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1 Introduction

One of the most striking observations in the study of quantum gravity is that certain
simple gravitational theories — primarily those in a low number of space-time dimensions
— appear to be described not by a single quantum theory, but rather by an ensemble
average of many theories. This phenomenon was initially described for Jackiw-Teitelboim
gravity in AdS2, which is dual to a random matrix theory [1]. This is a prototypical
example of an AdS2/CFT1 duality. In order to understand higher dimensional versions
of this phenomenon, one would like to understand ensembles of random conformal field
theories which are dual to putative theories of gravity in Anti-de Sitter space. At first sight,
constructing a random conformal field theory seems quite difficult, as it would involve an
ensemble average over the space of conformal field theories, a space which is itself quite
poorly understood. For this reason, recent work in this direction [2, 3] has focused on CFTs
with enhanced symmetry algebras where the space of CFTs can be understood precisely
(related works in this direction include [4–8]).

The natural starting point is perhaps the simplest possible family of two dimensional
CFTs: unitary, compact CFTs with U(1)D × U(1)D current algebra and central charge
c = D. These are simply theories of D free compact bosons, and the data which defines
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such a theory is an even, self-dual lattice of signature (D,D). The moduli space of such
theories is the homogeneous space [9, 10]

MD = O(D,D,Z)\O(D,D)/O(D)×O(D) . (1.1)

This space has finite volume, and a unique homogeneous metric which can be used to define
a probability distribution on the associated space of CFTs. The work of [2, 3] argued that
this ensemble average is dual to an exotic three dimensional theory of gravity in AdS3
dubbed “U(1) gravity”. This theory of gravity includes as its perturbative degrees of
freedom a U(1)2D Chern-Simons theory describing the gauge dynamics dual to the U(1)2D

global symmetry in the boundary. The non-perturbative structure of the theory is defined
by a sum over geometries in the bulk. Together these ingredients were shown to reproduce
the ensemble average of the genus g partition function, which was computed using the
Siegel-Weil formula in terms of a real analytic Eisenstein series [11–13].

The genus g partition function, however, is not the most general observable of the
theory. The theory contains global U(1) charges, so one can in addition consider “flavored”
partition functions which include fugacities that couple to these global U(1) charges. For
example, on the torus one can consider the flavored partition function

Z
(
τ, τ̄ , zIL, z

I
R

)
= Tr

[
e2πiτ(L0− c

24)e−2πi(L0− c
24)e2πizILJ

I
0 e−2πizIRJ̄

I
0
]
, (1.2)

which depends on both the conformal structure parameter τ as well as a D-component
vector (zIL, zIR) of chemical potentials. Geometrically, these chemical potentials can be
interpreted as background Wilson lines which couple to the global U(1) charges (QI , Q̄I) of
a state. At higher genus, one can consider more general flavored partition functions which
include Wilson lines wrapping arbitrary cycles in the boundary surface.

The natural question is then: is there a version of the Siegel-Weil formula which allows
one to compute the ensemble average of these more general observables? And second —
and perhaps more importantly — does the result yield some insights into the structure
of the theory and its gravity dual beyond the higher genus partition functions considered
in [2]? The answer to the first question is, in fact, not difficult. The observation begins
with the fact (that we will explain in much more detail below) that the counting function
for primaries, Θ(zL, zR, τ, τ̄), obeys a version of the heat equation:

∂Θ
∂τ

= 1
4πi∇

2
zL

Θ ,
∂Θ
∂τ

= − 1
4πi∇

2
zR

Θ . (1.3)

This equation follows from the fact that the stress tensor of a free boson theory is Sugawara,
and hence a composite operator quadratic in the U(1) currents; this relates variations with
respect to the conformal structure to variations with respect to the U(1) gauge potentials.
By averaging this equation over Narain moduli space we will completely determine the
ensemble average of the flavored partition function, a novel (and somewhat less commonly
studied) version of the Siegel-Weil formula.

Equation (1.3) hints as well towards an answer to our second question, as it allows
us to trade conformal structure dependence for dependence on the fugacities. At the level
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of the torus partition function this is not particularly interesting, as it simply reflects the
fact that the dimensions and spins of primary operators are uniquely given by their U(1)
charges

∆ = Q ·Q+ Q̄ · Q̄ , j = Q ·Q− Q̄ · Q̄ . (1.4)
The situation at higher genus is considerably more interesting since the dependence of the
higher genus partition function on conformal structure encodes not just the dimensions
and spins of primary states but also the operator product expansion coefficients. In a free
CFT, however, the OPE coefficients are completely determined by charge conservation

CQ1,Q2,Q3 ∝ δ(Q1 +Q2 +Q3) . (1.5)

Thus one might expect that all of the data of a higher genus partition function can be
completely packaged into information about the corresponding conserved charges. Indeed,
we will see that this is the case by writing down a higher genus version of the heat equa-
tion (1.3). An interesting feature of this result is that it is possible to go to the boundary
of moduli space where a higher genus surface degenerates into a disjoint union of tori. The
result is that all of the data contained in a genus g partition function can be repackaged
into the data of the gth moment of the (flavored) torus partition function:

〈Z(τ1, z1)Z(τ2, z2) · · ·Z(τg, zg)〉 ↔ 〈Zg(τ)〉 . (1.6)

The averages of these quantities are given by appropriate Eisenstein series, just as in the
unflavored case. In a sense, therefore, this perspective allows us to completely dispense with
the higher genus partition functions and consider only statistical properties of the torus
partition function.1 An additional interesting feature of our result is that it allows us to
easily compute explicit expressions for the averaged density of states 〈ρ(∆, j, QI)〉 and the
two point function 〈ρ(∆1, j1, Q

I
1)ρ(∆1, j1, Q

J
1 )〉; it turns out that by including dependence

on charge, one finds expressions which are considerably simpler than those which have
previously appeared in the literature.

Turning to the holographic interpretation, we show that the statement [2, 3] that the
averaged partition function can be naturally reproduced in terms of U(1)D×U(1)D Chern-
Simons theory generalizes to the flavored case. The chemical potentials appearing in the
flavored partition function map to a choice of boundary conditions in the Chern-Simons
theory, in a manner which enforces the proper behavior under modular transformations.

This paper is structured as follows. In section 2 we begin with a few remarks on
the Narain moduli space and define the averaging procedure for partition functions. The
flavored partition function on the torus is evaluated in section 3 using a generalization
of the Laplace equation, as well as via a heat equation. The analysis for the partition
function is generalized to higher genus in section 4. Section 5 reproduces the flavored
partition function from U(1)D ×U(1)D Chern-Simons theory in AdS3.

1This may provide an interesting perspective on the analogy between sphere packing and the modular
bootstrap described in [14, 15]. The natural question following [15] is: what is the sphere packing analogue
of the conformal bootstrap constraints which go beyond torus modular invariance, such as higher genus
modular symmetry or the crossing symmetry of local correlation functions? Our considerations suggest the
following answer: modular properties of higher moments of the theta series appearing in the sphere packing
problem.
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2 Flavored partition functions of Narain CFTs

In this section we recall aspects of free CFTs in two dimensions, with emphasis on their
symmetries and moduli spaces.

We consider the theory of D real compact bosons XI , I = 1, 2, . . . D, and its associ-
ated U(1)D × U(1)D current algebra. Current algebra primaries are given by the vertex
operators2

Vl = eilL·XL+ilR·XR . (2.1)

The momentum vectors l ≡ (lIL, lIR) live in a lattice Γ, which has a signature (D,D) inner
product:

l ◦ l ≡ lL · lL − lR · lR . (2.2)

The choice of lattice Γ labels different possible CFTs, i.e. different compactifications of
the free bosons. This choice is constrained by modular invariance of the torus partition
function. First, invariance under τ → τ + 1 (i.e. the quantization of spin) implies that Γ
is even, i.e. that the vectors (lIL, lIR) obey l ◦ l ∈ 2Z. Second, invariance under τ → −1/τ
implies that Γ is self-dual, i.e. that Γ∗ = Γ, where the dual lattice Γ∗ consists of all vectors
with integer ◦ product with all elements of Γ. An even, self-dual lattice of signature (D,D)
is known as a Narain lattice.

