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Abstract

We look for relations among CKM matrix elements that are not consequences of the Wolfenstein
parametrization. In particular, we search for products of CKM elements raised to integer powers
that approximately equal 1. We study the running of the CKM matrix elements and resolve an
apparent discrepancy in the literature. To a good approximation only A runs, among the Wolfen-
stein parameters. Using the Standard Model renormalization group we look for CKM relations at
energy scales ranging from the electroweak scale to the Planck scale, and we find 19 such relations.
These relations could point to structure in the UV, or be numerical accidents. For example, we find

that |VigVis| = ‘VC% , within 2% accuracy, in the 10910 GeV range. We discuss the implications

of this CKM relation for a Yukawa texture in the UV.
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I. INTRODUCTION

The CKM flavor-mixing matrix possesses nontrivial structure, as exemplified by the

Wolfenstein parametrization [1]:

1—X%/2 A AN(p—in)
V= —A 1—A2/2 AN +O(\h). (1.1)
AN(L—p—in) —AN 1

Experimentally, A\ ~ 0.22, reflecting the hierarchical nature of the CKM matrix. Eq. (1.1)
is an expansion in the small parameter A\, with the other Wolfenstein parameters A, p, and
n taken to be O(1). It is natural to wonder whether there is structure in the CKM matrix
beyond the Wolfenstein parametrization. This could manifest as precise relations between
elements of the CKM matrix (or equivalently, relations between the Wolfenstein parameters)
that do not follow purely from the smallness of A or the unitarity of V.

To this end, Ref. [2] introduced the concept of “Wolfenstein anarchy”, in analogy with
anarchic models of the PMNS lepton mixing matrix [3-7]. In contrast to the CKM matrix,
it is unknown whether the PMNS matrix possesses any nontrivial strucure. PMNS anarchy
is the concept that there is no such structure: all of the elements of the PMNS matrix
are comparable and there are no new relations among them [3]. Following this, a CKM
matrix is Wolfenstein anarchic if it is generic other than the one small parameter A, and no
relations exist other than those already implied by the Wolfenstein parametrization. The
opposite situation is that the CKM matrix has a substructure. Whether the CKM matrix
is Wolfenstein anarchic or has a substructure depends upon the UV completion underlying
the flavor structure observed in nature.

Ref. [2] identified two novel CKM relations that are approximately satisfied:

However, the CKM matrix runs [8, 9], and so the relations in Eq. (1.2) should be understood
as holding at a low scale, below the top quark mass m;. (Below my, the CKM matrix is
essentially constant [10].) If some UV physics generates CKM substructure, this should be
reflected in CKM relations that appear at the scale of the new physics. These relations may
not hold in the IR due to the running of the elements of CKM matrix. For this reason, we

seek to explore CKM relations at different scales, from the weak scale to the Planck scale.
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What can we learn from such relations? The great hope is that they are due to some
fundamental reason — that is, that they serve as a hint of UV physics. Yet, such relations
can be totally accidental. Our hopes in this paper are twofold. First we look for relations.
Once we have found them, we ask what we can learn about any possible UV model that
generates them.

The running of the CKM matrix is model-dependent. In this paper we consider the
Standard Model (SM) and one realization of the Minimal Supersymmetric Standard Model
(MSSM) [11, 12]. While in the SM the numerical values of the parameters at the weak
scale are known to a good accuracy, for the MSSM we have to choose various unknown
parameters. Our choice is to take all superpartner masses to be equal at the weak scale and
tan § = v4/v, = 1. This realization of the MSSM is experimentally excluded, because the
LHC typically constrains superpartner masses to be heavier than the electroweak scale (see
for example Refs. [13-16]). Heavier superpartner masses introduce logarithmic threshold
corrections to the CKM running which we do not include here for simplicity. Our purpose
with this toy MSSM example is to demonstrate that the running can change when going
beyond the SM, leading to different relations.

