+fca. This provides another simple proof
of Goldstone’s theorem, since the shift symmetry
forbids any non-derivative terms, in particular mass
terms or any potential.

– The pions transform non-linearly under the axial
rotation.

We are now ready to construct the leading order
Lagrangian for the interacting pion fields. We will sim-
ply write down all the terms in Σ(x) that are sym-
metric under the entire SU(3)L × SU(3)R global sym-
metry, including both unbroken and broken ones. Since
we are looking for a low-energy effective Lagrangian, we
will organize them by the number of derivatives. The
simplest term would contain no derivatives, and there
is a unique invariant one can form: TrΣ†Σ, however
this term is obviously just the trace of the unit matrix
and independent of the Goldstone fields. The first non-
trivial term contains 2 derivatives and is

f2

4
Tr[(∂μΣ)†∂μΣ], (13)

where the overall coefficient has been fixed such that
one obtains a canonical kinetic term for the pions. Every
term will contain two derivatives and an arbitrary num-
ber of pions once the exponential is expanded. This will
give the leading pion interaction terms in the p/f → 0
limit. Besides the pion kinetic terms it will contain 4-
pion interactions terms with two derivatives contribu-
tion to π − π scattering and higher order terms with
more pions:

L = Tr[∂μΠ∂μΠ] +
4
f2

Tr[∂μΠ∂μΠΠ2] + O(Π6),

(14)

where Π = ΠaT a and we assumed the normalization
of the generators Tr T aT b = 1

2δab.

2.3 Gauging EW symmetry and dynamical gauge
boson masses

We can now weakly gauge the electroweak gauge group,
by simply promoting the ordinary derivatives to covari-
ant derivatives ∂μ → Dμ, defined as

( ) ( )
Dμ = ∂μ − ig W a

μ −ig′ Bμ
τa/2 1

6 · 1 .

(15)
In the above definition, the τa are the standard Pauli
matrices. An important side effect of the chiral symme-
try breaking SU(3)L × SU(3)R → SU(3)V is that it
also breaks electroweak symmetry! We can see this eas-
ily from the chiral Lagrangian: the Σ field will contain
a term independent of the pions Σ = 1 + · · · ; hence,
the covariant derivative will contain terms linear in the
gauge fields:

DμΣ ⊂ −i
g

2
W a

μ τa − i
g′

6
Bμ; (16)

hence, the Lagrangian will contain the gauge boson
mass terms

f2

4
Tr[(DμΣ)†DμΣ] ⊃ g2f2

4
W+

μ Wμ−

+
g2 + g′2

4
f2 1

2
ZμZμ . (17)

The expressions obtained for the gauge bosons masses
just like those from the ordinary SM Higgs mechanism,
except v is replaced by the pion decay constant f . A
simple way to convince yourself that the gauge boson
indeed has become massive is to examine the fate of
the Goldstone bosons. In addition to the gauge boson
mass terms (17) also contains a derivative mixing term
between the pions and the gauge bosons:

g

2
f W+

μ ∂μΠ− + h.c. (18)
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Fig. 4 The full propagator is obtained by summing the 1PI contributions

which is also the term that explains most easily the
measured decay width of the charged pions to μ + νμ,
and can be used to fix the pion decay constant fπ ∼
130 MeV. This mixing will also contribute to the W
propagator and shift the location of the pole in the W
propagator from 0 to g2f2/4. One way to think of the
Lagrangian for the W boson is to say that it is linearly
coupled to weak currents made out of quarks:

LW = W+
μ Jμ − + h.c., (19)

and the W propagator iΠμν(q) is nothing but the
current-current two-point function

iΠμν(q) = 〈J+
μ (q)J−

ν (−q)〉 = i

(
ημν − qμqν

q2

)
Π(q2),

(20)

where the function Π(q2) encodes the effect of the
strong dynamics. The full W propagator can be
obtained from summing up the 1PI contributions (see
Fig. 4)

Δμν =
−i

q2 − g2Π(q2)

(
ημν − qμqν

q2

)
, (21)

hence shifting the mass of the W boson to g2Π(0). We
know that the charged current generates the charged
pions

〈0|J+
ν |Π−(p)〉 =

ifpμ√
2

(22)

implying that Π(q2) = f2

2 .

2.4 Explicit breaking

Next we discuss the effects of explicit breaking and how
to incorporate them into the chiral Lagrangian. One
source for explicit breaking are the charges of the quarks
(that is the fact that the electromagnetic charges of the
quarks are not uniform but different for up vs. down
and strange). The charge matrix is given by

Q =

⎛
⎝

2
3 − 1

3 − 1
3

⎞
⎠ (23)

in the (u, d, s) basis for the quarks. We will use this
quark charge matrix as a spurion: we imagine that

there was a field Q that transformed as a bifundamen-
tal under the SU(3)L × SU(3)R global symmetry, and
try to write down invariants under the full symmetry
including the spurion. For example we can write the
term:2

ΔL = e2Tr[QΣ†QΣ], (24)

where the presence of the overall e2 factor follows from
the observation that this term must vanish for e → 0
(in other words Q must always appear together with a
factor of e). At this point we can freeze the spurion Q to
its VEV diag(2

3 ,− 1
3 ,− 1

3 ) which will yield a mass contri-
bution to the charged pions (but not the neutral ones)
and hence explain the observed charged-neutral pion
mass splittings. The exact same story can be repeated
for the quark masses. The quark mass matrix is numer-
ically given by

M =

(
mu

md

ms

)
(25)

but we first promote it to a spurion transforming as a
bi-fundamental under SU(3)L × SU(3)R. The leading
operator in this case is

ΔL = μ3Tr
[
M

(
Σ + Σ†)]

= μ3Tr

[(
M

f
ΠaT a

)2
]

+ · · · , (26)

where μ is a fixed dimensionful constant. This provides
a shift to the pion mass squares of the form

Δm2
π ∝ μ3 mq

f2
(27)

yielding the famous Gell–Mann–Okubo mass formula

m2
η + m2

π = 4m2
K (28)

for mu � md 
 ms.

2 From the point of view of the symmetries one could also
write the term Tr QΣ, but investigating the electromagnetic
contributions we can quickly convince ourselves that every
term must contain at least two Q insertions, as a conse-
quence of electromagnetic gauge invariance.
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2.5 NDA and the cutoff scale

An essential part of every EFT, including non-linearly
realized Goldstone Lagrangians is its cutoff Λ. Since it
is a non-renormalizable theory the best way to make
sense of it is to assume that there is a region of validity
for the theory characterized by the cutoff scale Λ. This
is the scale where we definitely expect new particles to
show up, and generically this is also the scale that cuts
off the radiative corrections to the Higgs potential. The
simplest method for estimating the size of the cutoff
scale is called naive dimensional analysis (NDA). In this
method we assume that all couplings are O(4π), and get
an upper limit on how large the cutoff scale could be.

The cutoff is determined to be the energy scale
in which the divergent loop corrections become as
large as the tree level ones. For example in the chiral
Lagrangian, the 4-point pion–pion interaction vertex is
of the form

Π2(∂Π)2

f2
→ p2

f2
vertex. (29)

The 4-point vertex allows us to write a loop term, and
we are looking for Λ for which

≈p2

f2
p2

f2
p2

f2

We have then

p2

f2
≈ 1

f4

1
16π2

∫
d4k

(k2)2
k2p2 ∼ p2Λ2

16π2f4
=

(
Λ

4πf

)2
p2

f2
.

(30)

We can see that the requirement that the one loop result
be at most as large as the original tree-level vertex will
limit the size of the cutoff to

Λ <∼ 4πf. (31)

The scale Λ is the physical scale where new particles
have to appear (to be more precise this is an upper
bound, new particles could also show up earlier). It is
also the actual cutoff of the purely strongly coupled the-
ory, where the interactions among the composites are
also strongly coupled, g∗ ∼ 4π. This is called the NDA
limit, the limit when (31) is saturated. However, new
particles could also show up earlier than the maximal
scale Λ. This happens, when the interaction strength
of some of the composites is actually not so strong,
g∗ < 4π. We expect these particles to show up at a
lower scale

mρ = g∗f . (32)

In particular, g∗ ∼ 1 means that some of the composites
are actually weakly coupled, and the mρ scale is actu-
ally f . This means that there will be new particles that
can be used to cut off the quadratic divergences before
reaching the full cutoff scale. As we will see these will be
the so-called top partner and spin 1 partner particles.

Similarly, one can perform NDA for a generic term in
the effective Goldstone Lagrangian. The rules are the
following:

– Every Goldstone field will have a 1/f suppression
(arising from expanding the exponential eiΠaT a/f ).

– The remaining dimensions are made up by the ρ
mass scale mρ = g∗f . Thus the two dimensionless
quantities are x ≡ Π

f = g∗ Π
mρ

and y ≡ ∂
mρ

.
– We start with a dimensionless function of x, y to give

L̃(x, y), from which we get a dimension 4 Lagrangian
m4

ρL̃(x, y).
– The kinetic terms obtained using this rule are

m4
ρy

2x2 = g2
∗(∂Π)2. Thus the entire Lagrangian

needs to be rescaled by 1/g2
∗.

For example, a quartic two-derivative coupling would
be estimated at 1

g2∗
m4

ρ
∂2

m2
ρ

Π4

f4 = (∂Π)2Π2

f2 as we saw
from the explicit expansion for the chiral Lagrangian. A
non-derivative tree-level quartic would be estimated at
1
g2∗

m4
ρg

4
∗

Π4

m4
ρ

= g2
∗Π4. If it is loop induced, NDA will give

its size at g2
∗

16π2 Π4. These will be the two basic magni-
tudes of quartics generically showing up in pNGB Higgs
models.

2.6 Towards a composite Higgs model

We are now ready to start constructing models with
dynamical electroweak symmetry breaking. The sim-
plest idea is to mimic the story already happening in
QCD, where the strong dynamics breaks the global
symmetries as SU(3)L×SU(3)R → SU(3)V , except the
symmetry breaking scale is too low. One can instead
choose a group with strong dynamics that has chi-
ral symmetry breaking patters SU(2)L × SU(2)R →
SU(2)V and a much higher dynamical scale ΛTC giv-
ing rise to a condensate 〈q̄q〉 = Λ3

TC. This is the
main idea of technicolor models, where all formulae
discussed above will be rescaled via ΛQCD → ΛTC.
The SU(2)L × SU(2)R → SU(2)V breaking will pro-
duce 3 GBs which are the minimal number to pro-
vide for the longitudinal degrees of freedom of W±, Z.
In such minimal TC models there is no additional
light particle, in particular no light Higgs boson would
appear. The symmetry breaking pattern is similar in
higgsless models, the main difference is that the higgs-
less models are weakly coupled and calculable. Since
the physical Higgs boson has been discovered in 2012,
TC and higgsless models are no longer viable options.
The next simplest possibility is for the strong dynam-
ics to not directly break the electroweak symmetry,
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but rather produce a light composite Higgs among the
generic heavier composite states. In this case the hier-
archy problem would be solved since there would be
no true elementary scalars. However in generic (bona
fide) strongly coupled theories the composite Higgs is
expected to appear at Λstrong, or at most a loop fac-
tor below, at Λstrong/(4π). If we could take Λstrong ∼ 1
TeV there would be no problem. However, in generic
theories with a strong scale at 1 TeV one would expect
a very diverse spectrum of new particles BSM showing
up at 1 TeV. There are two problem with this: first the
LHC has not (yet) observed any new particles, with sev-
eral typical bounds well above 1 TeV. Second, generic
new particles interacting under the SM gauge symme-
tries will give large corrections to electroweak preci-
sion observables (essentially higher dimensional oper-
ators suppressed by 1/Λ2). The LEP experiments at
CERN have strongly constrained such corrections, with
the conclusion that generic suppression scales should be
more like Λstrong

>∼ 5 − 10 TeV. However, in this case,
the expected size of the Higgs mass would be around
10 TeV/(4π) ∼ 1 TeV. This would still leave a tuning
of about

(
125 GeV
1 TeV

)2

∼ 1% (33)

This percent level tuning is generically called the little
hierarchy problem of generic composite Higgs models.
To reduce the Higgs mass from 1 to 125 GeV we will
assume that it is Goldstone boson. The next sections
will explore on how to implement the pNGB Higgs idea
as part of the composite Higgs models and obtain real-
istic models of this sort.

3 Little Higgs models and collective
symmetry breaking

In this section, we will review the mechanism called
collective symmetry breaking [37–39], and show how
it can lower the effective cutoff to the Higgs radiative

potential. For other reviews of little Higgs models and
collective symmetry breaking, see [40,41]. As in the last
section, we consider a sector with some strong dynamics
which confines at a scale Λ. The strongly coupled sector
has some global symmetry G, which is spontaneously
broken to a subgroup H by the confining dynamics
at the scale Λ. The Higgs is then among the Nambu–
Goldstone bosons (NGBs) in the coset G/H [2–8]. By
Goldstone’s theorem, NGBs have only derivative cou-
plings and no mass or quartic. However, there is one
more key element in the construction: the original G is
not exact, but rather an approximate global symmetry.
Another way to say it is that G is explicitly bro-
ken. The explicit breaking of G makes the Higgs not
an exact NGB but rather a pseudo-Nambu–Goldstone
boson (pNGB) by generating a mass and a quartic term
for it. The problem is that the loop-induced mass term
is generically large since it is quadratically divergent.
However, the quadratic divergence can be eliminated in
scenarios which exhibit collective symmetry breaking.