The eigenvalues of the Virasoro generators (L0, L̃0) are

L0 = 1
2 l

2
L +N , L̃0 = 1

2 l
2
R + Ñ , (2.3)

where N, Ñ ∈ Z are the integer valued oscillator levels. The (unflavored) partition func-
tion is

ZΓ(τ) = 1
|η(τ)|2D

∑
l∈Γ

eiπτl
2
L−iπτl

2
R . (2.4)

Here the prefactor counts the oscillator states, i.e. the descendants under the U(1)D×U(1)D

current algebra, and the lattice sum counts primaries. The partition function is modular
invariant, in the sense that

ZΓ(γτ) = ZΓ(τ) , γ =
(
a b

c d

)
∈ SL(2,Z) , γτ ≡ aτ + b

cτ + d
. (2.5)

Given a Narain lattice Γ, one can always apply an O(D,D) rotation Λ to produce
another Narain lattice ΓΛ ≡ ΛΓ, with Λ ∈ O(D,D). In fact, it is not hard to show that
any Narain lattice may be obtained by some O(D,D) rotation of a fixed reference lattice
Γ0. However, not all such O(D,D) rotations yield distinct CFTs. First, an O(D)×O(D) ∈
O(D,D) rotation will act as a symmetry of a particular theory, since its effect can be undone
by a compensating O(D) × O(D) field redefinition of the fields (XL, XR). The result is
that the spectrum of vertex operators and their OPE coefficients will be unchanged by such
a rotation. Second, a subgroup of O(D,D) will leave the lattice Γ itself invariant. This
subgroup is just O(D,D,Z), as can be seen by taking our reference lattice Γ0 to be the

2In string theory language we are setting α′ = 2.
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integer lattice in RD,D. The result is that the moduli space of inequivalent Narain theories
is the coset

MD ≡ O(D,D,Z)\O(D,D)/O(D)×O(D) . (2.6)

This moduli space has dimension D2.
This space of free theories can also be described more explicitly as σ-models, with

action
S = 1

4π

∫
d2σ

(√
ggαβGIJ∂αX

I∂βX
J + εαβBIJ∂αX

I∂βX
J
)
. (2.7)

Here the boson fields have been scaled to have integer periodicities: XI ∼= XI + 2πmI ,
mI ∈ Z, so the choice of theory has been packaged into the target space metric GIJ and B-
field BIJ . These are constant symmetric and antisymmetric matrices, respectively, which
can be combined into a D ×D matrix

EIJ = GIJ +BIJ . (2.8)

One can think of E as a coordinate on the moduli spaceMD.
To understand the Narain moduli space in this language, we introduce the O(D,D)

element g that acts on the matrix E as

g : E → gE ≡ (aE + b)(cE + d)−1 , (2.9)

where

g =
(
a b

c d

)
, gTJg = J , J =

(
0 I
I 0

)
(2.10)

is an element of O(D,D). Any matrix E is invariant under some O(D)×O(D) subgroup
of O(D,D). This can be seen by first noting that E = I is invariant under the action of
matrices of the form

g =
(
a 0
0 a

)
,

(
0 b

b 0

)
, aTa = bT b = I . (2.11)

The corresponding statement for general E is obtained by conjugating by the action
of O(D,D).

To write the spectrum, we introduce the matrix

M =
(
G−BG−1B BG−1

−G−1B G−1

)
. (2.12)

This is convenient because the O(D,D) rotations act equivariantly on M , in the sense that

g : M → gMgT . (2.13)

Since in the σ-model formulation the fields have integer periodicities, the primary states
of the theory can be labelled by a vector of integers (mI , nI). In terms of these, the spin
L0 − L̄0 and dimension L0 + L̄0 of a given primary state is

l2L − l2R = 2mInI , l2L + l2R = ZTMZ , Z ≡
(
mI

nI

)
. (2.14)
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The T-duality group O(D,D,Z) is given by those g for which the entries of gTZ are integer.
In this case the action (2.13) is the usual Buscher rule for the T-duality transformation of
the target space metric and B-field.

It is important to note that the moduli space MD defined above is a homogeneous
space which has a unique Riemannian metric which is invariant under an O(D,D) isometry
group (generated, in terms of the coset structure, by left multiplication). This coincides
with the usual “Zamolodchikov” metric on the CFT moduli space, and is the natural one
to use when considering averages over this space of theories. In particular, we average over
moduli space by integrating:

〈·〉 = 1
Vol(MD)

∫
MD

(·) dµ (2.15)

where dµ is the associated invariant measure. We have divided by the volume of MD in
order to properly normalize this measure as a probability distribution. It is important to
note that, although O(D,D) has infinite volume, the moduli spaceMD has finite volume
when D > 1. This is due to the fact that we have quotiented by the action of the T-duality
group; without such a quotient, an interpretation of dµ as a normalizable probability
measure would be impossible.

We wish to study the flavored partition function, which is obtained by introducing a
set of 2D chemical potentials z ≡ (zIL, zIR) that couple to the U(1)D × U(1)D charges of a
state. These charges are just the individual components of the lattice vector l = (lIL, lIR),
so the flavored partition function is

ZΓ(τ, z) = 1
|η(τ)|2D

∑
l∈Γ

eiπτl
2
L−iπτl

2
R+2πizL·lL−2πizR·lR . (2.16)

We note that only the lattice sum has been modified; the prefactor remains the same,
because the action of the U(1) current algebra will not change the charge of a state.

There is one important distinction, which is that the potentials z are not invariant
under the O(D) × O(D) rotations described above. The reason is easy to understand.
Given a point in moduli space corresponding to a choice of E there is an equivalence class
of lattices related by O(D)×O(D) rotations, all corresponding to the same CFT. However,
in a given CFT there are many possible choices of basis for the U(1)D ×U(1)D symmetry
algebra, which are related precisely by these O(D) × O(D) transformations. When we
introduce potentials z we have implicitly made a choice of basis. So the flavored partition
function should be viewed as a function on the space of Narain lattices O(D,D,Z)\O(D,D)
rather than on the moduli space of CFTs (2.6). This will be important when we consider
the average of flavored quantities, because we must now integrate over this larger moduli
space. In particular, we will consider averages of the form

〈·〉 = 1
Vol(O(D,D,Z)\O(D,D))

∫
O(D,D,Z)\O(D,D)

(·) dµ (2.17)

For quantities which are O(D) × O(D) invariant (such as unflavored partition functions)
this reduces to the average over MD described above. But this procedure can now be
applied to flavored quantities as well.
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3 Siegel-Weil formula for flavored partition functions: torus case

In this section we will compute the average of flavored CFT partition functions on the torus.
We will do so by showing that it satisfies a set of differential equations, combined with
knowledge of its behavior at the boundary of moduli space. We will begin with a review
of the unflavored case, before describing two differential equations — both a “Laplace
equation” and a “heat equation” — obeyed in the flavored case. This latter equation in
particular will allow us to easily reduce the computation of the averaged flavored partition
function to the unflavored case.

3.1 The flavorless Siegel-Weil formula

We begin by describing the Laplace equation obeyed by the partition function, which
was used by [2] to derive the Siegel-Weil formula in the unflavored case. We will present
a streamlined derivation of this equation in a form which can be easily adapted to the
flavored case.

We start by writing the partition function as

ZΓ(τ) = 1
|η(τ)|2DΘΓ(τ), ΘΓ(τ) ≡

∑
l∈Γ

Q(l, τ) (3.1)

where
Q(l, τ) ≡ eiπτl2L−iπτl2R = eiπτ1(l2L−l

2
R)e−πτ2(l2L+l2R) . (3.2)

with τ = τ1 + iτ2, τ = τ1 − iτ2. We have separated out the theta function ΘΓ(τ) which
counts primary states. We denote the Laplacian acting on the modular parameter τ as

∆H = −τ2
2

(
∂2

∂τ2
1

+ ∂2

∂τ2
2

)
= −4τ2

2
∂2

∂τ∂τ
. (3.3)

It is then straightforward to check that

∆HQ(l, τ) = −4π2τ2
2 l

2
Ll

2
RQ(l, τ) . (3.4)

We now consider the Laplacian ∆M acting on the moduli space of Narain lattices.
While we could write this operator in terms of the (GIJ , BIJ) target space fields, it is
simpler to think of this Laplacian as an operator on the O(D,D) group manifold. Since
Q(l, τ) is invariant under O(D) × O(D) rotations, these two versions of the Laplacian
will be proportional to one another. We start by defining O(D,D) as the linear trans-
formations which preserve the quadratic form ηABY

AY B where A,B = 1, 2, . . . , 2D and
ηAB = diag(1D,−1D). Writing the O(D,D) generators as

JAB = ηBCY A ∂

∂Y C
− ηACY B ∂

∂Y C
(3.5)

the quadratic Casimir is
J2 = ηACηBDJ

ABJCD . (3.6)
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We now use the fact that the charge vector l = (lIL, lIR) transforms as a (contravariant)
vector under the O(D,D) rotations. In particular, we can assemble these charges into an
O(D,D) vector Y A as:

lIL = Y I , lIR = Y D+I , I = 1, 2, . . . D . (3.7)

Since the quadratic Casimir is proportional to the Laplacian, this provides an explicit
expression for the Laplacian as a differential operator.

