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GAP SETS FOR THE SPECTRA OF CUBIC GRAPHS

ALICIA J. KOLLÁR AND PETER SARNAK

Abstract. We study gaps in the spectra of the adjacency matrices of large finite cu-
bic graphs. It is known that the gap intervals (2√2, 3) and [−3, −2) achieved in cu-
bic Ramanujan graphs and line graphs are maximal. We give constraints on spectra
in [−3, 3] which are maximally gapped and construct examples which achieve these
bounds. These graphs yield new instances of maximally gapped intervals. We also
show that every point in [−3, 3) can be gapped by planar cubic graphs. Our results
show that the study of spectra of cubic, and even planar cubic, graphs is subtle and
very rich.

1. Introduction

By a cubic graphwemean a finite 3-regular connected graphwith no loops ormulti-
ple edges. Denote the set of such graphs byX and the subset ofXwhich can be realized
as planar graphs by XPlanar. For 𝑌 ∈ X we denote the adjacency matrix of 𝑌 by Δ̄𝑌 to
highlight its equivalence to the graph Laplacian. The spectrum of Δ̄𝑌 , denoted by 𝜎(𝑌)
is contained in [−3, 3] and contains 3 (as a simple eigenvalue). The problem of con-
structing large 𝑌 ’s with gaps in their spectra arises in different contexts. In combina-
torics and engineering applications, a gap at 3 defines “cubic expanders”, an apparently
very fruitful structure [19]. In our recent work [21] on microwave coplanar waveguide
resonators it is the gap at the bottom−3 that is critical. In chemistry the stability prop-
erties of carbon fullerene molecules are dictated by the gap at 0 for the case of closed
shells [11]. Our goal is to determine what gaps can be achieved by large elements of X
and XPlanar, and in particular to identify maximal gap intervals and sets.
To formulate our results, we make some definitions. A closed subset 𝐾 of [−3, 3]

is spectral (resp planar spectral) if there are arbitrarily large, or equivalently infinitely
many, 𝑌 ’s in X (resp XPlanar) with 𝜎(𝑌) ⊂ 𝐾. The complement in [−3, 3] of a spectral
set is called a gap set. A closed superset of spectral sets is spectral, andwe seekminimal
spectral sets, or equivalently, maximal gap sets.
The first question is whether every point 𝜉 in [−3, 3) can be gapped, meaning that 𝜉

is contained in an open neighborhood 𝑈𝜉 which is a gap set. One of our main results
answers this:

Theorem 1. Every point in [−3, 3) is planar gapped.

Fekete’s theorem [9] gives a lower bound of 1 for the transfinite diameter, or equiv-
alently the capacity, of a closed subset of ℂ which contains infinitely many algebraic
integers as well as their conjugates. For definitions and properties of capacity see [3].
We apply this together with combinatorial arguments to give general lower bounds for
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the size and shape of a spectral set 𝐾. Remarkably, these bounds are sharp, in that they
are achieved for certain 𝐾’s.

Theorem 2. Let 𝐾 be a spectral set, then

(i) cap(𝐾) ≥ 1.
(ii) If 𝐼 is an interval contained in (−1 −√2, 1 +√2) whose length is greater than 2,

then

𝐼 ∩ 𝐾 ≠ ∅.

Remark 1. Part (ii) asserts that away from the edges of [−3, 3] the consecutive spacing
between elements of 𝐾 is at most 2. One can prove the latter without the restriction on
the location, but since we will not use this and the proof is much more cumbersome,
we do not give it. See the end of Section 5 for a discussion.

Armed with these, one can formulate optimization/variational problems seeking
maximal gap intervals, and more generally gap sets. Exact solutions to such optimiza-
tion problems appear to be rare, one being the celebrated Alon-Boppana bound [31]
which, when combined with the existence of cubic Ramanujan graphs [6], is equiva-
lent to (2√2, 3) being amaximal gap interval. Anothermaximal gap interval is [−3, −2)
as shown recently in [21] using the results in [5]. To these we add:

Theorem 3. (−1, 1) and (−2, 0) are maximal gap intervals. The first can be achieved
with planar graphs and the second with planar multigraphs.