To illustrate the idea of collective symmetry break-
ing, we will focus on a model called “The Simplest Little
Higgs” [42]. In this model we consider a strongly cou-
pled sector with a G = SU(3) global symmetry, broken
to the subgroup H = SU(2) at the scale Λ. The first
thing we can do is count the number of broken genera-
tors, which by Goldstone’s theorem equals the number
of NGBs:

NNGB = (32 − 1) − (22 − 1) = 5. (34)

We can represent these NGBs graphically by looking at
a generic SU(3) matrix and splitting it to the unbroken
SU(2) part, and the NGB part:

(35)
Every generator that has non-zero elements in one of

the blue parts is a broken generator, while generators
that only have nonzero elements in the red part are
unbroken. The broken SU(3) generators in this case
are λ4,...,8, and we can represent the NGBs as

(36)
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where the index â represents broken SU(3) generators
only. In the above equation,

H ≡ 1√
2

(
h1 + ih2

h3 + ih4

)
(37)

is the SM SU(2)L Higgs doublet. As stated above, the
SU(3) symmetry must be explicitly broken to get a
Higgs potential. This is achieved by the gauging of an
SU(2) subgroup. Gauging only a subgroup of a global
symmetry explicitly breaks the symmetry—in partic-
ular the gauge bosons only transform under the sub-
group. Note that the SU(2) subgroup does not gener-
ically coincide with the subgroup H = SU(2) that
survives the spontaneous breaking at Λ. The explicit
breaking generates a potential for the (p)NGBs arising
from loops of SU(2) gauge bosons. We can parameter-
ize this potential by writing a nlσm. The nlσm field is
defined as

Σ = UNGB

( 0
0
f

)
=

⎛
⎝

f − H†H
2f

⎞
⎠ + η dependent and higher order terms,iH (38)

where we remember that H is a complex doublet. The
leading-order nlσm Lagrangian is simply

Lnlσm = (Dμ Σ)† (Dμ Σ) , (39)

where Dμ is the gauged SU(2) covariant derivative

(40)

Expanding this Lagrangian in terms of H, we get

Lnlσm = |DμH|2
(

1 +
H†H
f2

+ · · ·
)

, (41)

where

DμH =
(
∂μ − i

g

2
W a

μ τa
)

H. (42)

The SU(2) gauge bosons W explicitly break the global
SU(3) invariance via interactions of the type |gWμh|2.
At the one loop level, these generate a quadratic con-
tribution to the Higgs potential:

H H H H+

W
W ∝ 3g2

64π2 Λ2 H†H + . . . (43)

The quadratic divergence generated by the gauging of
SU(2) should not come as a surprise. After all, the
interaction with the SU(2) gauge bosons is similar to
the SM, where the gauge quantum corrections con-
tribute all the way up to the cutoff. We seem to have
come full circle then: first the Higgs was an NGB in the
coset G/H, with zero potential due to the shift sym-
metry protecting NGBs. Then we broke the original G
symmetry, but unfortunately got the quadratic diver-
gences back. Have we achieved anything?

To understand better what is going on, let us calcu-
late the Higgs potential in a more systematic way. The
first step is to extract the term quadratic in W from
the Lagrangian Eq. (41):

Lnlσm � | g Σ|2 = M2(H)ab W a
μW bμ,

( )
Wμ

(44)

where

M2(H)ab = g2

4 Σ† Σ

( )
τaτ b (45)

is a Higgs dependent mass matrix for Wμ, which
we wrote in terms of an SU(3)-breaking spurion P .
From this term we can compute the Coleman-Weinberg
potential [43] for the Higgs due to radiative corrections
from the gauge bosons. This potential is given by the
formula:

VCW(H) =
Λ2

16π2
Tr

[
M2

ab

]
︸ ︷︷ ︸

Quadratically div. term

+
3

64π2
Tr

{
M4

ab log
[
M2

ab

Λ2

]}
︸ ︷︷ ︸

Log div. + finite term

. (46)

We see that the Higgs potential is quadratically diver-
gent because M†M is not ∝ 1. In other words,

VCW(H) =
3g2Λ2

64π2
Σ† P Σ =

3g2Λ2

64π2
H†H, (47)
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where P is an SU(3) breaking spurion

P =

( 1 0 0
0 1 0
0 0 0

)
. (48)

Note that if not for the spurion P , the quadratic diver-
gence would be proportional to Σ†Σ which is indepen-
dent of H.

Our next idea to get rid of the quadratic divergence is
to get rid of the spurion P in Eq. (47) by simply gauging
the entire SU(3) instead of just an SU(2) subgroup. In
this case the symmetry is no longer explicitly broken
because the gauge bosons come in a complete adjoint of
SU(3). Accordingly, the quadratic divergence becomes

VCW(H) =
g2Λ2

12π2
Tr

[
Σ† Σ

]
, (49)

which is independent of h. However, there is one
major problem in this scenario: there are now addi-
tional SU(3) gauge bosons that become massive due
to the SU(3)/SU(2) spontaneous breaking. Unfortu-
nately, that means that the would-have-been Higgs is
now “eaten” by these additional gauge bosons—there is
no longer a physical scalar in the theory to break elec-
troweak symmetry. We somehow need a better solution,
one which preserves a global SU(3) symmetry but also
has an uneaten scalar.

This reasoning leads us to the third, and final ver-
sion of our story. Consider a strongly interacting sec-
tor with a global symmetry which is not SU(3), but a
larger SU(3) × SU(3). The strong sector confines at Λ,
breaking the global symmetry to SU(2) × SU(2).

We can parameterize this breaking by not one, but
two nlσm fields Σ1 and Σ2, in the first and second
SU(3)/SU(2) coset, respectively,

Σ1 ≡ ei π1/
√

2f

( 0
0
f

)
, Σ2 ≡ ei π2/

√
2f

( 0
0
f

)
,

(50)

where we have taken f1 = f2 = f for simplicity. Addi-
tionally, we break the SU(3)×SU(3) explicitly by gaug-
ing only the diagonal subgroup SU(3)D. In terms of the
nlσm fields the nonlinear Lagrangian is

Lnlσm = |Dμ Σ1|2 + |Dμ Σ2|2, (51)

where Dμ is now the SU(3)D covariant derivative.
Because we gauged the entire SU(3)D, there is no
SU(3) breaking spurion in the Lagrangian.

What about the physical Higgs? This time we started
with SU(3) × SU(3) spontaneously broken to SU(2) ×
SU(2), with

NNGB = 2(32 − 1) − 2(22 − 1) = 10, (52)

out of which (32 −1)−(22 −1) = 5 were eaten by heavy
gauge bosons, leaving us with an uneaten complex dou-
blet H ∝ π1 −π2 and a real scalar η. For its potential,
we obtain the leading quadratically divergent piece

VCW(H) =
Λ2

16π2

{
Tr

[
Σ†

1 Σ1

]
+ Tr

[
Σ†

2 Σ2

]}
,

(53)

which is again independent of the NGBs.
We see that the problem has been solved, at least

on a technical level. There is a physical Higgs and no
quadratic divergence in the Higgs potential. The deeper
reason for this cancellation is called collective break-
ing.

3.1 Collective breaking

To illustrate the concept of collective breaking, we will
study the quadratic part of the nlσm Lagrangian

Lnlσm � |g Wμ Σ1|2 + |g Wμ Σ2|2. (54)

Let us analyze the symmetries of this Lagrangian.
Both terms are present because the diagonal group
SU(3)D is gauged. Note that the existence of a gauge
SU(3)D symmetry also indicates the existence of a
global SU(3)D, symmetry under which

Σ1 → eiαaT a

Σ1, Σ2 → eiαaT a

Σ2,

Wμ → eiαaT a

Wμe−iαaT a

. (55)

Both Σ1, Σ2 must rotate with the same transformation
angles αa as Wμ such that Eq. (54) is invariant.

Now we reach the key part of our analysis: what
would the symmetry be if only the first term of Eq. (54)
was present? That case would correspond to having a
gauge SU(3) symmetry, and also an SU(3) global sym-
metry, i.e. there is an overall SU(3) × SU(3) global
symmetry:

Σ1 → eiαa
1T a

Σ1, Σ2 → eiαa
2T a

Σ2,

Wμ → eiαa
1T a

Wμe−iαa
1T a

, (56)

where α1,2 are independent SU(3) rotation parameters.
Since the second term is absent, we are free to do rota-
tions on Σ2 that are independent of the rotations on
Σ1,Wμ. The same is true if only the second term was
present in Eq. (54), this time with an SU(3) × SU(3)
under which

Σ1 → eiαa
1T a

Σ1, Σ2 → eiαa
2T a

Σ2,

Wμ → eiαa
2T a

Wμe−iαa
2T a

. (57)

We have seen that each term in Eq. (54) separately
conserves an extended SU(3) × SU(3) symmetry, and
only in the presence of both terms, the global symmetry
is reduced to SU(3)D. In other words, the symmetry is
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collectively broken in the presence of the two terms:
if only one of the two terms were present, we would
have a full SU(3) × SU(3)/SU(2) × SU(2) of exact
NGBs, out of which an SU(3)/SU(2) worth is eaten
by the gauged SU(3), leaving us with exactly massless
NGBs in the coset SU(3)/SU(2) (the Higgs included).
In particular, the SU(3) gauge bosons cannot generate
a potential to the NGBs by Goldstone’s theorem—i.e.
any radiative correction that only involves one of the
terms in Eq. (54) has to be exactly zero.

What happens then in the full picture, when both
terms in Eq. (54) are included? In that case we still
have an SU(3)/SU(2) coset of uneaten bosons, but this
time they are only pNGBS of the SU(3)×SU(3) with is
explicitly broken to the diagonal SU(3)D. However, we
now have an important insight into the radiative correc-
tions to the potential of the pNGBs: it only involves dia-
grams that combine both terms in Eq. (54), for exam-
ple,

Σ†
1

Σ1

Σ†
2

Σ2

∝
∣∣∣Σ†

1Σ2

∣∣∣2 g4

16π2 log
[

Λ2

μ2

]
.

(58)
The way to understand this diagram is by expanding
Σ1,2 in terms of H, so that some of the terms in the
expansion are quadratic in H. By simple power count-
ing, diagrams involving both terms are only logarith-
mically divergent, because they contain one more prop-
agator than the would be quadratically divergent dia-
grams Eq. (62), which are independent of H by the
collective breaking argument. We see that the leading
SU(3) × SU(3) breaking invariant is

∣∣∣Σ†
1Σ2

∣∣∣2 ∼ f2 − 2H†H + · · · (59)

and so the dominant contribution to the Higgs mass
is ∼ g4

16π2 log
[

Λ2

μ2

]
. For f ∼ 1TeV, we get m2

h ∼
(100GeV)2, which is in the right ballpark.

The one question that remains is: what exactly can-
cels the SM gauge boson quadratic contributions? To
understand that, note that our SM SU(2)L gauge sym-
metry is now embedded in a larger gauge symme-
try, SU(3)D. After the spontaneous breaking SU(3)2/
SU(2)2, the 3 SM SU(2)L gauge bosons remain mass-
less, while the extra 5 gauge bosons get masses pro-
portional to f . Let us introduce some notation. We
denote the SM (isospin) SU(2)L gauge bosons W±,3

μ .
The extra gauge bosons are then denoted X±

μ , Y 1,2
μ ,

and A8
μ. These fields are embedded in the adjoint of

SU(3) as
⎛
⎝ W+ X+

W− Y 1 + iY 2

X− Y 1 − iY 2

⎞
⎠

+W 3, A8 on the diagonal. (60)

In terms of these fields, the nlσm Lagrangian is

Lnlσm =
∣∣(∂μ − igW a

μT a
)
Σ1,2

∣∣2 =

=
g2

4
H†H

[
2W+

μ W−μ + W 3
μW 3μ

−X+
μ X−μ − 1

2
(
Y 1

μ Y 1μ + Y 2
μ Y 2μ

) − A3
μA3μ

]
.

(61)

The would be quadratically divergent contributions
from the gauge bosons are

H H H H+

W
W (62)

but the quartic contributions from all of the gauge
bosons cancel. In the first diagram, for example,

g2

64π2
Λ2 H†H

⎡
⎣ 2︸︷︷︸

W ±

+ 1︸︷︷︸
W 3

− 1︸︷︷︸
X±

− 1︸︷︷︸
Y 1,2

− 1︸︷︷︸
A8

⎤
⎦ = 0.

(63)

A similar cancellation occurs for the second diagram in
Eq. (62), and so we are left with no quadratic diver-
gences. This of course had to be true by the collec-
tive symmetry argument. A notable feature of collective
symmetry breaking that is evident here is that the can-
cellation happens between same-spin partners (in this
case spin-1). This is in contrast with Supersymmetry,
where the cancellation happens between opposite-spin
partners. A similar cancellation happens in the fermion
sector, as we will now see.

3.2 The fermion sector

We have seen how collective breaking can eliminate
the quadratic correction to the Higgs potential arising
from the gauge sector. However, the most dominant SM
quadratic corrections to the Higgs potential come from
the fermion sector, more specifically from the top quark
due to its large Yukawa coupling. Carrying over the les-
son we have learned form the gauge boson case, we have
to introduce top partners in multiplets of the global
symmetry. We will begin by introducing top partners in
the (3,1)+(1,3) of SU(3)×SU(3), from which we keep
only the degrees of freedom in the diagonal SU(3)D
part. Keeping only a part of the full multiplet consti-
tutes an explicit breaking of SU(3)×SU(3) → SU(3)D.
This is in direct analogy to the gauge boson case, where
only SU(3)D was gauged. The 3 of SU(3)D contains the
SM QL = (t, b) SU(2)L doublet plus an additional top
partner T :

Ψ =

(
tL
bL

TL

)
≡

(
QL

TL

)
. (64)
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In addition, we have two right handed t1,2 in the 1 of
SU(3)D. The fermion sector of the nlσm Lagrangian is
then

Ltop = λ1Ψ̄Σ1t1 + λ2Ψ̄Σ2t2. (65)

Generically, λ1 �= λ2 but we will set them equal
for simplicity, and the symmetries allow for mixing
between t1, t2, t1Σ1, etc. But we can rotate these away
with unitary transformations. We can check that this
Lagrangian exhibits collective breaking in a very simi-
lar manner to Eq. (54). In the presence of both terms,
the overall global symmetry is SU(3)D. However, if
one of the terms is turned off, the symmetry of the
above Lagrangian is enhanced to SU(3)×SU(3) where
Σ1,2 can rotate differently. The radiative corrections
contributing to the Higgs potential must involve both
terms in Eq. (65), and the quadratic divergences cancel.
Let us verify this cancellation explicitly. Expanding the
Lagrangian in H, we find

Ltop =
λ√
2

[(
Q̄L, T̄L

) (
iH

f − H†H
2f

)
t1

+
(
Q̄L, T̄L

) ( −iH

f − H†H
2f

)
t2

]
, (66)

or in the mass basis

Ltop = λQ̄LHtR + λf

(
1 − H†H

2f2

)
T̄LTR, (67)

with tR = i√
2

(t1 − t2) , TR = 1√
2

(t1 + t2). We get the
SM top Yukawa and a heavy top partner T of mass
λf . It is this top partner that cancels the top quadratic
divergences to the Higgs potential. This time, the can-
cellation is between two different diagrams:

h h h h+

t

λ λ

T×λf

−λ/f (68)

We see that the quadratic divergences cancel out, leav-
ing a finite piece of order 3λ

16π2 (λf)2. By collective
breaking, the leading divergence has to come from a
diagram that involves both terms in Eq. (65). As usual
it is convenient to write a diagram for the nlσm fields
which, when expanded, becomes a contribution to the
Higgs mass. The resultis

Σ1 Σ2

Σ†
1

Σ†
2

Ψ

Ψ

t1

t2

∝
∣
∣
∣Σ

†
1Σ2

∣
∣
∣

2
λ4

16π2 log
[

Λ2

μ2

]

,

(69)
which is only a log divergent contribution to the Higgs
potential

λ4

16π2
log

[
Λ2

μ2

]
H†H. (70)

This concludes our survey of the collective breaking and
cancellation of quadratic divergences in the “Simplest
Little Higgs” [42].