Explicitly, when acting on functions of the charge vector the quadratic Casimir takes
the form

J2 = LIJL
I
J +RIJR

I
J + 2T IJT IJ , (3.8)

with
LIJ = lIL

∂

∂lJL
− lJL

∂

∂lIL
, RIJ = lIR

∂

∂lJR
− lJR

∂

∂lIR
, T IJ = lIL

∂

∂lJR
+ lJR

∂

∂lIL
. (3.9)

Since the l2L,R are annihilated by LIJ and RIJ , and l2L−l2R is annihilated by all the generators,
we have

J2Q(l, τ) = eiπτ1(l2L−l
2
R) ×

[
2T IJT IJ e−πτ2(l2L+l2R)

]
. (3.10)

An elementary computation yields

eiπτ1(l2L−l
2
R)2T IJT IJ e−πτ2(l2L+l2R) = 8

[
4τ2

2
∂2

∂τ∂τ
+Dτ2

∂

∂τ2

]
eiπτl

2
L−iπτl

2
R

= −8
[
∆H −Dτ2

∂

∂τ2

]
eiπτl

2
L−iπτl

2
R . (3.11)

We will normalize our Laplacian as

∆M = −1
8J

2 (3.12)

to match [2], so that our result reads[
∆H −Dτ2

∂

∂τ2
−∆M

]
Q(l, τ) = 0 . (3.13)

We will rewrite this as

[∆H + s(s− 1)−∆M]
(
τ
D/2
2 Q(l, τ)

)
= 0 , s ≡ D/2 . (3.14)

We can now sum this over Γ to conclude that the theta function obeys the same differential
equation:

[∆H + s(s− 1)−∆M]
(
τ
D/2
2 ΘΓ(τ)

)
= 0 . (3.15)

In this expression ∆M is now the Laplacian on the space of Narain lattices Γ. We note that,
since |η(τ)|−2D and τD/22 have the same modular transformation properties, τD/22 ΘΓ(τ) is
modular invariant

We now integrate this equation over the moduli space MD to obtain an equation for
the object

H(τ) ≡ τD/22 〈ΘΓ(τ)〉 . (3.16)

– 8 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
0

The crucial observation is that, since ∆MΘΓ(τ) is a total derivative on MD, its integral
vanishes.3 The result is that H(τ) is a modular invariant eigenfunction of the Laplacian
on the upper half plane:

[∆H + s(s− 1)]H(τ) = 0 . (3.17)

One solution to this equation is the Eisenstein series4

ED/2(τ) ≡ τD/22
∑

(c,d)=1

1
|cτ + d|D

. (3.18)

We can now argue that in fact H = E(τ). One way to do so is to note that, since
we are considering modular invariant functions, we can effectively view this as a Laplace
equation on the fundamental domain H/SL(2,Z) which has finite volume. Compactifying
the fundamental domain by adding the point at infinity (τ = i∞), we can use the uniqueness
of solutions to the Laplace equation with negative eigenvalue. One only has to check that
H(τ) and ED/2(τ) have the same behavior as τ → ∞. Putting this together gives the
Siegel-Weil formula for the torus partition function:

〈ZΓ(τ)〉 = τ
D/2
2
|η|2D

∑
(c,d)=1

1
|cτ + d|D

. (3.19)

3.2 Flavored Laplace equation

We now extend this to the flavored partition function, which we write as

ZΓ(τ, z) = 1
|η(τ)|2DΘΓ(τ, z), ΘΓ(τ, z) ≡

∑
l∈Γ

P (l, z, τ), (3.20)

where again the function ΘΓ(τ, z) counts the contribution of primary states, and

P (l, z, τ) = eiπτl
2
L−iπτl

2
R+2πizL·lL−2πizR·lR . (3.21)

The flavored partition function is not modular invariant, but instead transforms covari-
antly as

ZΓ

(
aτ + b

cτ + d
,
aτ̄ + b

cτ̄ + d
,

zIL
cτ + d

,
zIR

cτ̄ + d

)
= exp

[
icπz2

L

cτ + d
− icπz2

R

cτ̄ + d

]
ZΓ(τ, τ̄ , zIL, zIR) . (3.22)

We will begin by deriving a version of the Laplace equation. In our derivation of
the Laplace equation above, we used the fact that the charge vector l = (lIL, lIR) could

3To argue that this one must in addition show that the surface terms arising on the boundary of MD

vanish. It is easy to see that this occurs when D > 2 by considering the explicit behavior of the lattice
sum; see [2] for details.

4To see that this is an eigenfunction of the Laplacian we note that τD/22 is itself an eigenfunction of ∆H
with the correct eigenvalue. The Eisenstein series is the sum of this eigenfunction over the modular group,
E(τ) =

∑
γ∈SL(2,Z)/Z γτ

D/2
2 , which gives a modular invariant eigenfunction with the same eigenvalue. Here

the subgroup Z is the set of matrices ( 1 n
0 1 ) which leave τ2 invariant. The coset SL(2,Z)/Z can then labelled

by pairs of coprime integers (c, d) which make up the lower row of an SL(2,Z) matrix, giving the form of
the Eisenstein series given in equation (3.18).
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be packaged into a vector under O(D,D) transformations. The chemical potentials z =
(zIL, zIR) can also be assembled into a vector under O(D,D), since the inner product zL ·
lL−zR · lR is O(D,D) invariant. It is then useful to introduce extended ̂O(D,D) generators
that act on both the charge vector l and the chemical potential z,

LIJ = lIL
∂

∂lJL
− lJL

∂

∂lIL
+ zIL

∂

∂zJL
− zJL

∂

∂zIL
,

RIJ = lIR
∂

∂lJR
− lJR

∂

∂lIR
+ zIR

∂

∂zJR
− zJR

∂

∂zIR
,

T IJ = lIL
∂

∂lJR
+ lIR

∂

∂lJL
+ zJL

∂

∂zIR
+ zJR

∂

∂zIL
. (3.23)

The quadratic Casimir on ̂O(D,D) will again take the form

Ĵ2 = LIJL
I
J +RIJR

I
J + 2T IJT IJ , (3.24)

where the hat indicates that this quadratic Casimir is now understood as a differential
operator on functions of both l and z.

We now follow the same logic as in our derivation of equation (3.14). Since the gener-
ators (3.23) all annihilate the ̂O(D,D) invariant combination zL · lL−zR · lR which appears
in our expression for P (l, z, τ) the computation reduces to the one described earlier, and
we find [

∆H + s(s− 1)− ∆̂M
] (
τ
D/2
2 P (l, z, τ)

)
= 0 , s = D/2 , (3.25)

where again ∆̂M = −1
8 Ĵ

2. As before, we can sum over the lattice Γ to see that:[
∆H + s(s− 1)− ∆̂M

] (
τ
D/2
2 ΘΓ(τ, z)

)
= 0. (3.26)

We note that the Laplacian ∆̂M appearing here is an ̂O(D,D) Laplacian which now acts on
both the space of Narain lattices Γ as well on the vector z = (zIL, zIR) of chemical potentials.5

However, in the averaging procedure to be discussed momentarily it is important to note
that we average Narain lattices Γ while holding fixed the chemical potentials z. Note that
for fixed z 6= 0, the O(D) × O(D) rotations of the lattice lead to inequivalent partition
functions (3.20) and (3.21).

We now wish to integrate this equation over the space of Narain lattices Γ to obtain
an equation for

G(z, τ) ≡ τD/22 〈ΘΓ(τ, l, z)〉 . (3.27)

It is important to remember that — as described in section 2 — the average 〈·〉 should be
understood as an integral over all O(D,D) rotations of a given reference lattice (keeping z
fixed) rather than just O(D,D)/O(D)×O(D). This implies that the integrated expression

5For the flavored partition function, the sigma model (2.7) will have additional target space gauge
fields (ALI , ARI ) coupled to the left/right-moving U(1) currents. In principle, ∆̂M can be expressed as a
differential operator acting on the target space fields (GIJ , BIJ , ALI , ARI ), but we have not worked out the
explicit expression since it will not be needed.
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G(z, τ) will only depend on the potentials through the O(D)×O(D) invariant combinations
z2
L and z2

R.
Many of the terms in ∆̂M = −1

8 Ĵ
2 give vanishing contributions to the integral. The

collection of terms not involving z is just the Laplacian ∆M on O(D,D) and so integrates
to zero for D > 2, as before. Next we have the cross terms involving both l and z. Here
we note that any term which involves one of the combinations (3.9) is a total derivative
on the integration space and so will vanish upon integration when D > 2.6 That leaves
the terms which involve z alone. Since we are not integrating over z space, these terms
can be pulled outside the integral. We noted above that the integrated expression G(z, τ)
depends on z only via the O(D)×O(D) invariant combinations z2

L and z2
R. It is therefore

annihilated by the z-dependent part of LIJ and RIJ . Therefore, all that survives from Ĵ2

is the purely z-dependent contribution from 2T IJT IJ . The result is that[
∆H + s(s− 1) + 1

4

(
zJL

∂

∂zIR
+ zJR

∂

∂zIL

)(
zJL

∂

∂zIR
+ zJR

∂

∂zIL

)]
G(z, τ) = 0 . (3.28)

This is the version of the Laplace equation which is obeyed by the average of the flavored
partition function.