Remark 2. By a multigraph we mean a graph with possible multiple edges between
vertices or loops at vertices. That (−1, 1) is a maximal gap interval when restricted to
bipartite cubic graphswas established in [16,30]. Their examples achieving this gap are
the same as our “Hamburger” graphs𝑊𝑏(𝑛), which are bipartite andnon-planar. These
examples are shown in Fig. 14 and will be discussed in detail in Section 4. In addition
to these, we construct planar graphs that achieve the gap (−1, 1). These graphs have
four faces which are triangles, and the rest of the faces are hexagons. (See Fig. 13.)

The large graphs which are free of eigenvalues in the intervals in Theorem 3 are
constructed as quotients of infinite cyclic covers of judiciously chosen base graphs. (See
Section 4 andFig. 10.) According to Theorem2(ii) these intervals aremaximal, which is
proved in Section 5 using combinatorial constructions of approximate eigenfunctions.
The proof of Theorem 1, as well as our pursuit of further explicit extremal gap sets,

makes use of the triangle map 𝒯 from X to X, introduced in [21] and which is inves-
tigated further in Section 2. Given 𝑌 ∈ X, 𝒯(𝑌) is a cubic graph obtained from 𝑌
by replacing each vertex of 𝑌 with a triangle and joining correspondingly. 𝜎(𝑌) and
𝜎(𝒯(𝑌)) are related by a simple formula involving the quadratic map 𝑓(𝑥) = 𝑥2−𝑥−3
(see Section 2). The spectra of iterates of 𝒯 are captured by the dynamical properties
of the iterates of 𝑓. Let

(1) Λ =
∞

⋂
𝑚=0

𝑓−𝑚 ([−3, 3]) .
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Then Λ is a Cantor subset of [−3, 3] which is 𝑓-invariant and on which the restriction
of 𝑓 is a shift on two symbols (see Section 2). The set

(2) 𝐴 ≔ Λ⋃(
∞

⋃
𝑚=0

𝑓−𝑚(0))

is a closed subset of [−3, 3] consisting of the Cantor set Λ and the isolated points
⋃∞

𝑚=0 𝑓−𝑚(0).

Theorem 4. The set 𝐴 is a minimal planar spectral set and all the 𝑌 ’s in X for which
𝜎(𝑌) ⊂ 𝐴 lie within finitely many𝒯-orbits, moreover, cap(𝐴) = 1.

The triangle adding map 𝒯 allows us to construct new minimal spectral sets from
old ones since 𝑓−1(𝐾) ∪ {0, −2} is such a set if 𝐾 is (see Proposition 1 in Section 2), and
Tables 1 and 2 record the basic extremal spectral/gap sets that we know of.

Table 1. Maximal Gap Intervals ℐ

ℐ: [−3, −2) (−2, 0) (−1, 1) (2√2, 3)
Properties: Can be

achieved by
planar 𝑌 ’s.

Can be
achieved by
planar
multigraph 𝑌 ’s

Can be
achieved by
planar 𝑌 ’s

Cannot be
achieved by
planar 𝑌 ’s.

Table 2. Minimal Spectral Sets 𝐾

𝐾: [−2√2, 2√2] ∪ {3} 𝐴
Properties: Cannot be achieved with

planar 𝑌 ’s.
Is achieved with planar 𝑌 ’s.

Theorems 2 and 4 show that𝐴 hasminimal capacity among all theminimal spectral
sets, and we conjecture that the other entry in Table 2 has maximal capacity.
Our results show that there are restrictions on the size and structure of spectral sets

of cubic graphs, but at the same time these sets are rich and complicated. It is interest-
ing to compare this to similar questions that have been examined in other contexts. The
eigenvalues of the Frobenius endomorphism on anAbelian variety over a finite field 𝔽𝑞
are known to lie on the circle 𝐶𝑞 = { 𝑧 ∈ ℂ ∶ |𝑧| = √𝑞 }. In [37] Serre extends the con-
verse to Fekete’s theorem [9] and shows that in order for a closed conjugation-invariant
subset 𝐸 of 𝐶𝑞 to contain the eigenvalues of a growing sequence of such Abelian vari-
eties, it is essentially necessary and sufficient that the capacity of𝐸 is at least 𝑞1/4. (Note
that cap𝐶𝑞) = 𝑞1/2.) Thus, in this setting the capacity bound is the only restriction on
the analog of being spectral. On the other hand, if one restricts to Abelian varieties that
are Jacobians of curves over 𝔽𝑞, then things rigidify and no gaps can be created, that is
the minimal spectral set is 𝐶𝑞 itself [40].
Another setting in which the analog of the spectral set problem has been studied