3.3 Other versions of little Higgs models

3.3.1 The littlest Higgs

The littlest Higgs [39] is an example of a model with
collective symmetry breaking which is not based on a
product group (such as SU(3) × SU(3) in the simplest
little Higgs). In this model the Higgs is a pNGB in
the coset SU(5)/SO(5). A quick counting of generators
gives

NNGB = (52 − 1) − 5 (5 − 1)
2

= 14. (71)

In contrast with the simplest little Higgs, where the
SU(3) → SU(2) breaking was triggered by a funda-
mental, the SU(5) → SO(5) breaking is triggered by a
VEV of the form

Σ0 = f

( 0 0 1
0 1 0
1 0 0

)
, (72)

where 1 are 2 × 2 unit matrices (Σ0 is a 5 × 5 matrix).
To parameterize our pNGBs in an SU(5) matrix, we
note that as usual
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(73)

where for simplicity we only include the Higgs complex
doublet and a complex triplet φ. We will soon see that
the other 4 NGBs are eaten by gauge bosons, so we omit
them here. The SU(5)/SO(5) coset is then parameter-
ized by

Σ = UNGB Σ0 U†
NGB. (74)

In addition to the spontaneous SU(5)/SO(5) break-
ing, we also break the SU(5) explicitly by gauging an
[SU(2) × U(1)]2 subgroup, comprising of the genera-
tors:

Qa
1 =

(
σa/2 0 0

0 0 0
0 0 0

)
, Qa

2 =

(0 0 0
0 0 0
0 0 −σa∗/2

)

Y1 =
1
10

diag (3, 3,−2,−2,−2) ,

Y2 =
1
10

diag (2, 2, 2,−3,−3) . (75)

This explicit breaking results in the NGBs becoming
pNGBs. The nlσm Lagrangian is in this case

Lnlσm =
1
4
|Dμ Σ|2, (76)

where the covariant derivative for Σ in the adjoint of
the [SU(2) × U(1)]2 is given by

Dμ Σ = ∂μ − ig1,2 W 1,2;a
μ

{
Qa

1,2, Σ
}

− ig′
1,2 B1,2

μ {Y1,2, Σ} , (77)

where g1,2, g
′
1,2 are the [SU(2) × U(1)]2 gauge cou-

plings. Unsurprisingly, the spontaneous SU(5)/SO(5)
breaking results in the breaking of the [SU(2) × U(1)]2

to SU(2)×U(1), as can be seen by expanding Eq. (76).
One combination of the [SU(2) × U(1)]2 gauge bosons
“eats” 4 of the 14 pNGBs and becomes massive, while

the other remains massless as well as the SM SU(2) ×
U(1) gauge bosons. These combinations are given by

(
Wμ

W ′
μ

)
=

(− cos α sinα
− sin α − cos α

)(
W 1

μ

W 2
μ

)
,

(
Bμ

B′
μ

)
=

(− cos α′ sin α′
− sin α′ − cos α′

)(
B1

μ

B2
μ

)
,

(78)

with tanα = g2/g1 and tanα′ = g′
2/g′

1. This pattern of
symmetry breaking leads to collective breaking, which
can be seen as follows. When g2, g

′
2 → 0 in Eq. (76),

the unbroken SU(5) generators are the ones commuting
with Qa

1 , Y1. These live in the lower-right corner of

AdjSU(5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

SU(2)×
U(1)

SU(3)

, (79)

and constitute an SU(2)×U(1)×SU(3) global symme-
try. The SU(3) part of this symmetry protects the Higgs
from corrections just like in the simplest little Higgs.
When all g1,2, g

′
1,2 are present, the unbroken SU(5)

generators are the ones commuting with Qa
1,2, Y1,2, i.e.,

[SU(2) × U(1)]2. There is no SU(3) global symmetry,
and the Higgs is not protected. Consequently, we expect
all the gauge boson contributions to the Higgs potential
to depend both on g1,2 and on g′

1,2. Indeed, expanding
Eq. (76) in H we get

Lnlσm =
1
4

H†H [g1g2W
1
μW 2;μ + g′

1g
′
2B

1
μB2;μ] + · · ·

(80)

The important thing to notice is that there are only off
diagonal couplings between W 1

μ and W 2
μ and similarly
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for B1,2
μ . This leads to the softening of the gauge con-

tribution to the Higgs potential since there is no way
to close a loop with just a single gauge boson. In the
mass eigenbasis, this becomes:

Lnlσm =
1

4
H†H[g2(WμW μ − W ′

μW
′μ − 2 cot 2α W ′

μW μ)

+ term for B] + · · · (81)

It is then easy to see that the quadratic divergences
cancel

H H H H
+

W W ′

g2 −g2

= 0.

(82)
A similar cancellation happens for B and B′. The lead-
ing divergence involves the mixed W ′

μWμ and B′
μBμ

terms in Eq. (82), but these are only give rise to log
divergences.

The fermion sector of the model is not very differ-
ent from the simplest little Higgs. We embed the left-
handed doublet QL in an SU(3) triplet

Ψ̄ =
(
t̄L, b̄L, T̄L

) ≡ (
Q̄L, T̄L

)
. (83)

In terms of this multiplet, the effective SU(3) invariant
Lagrangian is:

Ltop = −λ1f

2
Ψ̄i εijkεmnΣjm Σkn t1 − λ2f T̄L t2 ,

(84)

where i, j, k ∈ [1, 2, 3] and m,n ∈ [4, 5]. The resulting
Higgs couplings and collective breaking is similar to the
simplest little Higgs case.

The novel part in the littlest Higgs is the emergence of
an O(1) quartic self coupling for the Higgs. This sounds
impossible at first, since we know that the Higgs is a
pNGB and its tree level potential should vanish, and the
radiative corrections are one-loop suppressed. The solu-
tion to this conundrum is that the quartic is both radia-
tively generated but still O(1), which is known as a col-
lective quartic. To see this, consider the quadratically
divergent gauge boson contribution to the Coleman–
Weinberg potential for H and φ. We know from collec-
tive breaking that this should not depend on H.

V quad
CW (H,φ)

= a
Λ2

16π2
f2

∑
j=1,2

{
g2

j

∑
a

Tr
[
Qa

j ΣQb∗
j Σ∗]

+g′2
jTr

[
YjΣY ∗

j Σ∗]
}

, (85)

with a a model dependent O(1) coefficient. Expanding
in H and Φ, we get

V quad
CW (H, φ) = af2

{
(

g21 + g′2
1

)
∣
∣
∣
∣
φij +

i

4f
(HiHj + HjHi)

∣
∣
∣
∣

2

+
(

g22 + g′2
2

)
∣
∣
∣
∣
φij − i

4f
(HiHj + HjHi)

∣
∣
∣
∣

2
}

,

(86)

where we have used Λ ∼ 4πf . As expected, the
quadratic divergence cancels for H. However, there is
still a quadratically divergent mass term for φ and also a
quadratically divergent Hφφ coupling. Below Mφ ∼ af ,
we can integrate φ out and get a quartic term for the
Higgs:

λ = a

(
g2
1 + g′2

1

)(
g2
2 + g′2

2

)
g2
1 + g′2

1 + g2
2 + g′2

2

. (87)

The alert reader might notice two main qualities of the
above quartic: (1) it is O(1) and (2) it is collective, in
the sense that it is nonzero only when both terms exist
in Eq. (86). The fact that the quartic is O(g2) might
come as a surprise, after all we are used to quartic cou-
plings arising at loop level. But notice that the quartic
is due to a tree level φ exchange

H

H

H

H

Φ

,

(88)

where Mφ ∼ f and cφHH ∼ f is the coupling. The
fermion sector in this model contributes a similar,
O(g2) collective quartic.

Summing up, the Higgs potential in the model is of
the form

V (H) =

⎡

⎢
⎢
⎢
⎣
−3y2

t M2
T

8π2
log

(
Λ2

M2
T

)

︸ ︷︷ ︸

top

+
3

64π2

(

3g2M2
W ′ log

(
Λ2

M2
W ′

)

+ g′2M2
B′ log

(
Λ2

M2
B′

))

︸ ︷︷ ︸

gauge

+
λ

16π2
M2

φ log

(

Λ2

M2
φ

)

︸ ︷︷ ︸

scalar

⎤

⎥
⎥
⎥
⎥
⎦

|H|2 + λ|H|4, (89)

where MT ,MW ′,B′ and Mφ are the masses of the top
partners, gauge partners, and heavy pNGB, respec-
tively. The scalar contribution comes from Higgs loops,
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and is cut at the Mφ. For a rough estimate of the nat-
uralness in this model, we can keep only the dominant
contribution due to top loops. The potential is then
roughly

V (H) = −g2
SMM2

T

16π2
log

(
Λ2

M2
T

)
|H|2 + O(1) g2

SM |H|4,
(90)

where gSM represents a generic SM weak coupling. Min-
imizing the potential provides us with a natural VEV
v ∼ MT

4π = O (100GeV). This is a beautiful example of
a fully natural electroweak symmetry breaking model,
where the separation between the scales v and f is auto-
matic. Ironically this same mechanism leads also to a
prediction for a rather heavy Higgs in this model:

mh =
√

2λv ∼
√

2gSMv ∼ 200–300GeV. (91)

The origin of the heaviness of the Higgs is the large
tree-level Higgs quartic (which is exactly also the rea-
son behind the fully natural EWSB potential). To
obtain the experimentally measured mh = 125GeV,
the parameters of the model have to be slightly tuned
to reduce the quartic (but then one also has to further
reduce the quadratic term to maintain the separation
between v and f).

3.3.2 The minimal composite Higgs model

In the previous sections we’ve seen how little Higgs
models predict top and gauge partners around the com-
positeness scale times their interaction strength g∗f .
This is generically in tension with electroweak preci-
sion observables, e.g. S and T parameters. The more
constraining of the two, the T-parameter, is the exper-
imental fact that:

ρ ≡ M2
W

M2
Z cos2 θW

≈ 1, (92)

to within 1%. In little Higgs models, the top and gauge
partners generate radiative corrections to the gauge
boson masses which violate this relation. In the absence
of any protective symmetry, these unwanted correc-
tions push the compositeness scale f to the multi-
TeV regime, making the model unnatural. The mini-
mal Composite Higgs (MCH) model [44] (which was
inspired by [45]) and related models [46] greatly reduce
the tension with electroweak constraints. They do this
by incorporating a global symmetry known as custo-
dial symmetry.

Custodial symmetry is a way to protect the T -
parameter from correction involving the top and gauge
partners. The S -parameter is not protected, but it is
also far less constraining than the T -parameter. To
illustrate how custodial symmetry works, let us look

at the SM Higgs sector:

LH = −μ2|H|2 + λ|H|4. (93)

Ignoring gauge symmetry and Yukawa couplings for the
moment, we see that the Higgs potential is invariant
under an SU(2)L × SU(2)R global symmetry, under
which:

(iτ2H
∗,H) → UL (iτ2H

∗,H) U†
R, (94)

where UL ∈ SU(2)L, UR ∈ SU(2)R.
This symmetry is unbroken even when the gauging of

SU(2)L is taken into account. In fact, under the global
SU(2)R, the W± and Z bosons transform as a triplet,
which ensures that MW = MZ . This relation is modi-
fied at tree level due to the gauging of U(1)Y ∈ SU(2)R,
which explicitly breaks SU(2)R and yields ρ = 1 at tree
level. The difference between the up-type and down-
type Yukawa couplings also breaks SU(2)R, but this
breaking only leads to loop level corrections to Eq. (92).

This quick illustration of custodial symmetry in the
standard model makes it clear how to protect the
T-parameter in composite Higgs models: all we have
to do is make sure that the new physics introduced
respects SU(2)R. This is exactly what happens in the
MCH models. The global symmetry is these models is
SO(5) × U(1), spontaneously broken to SO(4) × U(1),
so that the Higgs is a pNGB in the coset SO(5)/SO(4)
(for other possible cosets, see [30,47]). The counting of
broken generators is

NNGB =
5 (5 − 1)

2
− 4 (4 − 1)

2
= 4. (95)

Exactly the right number of broken generators to make
up the Higgs doublet H. The important thing to notice
is that SO(4) ∼= SU(2)L × SU(2)R, so the Higgs sector
in this type of model is custodially symmetric. Under
SU(2)L ×SU(2)R, the Higgs transforms as a bi-doublet
(2,2). The nlσm field is then

Σ = ei
√

2
f πâT â

(0, 0, 0, 0, f)T

=
sin h

f

f

(
h1, h2, h3, h4, h cot

h

f

)T

, (96)

where h ≡ √
haha. The nlσm Lagrangian is as usual

Lnlσm =
1
2
(Dμ Σ)† (Dμ Σ) , (97)
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where Dμ is the gauged SU(2)×U(1) covariant deriva-
tive

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Dμ =∂μ − ig W a
μ −ig′ Bμ

τa/2

τa/2

1
6 · 1

2
3 · 1 .

(98)

Expanding the nlσm Lagrangian in the gauge fields,
we get

Lgauge

=
f2

8
sin2 h

f

(
g′2BμBν + g2W 3

μW 2
ν − 2gg′W 3

μBν

+2g2W+
μ W−

ν

) (
ημν − qμqν

q2

)
. (99)

Setting v ≡ f sin 〈h〉
f where v = 246 GeV and 〈h〉 is the

actual physical Higgs VEV, we get the right W and Z
masses.

The appearance of the sin h
f might seem strange at

first, but note that it is an essential part in the descrip-
tion of the Higgs as a pNGB in any coset, including
the SO(5)/SO(4) case of the MCH.3 We can think of
the NGBs in a G/H coset as just the set of rotation
angles connecting different vacua that break G but pre-
serve H. In this way, pNGBs always enter the nlσm
Lagrangian inside trigonometric functions. In fact, the
nlσm fields in the little Higgs, Eqs. (38, 72) also depend
on the pNGBS through trigonometric functions. All we
did before was expand these functions to second order.