One obvious solution to this equation can be obtained by generalizing the Eisenstein
series (3.18) in order to accommodate the more general modular transformation rule (3.22):

G(z, τ) = τ
D/2
2

∑
(c,d)=1

e
−iπ
(

cz2
L

cτ+d−
cz2
R

cτ+d

)
|cτ + d|D

. (3.29)

This is a solution to the equation with the correct transformation properties (3.22). We
will argue below that this is indeed the correct answer for the average of the flavored
partition function. However, we note that equation (3.28) has many other solutions as
well; for example, we can multiply it by any function of z2

L − z2
R. We will therefore give

an alternative argument based on the “heat equation” obeyed by the flavored partition
function. This will also confirm the validity of (3.29).

3.3 Heat equation

The starting observation for our derivation is that equation (2.3) implies that the conformal
weights L0 and L̄0 are determined by the charge vector l = (lIL, lIR). This implies that
the (τ, τ̄) dependence of the flavored partition function is be determined its z = (zIL, zIR)
dependence. In particular, we note that

P (l, z, τ) ≡ eiπτl2L−iπτl2R+2πizL·lL−2πizR·lR , (3.30)

obeys
∂

∂τ
P (l, z, τ) = 1

4πi∇
2
LP (l, z, τ) , ∂

∂τ
P (l, z, τ) = − 1

4πi∇
2
RP (l, z, τ) , (3.31)

6We can always choose coordinates (at least locally) so that a given such generator is a translation gener-
ator ∂θ in some direction θ. Alternatively, if T a is a generator of a group G, the statement

∫
G
DgT af(g) = 0

follows from the invariance of the Haar measure Dg.
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with

∇2
L = ∂2

∂zIL∂z
I
L

, ∇2
R = ∂2

∂zIR∂z
I
R

. (3.32)

Summing over lattice points, we conclude that ΘΓ(τ, z) will obey the same equation.
This heat equation is obeyed by the partition function for every CFT in the Narain

ensemble. We can therefore integrate over Narain lattices, and conclude that

Y (zL, zR, τ, τ) ≡ 〈ΘΓ(τ, z)〉 (3.33)

obeys the same equation. We note that, as in the previous section, the integration over
O(D,D) implies that the only dependence on potentials is through the O(D) × O(D)
invariants zL =

√
zILz

I
L and zR =

√
zIRz

I
R. Writing the Laplace operators ∇2

L,R in spherical
coordinates and discarding the angular parts, the heat equation becomes

∂Y

∂τ
= 1

4πi

[
∂2Y

∂z2
L

+ D − 1
zL

∂Y

∂zL

]
,

∂Y

∂τ
= − 1

4πi

[
∂2Y

∂z2
R

+ D − 1
zR

∂Y

∂zR

]
. (3.34)

These heat equations can be used to fix Y (zL, zR, τ, τ). First, from the unflavored
analysis we know that

Y (zL = 0, zR = 0, τ, τ) =
∑

(c,d)=1

1
|cτ + d|D

. (3.35)

From its definition, we know that it is possible to make the power series expansion Y (z, τ) =∑∞
m,n=0 Ym,n(τ, τ)z2m

L z2n
R . The heat equation then provides a set of recursive relations

among the coefficients in this series expansion. This is easiest to implement by writing

Y (zL, zR, τ, τ) =
∑

(c,d)=1

e
−iπ
(

cz2
L

cτ+d−
cz2
R

cτ+d

)
|cτ + d|D

+ ∆Y (zL, zR, τ, τ) . (3.36)

The first term on the right hand side obeys the heat equations, so ∆Y must as well. It will
therefore obey the heat equations and admit the expansion Y (z, τ)=

∑∞
m,n=0 ∆Ym,n(τ, τ)z2m

L z2n
R

with ∆Y0,0 = 0. It is simple to see that the heat equation implies recursion relations that
force all of ∆Ym,n = 0. We conclude

Y (zL, zR, τ, τ) =
∑

(c,d)=1

e
−iπ
(

cz2
L

cτ+d−
cz2
R

cτ+d

)
|cτ + d|D

. (3.37)

We saw in the previous section that this also obeys the flavored Laplace equation, as it
should. The above object is often called the non-holomorphic Jacobi-Eisenstein series; to
our knowledge, holomorphic versions of this quantity were first considered in [16].
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3.4 Average density of states

Our conclusion is that the average flavored partition function is

〈Z(τ, z)〉 = 1
|η(τ)|2D

∑
(c,d)=1

e
−iπ
(

cz2
L

cτ+d−
cz2
R

cτ̄+d

)
|cτ + d|D

. (3.38)

We wish to extract from this formula the averaged density of states ρ(j,∆, QI , Q̄I), as a
function of the spin j = (L0 − L̄0) ∈ Z, dimension ∆ = L0 + L̄0 and charges QI , Q̄I of
a state. As our partition function depends only on the O(D) × O(D) invariants z2

L and
z2
R, the resulting density of states is a function only of the total charges Q =

√
QIQI and

Q̄ =
√
Q̄IQ̄I in the left- and right-moving sectors, respectively. As we are interested only

in the density of primary states, we will omit the prefactor |η(τ)|−2D in what follows.
We begin by noting that the term in the sum with (c, d) = (0, 1) simply describes the

contribution of the ground state. We will therefore concentrate on the terms in the sum
with c > 0. To extract the average density of states, we will first perform the Fourier
transform which takes us from a sector of fixed chemical potentials (zIL, zIR) to a sector of
fixed charges (QI , Q̄I), where the contribution to the partition function is:

Z(τ,QI , Q̄I) =
∫
dzILdz

I
R e2πi(zILQ

I+zIRQ̄
I)


∑

(c,d)=1

e
−iπ
(

cz2
L

cτ+d−
cz2
R

cτ+d

)
|cτ + d|D

 . (3.39)

The usual unflavored torus partition function can be obtained by integrating this expression
with measure dQIdQ̄I . Now, the integrals over (zIL, zIR) are straightforward D-dimensional
Gaussian integrals. These cancel out the factor of |cτ + d|D in the denominator to give:

Z(τ,QI , Q̄I) = e−πτ2(Q2+Q̄2) ∑
(c,d)=1

c−Deπi(Q2−Q̄2)(τ1+d/c) . (3.40)

We now let d = d∗+ nc and replace the sum over d with a sum over n ∈ Z and a sum over
the integers 0 ≤ d∗ < c which are coprime to c. The sum over n is:∑

n∈Z
eπin(Q2−Q̄2) =

∑
j∈Z

δ

(
j − 1

2(Q2 − Q̄2)
)
, (3.41)

which gives

Z(τ,QI , Q̄I) = e−πτ2(Q2+Q̄2)∑
j∈Z

δ

(
j − 1

2(Q2 − Q̄2)
)
e2πijτ1

∞∑
c=1

c−D
(∑
d∗
e2πijd∗/c

)
.

(3.42)
We recognize ∆ = 1

2(Q2 + Q̄2) and j = 1
2(Q2− Q̄2) as the dimension and spin of a primary

state, as expected. The quantity in the parenthesis is known as Ramanujan’s sum, and is
usually denoted:

cc(j) ≡
∑
d∗
e−2πijd∗/c . (3.43)
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The sum over c in the expression (3.42) can be computed, and the result is a factor we
will call:

κ(j,D) ≡
∞∑
c=1

cc(j)
cD

=


σD−1(j)
|j|D−1ζ(D) , if j 6= 0
ζ(D−1)
ζ(D) , if j = 0 .

(3.44)

We can now take the inverse Laplace transform in the τ2 variable to extract the density of
states:

ρ(j,∆, QI , Q̄I) = κ(j,D) δ
(

∆− 1
2(Q2 + Q̄2)

)
δ

(
j − 1

2(Q2 − Q̄2)
)
. (3.45)

This is our final formula for the averaged density of states. As anticipated, it depends only
on the total charges Q and Q̄, and these total charges are related to dimension and spin
in the usual way.

To understand this formula, it is useful to compare this to the expression the total
density of states in the averaged Narain theory. To do so, we simply integrate this over
the space of charges (QI , Q̄I) to give the total density of states:

ρ(j,∆) = κ(j,D)
∫
dQIdQ̄Iδ

(
∆− 1

2(Q2 + Q̄2)
)
δ

(
j − 1

2(Q2 − Q̄2)
)

= κ(j,D)

 2πD

Γ
(
D
2

)2

 (∆2 − j2)D/2−1 . (3.46)

The second line involves a Jacobian factor as well as the volumes of D-dimensional spheres
in charge space of radius Q =

√
∆ + j and Q̄ =

√
∆− j, respectively. This expression

matches the averaged density of states in the Narain theory derived in [3].
In retrospect, we could have derived our expressions for the average flavored partition

function using a somewhat different logic. In particular, we could have started with the
observation that the average density of states ρ(j,∆, QI , Q̄I) must be a function only of
Q =

√
QIQI and Q̄ =

√
Q̄IQ̄I , and that these are completely determined by that dimension

and spin using the usual formulas ∆ = 1
2(Q2 + Q̄2) and j = 1

2(Q2 − Q̄2). Equation (3.45)
is then the only possible form of the density of states which is consistent with the known
expression for the total density of states appearing in [3].7

3.5 The τ → 0 limit

We have emphasized the use of the heat equation in fixing the form of flavored partition
functions. In familiar physical systems in which a heat equation arises one is usually
interested in solutions with specified boundary conditions at some initial time. In our
context τ plays the role of time. As a choice of initial time we here consider the case
τ → 0, at which the flavored partition function takes a distributional form which can be
computed fairly explicitly. Our point in this section simply is to note that the partition
function at generic τ can be recovered from this singular limit by using the heat equation.