is that of locally symmetric spaces of rank bigger than one [1]. The main result of [1]
implies that a sequence of such compactmanifolds whose volume goes to infinitymust
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Benyamini-Schramm converge to the universal cover. This in turn implies that their
spectra (for the Laplacian and the full ring of invariant differential operators) become
dense in the support of the Plancharelmeasure. In particular, there are no gap sets, and
these spaces are spectrally (as well as inmany other senses) very rigid. If the rank of the
locally symmetric space is one, for example the case of compact hyperbolic surfaces,
Selberg’s eigenvalue conjecture [35] implies that (0, 1/4) is a gap set for the Laplacian,
i.e. that there is a sequence of such surfaces whose areas go to infinity and which are
free of Laplacian eigenvalues in (0, 1/4). Interestingly, the question of whether all, or
any, points in [1/4,∞) are gapped does not appear to have been addressed. This case is
closest to our cubic graphs and at least constructions with Abelian covers might yield
some examples.
Finally, whilewehave shown that spectral sets for planar cubic graphs are rich, these

can become rigid if certain restrictions are imposed. For example, in a forthcoming
paper [22] with Fan Wei we show that for planar cubic graphs which have at most 6
sides per face, [−3, −1] ∪ [1, 3] is the unique minimal spectral set.
We end the introduction with a brief outline of the paper. In Section 2 we analyze

the triangle map𝒯 and its dynamics, as well as that of 𝑓 on the corresponding spectra.
We prove Theorem 4, and also Theorem 1 assuming the results established in Section
4. In Section 3 we review the theory of covering spaces and in particular the character
torus (Brillouin zone) which parametrizes Abelian covers on which Bloch-wave spec-
tral analysis takes place. Section 4 is at the center of the paper, giving constructions of
gap intervals. Applying the theory in Section 3 to special ℤ and ℤ×ℤ covers of certain
base 𝑌 ’s that were found by numerical search, yields an arsenal of cyclic covers with
exotic and even extremal gap intervals. In Section 5 we establish Theorems 2 and 3. In
Section 6 we elaborate on the entries in Tables 1 and 2 and examine further extremal
gap sets obtained using 𝒯.

2. The map 𝒯

Figure 1. Action of the map 𝒯. Illustration of the action of the
map𝒯 using the complete graph on 4 vertices 𝑌4, shown in a. b: The
subdivision 𝒮(𝑌4). c: The line graph 𝒯(𝑌4) = 𝐿(𝒮(𝑌4)) overlaid on
subdivision graph. Subdivision graph shown in dark blue, with gold
vertices. Line graph indicated in light blue. This realization has cross-
ing edges because the line-graph vertices are drawn at the midpoints
of the original edges. d: Alternate realization showing that 𝒯(𝑌4) is
planar.

2.1. Definition and properties of 𝒯. Given 𝑌 ∈ X let 𝒯(𝑌) be the graph obtained
as the composite of two operations: subdivide 𝑌 into 𝒮(𝑌) by adding new vertices at
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the midpoints of the edges of 𝑌 , and then form the line graph of the 3, 2-biregular
graph 𝒮(𝑌) to obtain𝒯(𝑌). This progression is illustrated in Fig. 1. Put another way,𝒯
replaces every vertex of 𝑌 with a triangle and joins the corresponding edges between
the triangles. Some immediate properties of 𝒯 are:

(i) 𝒯 ∶ X→ X
(ii) |𝒯(𝑌)| = 3|𝑌| (here |𝐺| is the number of vertices of G)
(iii) If 𝑌 is planar, then so is 𝒯(𝑌).
For our purposes, the important properties of 𝒯 concern the relation of 𝜎(𝑌) to