A direct consequence of the fact the the Higgs only
enters the Lagrangian through sin h

f is a modification of
Higgs couplings with respect to their SM values. This
is a general prediction in composite Higgs models. To
see this, note the following expansion:

f2 sin2 h

f
= f2

[
sin2 〈h〉

f
+

(
2 sin

〈h〉
f

cos
〈h〉
f

)
h

f

+
(

1 − 2 sin2 〈h〉
f

)
h2

f2
+ · · ·

]
, (100)

which by our definition of v becomes

v2 + 2v
√

1 − ξ h + (1 − 2ξ) h2 + · · · (101)

with ξ ≡ v2

f2 . Using this expansion in Eq. (99), we see
that the Higgs-gauge boson couplings aremodified:

3 We could write the non-linear fields in the LH models
using trigonometric functions as well, there we simply chose
to expand those functions to lowest powers in h

f
to follow

the literature.

gV V h = gSM
V V h

√
1 − ξ, gV V hh = gSM

V V hh (1 − 2ξ) .

(102)

These couplings will be experimentally measured to
within 10% at the high-luminosity LHC and to within
1% at the ILC, providing bounds on v/f . The current
leading bound on v/f comes from the S parameter [48,
49]: f > 3v.

Another important thing to note is the absence of
gauge partners in the Lagrangian Eq. (99), which makes
the Higgs potential quadratically divergent. However,
the fact that the gauge partners our missing from
Eq. (99) does not mean that they are absent in the
model. In fact, Eq. (99) should be taken as the effec-
tive action below the gauge partner mass. The gauge
partners enter at a scale ∼ g∗f in complete SO(5) mul-
tiplets, and cut the quadratic divergences in a similar
way to little Higgs models. One can write a collective
symmetry breaking argument in this case based on a
two- or three-site model [50,51].

The more general way of writing the effective
Lagrangian Eq. (99) is to allow for generic momen-
tum dependent form factors, to account for the effect of
integrating out composite degrees of freedom below the
compositeness scale g∗f . These form factors reflect the
fact that the gauge bosons are partially composite—
their nonlocal substructure is encoded in the form fac-
tors for momenta � f . These are similar in spirit to
the momentum dependent factors that arise in the chi-
ral Lagrangian for pions below ΛQCD. In terms of these
the Lagrangian is

Lgauge =
1

2
P μν

T B

[(

ΠX
0 (q2) + Π0(q

2) +
sin2 h

f

4
Π1(q

2)

)

BμBν

+

(

Π0(q
2) +

sin2 h
f

4
Π1(q

2)

)

W a
μ W a

ν

+2 sin2 h

f
Π1(q

2)H† T a
L Y H W a

μ Bν

]

. (103)

One can also interpret the solution of the hierarchy
problem being due to the softening of the divergences
due to the form factors appearing in this expression.
This is very similar to the way the pion mass correc-
tions in the SM are cut off by the ρ mass mρ ∼ gρfπ:
in order for the pion to couple to the elementary pho-
ton, it first has to mix with the composite ρ, resulting
in the form factor softening the correction to the pion
mass. Similarly in these models, the elementary SM top
couples to the Higgs via the mixing with the composite
top partners, which will lead to the form factors soften-
ing the UV behavior of the corrections to the mass (in
effect cutting them off at the scale of the top partner
mass).

The formula for the Coleman–Weinberg potential in
the presence of these momentum dependent form fac-
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tors is given by

VCW(h) =
9
2

∫
d4q

(2π)4
log

[
1 +

1
4

Π1(q2)
Π0(q2)

sin2 h

f

]
.

(104)

The composite substructure encoded in the form fac-
tors for p � f damps the integrand, making the inte-
gral UV finite. In the next section we will show how to
calculate the form factors exactly in an equivalent five-
dimensional setting. The UV finiteness will be clearer
from that perspective.

3.4 Partial compositeness

Previously, when discussing the fermion sector of the
littlest Higgs, we contended to take the top to be in
an SU(3) triplet, even though the composite sector
was invariant under a larger SU(5) global symmetry.
Clearly, our choice to include only a fraction of an
SU(5) multiplet is in need of some UV completion. In
composite Higgs models, there is an easy way to do
that, called partial compositeness [52–56].

The idea behind partial compositeness is to separate
the spontaneous G/H breaking from the explicit break-
ing of G due to partial gauging and incomplete fermion
multiplets. In the partial compositeness picture there
are two sectors: the composite sector and the elemen-
tary sector. In the composite sector, composite reso-
nances come in complete G multiplets. In the MCH, for
example, the left handed tops can come in the OL = 5
of SO(5), while the right handed top can be in the
OR = 1 of SO(5). These multiplets are split due to the
spontaneous SO(5)/SO(4) breaking. In the elemen-
tary sector, states come in SU(2)L ×U(1)Y represen-
tations, for example, in ΨL = 2 1

3
and ΨR = 1 4

3
, since

the elementary sector does not know about the SO(5)
of the composite sector.

The Lagrangian of the model can then be written as
[50]

LCH = Lelementary + Lcomposite + Lmix . (105)

In the equation above Lelementary is a Lagrangian
involving the elementary fields ΨL, ΨR. These fields
are charged under an (SU(3)) × SU(2)L × U(1) gauge
symmetry. On the other hand, Lcomposite is a nlσm
Lagrangian involving complete SO(5) multiplets OL,
OR and the nlσm field Σ. The third term in Eq. (105)
is a linear mixing term

Lmix = f Ψ̄LλL OL + f Ψ̄RλR OR , (106)

where λLR are spurions that break SO(5) × [
SU(2) ×

U(1)
]

to the diagonal SU(2) × U(1). For every ele-
mentary state that couples to a composite state, there
are two mass eigenstates. The heavy of the two is at
the compositeness scale f , while the light one is sim-
ply the corresponding SM fermion. In this way, the SM

fermions are partially composite. Heuristically, we can
write the mass and Yukawa terms in Eq. (105) as fol-
lows:

f Ψ̄LλL OL + f ŌRλRΨR︸ ︷︷ ︸
Lmix

+ML ŌL OL + MR ŌR OR + Y ŌL H OR︸ ︷︷ ︸
Lcomposite

.

(107)

Rotating to the mass basis, we have

(
Ψ̄SM

L

Ψ̄H
L

)
=

(
1 −fL

fL 1

)(
Ψ̄L

ŌL

)
,

(
ΨSM

R

ΨH
R

)
=

(
1 −fR

fR 1

)(
ΨR

OR

)
, (108)

with fL ∼ λLf
ML

and fR ∼ λRf
MR

, and we assume ML,R �
λL,Rf . Substituting back in Eq. (107), we get massless
SM fermions Ψ̄SM

L , ΨSM
R with a Yukawa coupling

y Ψ̄SM
L H ΨR, (109)

with y = fL Y fR. Generalizing this to include down-
type fermions and three generations, we get:

yu
ij = fq

im Y u
mn fu

nj

yd
ij = fq

im Y d
mn fd

nj , (110)

where fq = diag (fq
1 , fq

2 , fq
3 ) and similarly for fu,d. The

attractive feature of partial compositeness is that it
allows for flavor structure in the SM Yukawa matri-
ces yu, yd even when the original composite couplings
Y u, Y d are O(1). This is called anarchic flavor.
To accommodate this possibility, the mixing matrices
fq,u,d have to be hierarchical. This can happen, for
example due to a large anomalous dimension:

fq,u,d
i (ΛC) ∼ fq,u,d

i (ΛF )
(

ΛC

ΛF

)dq,u,d
i − 5

2

. (111)

By approximately diagonalizing the SM Yukawa
matrices yu,d, we can infer the CKM structure for anar-
chic flavor from the fq,u,d hierarchy. Up to O(1) num-
bers, we have

yu,d = fq Y u,d fu,d ≡ Lu,d yu,d
diag R†

u,d, (112)

with

yu,d
diag ∼ diag

(
fq
1 fu,d

1 , fq
2 fu,d

2 , fq
3 fu,d

3

)

Lu
ij ∼ Ld

ij ∼ min

(
fq

i

fq
j

,
fq

j

fq
i

)

123



Eur. Phys. J. Spec. Top. (2022) 231:1229–1264 1247

Ru,d
ij ∼ min

(
fu,d

i

fu,d
j

,
fu,d

j

fu,d
i

)
. (113)

If we set

fq
1

fq
2

∼ λ,
fq
2

fq
3

∼ λ2,
fq
1

fq
3

∼ λ3, (114)

where λ ∼ 0.22 is the Cabbibo angle, we get the phe-
nomenologically viable structure for the CKM matrix
and mass hierarchy

VCKM = Lu L†
d, mu,d

i ∼ fq
i fu,d

i v . (115)

Note that to get an O(1) Yukawa coupling for the top,
we need large mixing

fq,u,d
3 =

λq,u,d
3 f√(

λq,u,d
3

)2

+ M2
T

∼ O(1), (116)

where this time we did not take the limit MT � λf .
In composite models we have MT = gΨ f , where gΨ <
4π is the (dimensionless) interaction strength among
composite fermions. We see that to get a large mixing,
we need gΨ 
 4π, i.e. top partners that are much lighter
than the cutoff of our nlσm:

MT 
 Λ = 4πf. (117)

If we take the cutoff to be 10TeV, we could have top
partners as light as 1.5–2 TeV.

3.5 RS-GIM mechanism

All composite and little Higgs models reviewed here
predict composite gauge partners which cut the
quadratic divergences to the Higgs potential. But the
existence of these heavy gauge partners is severely con-
strained by the experimental bounds on flavor violation.
For example, a composite Z ′ could mediate tree level
ΔF = 2 flavor changing neutral currents (FCNC)
through the following s-channel exchange:

d

s̄

s

d̄

d s

s̄ d̄

Z ′
Z ′+

(118)
At energies lower than the mass of the gauge part-

ners, we can express the flavor violation through dimen-
sion 6 operators such as

C4K (s̄ γμ d)
(
d̄ γμ s

)
, (119)

where

C4K ∼ A4K

g2
ρ

M2
ρ

, (120)

where A4K is a dimensionless coefficient and mρ and
gρ ∼ O(1) are the mass and dimensionless coupling
strength among the composite vectors. The stringent
constraints from K − K̄ mixing and other flavor vio-
lating process severely constrain the coefficients C4K

to be hierarchically small, for example |Re C4K | <
3.6 × 10−9 TeV. In generic models with heavy vectors
and an anarchic flavor structure, we would expect A4K

to be O(1), and so mρ � 3 × 104 TeV. This is clearly a
disaster for any LHC phenomenology, and also means
O(105) tuning in the Higgs potential. In composite
Higgs models the situation is different, as the coupling
to the composite vector resonances also involve the mix-
ing parameters fq,u,d. In fact, this creates an approxi-
mate alignment between the Yukawa matrices and the
couplings to the composite vectors. Consequently:

A4K ∼ fd†
1 fq

2 fq†
1 fd

2 ∼ O(10−4) , (121)

and so composite Higgs models with anarchic flavor can
accommodate composite vectors at ∼ 20TeV [57]. The
same alignment comes into play with all other ΔF = 1
and ΔF = 2 flavor bounds. This mechanism is called
RS-GIM [56], as it was first discovered in the context of
Randall-Sundrum models [10] and it suppresses FCNCs
similar to the GIM mechanism in the SM.

3.6 More about the MCH model

The minimal composite Higgs model [44,58] is a spe-
cific implementation of the composite Higgs idea with
a global symmetry SO(5) × U(1)X , broken to SO(4) ×
U(1)X at a scale f . The pattern of symmetry break-
ing uniquely determines the gauge partner sector of the
model. In the fermion sector, however, there are many
different choices of SO(5) representations to use for par-
tial compositeness. On possibility is:

Ltop = λq q̄L Oq + λu ūR Ou + λd d̄R Od , (122)

with Oq , Ou and Od in the 5− 2
3

, 5− 2
3

and 10− 2
3

of
SO(5)×U(1)X . Under the low energy SU(2)L×SU(2)R

these multiplets decompose as:

5 → (2,2) + (1,1) , 10 → (2,2) + (1,3) + (3,1) .

(123)

These include the SM qL , tR , bR, as well as other top
and bottom partners with masses ∼ gΨf . Other options
for the composite multiplets are discussed in [44,57–
60]. We know from collective symmetry breaking that
the combined contribution of all of these to the Higgs
potential is free from quadratic divergences. In fact, we
will soon encounter an extra-dimensional realization of
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composite Higgs in which even the log divergences can-
cel out, leaving a Higgs potential which is strictly finite.

An additional thing to note is that the SO(5)/SO(4)
coset contains only the Higgs and no additional pNGBs.
Consequently, there cannot be a collective quartic in the
MCH. The Higgs quartic only arises at loop level due
to interactions with the SM top and gauge bosons. This
has important phenomenological implications that we
will see momentarily.

3.7 The Higgs potential in the littlest Higgs vs. the
MCH

The typical Higgs potential has the form

V (H) ∼ −μ2 |H|2 + λ |H|4 . (124)

In both the littlest Higgs and the MCH the quadratic
and quartic couplings are loop-induced. The quadratic
term in both models scales like

μ2 ∼ g2
SMf2

g2
ψ

16π2
. (125)

The quartics the two models are different:

λLH ∼ g2
SM, λMCH ∼ g2

SM

g2
ψ

16π2
. (126)

This is a major difference between these two models. In
the Littlest Higgs the VEV is suppressed with respect
to the compositeness scale v ∼ f

4π and the Higgs mass
is naturally heavy mh ∼ √

2gSMv. In the MCH, the
Higgs mass is naturally light mh ∼ gψ

4π

√
2gSMv, but the

VEV is naturally v = f , which is unacceptable since
electroweak precision constraints demand f > 3v. By
playing with the dimensionless parameters of the model
we can always get f > 3v, but this comes at the cost of
an v2

f2 tuning.
In the next section, we will study a concrete, cal-

culable realization of composite Higgs as a warped 5D
model [44,45]. This realization draws inspiration from
AdS/CFT, but is not necessarily based on it.