7Indeed, our derivation based on the heat equation in the previous subsection — as it is similarly a
simple consequence of ∆ = 1

2 (Q2 + Q̄2) and j = 1
2 (Q2 − Q̄2) — could be considered a different version of

this argument.
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We focus on the factor in the partition function counting primaries,

YD =
∑

(c,d)=1

e
−πi
(

cz2
cτ+d−

cz̄2
cτ̄+d

)
|cτ + d|D

. (3.47)

We consider the d = 0 term first. For odd D, we can express this term as a derivative of
the Dirac delta function as follows

Y
(d=0)
D,odd = e

−πi
(
z2
τ
− z̄

2
τ̄

)
|τ |D

= 1
πD−1 (∂z2∂z̄2)

D−1
2
e
−πi
(
z2
τ
− z̄

2
τ̄

)
|τ |

τ→0−−−→ 1
πD−1

[
(∂z2)

D−1
2 δ(z)

] [
(∂z̄2)

D−1
2 δ(z̄)

]
. (3.48)

On the other hand, for even D this is

Y
(d=0)
D,even = e

−πi
(
z2
τ
− z̄

2
τ̄

)
|τ |D

= 1
πD−2|τ |

(∂z2∂z̄2)
D−2

2
e
−πi
(
z2
τ
− z̄

2
τ̄

)
|τ |

τ→0−−−→ 1
πD−2|τ |

[
(∂z2)

D−2
2 δ(z)

] [
(∂z̄2)

D−2
2 δ(z̄)

]
. (3.49)

For the terms with d 6= 0, we have the following sum over co-primes

Y
(d 6=0)
D =

∑
(c,d)=1

′ e
−πi
(

cz2
cτ+d−

cz̄2
cτ̄+d

)
|cτ + d|D

. (3.50)

Here the prime indicates that we consider terms with d 6= 0. Next, we can write c as j+kd,
with j = 0, · · · , d− 1 with the co-prime condition (j, d) = 1. Setting τ = 0, we get

Y
(d 6=0)
D

∣∣
τ→0 =

∞∑
d=1

∞∑
k=−∞

exp
[
−πik(z2 − z̄2)

] d−1∑
j=0

(j,d)=1

exp
[
−πi j

d
(z2 − z̄2)

]
d−D . (3.51)

The sum over k above gives the Dirac comb, X(x) =
∑∞
a=−∞ δ(x− a), while the sum over

j is the Ramanujan sum

Y
(d 6=0)
D

∣∣
τ→0 = X

(
z̄2 − z2

2

) ∞∑
d=1

cd

(
z̄2 − z2

2

)
d−D . (3.52)

Performing the sum over d yields the result

Y
(d 6=0)
D

∣∣
τ→0 =

σD−1
(
z̄2−z2

2

)
(
z̄2−z2

2

)D−1
ζ(D)

X

(
z̄2 − z2

2

)
. (3.53)

where, σr(s) is the divisor function and ζ(p) is the Riemann-zeta function. Hence, the
primary counting partition function at τ → 0 is

YD|τ=0 = 1
πD−2+m|τ |1−m

∣∣∣(∂z2)
D−2+m

2 δ(z)
∣∣∣2 +

σD−1
(
z̄2−z2

2

)
(
z̄2−z2

2

)D−1
ζ(D)

X

(
z̄2 − z2

2

)
.

(3.54)

where, m = (D mod 2).

– 15 –



J
H
E
P
0
5
(
2
0
2
2
)
0
9
0

A natural question is: why does the contribution to the partition function localize to
the points where z̄2 − z2 is an even integer? This can be understood by considering the
unaveraged D = 1 theory, where a similar phenomenon happens. The primary counting
partition function at τ → 0 is

Y1(R)
∣∣
τ→0 = Tr[yJ0 ȳJ̄0 ] =

∑
n,w

e2πiz( nR+wR
2 )e−2πiz̄( nR−wR2 )

=
∑
n

e2πi(z−z̄) n
R

∑
w

e2πi(z+z̄)Rw2 = X
(
z − z̄
R

)
X
((z + z̄)R

2

)
.

(3.55)

We see that the partition function localises to the points where

z − z̄
R
∈ Z,

(z + z̄)R
2 ∈ Z . (3.56)

Combining the above two conditions gives the weaker condition

z2 − z̄2

2 ∈ Z (3.57)

which is independent of R and is the same condition enforced by the Dirac comb appearing
in (3.54).

4 Higher genus

The results of the previous section can be generalized in a reasonably straightforward way
to the partition function on higher genus surfaces. In particular, we will show that a
flavored version of the genus g partition function obeys analogs of the Laplace and heat
equations described above. This will lead to a similar formula for the average flavored
partition function.

The partition function of a Narain CFT on a Riemann surface Σ of genus g is

Zg,Γ(τ) = 1
Φ(τ)θΓ(τ) , (4.1)

where the Siegel-Narain theta function is

θΓ(τ) =
∑
li∈Γ

eiπτij l
i
L·l

j
L−iπτ ij l

i
R·l

j
R . (4.2)

The prefactor Φ(τ) comes from the integral over oscillator modes, and can be expressed
in terms of the one-loop determinant of the scalar Laplacian on Σ. This contribution is
independent of the Narain lattice Γ, so will not be important in what follows.8 The period
matrix τij is a complex, symmetric g × g matrix with positive imaginary part; i.e. τij lives
in the Siegel upper half-space Hg. Not every such matrix is actually the period matrix of
some Riemann surface, but (4.1) is well defined regardless.

8Φ(τ) does, however, depend on the central charge and is necessary in order to obtain the correct
behavior under Weyl transformations.
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The flavored partition function is now obtained by introducing a set of chemical po-
tentials z = (zILi, zIRi) with i = 1 . . . g and I = 1 . . . D. These measure the charges that
propagate around the various cycles in the Riemann surface, and can be understood as
holonomies for background U(1)D Wilson lines. The flavored partition function is

Zg,Γ(τ, z) = 1
Φ(τ)θΓ(τ, z) , (4.3)

with
θΓ(τ, z) =

∑
li∈Γ

eiπτij l
i
L·l

j
L−iπτ ij l

i
R·l

j
R+2πizLi·liL−2πizRi·liR . (4.4)

In this expression and in what follows we have not written the I indices explicitly. We note
that, as the U(1)D descendants are uncharged, the prefactor Φ(τ) is exactly the same as
in the unflavored case.

The higher genus modular transformations act on the period matrix τ and potential
z as

τ → γτ ≡ (Cτ +D)−1(Aτ +B) , zL,R → γzL,R ≡ (Cτ +D)−1zL,R , (4.5)

where γ =
(
A B
C D

)
∈ Sp(2g,Z). The salient point is that C and D are matrices which act

on the i = 1 . . . g indices, but not on the I = 1 . . . D flavor indices; therefore much of the
analysis of MD in the previous section will apply in the higher genus case as well. The
theta function transforms as

θ(γτ, γz) = exp
[
πizLC

(
Cτ +D−1

)
zL − πizRC

(
Cτ +D−1

)
zR
]
θ(τ, z) . (4.6)

4.1 Laplace equations

We begin, as in the genus one case, with the unflavored partition function. The theta
function is a sum over the lattice Γ of

Qg(l, τ) = eiπτij l
i
L·l

j
L−iπτ ij l

i
R·l

j
R . (4.7)

As before, our goal is to write an equation relating the Laplacians on Narain moduli space
and the Siegel upper half-space.