In both the SM and the MSSM, to a good approximation, only the Wolfenstein parameter
A runs. The running of A has been calculated before, but there is an apparent disagreement
in the literature about its running in the SM: Ref. [8] reports an increase in A of about 13%
from the weak scale to the GUT scale, while in Fig. 2 of Ref. [9] A increases by about 25%.
We resolve this discrepancy. As we explain in § II, we find that recomputing the running of
A using the methods of Ref. [9] gives a result which, in fact, agrees with Ref. [8]. Thus, we
take the results of both Ref. [8] and Ref. [9] (except for their Fig. 2) to be correct.

Having the forms of running of the CKM matrix, we then search for CKM relations up

to the Planck scale in the SM and the MSSM. We find one particularly intriguing relation,

that holds in the SM between 10° and 10'® GeV, overlapping the scale where the Higgs
quartic vanishes [17, 18] and the GUT scale. In terms of Wolfenstein parameters, this

relation can be written as
A2 =(1—p)+7 (1.4)

Ideally we would like to find a UV model that generates this relation without tuning.
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While we were unable to do so, we investigate an ansatz for the quark Yukawa matrices that
can result in such a relation. We find that this ansatz can reproduce the six observed quark
masses with five free parameters, once we impose the relation. Yet, it is not clear if that

relation is a hint of a UV physics or is just accidental.

II. CKM MATRIX RUNNING

The CKM elements run due to the fact that the Yukawa couplings run. Furthermore, the
running of the CKM matrix is related to the fact that the running of the Yukawa couplings is
not universal. If all the Yukawa couplings ran in the same way, the matrices that diagonalize
them would not run. Thus, it is the nonuniversality of the Yukawa coupling running that
results in CKM running.

Since only the Yukawa coupling of the top quark is large, that is, O(1), to a good
approximation we can neglect all the other Yukawa couplings. There are three consequences

of this approximation:
1. The CKM matrix elements do not run below m.
2. The quark mass ratios are constant except for those that involve m,.
3. The only Wolfenstein parameter that runs is A.

The first two results above are easy to understand, while the third one requires some ex-
planation. A is the parameter that appears in the mixing of the third generation with the
first two generations, and thus is sensitive to the running of the top Yukawa coupling. A
mainly encodes 1-2 mixing — that is, between the first and second generations — and is
therefore insensitive to the top quark. The last two parameters, n and p, separate the 1-3
and 2-3 mixing. Thus they are effectively just a 1-2 mixing on top of the 2-3 mixing that is
generated by A. We see that, to a good approximation, it is only A that connects the third
generation to the first and second, and thus it is the only one that runs.

As explained above, there is a disagreement in the literature over the numerical running
of the CKM matrix. Ref. [8] works in the limit of vanishing electroweak gauge couplings,
arguing that the renormalization group (RG) evolution is dominated by the Higgs sector and

strong interactions. Exploiting the large hierarchies between the quark masses and keeping
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only the mass of the top quark further simplifies the RG equations, to the point that they
can be solved analytically. With this method, Ref. [8] reports an increase in A (in the SM)
of about 13% from 10? GeV to 10'® GeV. The authors of Ref. [9] instead expand the RG
equations in terms of the Wolfenstein parameter A, noting that the leading term in the
one-loop contribution is O(1) while the leading term in the two-loop contribution is O(\*).
Motivated by this, they solve the RG equations up to order A\®. In Fig. 2 of Ref. [9] we can
see an increase in A of about 25% from 10> GeV to 10'® GeV, in tension with Ref. [8].