4 Extra dimensions

Geometries with extra compact dimensions provide a
calculable framework for studying BSM physics, includ-
ing many of the ideas we have already discussed in a
4D context. As we will see, the geometry of the extra
dimension can be responsible for solving the hierarchy
problem. Alternatively, we could take another point of
view in which the extra dimension is a tool which allows
us to perform weakly coupled calculations that are dual
to a 4D strongly coupled field theory as a consequence
of holography and AdS/CFT duality. In this section,

we will develop the necessary machinery to do calcula-
tions in extra dimensions and review some of the most
interesting results. For complementary introductions to
extra dimensions see [32,61–69]

Throughout the rest of this paper, we will consider
d extra compact spatial dimensions such that the total
number of spacetime dimensions is D = 4 + d with
the (+,−, . . . ,−) signature. We will use Roman letters,
e.g. M , N , to enumerate the full D-dimensional space-
time indices. Greek letters will be used to denote ordi-
nary 4D spacetime coordinates. The spacetime interval
is given by

ds2 = gMNdxMdxN (127)

where in a flat spacetime background the metric can be
written as

gMN =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1

−1
−1

. . .
−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (128)

For now we will focus on flat backgrounds, although
later warped gravitation backgrounds will play an
important role in addressing the hierarchy problem.

4.1 KK decomposition

As a first step, we must review how to construct a 4D
effective theory from a fundamental Lagrangian with
extra dimensions. Kaluza–Klein (KK) decomposi-
tion [70,71], which is essentially a normal mode expan-
sion, converts a (4 + d)-dimensional Lagrangian into a
4D Lagrangian with an infinite spectrum of 4D parti-
cles. To perform the dimensional reduction, we must
integrate out the extra dimensions by putting the bulk
part of the fields on their equation of motion (EOM)
and then integrate over the d extra dimensions.

As a concrete example, let’s focus on the case of a
free real scalar with one extra dimension (d = 1) com-
pactified on a circle of radius R. For simplicity, we take
the scalar potential to be absent. The action takes the
form

S =
∫

d4xdy
1
2
∂Mφ(x, y)∂Mφ(x, y) (129)

=
∫

d4xdy
1
2

[
(∂μφ)2 − (∂yφ)2

]
(130)

with M = 0, 1, 2, 3, 5 and x5 = y. Variation of this
action leads to the bulk EOM for φ

∂2
μφ − ∂2

yφ = 0 (131)

which, given the factorizable geometry and the peri-
odic boundary conditions for φ, is separable and

123



Eur. Phys. J. Spec. Top. (2022) 231:1229–1264 1249

admits a periodic solution of the form φ(x, y) =
1√
2πR

∑∞
n=−∞ φ(n)(x)ei n

R y with φ(n)∗ = φ(−n) to guar-
antee φ is real. Substitution of this ansatz back into
Eq. 130 and use of the orthogonality relations for
Fourier modes yields the effective action

S =
∫

d4x
∑
n>0

∂μφ(n)†∂μφ(n) − n2

R2
|φ(n)|2. (132)

The main point is that in the 4D effective theory each
5D field corresponds to a KK tower of particles with
masses mn = n/R. The momentum along the compact
direction is quantized by the boundary conditions, and
its spectrum appears as a 4D tower of particles. The
generalization to more dimensions (e.g. a torus) is sim-
ple:

m2
n5,n6... = m2

0 +
n2

5

R2
5

+
n2

6

R2
6

+ · · · , (133)

where m2
0 would arise if we had included a 5D mass

term for the scalar.

4.2 Gauge fields in extra dimensions

Now we wish to study theories with gauge fields which
propagate in the extra dimension. We will focus on
an abelian gauge theory, although the generalization
to non-abelian theories is straightforward. Gauge fields
must still be periodic in y, so we can apply KK decom-
position to the gauge sector

AM (x, y) =
1√
2πR

∞∑
n=−∞

An
Mei n

R y (134)

with the one complication being that the 5D vector
decomposes as a 4D vector Aμ and a 4D scalar A5 under
4D Poincare transformations:

(135)
After KK expansion, the action contains the follow-

ing quadratic part

Sgauge =

∫

d4xdy − 1

4
FMNF MN

=

∫

d4x
∑

n

[

−1

4
F (−n)

μν F (n)μν (136)

+
1

2

(

∂μA
(−n)
5 − ∂5A

(−n)
μ

) (

∂μA
(n)
5 − ∂5A

(n)μ
)]

,

(137)

where FMN = ∂MAN −∂NAM . In the last line, there is
mixing between A

(n)
μ and A

(n)
5 (absent for n = 0 since

A
(0)
μ is flat) which suggests that A

(n)
5 is eaten by A

(n)
μ

in order for the KK vectors to become massive. In fact,
the mixing can be removed by moving to the 5D axial
gauge (defined by the gauge transformation parameter
α(z) = − ∫

A5dy):

A(n)
μ → A(n)

μ − i

n/R
∂μA

(n)
5 A

(n)
5 → 0 (138)

which for n �= 0 removes A
(n�=0)
5 from the action.

The 4D effective action becomes

S =
∫

d4x

[
−1

4
(F (0)

μν )2 +
1
2
(∂μA

(0)
5 )2

+
∑
n≥1

2
(

−1
4
F (−n)

μν F (n)μν +
1
2

n2

R2
A(−n)

μ A(n)μ

)⎤
⎦

(139)

which contains one massless zero-mode gauge boson,
one zero mode A

(0)
5 scalar, and a tower of massive

A
(n�=0)
μ . The KK excitations of the A5 scalar are unphys-

ical: they were eaten so that A
(n�=0)
μ could become mas-

sive.
For a (4 + d)-dimensional theory, the 5D vector

decomposes as again a 4D vector Aμ with additional
scalars A5, . . . , A4+d:

(140)
In this case, one linear combination of the A5, . . . ,

A4+d towers is eaten by the KK tower of Aμ, while the
remaining combinations lead to (d − 1) scalar towers.

We can also consider the degrees of freedom aris-
ing from the higher dimensional graviton. The metric
is a D × D symmetric tensor with D(D + 1)/2 inde-
pendent components. However, general relativity has
D dimensional general coordinate invariance, requiring
2D conditions to fix the the gauge. Thus the (4 + d)-
dimensional graviton has D(D−3)/2 = (d+4)(d+1)/2
physical degrees of freedom. Therefore, the graviton will
contain additional DOFs in addition to the ordinary 4D
graviton with 2 helicity states.

The massless 4D graviton and its KK modes live in
the upper 4 by 4 block of the metric tensor.

(141)
The tensor additionally contains d vectors Aμj and

d(d + 1)/2 scalars φij . However, in order for the KK
tower of gravitons to become massive (5 helicity states),
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they must eat one gauge boson tower and one scalar
tower (5 = 2 + 2 + 1). This leaves us with d − 1 gauge
boson towers which each must eat a scalar KK tower to
become massive. Finally, we are left over with d(d−1)/2
uneaten scalar towers.

4.3 Matching of 5D and 4D couplings

The dimensions of fields and couplings depend on the
number of spacetime dimensions. The simplest example
is a scalar in (4+d)-dimensions. Focusing on the kinetic
term, we can learn the classical dimension of the field
from the requirement that the action be dimensionless.

∫
d4+dx(∂φ)2 ⇒ [φ] = 1 +

d

2
. (142)

The brackets are used to express the energy dimension
of the argument in natural units. Similarly from the
fermion kinetic term one finds

[ψ] =
3
2

+
d

2
. (143)

How does one recover the canonical 4D dimension
(1 for scalars, 3/2 for fermions), which the KK modes
must have as 4D particles? The KK modes generally
have additional dimensionful prefactors since the profile
along the extra dimensions is dimensionful. More gen-
erally the energy dimension of higher dimensional cou-
plings and their 4D effective couplings are mismatched,
and the integration of the profiles along the extra direc-
tions in any given interaction vertex will make up for
the mismatch and provide the relation between the
(4+d)-dimensional couplings and the effective 4D ones.

As an example, let’s consider the bulk gauge interac-
tions which arise from the covariant derivative

DM = ∂M − ig(d)AM . (144)

Since [∂M ] = 1 and [AM ] = 1 + d
2 , the bulk gauge cou-

pling g(d) must be dimensionful, [g(d)] = −d/2. How-
ever, the 4D effective gauge coupling must be dimen-
sionless, so the zero mode profile must absorb the
dimensionality. Specifying to d = 1 compactified on a
circle or radius R and plugging in the zero mode expres-
sion whose profile in the extra dimension is flat

Aμ(x, y) =
1√
2πR

A0
μ(x) + · · · , (145)

we find that the effective coupling of the zero mode
gauge boson is given by

g4 =
g5√
2πR

, (146)

where we identify the length of the extra dimension
to be L = 2πR. Here we see that the 4D coupling g4

does indeed come out dimensionless. This relationship

generalizes to geometries with more (flat) dimensions
to

g2
4 =

g2
(4+d)

V ol(d)
, (147)

where V ol(d) is the volume of the d compact extra
dimensions.

Likewise, we can perform the matching of the gravi-
tational coupling. Let the fundamental (higher dimen-
sional) Planck scale be M(4+d). This is the energy scale
where gravity becomes strongly interacting and requires
UV completion. The Ricci tensor carries dimension two
([RMN ] = 2) in any dimension, so the action must have
a prefactor of M2+d

(4+d) to be dimensionless. The higher
dimension Einstein–Hilbert action takes the form

S(4+d) = −M2+d
(4+d)

∫
d4+dx

√
g(4+d) R(4+d) (148)

= −M2+d
(4+d)V ol(d)

∫
d4x

√
g(4) R(4) + · · · ,

(149)

where in the second line we integrated over the compact
dimensions and used the relation

R(4+d) = R(4) (150)

for flat extra dimensions, valid to linear order (see [61]
for more details).

Matching onto the 4D action we obtain

M2
pl = M2+d

(4+d)Vol(d), (151)

where Mpl is the effective 4D Planck scale. This result
holds only in scenarios with a flat gravitational back-
ground. In a warped background, the relation Eq. (150)
no longer holds and the integral over the extra dimen-
sions no longer has the interpretation of a volume.

We can now describe the traditional (pre-branes) flat
extra dimension scenario. If we assume one extra dimen-
sion and that all SM fields propagate in the bulk, then
all gauge couplings and the gravitational coupling are
set by a single scale, the radius of the extra dimension,
in a natural theory. If we take M∗ ≡ M(4+d) as the
fundamental scale, then the higher dimensional gauge
coupling is related by g(4+d) ∼ M

−d/2
∗ . Matching the

4D gauge couplings predicts for the radius of the extra
dimension

R ∼ 1
MPl

g
1+ 2

d

(4) . (152)

The size of the extra dimension is forced to be roughly
Planck-length o simultaneously match the correct grav-
ity coupling and gauge couplings of the SM. All of the
KK modes would be near the Planck scale in mass,
which is much too high to observe their effects at a col-
lider. Moreover, the fundamental scale which acts as a
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cutoff of the SM effective field theory would be large
since M∗ ∼ 1/R ∼ MPl in a natural theory. Therefore,
this framework can not solve the hierarchy problem by
lowering the SM cutoff to the TeV scale.

4.4 Branes and large extra dimensions

A major breakthrough in the development of mod-
ern extra dimensional theories was the introduction of
branes. Branes are hypersurfaces, (3 + 1)-dimensional
in our case, with localized energy-momentum which
can trap fields on their surfaces.4 The existence of
(3+1)-dimensional branes in an extra dimensional the-
ory means that some fields can propagate only on the
brane, while others are free to propagate in the bulk
of the extra-dimension. The brane-localized degrees
of freedom are inherently four-dimensional, and their
gauge couplings for example are decoupled from the
size of the extra dimension. The introduction of branes
allows one to separate gravity from SM gauge inter-
actions allowing the size of the extra dimension to be
much larger than we previously estimated.

A simple implementation of branes in an extra
dimensional scenario is Large Extra Dimensions
[24], proposed by Arkani-Hamed, Dimopoulos, and
Dvali (ADD). Imagine that the SM fields are trapped
on a (3+1)-brane in a larger dimension bulk, but the
graviton freely propagates in all the extra dimensions
as shown in Fig. 5. The fundamental scale of the higher
dimensional gravity M∗ is related to the 4D Planck scale
by a dilution factor arising from the volume of the extra
dimensions. As a consequence of the dilution, 4D grav-
ity appears much weaker than one would have naively
expected given that M∗ 
 MPl. The fundamental scale
M∗ acts as the cutoff for SM calculations,5 so lowering
M∗ ∼ TeV has the potential to eliminate the hierarchy
problem.

Can the cutoff be pushed this low? Unlike the pre-
vious scenario where all fields propagated in the bulk,
here we only have to perform the matching for the gravi-
ton since the gauge fields which are brane-localized.
Assuming that all of the extra dimension have similar
radii, we get

Ri ∼ R =
1

M∗

(
MPl

M∗

) 2
d

. (153)

4 We want to draw a distinction between our strictly phe-
nomenological definition of “branes” and more formal defini-
tions like D-branes. We will not care about the microphysics
underlying the existence of branes, which may or may not
be String Theory.
5 In String Theory, the Planck scale serves as a cutoff for
its low energy EFTs, including the SM. There are daring
ideas in which this is not necessarily true, like [72].

Fig. 5 The large extra dimensions scenario: SM fields are
trapped and only propagate on a lower dimensional (3+1)-
brane, while the graviton propagates into the bulk

Since we have not seen strongly coupled gravity at col-
liders, we require M∗ � TeV which leads to

R �
(

1
1 TeV

)
10

32
d ∼ 10

32
d −17 cm . (154)

Thus, we see the size of the extra dimensions can actu-
ally be large, even macroscopic.

‘
However, this leads to O(1) deviations from 1/r2

Newtonian gravity on length scales smaller than R,
due to the fact that gravity is actually propagat-
ing in more dimensions. Experiments which test Ein-
stein/Newtonian gravity thus provide a bound on these
models.

How many large extra dimensions do we need?

– d = 1: One extra dimension leads to a radius R ∼
1015 cm about the size of the solar system, which is
very much ruled out.

– d = 2: Two extra dimensions predict R ∼ 0.1 cm,
already ruled about by Cavendish-type experiments
for M∗ = 1 TeV.

– d ≥ 3: Three extra dimensions bring us to R < 10−6,
which is sufficient to evade experimental constraints.
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Some of the most sensitive experimental results come
from the Eöt–Wash experiment6 which probes O(10−3)
deviations from Newtonian gravity down to distances of
10−3 cm. For d = 2, the bound is R < 37 μm which
requires M∗ > 1.4 TeV. A different bound on these
models comes from the prediction of KK gravitons with
a mass gap set by mKK ∼ 1/R, which can result in
stringent cosmological bounds. For example, the bound
on KK gravitons from their effect on supernova cooling
implies M∗ > 10–100 TeV for d = 2.