We start by writing the Siegel Laplacian. Decomposing τij into its real and imaginary
parts as τij = xij + iyij , the metric on Siegel upper half-space is

ds2 = yijykl(dyikdyjl + dxikdxjl) . (4.8)

Here yij denotes the inverse of yij , i.e yikykj = δij . It is important to note that the line
element (4.8) should be expressed in terms of unconstrained variables, which we take to be
(xij , yij) with i ≤ j. With this in mind, the Laplacian is

∆Hg = − 1
√
g
gAB∂A

(√
ggAB∂B

)
= −yikyjl(∂̂xij ∂̂xkl + ∂̂yij ∂̂ykl) , (4.9)

where ∂̂xij = 1
2(1 + δij) ∂

∂xij
and ∂̂yij = 1

2(1 + δij) ∂
∂yij

. In (4.9) the index sums each run
from 1 to g, but ∆Hg should be expressed in terms of the unconstrained variables.
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We wish to act with the ∆Hg on Qg(l, τ), which we now write as

Qg(l, τ) = eiπxij(l
i
L·l

j
L−l

i
R·l

j
R)e−πyij(l

i
L·l

j
L+liR·l

j
R) . (4.10)

A slight inconvenience is the presence of hatted derivatives in ∆Hg . However, these can
be dispensed with by the following observation. We are instructed to express Qg(l, τ) in
terms of the unconstrained quantities (xij , yij) with i ≤ j and then act with the hatted
derivatives (∂̂xij , ∂̂yij ). It is simple to verify that this gives the same result as if we think of
all (xij , yij) as being independent, act with ordinary derivatives

(
∂

∂xij
, ∂
∂yij

)
, and then at

the end impose (xji = xij , yji = yij). This statement relies on the form Qg(l, τ) and does
not hold for all functions. We conclude that when acting on Qg(l, τ) we can write

∆g = −yikyjl

(
∂

∂xij

∂

∂xkl
+ ∂

∂yij

∂

∂ykl

)
, (4.11)

and view (xji, yji) as independent of (xij , yij) until the end of the computation.
This simplification in hand, we can now proceed as we did for g = 1. Defining

T IJ =
g∑
i=1

(
liIL

∂

∂liJR
+ liJR

∂

∂liIL

)
, (4.12)

the same logic as for g = 1 leads to

J2Qg(l, τ) = eiπxij(l
i
L·l

j
L−l

i
R·l

j
R)2T IJT IJ e−πyij(l

i
L·l

j
L+liR·l

j
R)

=
[
32π2yijykll

i
L · lkLl

j
R · l

l
R − 8πDyij

(
liL · l

j
L + liR · l

j
R

)]
Qg(l, τ) . (4.13)

We also have the differential operator relations

−yijykl
∂

∂τik

∂

∂τ jl
Qg(l, τ) = −π2yijykl(liL · lkL)(ljR · l

l
R)Qg(l, τ) , (4.14)

yij
∂

∂yij
Qg(l, τ) = −πyij(liL · l

j
L + liR · l

j
R) . (4.15)

So that equation (4.13) can be rewritten as

J2Qg(l, τ) =
[
32yijykl

∂

∂τik

∂

∂τ jl
+ 8Dyij

∂

∂yij

]
Qg(l, τ) . (4.16)

We can write the Laplacians of the Narain moduli space and the genus-g Riemann surface as

∆M = −1
8J

2 , ∆Hg = −4yijykl
∂

∂τik

∂

∂τ jl
. (4.17)

The action of these on Qg(l, τ) are related in the following manner[
∆Hg −Dyij

∂

∂yij
−∆M

]
Qg(l, τ) = 0 . (4.18)
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We now use

∆Hg(det y)s = −gs(2s− g − 1)
2 (det y)s . (4.19)

This relation is straightforward to derive by using the relations

∂̂yij det y = yij , ∂̂yijy
kl = −1

2(ykiyjl + ykjyjl) , (4.20)

which follow from the definitions.
We also have

∆Hg ((det y)sQg(l, τ)) =
[
∆Hg(det y)s

]
Qg(l, τ) + (det y)s

[
∆HgQg(l, τ)

]
+ cross term,

(4.21)
where the cross term is

− 2yijykl
(
∂̂yik(det y)s

) (
∂̂yjlQg(l, τ)

)
= −2s(det y)syjl

∂

∂yjl
Qg(l, τ) . (4.22)

This finally gives [
∆Hg −∆M + gs(2s− g − 1)

2

]
((det y)sQg(l, τ)) = 0 , (4.23)

which is the result quoted in [2].
Summing over lattice points, we see that the theta function itself obeys the same

differential equation. As in the genus one case, we can sum equation (4.23) over Sp(2g,Z)
images to obtain an Eisenstein series which is a modular invariant eigenfunction of the
Laplacian with the same eigenvalue. We will write this Eisenstein series as

Y (zL = 0, zR = 0, τ, τ) = (det y)s
∑

(C,D)=1

1
|det(Cτ +D)|2s , (4.24)

where the notation “(C,D) = 1” means that the matrices C,D together form the lower
row of an Sp(2g,Z) matrix; of course when g = 1 this reduces to the usual condition that
C and D are coprime integers.9

It is now straightforward to generalize this to the flavored case, since theMD structure
more or less comes along for the ride. For example, acting on functions of (l, z) the
generators of the O(D,D) currents now take the form

T IJ =
g∑
i=1

lIiL ·
∂

∂lJiR
+ lIiR ·

∂

∂lJiL
+ zJLi ·

∂

∂zIRi
+ zJRi ·

∂

∂zILi
. (4.25)

The argument follows that given above, resulting in the final equation for the averaged
partition function,[
∆H+ s(s− 1) + 1

4

(
zJiL

∂

∂zIRi
+ zJRi

∂

∂zILi

)(
zJLi

∂

∂zIRi
+ zJRi

∂

∂zILi

)]
(det y)s〈ΘΓ(τ, z)〉 = 0 .

(4.26)
9As in the g = 1 case, this should be regarded not as a sum over Sp(2g,Z) but rather a sum over a coset

Sp(2g,Z)/P where the subgroup P just consists of all transformations which leave det y invariant.
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4.2 Heat equation and the Siegel-Weil formula at higher genus

The most natural solution to the differential equation (4.26) is the Eisenstein series10

〈ΘΓ(τ, z)〉 =
∑

(C,D)=1

e−iπ(zL(Cτ+D)−1CzL)+iπ(zR(Cτ+D)−1CzR)
|det(Cτ +D)|D . (4.27)

To demonstrate that this is indeed the correct solution, we will utilize a heat equation as
in the g = 1 case. In particular, writing

θΓ(τ, z) =
∑
li∈Γ

P (l, z, τ) , (4.28)

with
P (l, z, τ) = eiπτij l

i
L·l

j
L−iπτ ij l

i
Rl
j
R+2πiziL·l

i
L−2πiziR·l

i
R , (4.29)

an identical argument as described at g = 1 gives(
∂

∂τij
− 1

4πi
∂2

∂ziL · ∂z
j
L

)
P (l, z, τ) = 0 =

(
∂

∂τ ij
+ 1

4πi
∂2

∂ziR · ∂z
j
R

)
P (l, z, τ) . (4.30)

As before, this reflects the fact that the stress tensor is Sugawara. Summing over lattice
points and integrating over Narain lattices, we find that θΓ(τ, z) and 〈θΓ(τ, z)〉 both obey
the differential equation (4.30) as well.

As at genus one, this provides a relationship between the τ and z dependence of the
partition function which can be used to prove (4.27). The important point is that one can
start with the solution at z = 0 (where (4.27) was proven in [2]), and then expand the
heat equation order by order in z to develop recursive relations relating different orders in
this expansion. It is straightforward to check that (4.27) is the unique solution to these
recursion relations which obeys the correct boundary condition at z = 0.

There is, however, one important distinction between this case and the simple g = 1
case considered earlier. The integral over O(D,D) implies that the resulting expressions for
〈θΓ(τ, z)〉 will be invariant under the O(D)×O(D) symmetries which rotate the chemical
potential vectors zILi and zIRi; these rotations act on the I = 1 . . . D indices, but not on
the i = 1 . . . g index. The result is that the averaged partition function will be a function
only of the invariants ziL · z

j
L and ziR · z

j
R. When g = 1 this includes only the lengths of the

chemical potential vectors, which we denoted z2
L and z2

R. At g > 1, however, there are now
new invariants which appear with i 6= j. Loosely speaking, this reflects the fact that when
the genus g partition function is constructed as a sum over states (corresponding to some
channel decomposition of the genus g surface), charge will flow between different channels.

4.3 A genus 2 example

In order to illustrate the utility of (4.27), let us consider in more detail the genus 2 case.11

Here the period matrix τij = ( τ1 τ12
τ12 τ2 ) is two dimensional, and the averaged partition

10There is an abuse of notation in (4.27): the D in (Cτ + D) is the lower right block of the Sp(2g,Z)
matrix, while D in the exponent is the number of bosons.