To address the discrepancy, we compute the running of the Wolfenstein A by directly
computing the running of the Yukawa matrices and diagonalizing them to find the Wolfen-
stein parameters. Following Eqgs. (15)—(22) in Ref. [9], the down-type Yukawa matrix at

scale t is given by

ya(t) = /T (DR, (1) (U] Z(1) (Vi) v, (2.1)

t=1In (%) . (2.2)

r'(t) and h,,(t) are functions and Z(t) is a 3 x 3 matrix, which we define below, following

where

Ref. [9]. Quantities with a zero index are evaluated at the scale p, corresponding to t = 0;

for example, y) = yq(t =0). Explicitly, r/(¢) is defined in terms of the running gauge

r(t) = ﬁ( 9 )2& (2:3)

gi(t)
where g1, g2, and g3 are the U(1),,, SU(2),, and SU(3), gauge couplings, respectively. The
coefficients 0; are {5/82, —27/38, —8/7} in the SM and {7/99, 3, —16/9} in the MSSM. h,,(t)

couplings by

is given by

T /Ot Yf(t’)dt’] : (2.4)

where Y; is the largest eigenvalue of the up-type Yukawa matrix. (One must not confuse the

hon(t) = exp {

t defined in Eq. (2.2) with the symbol for the top quark that appears in Y; and m;.) It is
related to the running top quark mass my(t) by v/2my(t) = v(t)Y;(t), where v(t) is the Higgs
VEV. Lastly, Z(t) = diag (1,1, h(t)), where h(t) = h,,(t)%/? in the SM and h(t) = h,,(t) in
the MSSM.

The Yukawa matrix y4 can be diagonalized by a scale-dependent bi-unitary transformation

ya(t) = (Ua)} da(t) (Ug) g (2.5)
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where g4 denotes the diagonal Yukawa matrix, and the t-dependencies of (Uy), and (Uy),

are implicit. Consider the following hermitian matrix:

watt)! = (U} [ OB, 0Z(0) V), o U, 20) W), (26)
After diagonalizing it we get

Galt) = VO [P OR(0Z(1) (V) il (U] 2(0)] V(o). (2.7)

where
V() = (Ua), (1) (Ua)] (1) (2:8)
is the CKM matrix at scale t. Consequently, we can directly compute the CKM matrix by

diagonalizing the hermitian matrix

Z(t) (Ua) yava (U} Z(t) = 2 2OV (MY (1), (2.9)

w
where vy is the Higgs vev, Vj is the CKM matrix, and M} is the mass matrix of down-type
quarks (all at the scale py).
Following the definition in the PDG [10], we compute the numerical value of Wolfenstein

parameters directly from the CKM matrix elements:

| Vus | V::b

\/ |Vud|2 + |Vu5|2

Vus
We find that ), p, and 7 only change by O(10™*) from the weak scale to the Planck scale,

. AN (p+in) =V, (2.10)

confirming known results [8, 9]. Moreover, the assumption that we use of neglecting all the
Yukawa couplings but that of the top is not justified for such a small running. Given the fact
that the running of A\, p, and 1 is much smaller than that of A we treat them as constants.

Our results for the running of the Wolfenstein parameter A in the SM and the MSSM are
depicted in Fig. 1. We use the CKMfitter collaboration central values for the CKM matrix
elements [19] and the PDG values for all running gauge couplings and masses [10]. The
running of A in the SM agrees with Ref. [8], contrary to the running reported in Fig. 2 of
Ref. [9]. We conclude that the different methods of computing the CKM running agree with
each other, and they are in disagreement with Fig. 2 of Ref. [9].

Fitting A to a quadratic equation, we find that it is very well-approximated by

100 GeV

000181 log? (L>
>+00008 o8t (107 e

_r
100 GeV
_Hr
100 GeV

(2.11)
AMSSM,ﬁt(,u) = 0.824 — 0.00653 log;, (
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FIG. 1. Running of the Wolfenstein parameter A in the SM (black) in the MSSM (blue). In the

MSSM we take tan 8 = 1. The running is fitted to the quadratic equations given in Eq. (2.11).

The error of these fits is less than 1% between m; and Mp;.