In ADD, hierarchy between the weak scale and the
Planck scale is just a mirage because gravity appears
weak on large length scales, but it is only weak from
having to propagate in very large extra dimensions.
However, why are the radii so large? One would expect
in a natural model that there is only one fundamental
scale M∗ which is related to the radius by M∗ ∼ 1/R.
The ADD idea however requires

R =
1

M∗

(
MPl

M∗

) 2
n

� 1
M∗

(155)

which is unnatural from naive dimensional analysis
arguments. One needs to explain where this large num-
ber is coming from. Large extra dimensions only trans-
lates the hierarchy of mW /MPl to the hierarchy between
the large radius R and 1/M∗. Stabilizing this hierarchy
dynamically in a natural model turns out to be very
difficult.

4.5 Warped extra dimensions

In this section we explore extra dimensions that are
warped, i.e. their metric is non-factorizable. In five
dimensions, this can be written generically as:

ds2 = a(z)2
(
ημνdxμdxν − dz2

)
, (156)

where z is the conformal coordinate along the extra
dimension and a(z) is called the scale factor or warp
factor. Warped extra dimensions were first proposed
by Randall and Sundrum (RS). In a seminal paper
[10], they showed how a metric of the form Eq. (156)
can arise as a solution to Einstein’s equations on a
5D interval with a negative cosmological constant Λ,
sandwiched between two branes of tensions ±Λ. The
resulting metric is called five-dimensional Anti de-Sitter
(AdS5), in which the warp factor assumes the form:

a(z) =
R

z
. (157)

For more details on how to get AdS5 gravity solutions
see [61,73]. As we will see in detail, the AdS5 form of

6 A pun on the name of Loránd Eötvös, who pioneered
the experimental validation of the equivalence principle, and
the University of Washington where the experiment is con-
ducted.

the metric has far reaching implications for the Hier-
archy problem, making the cutoff to the SM warped
down with respect to the Planck scale. In fact, we can
now get the weak-Planck Hierarchy from a Planck size
extra dimension. This was indeed a revolutionary step
towards a solution to the Hierarchy problem.

Shortly after the proposal of this solution, it became
clear that the RS model has a 4D CFT dual: it corre-
sponds to a 4D strongly coupled theory which confines
and dynamically generates an IR scale. In essence, this
is just another formulation of the familiar dimensional
transmutation that happens in QCD, which yields a
confinement scale far below the Planck scale. The
advantage of the RS construction is that it constitutes
a calculable, weakly coupled description of a confining
theory that generates an IR scale—in this case the weak
scale.

There are many variants of 4D solutions to Hierar-
chy problem that are based on dimensional transmuta-
tion from confinement, of which we have already named
a few: Technicolor, in which the condensate is directly
responsible for EWSB, “old” composite Higgs, in which
the Higgs is some composite of the confining dynamics,
and modern composite Higgs, in which the Higgs is a
pNGB of a global symmetry broken by the confinement.
All of the above models have weakly coupled duals set
in RS space. The duals to Technicolor, “old” composite
Higgs and modern composite Higgs are called Higgsless
models, bulk Higgs models, and models with Gauge–
Higgs unification (GHU), respectively. Towards the end
of this section we will mainly explore GHU, and show
how it provide a calculable, weakly coupled framework
for modern composite Higgs models with partial com-
positeness. But for now, let’s focus on the generic fea-
tures of the RS construction which will be useful for
model building.

Much of what follows can be generalized to more
general gravitational backgrounds, parameterized by a
general warp factor a(z). We choose to work in AdS5

since it is in this background that the correspondence
to a 4D CFT is best understood. We take two branes
at z = R and z = R′ > R which truncate the space
in the z-direction. The z = R brane is usually called
the “UV” brane since one usually has 1/R ∼ MPl,
while the other is referred to as the “IR” brane as
typically 1/R′ ∼ 1/TeV for models which address the
hierarchy problem. One could consider a more general
background which truncates space without the need for
branes, sometimes called soft-walls, but this will only
affect the details of the KK spectrum.

To see how RS resolves the hierarchy between the
weak-scale and gravity, we first perform the gravity cou-
pling matching for RS.

Sg = M3
∗

∫ R′

R

(
R

z

)3 ∫
d4x

√
g(4)R(4) (158)

= M3
∗

1
2

(
1 − R2

R′2

)
. (159)
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From this result, we can read off the effective Planck
scale

M2
Pl = M3

∗ R

(
1 − R2

R′2

)
∼ M2

∗ , (160)

where last equality follows from the fact that the natu-
ral size for R is 1/M∗, the fundamental scale of the 5D
theory.

This result Eq (160) is very different from that of
ADD, and at first glance does not seem like a solution
to the hierarchy at all. After all, if MPl ∼ M∗ then there
is no apparent hierarchy between 4D gravity and 5D
gravity! There must be some other mechanism at hand.
Indeed, in warped extra dimensions the fundamental
scale of gravity is the 4D Planck scale, and the reason
for the hierarchy is that the weak scale itself is warped
down. Below we will show this by examining the 4D
effective action for the Higgs. For now we will only state
heuristically that the 4D Higgs mass and VEV end up
being related to MPl through a warp factor evaluated
at the position where the Higgs is localized (or peaked
if we allow the Higgs to propagate in the bulk)

v ∼ MPl
R

R′ 
 MPl. (161)

In short, the weak scale is small because the Higgs is
IR-localized and the warp factor in the IR provides a
huge suppression. In contrast, we saw that the Planck
scale itself is not suppressed at all. This is because the
graviton is UV-localized, and the warp factor evaluated
at z = R is one. It is the combination of the a UV-
localized graviton and an IR-localized Higgs that makes
RS a successful solution to the Hierarchy problem.

To demonstrate the warping down of the Higgs
potential, let’s look at a concrete example: a simpli-
fied RS model with a Higgs on the IR brane and only
gravity in the bulk (which is essentially the original RS
proposal). The 5D action in this model is

S5 =
∫

d5x
√−g

[
R(5) +

√−gind√−g
δ(z − R′)LH

]
,

(162)

where gind is the induced metric on the IR brane and

LH = gμν
ind∂μH∗∂νH + λ

(
|H|2 − v2

2

)2

(163)

is the Higgs potential. At energies below 1/R′ ∼ TeV,
we can’t resolve the extra dimension, and so the physics
should be adequately described by a 4D EFT. To get
this EFT, all we have to do is integrate the action over
the extra dimension (for models with bulk fields we have
to perform a KK decomposition). Plugging in

√−g =
R5

z5 ,
√−gind = R4

R′4 , we get

S4 =
∫

d4x
[
R(4) + L4D

H

]
, (164)

with

L4D
H =

(
R

R′

)2

∂μH∗∂μH +
(

R

R′

)4

λ

(
|H|2 − v2

2

)2

.

(165)

Notice that the Higgs kinetic term is not canonically
normalized. Rescaling the Higgs field, we obtain:

L4D
H = ∂μH∗∂μH + λ

(
|H|2 − ṽ2

2

)2

, (166)

where ṽ = v R
R′ is the 4D Higgs VEV, which is warped

down with respect to the 5D one. If we find a way to
naturally set R

R′ ∼ 10−18 (we will soon explain how
this is possible), we get a weak scale 4D Higgs mass
and VEV.

We see that a warped 5D theory with an IR-localized
Higgs corresponds to a 4D EFT with weak scale mass
and VEV. In addition, 4D gravity is not warped down,
so we explain the 4D weak-Planck hierarchy. However,
in realistic theories, the 4D EFT contains the SM top
and gauge fields, with the usual quadratically divergent
corrections to the Higgs potential. How are these cut-
off in an RS model? The answer is subtle. We note that
the 4D EFT has a cutoff set by Λ ∼ 1/R′. This is where
we are starting to probe the fifth dimension and the 4D
EFT is no longer adequate. From a bottom up point
of view, the scale Λ is where KK gravitons appear and
become strongly coupled. In other words, the 4D itself
does not have a hierarchy problem because its cutoff is
close to the weak scale. The problem of radiative cor-
rections thus goes over to the full 5D theory. But in the
5D theory, the bare Higgs mass and VEV can naturally
be the Planck scale, in which case we do not expect any
significant difference between the ‘bare’ theory and the
renormalized one.

One still needs to stabilize the extra dimension to
provide an explanation for the hierarchy R and R′.
Unlike for ADD, such a natural explanation has been
provided by Goldberger and Wise [74] who dynami-
cally stabilized the distance between the two branes
by the addition of a bulk scalar which obtains a VEV.
The VEV generates a potential with a minimum due to
two competing forces, one from from the scalar kinetic
term which wants derivatives to be small and hence a
large extra dimension and one from the potential which
prefers a small radius.

As a side remark, note that MPl remains fixed as
R′ → ∞, so the large extra dimension can have infinite
proper distance while still preserving the 4D Planck
scale. In fact, one can localize SM fields on the UV
brane and take the IR brane to z → ∞ which is known
as RS2. Although the effective Planck scale is finite as
R′ → ∞ and 4D gravity is preserved, cosmology would
be altered due to the emerging gapless continuum of
KK gravitons. We will not consider this option further
in this review.
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4.6 KK decomposition in warped space

In realistic RS and composite Higgs models, fields are
generically not localized on the IR brane, but rather
exist in the entire bulk. To get the 4D EFT for these
fields, we need to perform a KK expansion.

For example, in the case of a complex bulk scalar,
the 5D action is

S5 =
∫ R′

R

d4xdz
√

g
[
∂Mφ∂NφgMN − m2|φ|2] .

(167)

We neglect localized boundary terms proportional to
δ(z − R) or δ(z − R′) which could be included. Their
effect is to modify the boundary conditions on φ. Vari-
ation of the action yields the bulk equation of motion

∂M (
√

ggMN∂Nφ) +
√

gm2φ = 0. (168)

In deriving this equation, we integrated by parts picking
up a boundary term. In order for the field to be on-shell,
it is also necessary for the variation on the boundary to
be vanishing

φ∗∂zφ
∣∣∣
R,R′

= 0. (169)

We see that we can choose either Neumann or Dirichlet
at both z = R,R′. This is our choice, and it will affect
the spectrum of KK modes and, importantly, whether
or not a zero mode is allowed in the spectrum.

We look for a solution in terms of KK eigenstates

φ(x, z) =
1√
R

∑
n

φ(n)(x)f (n)(z) (170)

Substitution of this ansatz into the EOM, we find that
the profiles must satisfy

[
∂2

z − 3
z
∂z + m2

n −
(

R

z

)2

m2

]
f (n)(z) = 0

(171)

which is a Schrodinger-type problem with the appropri-
ate field redefinition of f(z). The solutions are related
to Bessel functions

f (n)(z) = z2 [AnJα(mnz) + BnYα(mnz)] (172)

where α =
√

4 + m2R2, and the solutions satisfy
orthogonality relations

∫ R′

R

1
R

(
R

z

)3

f (n)∗(z)f (m)(z) = δm,n. (173)

To determine which mn’s are allowed, we must apply
the chosen boundary conditions on the solution in

Eq. (172). The solution has two free coefficients. One is
fixed by normalization (required to ensure the KK mode
kinetic terms are canonically normalized), and the other
by one of the two boundary conditions. The other
boundary condition provides a quantization condition,
picking out discrete allowed values for the 4D masses.
Excluding the zero mode, the first KK mode appears
generically above a mass gap set by mKK ∼ 1/R′.

For large z and mn �= 0, the solutions are oscillatory
∼ z3/2 sin(mnz) and grow towards the IR. This means
that KK modes are generally peaked at the IR brane.
They interact most strongly with other IR-localized
DOF. The only exception is for a possible zero mode
with m0 = 0, in which case the solution take the form

f (0)(z) = Az2+
√

4+m2R2
+ Bz2−√

4+m2R2
. (174)

The zero mode localization is controlled by the bulk
mass parameter m and is not necessarily IR localized. In
most model building scenarios, SM degrees of freedom
are usually associated with the zero modes of 5D fields.

4.7 AdS/CFT correspondence

One of the most important results related to extra
dimensions is the AdS/CFT correspondence proposed
by Maldacena [75,76] (see [68] for a complete review).
This is a major avenue of research in formal theoreti-
cal physics, and here we will only give a quick heuristic
sketch of it. Generally speaking, AdS/CFT is a dual-
ity between a weakly coupled gravitational theory in
the bulk of AdS5, and a strongly coupled 4D conformal
field theory. We would say that the 4D CFT ‘lives’ on
the boundary of AdS5. In its original formulation given
by Maldacena, AdS/CFT is the duality:

type IIB string theory ⇐⇒
N = 4 supersymmetric SU(N) gauge theory

on AdS5 × S5 on 4D Minkowski space.

Correlation functions calculated in the theory on either
side of the duality match given a dictionary for relating
observables on both sides. The theory parameters on
both sides of the duality are related by

R4

l4s
= 4πg2

Y MN, (175)

where ls is the string scale and gY M is the SU(N)
Yang–Mills gauge coupling.

For the bulk to be described by classical gravity, we
should have R � ls so that we can neglect string cor-
rections. This implies that g2

Y MN � 1, but this is the
requirement that the 4D dual CFT is strongly inter-
acting. Now we can immediately see why this dual-
ity is useful: we can perform weakly coupled, classical
gravity calculations on the 5D side which are dual to
a strongly-coupled 4D CFT. This is not so surprising,
we already know the 5D theory with an IR brane has
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Fig. 6 Motion along z scales the 4D coordinates and
energy scale

a tower of states, which is something we would expect
from a strongly coupled 4D theory (e.g. resonances in
QCD).

We will not delve into specifics, but we now wish
to heuristically explain why one might expect there to
be such a correspondence. Consider the effect of the
z-coordinate transformation

z → eαz (176)

on a 4D slice of AdS

ds2 =
(

R

z

)2

ημνdxμdxν . (177)

The 4D effective metric is rescaled by e−2α, which can
be undone by the 4D coordinate transformation

x → eαx. (178)

Therefore, we see that

motion along z ⇐⇒ rescaling 4D coordinates.

This means that increasing z is equivalent to increasing
4D length scales as in Fig 6 and thus decreasing the
4D energy scale. This is exactly what we found for the
IR-localized Higgs VEV. We could have guessed this
behavior from the form of the metric.

This naturally leads us to the holographic interpre-
tation of the extra dimension in which the z-coordinate
corresponds to RG flow in the 4D CFT. A bulk pro-
file which grows with z corresponds to a CFT operator
whose coefficient flows to larger values in the IR. How
can we see this? Let us first just check the plausibility
on the warped two brane RS scenario before describ-
ing the entire dictionary of the correspondence. Imagine
localizing some 4D fields on a slice of the extra dimen-
sion at z0. We will use these 4D fields to ‘probe’ the

CFT at different length scales by adjusting z0. As we
move z0 deeper into the bulk towards the IR brane, we
have seen that the overlap of the IR-localized KK modes
with the δ(z − z0) localized fields becomes large once
z0 approaches R′. Since z0 sets the effective 4D length
scale on the slice of AdS we are probing with our 4D
fields, this would imply the 4D state dual to the RS KK
mode is strongly interacting at energy corresponding to
1/R′. This is exactly what we would expect if the CFT
dual is a confining gauge theory with confinement scale
Λ ∼ 1/R′, and the KK modes are dual to the composite
states.