11We are especially grateful to S. Collier for discussions related to the computations appearing in this
subsection.
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function will depend as well on the inner products of the charge vectors z2
1 = zI1z

I
1 , z2

2 = zI2z
I
2

and z1 · z2 = zI1z
I
2 in both the left and right moving sectors. Of particular interest is the

pinching limit τ12 → 0, where the genus two surfaces factorizes into disjoint union of two
tori. We note that, generically, the partition function of this pinched Riemann surface does
not contain all of the data of our CFT. In the Narain case, however, as long as one keeps
z1 · z2 non-zero, it is possible to completely reconstruct the genus two partition function
in terms of the factorized torus correlators; by using the heat equation one can determine
the dependence on τ12. This holds at higher genus as well, and means that if one wishes
one can completely disregard the genus g partition functions and instead just work with
the expectation values 〈Z(τ1, z1) . . . Z(τg, zg)〉 of a product of flavored partition functions;
all of the dependence of the genus g partition function on the moduli τij with i 6= j can be
reconstructed from the factorized limit by considering the dependence on zi · zj .

To understand this in more detail, we can consider the averaged genus 2 partition
function Z(τ,QiI , Q̄iI) in a sector of fixed charge, rather than fixed potential, which is
given by the Fourier transform:

〈Z(τ,QiI , Q̄iI)〉 = 1
Φ(τ)

∫
dziIL dz

iI
R e

2πi(ziIL Q
iI+ziIR Q̄

iI)〈ΘΓ(τ, z)〉 , (4.31)

where

〈ΘΓ(τ, z)〉 =
∑

(C,D)=1

e−iπ(zL(Cτ+D)−1CzL)+iπ(zR(Cτ̄+D)−1CzR)
|det(Cτ +D)|2s . (4.32)

We will focus on the contribution of the primary states so will drop the prefactor 1
Φ(τ) . We

will also consider the case where this genus two partition function factorizes into a product
of genus 1 surfaces, so that τ12 = 0 (i.e. τ =

(
τ1 0
0 τ2

)
). We note that expressions such as

zL(Cτ+D)−1CzL ≡ zIiL
[
(Cτ +D)−1C

]
ij z

Ij
L in (4.27) involve both a sum over I = 1, . . . , D

and a sum over i, j = 1, 2. In order to keep the notation simple, in expressions such as this
we will suppress indices whenever possible as long as it is clear from context how they are
contracted.

This partition function is related to the correlation function of the density of states:

〈Z(τ,QiI , Q̄iI)〉 =
∑
j1,j2

∫
d∆1∆2〈ρ(j1,∆1, Q

1I , Q̄1I)ρ(j2,∆2, Q
2I , Q̄2I)〉q∆1+j1

1 q̄∆1−j1
1 q∆2+j2

2 q̄∆2−j2
2

(4.33)
where qi = e2πiτi . In order to extract the correlation function one needs to perform two
inverse Laplace transforms to extract the dependence on ∆1 and ∆2, as well as pick out
the appropriate phases which indicate the dependence on j1 and j2.

It is possible to unpack the sum over coprime matrices (C,D) following [17]. This
technique is applied extensively in [18], so we will only summarize a few relevant details
here. One starts by considering separately the cases where C has rank 0, 1 or 2. The case
with rank 0 just corresponds to (C,D) = (0, 1), which gives 〈ΘΓ(τ, z)〉 = 1 + . . . . This
leads to a contribution to the partition function (omitting the 1

Φ(τ) prefactor)

〈Z(τ,QiI , Q̄iI)〉 =
∏
I

δ(Q1I)δ(Q̄1I)δ(Q2I)δ(Q̄2I) + . . . (4.34)

This term describes the contribution of the vacuum state, for which all charges vanish.
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The contributions with rank C = 1 are also relatively easy to compute. We begin with
the fact (proven in [17]) that the set of coprime matrices with rank(C) = 1 is parameterized
by two pairs of coprime integers (c, d) = 1 (with c 6= 0) and (m,n) = 1, with

C =
(
c 0
0 0

)
UT , D =

(
d 0
0 1

)
U−1, (4.35)

where U = (m p
n q ) is a unimodular matrix. The set of such unimodular matrices is param-

eterized by m,n ∈ Z with (m,n) = 1. This gives a contribution

〈ΘΓ(τ, z)〉rank 1 =
∑

(m,n)=1
(c,d)=1

exp
{
πi

((
c(mz1I

L +nz2I
L )(mz1I

L +nz2I
L )

cτn,m+d

)
−
(
c(mz1I

R +nz2I
R )(mz1I

R +nz2I
R )

cτn,m+d

))}
(cτn,m + d)2s

(4.36)
where we have defined τn,m = m2τ1 + n2τ2. It follows that, when computing the integrals
over z, we will obtain contributions to the density-density two point function that vanish
unless Q1 is proportional to Q2. In particular, computing the Fourier transform we find

〈Z(τ,QiI , Q̄iI)〉rank 1 =
∑

(m,n)=1
(c,d)=1

∏
I

δ(nQ1I −mQ2I)δ(nQ̄1I −mQ̄2I)c−Deπi
(Q1)2(τn,m+ d

c )−(Q̄1)2(τ̄n,m+ d
c )

m2

=
∑

(m,n)=1

∏
I

δ(nQ1I −mQ2I)δ(nQ̄1I −mQ̄2I)
∑
j∈Z

e−π
Q2

1+Q̄2
1

m2 ym,nκ(j,D)δ
(
j− Q

2
1− Q̄2

1
2m2

)
e2πijym,n

(4.37)
where in the second line we have performed the sum over (c, d) just as in our computation
of the one point function, and defined τm,n = xm,n + iym,n. In these expressions we have
assumedm 6= 0 for the sake of simplicity; the term with (m,n) = (0, 1) is found by replacing
all of the factors of Q2

1
m2 by Q2

2
n2 = Q2

2.
We can translate this into a contribution to the density-density two-point function

by taking two inverse Laplace transforms (to extract the dependence on ∆1 and ∆2) and
picking out the appropriate angular momentum modes. The result is

〈ρ(j1,∆1, Q
I
1)ρ(j2,∆2, Q

I
2)〉rank 1

=
∑
j∈Z

 ∑
(m,n)=1

κ(j,D)
∏
I

δ(nQ1I −mQ2I)δ(nQ̄1I −mQ̄2I)

×
δ

(
∆1 −

1
2(Q2

1 + Q̄2
1)
)
δ

(
∆2 −

1
2(Q2

2 + Q̄2
2)
)
δ

(
j − Q2

1 − Q̄2
1

2m2

)
δ
j1,

Q2
1−Q̄

2
1

2

δ
j2,

Q2
2−Q̄

2
2

2

.

(4.38)

We note that, because of the delta functions which set Q1 to be proportional to Q2,
the dimensions ∆i and spins ji appearing in this expression will be related to one an-
other as n2∆1 = m2∆2 and n2j1 = m2j2. The existence of such correlations in the two
point function of the density of states is not surprise: in free boson CFTs, primary oper-
ator dimensions (or spins) will generally be rational multiples of one another. As above,
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this expression breaks down when (m,n) = (0, 1); in this case we simply must replace
δ

(
j − Q2

1−Q̄
2
1

2m2

)
→ δ

(
j − 1

2(Q2
2 − Q̄2

2)
)
.

Finally, the set of coprime matrices (C,D) with rank(C) = 2 are parameterized by
symmetric matrices P = C−1D with rational entries,12 leading to

〈ΘΓ(τ, z)〉rank 2 =
∑
P

ν(P )−2s e
−iπ(zL(τ+P )−1zL)+iπ(zR(τ+P )−1zR)

| det(τ + P )|2s . (4.39)

The factor ν(P ) is the product of the denominators of the elementary divisors of P , which
is defined as follows: given a rational symmetric matrix P , there exist unimodular matrices
U and V such that

P = U

(
d1/c1 0

0 d2/c2

)
V −1 (4.40)

Then ν(P ) ≡ c1c2. In the present case, where P = C−1D for coprime matrices (C,D), we
just have ν(P ) = detC.

The Fourier transform gives a Gaussian integral as in the genus one case:

〈Z(τ,QiI , Q̄iI)〉rank 2 = e−π(QyQ+Q̄yQ̄)+πi(QxQ−Q̄xQ̄)∑
P

ν(P )−2seπi(QPQ−Q̄P Q̄) ,

where we have written τij = xij + iyij and pulled the τ dependent pieces into a prefactor.
We emphasize that, as above, expressions such as QPQ ≡ QiIPijQ

jI include sums over
both i, j and over I. The sum over P is a version of Siegel’s singular series, which is
defined as

Ss(QiI , Q̄iI) ≡
∑
R

ν(R)−2seπi(QRQ−Q̄RQ̄) , (4.41)

where the sum is over rational symmetric matrices R with entries between zero and one and
ν(R) is the product of the denominator of elementary divisors as above. This series should
be regarded as a generalization of the zeta function relevant for Eisenstein series of higher
genus. To write the partition function in terms of the Siegel series, we let P = N+R where
N is a symmetric integral matrix and the entries of R are rational numbers between 0 and 1,
and separate the sum over P into a sum over N and a sum over R. Since ν(N+R) = ν(R),
the sum over R is precisely (4.41). The sum over N is the usual product of delta functions
which set j1 = 1

2(Q2
1− Q̄2

1), j2 = 1
2(Q2

2− Q̄2
2), and j12 ≡ 1

2(Q1 ·Q2− Q̄1 · Q̄2) to be integers:

∑
N

eπi(QNQ−Q̄NQ̄) =
∑

j1,j2,j12∈Z
δ

(
j1−

1
2(Q2

1− Q̄2
1)
)
δ

(
j2−

1
2(Q2

2− Q̄2
2)
)
δ

(
j12−

1
2(Q1 ·Q2− Q̄1 · Q̄2)

)
.