Lastly, we discuss how a potential CKM relation runs. We consider some function of
CKM matrix elements R(u) which, when expressed in terms of the Wolfenstein parameters,
scales as A™. Suppose one has computed R at a particular scale jy. Then we have

R = | 45| R (2.12)

From this one can see that computing the scale at which R = 1 simply amounts to solving

the equation

A(po)

A(M)—W =

(2.13)

III. CKM RELATIONS UP TO THE PLANCK SCALE

We search for relations across the range of scales (m;, Mp;) of the form

I, Vi ™
L, Vit ™™

where i,, kp, € (u,¢,t), jn,lm € (d,5,0), and Y a, + > by, < 7. We restrict our attention

= 1+0.02, (3.1)

to those relations which are not already implied by the Wolfenstein parametrization and
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FIG. 2. Novel CKM relations in the SM from m; to Mp;. The bars indicate the range of energy
scales in which the relations hold to within 2%, while the dots indicate the scale at which the

relations equal 1. The first two relations do not run at order A* and so they hold at all scales.

require that the relations hold to within 2% of 1. We choose a 2% precision because that
is roughly the experimental precision on the values of the CKM elements, as well as the
theoretical precision in the running formula that we use. Our results for the SM and MSSM

are depicted in Figs. 2 and 3, respectively.

Our analysis differs from Ref. [2] in two ways. First, Ref. [2] worked at leading order in

A, and thus approximated V,4; = 1. We do not make this approximation. Second, we allow
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FIG. 3. Same as Fig. 2, but for the MSSM.

Yonan+ >, by <7, while Ref. [2] required ) a, + >, b, < 6, ie. we allow one more
factor of CKM matrix elements.
Two of the relations we find are independent of the Wolfenstein parameter A. These are

VaV3Vil  1-3)2/2
| Vil 11— p—in

Ve VaVus| 1 —2X2

1= = -
|Vl 1 —p—in|

+ 0O\, 1= + 0O\, (3.2)

Since these relations are A-independent, they do not run.
Of course, at low scales we find the same relations as Ref. [2]: [V2| = |V2| and |[VAV,,| =
|V4]. In both the SM and the MSSM, these relations hold up to about 10°-10* GeV.
There is a compelling relation in the SM involving only four factors of CKM matrix

elements, which holds between 10 and 10" GeV:
ViaVus| = |V (3.3)
In terms of the Wolfenstein parameters, this relation can be written as
A2 =n*+(1-p)* (3.4)

Below we concentrate on this relation.



IV. YUKAWA ANSATZ

It would be tantalizing if we could construct a UV model that generates the relation
of Eq. (3.3). Yet, we were unable to find one. Instead, we explored possible forms of the
Yukawa matrices that could yield the relation. The idea is that once we find such matrices,
they can serve as a first step in constructing a model.

Flavor models, for example Froggatt-Nielsen models [20-22], typically predict textures
for the Yukawa matrices, generating the small Wolfenstein parameter A through some novel
dynamics. Although these models explain the hierarchical structure of the CKM matrix,
they cannot generate CKM relations (ignoring numerical coincidences), since the Yukawa
textures are only defined up to O(1) parameters. That is, Froggatt-Nielsen models are
consistent with Wolfenstein anarchy.

For a flavor model to generate a relation like Eq. (3.3), it must predict a precise form for
the Yukawa matrices, without unspecified O(1) constants. In fact, we are unaware of any
model that can generate such a relation.

There are ten observables in the SM quark sector (six masses, three mixing angles, and
one complex phase). Thus, an ansatz for the Yukawa matrices which correctly predicts all of
these observables is only nontrivial if it involves fewer than ten input parameters. But even
this is quite an ambitious goal. Here we achieve a more pedestrian goal: we find an ansatz
that reproduces the correct quark masses with fewer than six parameters, while making a
connection to the relation in Eq. (3.3).