Maldacena’s proof involved the entire AdS5 space,
not truncated by two branes as in RS, and the dual 4D
theory was a true CFT (no confinement). What is the
interpretation of the two branes in the RS scenario?

– UV brane: The 4D CFT is simply cutoff at a high
energy scale Λ ∼ 1/R. The cutoff introduces a mass
scale into the CFT and is, therefore, a source of
breaking.

Moving away from the UV brane, which corresponds
to running down in energy in the 4D CFT, the bulk
immediately becomes AdS implying the CFT should
quickly become conformal below the UV cutoff scale.
Any source of conformal breaking introduced by the
cutoff must therefore be an irrelevant deformation of
the CFT.

– IR brane: The IR brane sharply shuts off AdS space
at z = R′ and corresponds to a relevant deformation
of the CFT which ultimately leads to confinement
occurring at scale Λ ∼ 1/R′.

Indeed, we have seen that the IR brane forces a quan-
tization condition on the allowed masses leading to KK
modes with the lowest lying states near 1/R′. The IR
brane should be interpreted then as a simplified model
of confinement. At some point in RG flow, a relevant
deformation is introduced such that the beta function
β(g) is not completely vanishing. The theory begins to
flow away from its conformal fixed point, and eventually
the theory becomes strongly interacting and confines,
producing bound states. A more realistic 5D model of
confinement would gradually shut off space, but the
most important features of confinement are the mass
gap and the discrete tower of states which the IR brane
does capture.

Now we have a beautiful picture starting to emerge.
The profile of a particle’s 5D wavefunction corresponds
to RG flow of its couplings in the 4D CFT. Compos-
ite states should exist near the 4D confinement energy
scale and therefore near the IR brane in 5D, so we can
conclude that

– IR-localized fields (e.g. KK modes, Higgs) are com-
posite.
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Fig. 7 AdS/CFT
dictionary for localized
fields. Elementary DOF are
peaked on the UV brane,
while composites are
localized toward the IR
brane

UV
Elementary

IR

Composite

Fields which are UV-localized interact weakly with the
composite states, and therefore should not be part of
the strong dynamics. We can conclude that

– UV-localized fields (e.g. graviton) are elementary.

Now we can see that RS solves the hierarchy problem
because the Higgs is composite! RS is the 5D dual of
composite Higgs models of the sort we have discussed at
the beginning of the lecture. We will be able to present
explicit calculable constructions for the MCH model
soon. However, we need one more ingredient, bulk gauge
fields and their connection to global symmetries in the
CFT.

We should add one more line to our AdS/CFT dic-
tionary:

5D gauge symmetry ⇐⇒ 4D global symmetry.

A bulk gauge symmetry in the full AdS5 (R′ → ∞)
corresponds to a global symmetry in the 4D CFT. To
see this, we need to understand under which situations
is there a massless gauge boson in the low-energy 4D
effective theory. In a RS-type scenario with two branes,
we can also get 4D gauge symmetries from 5D gauge
symmetries since in RS we can get a massless gauge
boson in the spectrum.

Given a bulk gauge symmetry, the zero mode A
(0)
μ

couples to the global current Jμ at each position in the
bulk proportional to the 4D effective gauge coupling.
The EOM for the zero mode has the form

∂M

(√
ggMNFNP

)
= 0, (179)

and one can check that the profile is exactly flat,
Aμ(x, z) = NAμ(x) where N is a normalization con-
stant. In fact, it has to be flat because this is what

ensures that the gauge boson couples diagonally to
charged states. To get the effective 4D coupling, we nor-
malize the zero mode such that its 4D kinetic term is
canonically normalized:

N =

[∫ R′

R

R

z
dz

]− 1
2

. (180)

If we had taken the full AdS5, i.e. by sending R′ →
∞, then N → 0 which shows that A

(0)
μ is not normal-

izable (it is absorbed into the Aμ KK mode contin-
uum). The effective 4D gauge coupling, which is pro-
portional to N , is zero, and therefore it decouples from
the theory. In this case, we have a conserved current
∂μJμ = 0, which signals a true global symmetry in the
limit R′ → ∞.

However, for RS with a brane placed at finite R′, N
is finite, and we can have a normalizable zero mode. If
the boundary conditions on the UV and IR brane admit
a zero mode solution (Neumann)

∂5Aμ

∣∣
R,R′ = 0, (181)

then the zero mode is allowed in the spectrum and the
global symmetry in the CFT is weakly gauged since
there is a massless gauge boson coupling to the current.

What if only one of the boundary conditions is
switched to Dirichlet (which is not compatible with the
zero mode solution)?

– Aμ(R) = 0: The gauge symmetry in the 4D effec-
tive theory is broken by UV boundary conditions.
The zero mode is removed from the spectrum leav-
ing a residual global symmetry. The would-be zero
mode gauge boson acquires a mass set by 1/R and
decouples from the low-energy theory.
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– Aμ(R′) = 0: The gauge symmetry is broken by IR
boundary conditions. Since the IR brane is dual to
confinement, this corresponds to dynamical gauge
symmetry breaking like technicolor. The would-be
zero mode gauge boson acquires a mass set by the
confinement scale or 1/R′.

Now imagine if we take Dirichlet boundary conditions
on both branes: Aμ

∣∣
z=R,R′ = 0. The first boundary con-

dition we apply removes the zero mode gauge boson
from the spectrum, converting the gauge theory in the
4D effective theory to a global symmetry. However,
the second boundary condition provides a source of
global breaking which corresponds to the global symme-
try being spontaneously broken by confinement. This
choice of boundary conditions should produce a Gold-
stone mode! We will show that it actually arises in the
A5 component.

This fact is easy to see once we realize the A5 com-
ponent should have opposite boundary conditions to
that of Aμ. In deriving the EOM for A5 by varying
the action, an integration by parts is required which
generates boundary terms. By requiring the boundary
terms vanish, one can show that if Aμ

∣∣
R,R′ = 0, then

A5 should satisfy the boundary condition

∂5

(
A5

z

) ∣∣∣
z=R,R′

= 0. (182)

We will show this boundary condition does allow a zero
mode in the A5 component.

The gauge action in warped space is

Sgauge =
∫

d5x
R

z

[
−1

4
FμνFμν − 1

2
Fμ5F

μ5

]
.(183)

The action contains the following mixing term between
A5 and Aμ

∫
d5x

R

z
∂μA5∂5A

μ =
∫

d5x ∂5

(
R

z
A5

)
∂μAμ

+ boundary terms. (184)

The boundary terms will affect the boundary conditions
but not the bulk equation of motion. The mixing can
be removed by adding the gauge fixing term

∫
d5x

1
2ξ

R

z

[
∂μAμ − ξ∂5

(
R

z
A5

)]2

. (185)

After gauge fixing, the quadratic A5 part of the
action contains the following terms:

∫
d5x

R

z

[
1
2
∂μA5∂μA5 +

1
2
ξ

(
∂5

(
R

z
A5

))2
]

(186)

leading to the bulk EOM for A5

∂2A5 +
R

z
ξ

[
∂2
5

(
R

z

)
A5 + 2∂5

(
R

z

)
∂5A5

+
(

R

z

)
∂2
5A5

]
= 0. (187)

If we replace ∂2 → −m2, we see that for m2 �= 0, the A5

KK mode masses are proportional to ξ and are there-
fore unphysical. Remember A

(n�=0)
5 is eaten by A

(n�=0)
μ .

However, for the zero mode case (m2 = 0) we have the
EOM

∂2
5

(
R

z

)
A5 + 2∂5

(
R

z

)
∂5A5 +

(
R

z

)
∂2
5A5 = 0

(188)

which has solutions

A5(x, z) = (az + bz log z) A5(x). (189)

The boundary conditions in Eq. (182) pick out the solu-
tion proportional to z. In more general backgrounds,
the EOM is obtained by the replacement R/z → a(z),
and the A

(0)
5 profile always scales as the inverse of the

warp factor.
Going through the full KK decomposition for Aμ

Aμ(x, z) =
1√
R

∑
n

h(n)(z)A(n)
μ (x) (190)

One can check that the solutions to the A
(n)
μ EOM are

again Bessel functions

h(n)(z) = z (AnJ1(mnz) + BnY1(mnz)) . (191)

4.8 Fermions in RS

We now will describe how to include bulk fermions in
RS. The smallest irreducible representation of the 5D
Lorentz group is the 4-component Dirac spinor. This
implies that every bulk fermion field contains both left-
handed (LH) and right-handed (RH) components, i.e.

Ψ =
(

χ
ψ̄

)
, (192)

and the 5D theory is non-chiral. There is a way to get
chiral SM matter content; however, the boundary con-
ditions in a RS-type model pick out chiral zero modes.
The boundary conditions which allow a LH zero mode
will not allow a zero mode in RH component of the
same Dirac spinor and vice versa. The KK modes of
the fermions are, however, vector-like.

In this section, we will use Dirac matrices in the chi-
ralrepresentation:
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γμ =
(

0 σμ

σ̄μ 0

)
, γ5 =

(
i 0
0 −i,

)
(193)

where σ0 = σ̄0 = −1 and σi = −σ̄i are the usual
Pauli spin matrices. The gamma matrices in warped
space are related to the ordinary flat space ones [62,77]
by a factor known as the vielbein eM

a , where a indices
denotes flat space indices, which satisfies

eM
a ηabeN

b = gMN , (194)

ea
M =

R

z
δa
M , (195)

ΓM = eM
a γa. (196)

Furthermore, the covariant derivatives require an addi-
tional piece called the spin-connection, which in AdS5
is

DμΨ =
(

∂μ +
1
4z

γμγ5

)
Ψ (197)

D5Ψ = ∂5Ψ. (198)

Working in terms of vielbeins and flat space gamma
matrices, the 5D AdS fermion action can be written as

Sfermion =
∫

d5x
√

g

(
i

2
Ψ̄eM

a γaDMΨ

− i

2
DM Ψ̄eM

a γaΨ − MΨ̄Ψ

)
. (199)

The spin-connection part of the covariant derivative
cancels out leaving us (after integration by parts of the
left-acting z derivatives) with

∫
d5x

(
R

z

)4

Ψ̄

(
i/∂ + iγ5∂5 − i

2
z
γ5 − c

z

)
Ψ, (200)

where we have chosen to write the bulk mass in terms
of a dimensionless bulk mass c = MR.

In terms of 2-component Weyl spinors, Eq (199)
becomes

∫
d5x

(
R

z

)4

[−iχ̄σ̄μ∂μχ − iψσμ∂μψ̄

+
1
2
(ψ

←→
∂5 χ − χ̄

←→
∂5 ψ̄) +

c

z
(ψχ + χ̄ψ̄)], (201)

where ψ
←→
∂5 χ = ψ∂5χ − ∂5ψχ. Variation gives the 1st-

order coupled EOMs

−iσ̄μ∂μχ − ∂5ψ̄ +
c + 2

z
ψ̄ = 0

−iσμ∂μψ̄ + ∂5χ +
c − 2

z
χ = 0. (202)

Now we can proceed with KK decomposition. As
usual we expand the 5D fields as a sum of 4D eigen-
modes

χ =
∑

gn(z)χn(x)

ψ̄ =
∑

fn(z)ψ̄n(x), (203)

where χn, ψn satisfy the ordinary 4D Dirac equation

−iσ̄μ∂μχn + mnψ̄n = 0

−iσμ∂μψ̄n + mnχn = 0. (204)

Substitution of the KK sum yields EOMs for the profiles

f ′
n + mngn − c + 2

z
fn = 0

g′
n − mnfn +

c − 2
z

gn = 0. (205)

These equations can be decoupled at the cost of turning
them into two second order decoupled equations with
relations among the coefficients of their solutions. The
result is again Bessel functions:

gn(z) = z
5
2

(
AnJc+1/2(mnz) + BnYc+1/2(mnz)

)
fn(z) = z

5
2

(
AnJc−1/2(mnz) + BnYc−1/2(mnz)

)
.

(206)

Focusing on the zero mode solutions, we have

g0 = A0

( z

R

)2−c

, f0 = B0

( z

R

)c+2

. (207)

We will not go into much detail about how to derive
the fermion boundary conditions [78]. One can study
the 1st order EOMs and show that if one chirality
satisfies Dirichlet boundary conditions, then the other
chirality must satisfy Neumann-type conditions for the
EOM to be satisfied on the boundary. The main point is
that one of the chiralities must have Dirichlet boundary
conditions, which will eliminate the zero mode solution
in that chirality. Thus, either A0 or B0 must be zero.
This generates a chiral zero mode spectrum allowing us
to get the SM fermion field content.

Moreover, just as we found for the bulk scalar, the
bulk mass controls the localization of the zero mode.
The fermion zero mode can be mostly elementary or
mostly composite depending on our choice for the bulk
mass parameter c. For a LH zero mode χ,

– χ is UV-localized (IR-localized) for c > 1/2 (c <
1/2)

and for a RH zero mode ψ,

– ψ is UV localized (IR localized) for c < −1/2 (c >
−1/2).
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The properly normalized fermion zero mode is

ψ0
L,R(x, z) =

1√
R′

( z

R

)2 ( z

R′
)∓c

f±cPL,Rψ0(x)

(208)

where fc is known as the RS flavor function

fc =

√
1 − 2c

1 − (
R
R′

)1−2c . (209)

4.9 Construction of a realistic RS model

In this section, we describe the process towards achiev-
ing a realistic RS model consistent with electroweak
precision constraints which was worked out by Agashe,
Delgado, May, and Sundrum [79]. The first hurdle we
face is to protect the T -parameter. Without a custo-
dial symmetry incorporated, the strong dynamics from
the composite sector generate large T - and ρ-parameter
corrections. The custodial symmetry can also be useful
to protect the Zbb̄ coupling [80] which is highly con-
strained by LEP.

We incorporate the custodial symmetry in the com-
posite sector by enlarging the bulk gauge symmetry G
to contain the SM gauge symmetries plus a custodial
SU(2)R. For simplicity we can take G = SU(2)L ×
SU(2)R × U(1)X . The SM hypercharge is embedded in
SU(2)R × U(1)X .