(4.42)

12This is the statement, proven in [17], that when C has full rank the set of coprime (C,D) is parameterized
by symmetric matrices P with rational entries. This can be understood as the matrix version of the
statement that the set of coprime pairs of integers (c, d) with c 6= 0 is uniquely parameterized by rational
numbers p = d/c. That P = C−1D must be symmetric follows from the condition that (C,D) form the
lower row of an Sp(2g,R) matrix, which implies CDT = DCT .
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Taking τ12 → 0 and performing the inverse Laplace transform as before gives the rank 2
contribution to the density-density two point function:

〈ρ(j1,∆1, Q
I
1)ρ(j2,∆2, Q

I
2)〉rank 2 =

∑
j12∈Z

Ss(QiI , Q̄iI)

× δ
(

∆1 −
1
2(Q2

1 + Q̄2
1)
)
δ

(
∆2 −

1
2(Q2

2 + Q̄2
2)
)

× δ
(
j1 −

1
2(Q2

1 − Q̄2
1)
)
δ

(
j2 −

1
2(Q2

2 − Q̄2
2)
)
δ

(
j12 −

1
2(Q1 ·Q2 − Q̄1 · Q̄2)

)
. (4.43)

5 Flavored partition function from Chern-Simons theory

In this section we show that the averaged flavored partition function can be reproduced in a
natural way by summing over a class of geometries weighted by appropriate U(1)D×U(1)D

Chern-Simons partition functions. As compared to the unflavored case, the new feature
is that we allow for more general boundary conditions on the gauge fields, corresponding
to the presence of chemical potentials in the partition function. These have to be treated
carefully in order to respect the modular behavior of the partition. In this section we
restrict attention to the genus one CFT flavored partition function, which on the Chern-
Simons side means that we restrict the class of bulk geometries to be solid tori. Our
discussion is similar to [19].

We consider U(1)D × U(1)D Chern-Simons theory on a manifold M with boundary
∂M . The action is

S = i

8π

∫
M

(
AI ∧ dAI −AI ∧ dAI

)
− 1

16π

∫
∂M

d2x
√
ggab

(
AIaA

I
b +A

I
aA

I
b

)
, (5.1)

where gab is the metric on ∂M . The boundary term is chosen so that the on-shell variation
of the action is

δS = i

2π

∫
∂M

d2x
√
g
(
JaI δA

I
a − J

a
IδA

I
a

)
, (5.2)

where the currents are

JIa = i

4
(
AIa − iε ba AIb

)
, J

I
a = i

4
(
AIa + iε ba A

I
b

)
, (5.3)

and (AIa, A
I
a) function as their conjugate potentials. The stress tensor is defined via the

variation with respect to the metric,

δS = 1
2

∫
∂M

d2x
√
g T ab δgab , (5.4)

yielding
Tab = 1

8π

(
AIaA

I
b −

1
2A

IcAIcgab +A
I
aA

I
b −

1
2A

Ic
A
I
cgab

)
. (5.5)

Choosing the flat metric gabdxadxb = dwdw, these formulas read

JIw = i

2A
I
w , JIw = 0 , J

I
w = 0 , J

I
w = i

2A
I
w , (5.6)

Tww = 1
8π
(
AIwA

I
w +A

I
wA

I
w

)
, Tww = 1

8π
(
AIwA

I
w +A

I
wA

I
w

)
, Tww = Tww = 0 .
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Note that the non-zero components of the stress tensor are a sum of a Sugawara piece
quadratic in the currents and a contribution quadratic the potentials.

We now turn to the computation of the flavored partition function as a sum over
geometries. We let M be a solid torus. We choose a radial coordinate r such that at fixed
r we have a T 2 on which we choose a complex coordinate w. The w coordinate is taken to
have periodicities

w ∼= w + 2π ∼= w + 2πτ , τ = τ1 + iτ2 . (5.7)

The boundary cycle defined by the identification w ∼= w + 2π is taken to be contractible
when extended into the solid torus.

The flavored partition function is defined by fixing boundary conditions for the con-
nection. We fix (in this section zL ≡ z, zR ≡ z̄)

AIw = i

τ2
zI , A

I
w = − i

τ2
zI . (5.8)

Note that zI and zI are not related by complex conjugation. Demanding vanishing holon-
omy around the contractible circle imposes

AIw = −AIw , A
I
w = −AIw . (5.9)

For flat connections with these boundary values, the full contribution to the classical action
comes from the boundary term in (5.1), and gives

S = − π

2τ2
(z2 + z2) , (5.10)

where we are now writing z2 = zIzI and z2 = zIzI . Since the action is quadratic, the
1-loop fluctuation determinant is not affected by the potentials (zI , zI). It is equal to the
partition function of D free bosons on the torus [2, 20]. Altogether, the path integral for
the theory on the solid torus is13

ZPI(τ, z) = 1
|η(τ)|2D e

π(z2+z2)
2τ2 . (5.11)

An important point is that the path integral differs from the partition function, where the
latter is defined as

Z(τ, z) = Tr
[
e2πiτ(L0−c/24)e−2πiτ(L0−c/24)e2πizIQIe−2πizIQ̄I

]
. (5.12)

In the above, L0 and L0 take the Sugawara form, quadratic in the currents. In the presence
of chemical potentials as implemented by our boundary conditions, we noted previously
that the stress tensor written in (5.6) is the sum of a Sugawara piece and a contribution from
the potentials. Taking this into account, one finds that the path integral and the partition
function are not equal, but rather differ by a contribution from the potentials [19],14

Z(τ, z) = e
−π(z2+z2)

2τ2 ZPI(τ, z) . (5.13)
13The notation (τ, z) is shorthand for (τ, τ , zI , zI).
14To compare, note that zhere =

√
2zthere.
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The prefactor is responsible for the fact that while the path integral for a CFT with
U(1) currents is modular invariant, the partition function with nonzero potentials picks
up a multiplicative factor, as written in (3.22). Noting cancellation of the prefactor, the
contribution to the partition function is therefore simply

Z(τ, z) = 1
|η(τ)|2D . (5.14)

The fact that this is independent of the potentials follows from our assumption of trivial
holonomy around the contractible cycle; this implies that no charge propagates around the
non-contractible cycle.

We now include the sum over bulk manifolds, corresponding to summing over inequiv-
alent choices for which boundary cycle is contractible in the bulk. We can implement
this by writing w = (cτ + d)w′, with identification w′ ∼= w′ + 2π ∼= w′ + 2πτ ′, with
τ ′ = (aτ + b)/(cτ + d). As usual, ad − bc = 1. We now take the contractible cycle to be
the one corresponding to the identification w′ ∼= w′ + 2π. The classical action is given by
the boundary term, which is coordinate invariant. With τ ′2 = τ2/|cτ + d|2 and

z′I = −iτ ′2AIw′ = −i τ2
cτ + d

AIw = zI

cτ + d
, (5.15)

we obtain

S(τ ′, z′) = − π

2τ ′2
(z′2 + z′2) = − π

2τ2
(z2 + z2) + πi

(
cz2

cτ + d
− cz2

cτ + d

)
. (5.16)

Using |η(τ ′)|2 = |cτ + d||η(τ)|2, we find that the contribution to the path integral is

Z
(c,d)
PI (τ, z) = e

π(z2+z2)
2τ2

|η(τ)|2D
e
−πi
(

cz2
cτ+d−

cz2
cτ+d

)
|cτ + d|D

. (5.17)

We convert the partition function using (5.13) and, following [21], sum over inequivalent
geometries labelled by relatively prime integers c and d to get

Z(τ, z) =
∑

(c,d)=1
e
−π(z2+z2)

2τ2 Z
(c,d)
PI (τ, z) = 1

|η(τ)|2D
∑

(c,d)=1

e
−πi
(

cz2
cτ+d−

cz2
cτ+d

)
|cτ + d|D

. (5.18)

This reproduces our previous expression (3.37) for the averaged flavored partition function.
As in the unflavored case, we can think of extending this computation to higher genus

boundaries. The classical action will again come from boundary terms, with boundary
conditions that fix the holonomy around all boundary cycles that are non-contractible
in the bulk. This classical part will reproduce terms in the flavored Siegel-Narain theta
function (4.4). The one-loop contribution, denoted as 1/Φ(τ), is much more complicated
than at genus one, but we again expect it to be independent of the boundary conditions
since the action is quadratic.
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