Consider the following quark mass matrix ansatz:

0 zX2 0 0 wA0
My =my [ 2X3 22 2\, |, Mg =mp [ w3 w3 0] (4.1)
0 zA, 1 0 0 1

This ansatz is inspired by the phenomenologically relevant textures identified in Refs. [23,
24]. There are six free parameters my, my, ,w, A,, and As. Note that we have made two
simplifications. First, we take all parameters real (and therefore neglect the CKM phase).
Second, while normally each entry is multiplied by an order-one free parameter, and therefore
this texture would include 10 free parameters (after accounting for texture zeroes), we have
reduced the 10 parameters to 6 parameters. These simplifications mean that the following

toy analysis cannot fully describe nature. In what follows we treat A\, and \; as small, as
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they tend to be on the order of the Wolfenstein parameter A =~ 0.22. As we show below, if
we require additionally that the relation in Eq. (3.3) is satisfied, the number of parameters
is reduced to five. We further show that one can choose parameters that reproduce the six
quark masses observed in nature while satisfying the relation in Eq. (3.3). Note that we do
not attempt to explain the precise size of the CKM mixing angles in this toy analysis.

The eigenvalues of M, are given by
mi, me =~ z(1 — 2)\2my, my ~ (1 —2) " Aim,, (4.2)

where we are retaining terms at the leading order in A,. Similarly the eigenvalues of M, at

the leading order in \; are
mpy, M 2 WAIMY, Mg ~ WAIMy,. (4.3)

While we do not write them explicitly, we note that the eigenvectors of M, and M, are
independent of m;, my;, and w. For m,; and m, this is easy to see, since they are overall
factors multiplying the matrices. To see that this is also the case for w, observe that M, is
block diagonal and w is an overall factor multiplying the upper block. Thus, we conclude
that the CKM matrix depends only on the parameters \,, A\g, and z.

We generate 107 random Yukawa matrices from this ansatz, uniformly sampling the
parameters \g, A, and x from the range [—0.5,0.5]. About 7.5 x 10* of these satisfy the
relation in Eq. (3.3) to within 2%. (One might guess that about 2% of matrices would
satisfy the relation within 2%; this turns out to be correct up to an order one factor.) The
parameter values giving rise to matrices satisfying the relation are depicted in Fig. 4.

To better understand the features of this plot, one can solve for the CKM matrix pertur-

batively in A\, and )y, then extract the ratio

‘/tdvus
R = ) 4.4
v .
The relation in Eq. (3.3) corresponds to R = 1. Up to order \*, we find
o | PAa (=)
Auz(1l —2)
1
— 2 Yz —1)%z — A3\ —1)%2% -1

DT WERE 2z = e = Ada (0 = D% - 1) (4.5)

— XN (z = 1) (#(3z — 2)(z — 1)* + 1) + 4AA5(z — 1) + 63 (z — 1)°]
+ O(N).
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0.0 0.2 0.4
Au

FIG. 4. Parameters of random mass matrices generated from the ansatz in Eq. (4.1) which lead
to a CKM matrix satisfying the relation (3.3). Black X marks indicate values of \,, Ay which
reproduce the observed quark mass hierachies with £ ~ —0.5. Green lines correspond to the
analytical estimate in Eq. (4.6) for z = +0.5 (solid line) and x = —0.5 (dashed line). Blue dotted

lines indicate the lines Ay = 0 and \g = \,,.

In the above calculation we have assumed that |z| < 1. Note that R is unchanged under
the transformation A, — —\,, Ay = —\gq (while holding = constant). This is the reason for
the symmetry observed in Fig. 4.

If we retain only the leading-order, O(A\?) term, it is easy to solve for A4 as a function of

A, and x:

1 " 1 L 4
z(1—x) 22(1—x)2  zA,

1

In accordance with the discussion above, there is another solution obtained by taking A\, —
—X\, and Ay — —\g. Setting x = +1/2 roughly gives the boundaries of the region of
parameter space populated by our scan, at least at small values of A\, and A\; (see the green
lines in Fig. 4).

Eq. (4.6) exemplifies our previous statement that imposing the relation Eq. (3.3) upon

our ansatz effectively reduces the number of free parameters from six to five. Next we
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show that it is possible to choose the parameters so that the relation is satisfied and all six
quark masses are reproduced correctly. We first choose the parameters \,, \s, x, and w to
reproduce the observed quark mass ratios [10, 25]. For the mass ratios at the GUT scale we

use

My, mq

~0.002, ¢ ~0.003, ~005 2 ~0.02 (4.7)

me my Mg my
Then, the overall constants in front of M, and M, can be chosen to reproduce the correct
running values of m,; and my,.