However, we do not want additional massless SU(2)R

gauge bosons in the 4D effective theory, so we break
SU(2)R × U(1)X down to U(1)Y on the UV brane by
applying Dirichlet boundary conditions on the gauge
bosons corresponding to the generators we wish to
break. The 4D CFT description of this scenario is a
CFT with a SU(2)L×SU(2)R×U(1)X global symmetry
whose SU(2)L × U(1)Y subgroup is gauged. If we take
the Higgs to be a bidoublet under SU(2)L×SU(2)R, the
Higgs sector will have an approximate custodial sym-
metry thus reducing the bulk T -parameter contribu-
tions. The other option would be to break the unwanted
SU(2)R generators on the IR brane, but this scenario
would have larger custodial symmetry violation since
this corresponds to the global SU(2)R symmetry being
gauged (and spontaneously broken by confinement).
Usually in RS model building, the bulk gauge symme-
try is broken down to SM gauge symmetries on the UV
brane.

To address the hierarchy problem, the Higgs should
be composite and thus IR-localized. To achieve a realis-
tic top mass, the Higgs should have significant overlap
with the top. However, tL cannot be IR localized since it
is in the same doublet as bL, and this would give large
corrections to the Zbb̄ coupling. Therefore tR should
be significantly IR-localized, and it turns out we can
get away with having tL approximately flat, ctL

∼ 1/2.
Light fermions should have small mass and therefore are
UV-localized. This scenario is summarized in Fig. 8.

Fig. 8 The “realistic” RS scenario. The bulk gauge sym-
metry contains the SM gauge symmetries with an additional
custodial SU(2)R which is broken by boundary conditions
on the UV brane. The Higgs and tR are IR-localized, the
light quarks and leptons are UV-localized, and the gauge
bosons and tL are approximately flat

There is a rich set of signatures from the realistic RS
scenario [81]. The most striking signal is the production
of the KK gluon is produced via Drell–Yan with a large
rate: σ(qq̄ → G(1)) ∼ 0.1 pb for mKK ∼ 3 TeV. Gluon
production is not important since the KK gluon pro-
file is orthogonal to the zero mode gluon, and existing
constraints already rule out KK gluon masses which are
light enough to be pair-produced. Since tR is peaked on
the IR brane, the KK gluons decay almost exclusively to
tt̄. Very heavy KK gluons decay to highly boosted tops,
requiring the use of jet substructure to tag the tops.
The current bound is roughly mG(1) > 3 TeV. In addi-
tion, one can also produce the other KK excitations:
Z(1), γ(1), etc. The KK modes tend to have largest over-
lap with the top, Higgs, and longitudinal gauge bosons.
The most likely decays include Z(1) → tt̄,W+W−, . . .,
γ(1) → Zh, tt̄, . . . for example. KK decays to leptons are
strongly suppressed since they are elementary.

Realistic RS is a natural implementation for partial
composite anarchic flavor models. All we have to do is
take the realistic RS scenario and which requires differ-
ent c’s for the various SM fermions. The c’s control the
localization of the zero modes, which generates expo-
nential hierarchies in the zero mode overlap integrals.
Then just as in the general case we have

mu =
v√
2
fqYuf−u (210)

md =
v√
2
fqYdf−d. (211)

where f is now given by the RS flavor function, and we
have adopted the short hand q ≡ cq, u ≡ cu, etc. All
of the generic partial compositeness discussion applies
here. In the 4D CFT description, the bulk mass param-
eters control the anomalous dimension of the fermion
mass term operators.
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We can also explore the specific source of 4-fermi
operators arising from KK gluon exchange. In the fla-
vor basis (before mass diagonalization), the KK gluon’s
couplings to quark species X are diagonal but not
exactly universal [57]

gX � g∗

(
− 1

log R′
R

+ f2
XΓ (cX)

)
. (212)

The first piece is universal and arises from the elemen-
tary part of the KK gluon coupling to the elementary
fermions. The second term is the contribution from the
composite sector via mixing with the elementary part
of the KK gluon. The coupling would be universal if
the fX ’s were degenerate, but this is not the case if we
wish to explain flavor with RS.

After rotation to the mass basis, the off-diagonal cou-
plings are of order

(gqL
)ij ∼ g∗fqi

fqj
(213)

(guR
)ij ∼ g∗f−ui

f−uj
(214)

(gdR
)ij ∼ g∗f−di

f−dj
. (215)

Notice that the off-diagonal couplings of the quarks
are suppressed by hierarchically small entries. This sup-
pression is the appearance of the RS-GIM mechanism,
which is a result since the off-diagonal couplings to the
KK gluon are proportional to the fermion Yukawas. The
4-fermi operators are generated from the diagrams in
Fig. 9. After integrating out the KK gluon and appli-
cation of Fierz identities, we obtain the following oper-
ators parameterized in terms of Wilson coefficients C1,
C4, C5.

C1
(
q̄iα
L γμqj

Lα

) (
q̄kβ
L γμql

Lβ

)
+ C4

(
q̄iα
R qk

Lα

) (
q̄lβ
L qj

Rβ

)

+ C5
(
q̄iα
R ql

Lβ

) (
q̄kβ
L qj

Rα

)
, (216)

where α, β are color indices. The most strongly con-
strained quantity is C4K which we estimate to be

CRS
4K ∼ g2

∗
m2

G

fq1fq2f−d1f−d2 ∼ 1
m2

G

g2
∗

Y 2∗

2mdms

v2
. (217)

Fig. 9 Diagrams contributing to KK gluon induced 4-
fermi operators

Fig. 10 Example of one contribution to the quark electric
dipole moment arising from KK quarks

Fig. 11 The holographic MCH setup in 5D

Even with the RS-GIM mechanism the bound is still
somewhat large, mG � 20 TeV. There is addition-
ally another type of bound arising from electric dipole
moments induced by KK fermion exchange as shown in
Fig. 10.

4.10 Holographic composite Higgs and Higgs
potential

We have seen how to obtain a realistic RS scenario.
However, we wish to go one step further and incorporate
a pNGB Higgs. The pNGB Higgs allows its mass to nat-
urally be a loop factor below the strong dynamics, much
as the pion is lighter than ΛQCD. Moreover, the Higgs
potential is finite and calculable. We will describe the
RS setup for the MCH model. We know from AdS/CFT
that to obtain a Goldstone boson we can break a bulk
gauge symmetry on both the UV and IR branes, and
we should get Goldstone bosons in the A5 component of
the gauge fields corresponding to the the broken gener-
ators. This kind of scenario is known as Gauge Higgs
Unification since the Higgs boson is actually part of
a higher-dimensional gauge field [11–19,45].

We start with a bulk gauge symmetry G = SO(5) ×
U(1)X where the SM SU(2)L is embedded in SO(5)
[44]. Notice that SO(5) ⊂ SO(4) ∼ SU(2)L × SU(2)R

contains a custodial symmetry. Hypercharge is embed-
ded in a linear combination the diagonal of SU(2)R ⊃
SO(5) and U(1)X . G is broken by boundary conditions
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to the SM gauge groups SU(2)L × U(1)Y on the UV
brane to remove the extra gauge symmetries in the low
energy theory. Finally, G is broken to SO(4) by bound-
ary conditions on the IR brane. This corresponds to
the SO(5) global symmetry in the CFT being sponta-
neously broken by confinement.

There are 4 broken generators T a
C (the generators

corresponding to the coset of SO(5)/SO(4)) which are
broken on both branes, so there are 4 Goldstone bosons
Aa

5 which transform as a (2, 2) under SU(2)L×SU(2)R.
After electroweak symmetry breaking 3 are eaten by the
W and Z bosons and one remains as the physical Higgs.
The Higgs wave function is set by the A5 profile

Aa
5(x, z) =

√
2
R

z

R′ T
a
Cha(x). (218)

We have chosen the normalization such that the ha’s
are canonically normalized in the 4D effective theory.

There are several relevant scales of the theory. The
first is the the KK scale which is set by zeros of
the Bessel function solutions of the KK EOMs and is
approximately

MKK � 2
R′ . (219)

The KK scale sets the mass gap of the strong dynam-
ics, and the lightest KK modes should be an order one
number times the KK scale in a natural theory. Another
important parameter is the dimensionless gauge cou-
pling

g∗ =
g5√
R

, (220)

that sets the interaction strength of KK gauge bosons.
The Higgs interactions, and thus the SM Yukawas, are
also proportional to g∗. Then we have the scale of global
symmetry breaking

f =
MKK

g∗
∼ 2

g∗R′ (221)

which in the dual theory is the energy scale of the VEV
that breaks the global symmetry SO(5) → SO(4).

Contributions to the Higgs potential are cutoff at an
energy scale

g∗f ≤ 4πf, (222)

which acts as a compositeness scale for the Higgs boson.
The inequality comes from the requirement that the
effective theory is perturbative. Notice that the dimen-
sionless gauge coupling controls the cutoff, and for a
perturbative scenario (g∗ ≤ 4π), the contributions to
the Higgs potential are shut off before we lose pertur-
bative calculability at Λ ∼ 4πf . This is the reason
the Higgs potential is calculable: the potential is not
sensitive to contributions above g∗f which we can not

perturbatively calculate. This result can be viewed as
a consequence of collective symmetry breaking in the
extra dimension.

How do we get an effective potential for the Higgs?
The tree level potential is vanishing since 5D gauge
invariance forbids a potential for A5. However, a radia-
tive potential is generated since we have explicitly bro-
ken the SO(5) global symmetry by gauging a subgroup
and from the fact that the zero modes do not form com-
plete SO(5) representations. To determine the poten-
tial, we calculate the bulk EOMs for the gauge fields
and fermions in the presence of a classical A5 back-
ground. Their spectrum will depend on the A5 VEV
background and therefore generate a CW potential.
However, this calculation is hard! The bulk fermion
EOMs are very complicated with the z-dependent Higgs
VEV turned on, and the VEV couples the EOM of dif-
ferent components of each fermion multiplet.

The trick is to perform a 5D gauge transformation
that completely removes A5 from the bulk action [82]:

Ω(z) = eig5
∫ z

R
dz′Aa

5T a

, (223)

where Ω is just the Wilson line from R to z. Notice that
Ω(R) = 1, so this is the identity transformation on the
UV brane. This gauge transformation removes A5 from
the pure gauge action. Under the gauge transformation,
the fermions pick up a phase

ψ = Ω(z)ψ̃ (224)

which also removes A5 from the bulk fermion EOMs.
Working in terms of the redefined fields ψ̃, the bulk
fermion EOMs are simple and decoupled. However, the
initial boundary conditions were given as conditions on
ψ. We must now apply boundary conditions on the
rotated fermions Ω(z)ψ̃. Only the IR boundary con-
ditions are affected since Ω(R) = 1. Therefore A5 still
shows up in the IR boundary conditions for the fermions
in the form of the Wilson line.

The 4D Coleman Weinberg potential generated by a
KK tower takes the form

V = (−1)F N

2

∑
n

∫
d4p

(2π)4
log

[
p2 + m2

n(h)
]
, (225)

where n runs over the KK modes, N is the number
of DOFs at each level of the KK tower (3 for a gauge
boson, 4 for a Dirac fermion) and mn(h)’s are the Higgs-
dependent masses.

The easiest way to perform this sum is to find a func-
tion that encodes the KK spectrum as simple poles and
to enclose the Re(m2) > 0 half of the complex m2-
plane with a contour integral. The integral picks out
the residues of the poles and performs the sum for us
at the cost of having to do an integral along the m = ik
axis. After the use of dimensional regularization to com-
pute the d4p integral, the result can be massaged to the
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form

(−1)F N

(4π)2

∫ ∞

0

dkk3 log[ρ(−k2)], (226)

where ρ(z) is a spectral function which must be holo-
morphic for Re(z) > 0 and its zeros encode the KK
spectrum by ρ(m2

n) = 0.
The spectral function is obtained by application of

the boundary conditions to the fermion and gauge
boson EOM solutions to obtain a quantization condi-
tion on mn(h). After applying the UV boundary con-
ditions, there is a solution if and only if the coefficient
matrix M of the IR boundary conditions M.A = 0
is non-invertible (A is the vector of undetermined nor-
malization coefficients). Thus, ρ is given by the det(M).
One can show that the spectral functions take the form

ρ(−k2) = 1 + F (−k2) sin2

(
λRh

f

)
, (227)

where the form factor F (−k2) depends on the exact
warping and λr is a numerical factor that depends on
the SO(5) representation of the fields contributing to
the A5 potential.

The form factors can be exactly calculated for the
AdS5 background. For large momenta, the form factors
are warped down as F ∝ e−4k/mKK . This shows that
MKK = g∗f acts as a momentum cutoff to the Higgs
potential since contributions from energies above this
scale will not affect the potential. The potential involves
contributions from gauge bosons and from fermions

Veff = Vgauge + Vfermion. (228)

If we take the fermions to be embedded in the funda-
mental 5 of SO(5), the result is [82]

Vgauge = α sin2

(
h

f

)

Vfermion = β1 sin2

(
h

f

)
+ β2 sin4

(
h

f

)
, (229)

where α, βi are given by momentum integrals of quan-
tities involving the form factors F (p2). Constraints on
Higgs couplings require that the minimum of the poten-
tial v = 〈h〉 satisfies f/v � 3−5 since the angle v/f con-
trols how aligned the Goldstone mode is aligned with
SU(2)L and leads to deviations in Higgs couplings if it
is too large. This introduces a source of fine-tuning of
order v2/f2.

5 Conclusions

So far there is no direct evidence for BSM physics, mak-
ing the lightness of the Higgs boson ever more puzzling.

These lectures were reviewing one of the leading theo-
retical ideas for new physics that could solve the hierar-
chy problem around the few TeV scale: the idea that the
Higgs is not actually an elementary particle, but rather
a composite pNGB. We have outlined the main fea-
tures of such pNGB’s essential for CH model building
and highlighted the mechanism of collective symmetry
breaking, as the essential tool behind CH/Little Higgs
models. We have sketched out how to construct the
major versions of such models and also contrasted their
properties. We have used the AdS/CFT correspondence
to establish the connection between pNGB Higgs mod-
els and holographic CH models, and also explained in
detail partial compositeness, the modern way of intro-
ducing fermion masses into model with strong dynam-
ics and symmetry breaking. While the experimental
bounds on the putative top and spin 1 partners are
getting ever stronger, the amount of tuning needed for
these models is still around a few percent, roughly what
was initially implied from the LEP bounds almost 20
years ago.
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