Specifically, one takes A\, = —0.07 and x = —0.50, which reproduces the observed ratios
my/m. and m./m;. Imposing the relation (3.3) then requires Ay ~ —0.22 — which also
gives the correct mass ratio mg/ms. Then, one can choose w ~ 0.36 so as to reproduce
the correct value for mg/m;. These values of A\, and )\, are indicated on Fig. 4 by black X
marks.

One would expect that a Yukawa ansatz with six free parameters would not be able to
simultaneously satisfy Eq. (3.3) and correctly yield all six quark masses. At best, a generic
Yukawa ansatz with six parameters could either satisfy Eq. (3.3) and give five correct quark
masses, or violate Eq. (3.3) and get all quark masses correct. In this sense, the ansatz in
Eq. (4.1) is not generic. This is reflected in that the choice of \; &~ —0.22 in the preceding
paragraph, which was needed to satisfy the relation Eq. (3.3), also happened to yield the
correct value for mg/ms.

Next we consider the regime x < 1, which is relevant for the interior region of the plot.

Expanding Eq. (4.5) at leading order in z yields

1
R~ o [P(Au, Aa) + O(2)], (4.8)
where P is the polynomial
A 5 3N 1 2 2

There are three solutions to P = 0:

M=0, A=\, A= é (—)\u + /12— 5,\5> . (4.10)

When P = 0, it is impossible to satisfy R = 1. Hence, the first two solutions in Eq. (4.10)
correspond to the gaps in Fig. 4 (dotted blue lines). The last solution lies outside of the plot
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range. As one moves slightly away from these lines, one can tune x = P(\,, \g) to satisfy
the relation.

The above toy analysis illustrates some of the features that a UV explanation of R =1
should have. Even after taking the simplified texture of Eq. (4.1), with 10 nonzero complex
parameters simplified to 6 real parameters, we find that the texture parameters should
satisfy the nontrivial relation of Eq. (4.6), in order to enforce R = 1. Ideally, R = 1 would
be a structural consequence of a UV model, and not a parametric accident. This seems

challenging to realize.

V. CONCLUSIONS

In this work, we have explored novel CKM relations that are Wolfenstein-independent,
in the sense that they are not implied purely by the smallness of A in the Wolfenstein
parametrization. We looked for them from the weak scale up to the Planck scale, computing
the running in the SM and one realization of the MSSM. This builds upon previous work in
Ref. [2] which examined such relations at low scales. In particular, the relation in Eq. (3.3),
which holds in the SM near the GUT scale, is rather simple.

We have also settled the disagreement between Ref. [8] and Ref. [9] over the running of the
CKM matrix. Although Ref. [9] reports a different running of A from Ref. [8], recomputing
the running using their methods yields a result that agrees with Ref. [8]. Furthermore, our
results confirm that to a very good approximation, the only Wolfenstein parameter that
runs is A — the other parameters are effectively constant. We provide quadratic fits to the
running of A in the SM and the MSSM in Eq. (2.11), which are valid to within 1% between
my; and Mp;. These results may be of use to others interested in the CKM matrix at different
scales.

It seems difficult to construct UV models that explain the sort of CKM relations we
consider. Flavor models usually only constrain the Yukawa matrices up to O(1) factors, and
so they do not make any precise predictions of CKM relations. It would be quite interesting
and challenging to find a UV model that can dynamically generate CKM relations like
Eq. (3.3).

Indeed, we were unable to find a UV model to explain Eq. (3.3). We instead investigated

an ansatz for the Yukawa matrices, Eq. (4.1). If one imposes the relation Eq. (3.3) upon the
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ansatz, there are effectively five free parameters. Interestingly, this ansatz can still correctly
reproduce all six quark masses.

The big question is what the implications of the relations we found are. It would be
nice if they will lead us into any UV physics. Yet, at this point we do not see any, and the

relations may be just accidental.
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