𝜎(𝒯(𝑌)).
(iv) The spectrum of 𝒯(𝑌) is related to the spectrum of 𝑌 by

(3) 𝜎(𝒯(𝑌)) = 𝑓−1 (𝜎(𝑌))⋃ {0}𝑛/2 ⋃{−2}𝑛/2,

(v) There exists 𝐶0 < ∞ (one can give it explicitly) such that for |𝑌| ≥ 𝐶0
(4) 𝑌 = 𝒯(𝑍) for some 𝑍 ⟺ 𝜎(𝑌) ⊂ [−2, 3].
The last gives a spectral characterization of the image of 𝒯; note that according to (3),
−2 ∈ 𝜎(𝑌) for such 𝑌 ’s. Relation (iv) is well known (see [18]), while (v) was derived
and exploited in our recent paper [21] and makes use of the characterization of graphs
whose spectra are contained in [−2,∞) (“Hoffman” graphs) [5].
𝒯 provides us with a versatile tool to construct spectral sets.

Proposition 1.
(A) If 𝐾 is a spectral set, then so is 𝑓−1(𝐾) ∪ {0, −2}.
(B) If 𝐾 is a minimal spectral set, then so is 𝑓−1(𝐾) ∪ {0, −2}.

Proof. (A) 𝐾 is spectral means that there is a sequence of 𝑌𝑛 ∈ X with |𝑌𝑛| → ∞ such
that 𝜎(𝑌𝑛) ⊂ 𝐾. From (3) it follows that 𝜎(𝒯(𝑌)) is a contained in 𝑓−1(𝐾) ∪ {0, −2}, so
that the latter is spectral.
(B) To show that 𝑓−1(𝐾) ∪ {0, −2} is minimal, it suffices to show that if 𝑌𝑛 ∈ X with

|𝑌𝑛| → ∞ has 𝜎(𝑌𝑛) ⊂ 𝑓−1(𝐾) ∪ {−2, 0}, then

⋃
𝑛
𝜎(𝑌𝑛) = 𝑓−1(𝐾)⋃ {−2, 0}.

Now 𝑓−1[−3, 3] = [−2, 0]∪[1, 3], and 𝑌𝑛 is therefore a Hoffman graph. Hence, accord-
ing to (4), 𝑌𝑛 = 𝒯(𝑍𝑛) for 𝑛 large enough. Moreover, 𝑓−1(𝜎(𝑍𝑛)) ⊂ 𝑓−1(𝐾), and hence,
𝜎(𝑍𝑛) ⊂ 𝐾. Since 𝐾 is minimal, it follows that

⋃
𝑛
𝜎(𝑍𝑛) = 𝐾.

Thus,

𝑓−1 (
∞

⋃
𝑛=1

𝜎(𝑍𝑛)) = 𝑓−1(𝐾).

Now

𝑓−1 (
∞

⋃
𝑛=1

𝜎(𝑍𝑛)) = 𝑓−1 (
∞

⋃
𝑛=1

𝜎(𝑍𝑛)),
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Figure 2. Fixed points of 𝑓. Plot of 𝑓(𝑥) showing the flow that oc-
curs under iteration of 𝑓. The two fixed points−1 and 3 are indicated
by gold dots. Both of these fixed points are unstable. Sample flows are
shown in blue and red, respectively. For an initial 𝑥0 near the fixed
point, its image 𝑥1 = 𝑓(𝑥0) is farther away, and iteration rapidly runs
off to infinity.

and

𝑓−1 (
∞

⋃
𝑛=1

𝜎(𝑍𝑛)) =
∞

⋃
𝑛=1

𝑓−1 (𝜎(𝑍𝑛)).

Thus,

𝑓−1 (
∞

⋃
𝑛=1

𝜎(𝑍𝑛))⋃ {−2, 0} = 𝑓−1(𝐾)⋃ {−2, 0},

and

⋃
𝑛
𝜎(𝑌𝑛) = 𝑓−1(𝐾)⋃ {−2, 0},

as required. □

To go further, we examine in more detail the dynamical properties of iterating 𝑓 as
a map from ℝ to ℝ. The fixed points 𝑥 = 𝑓(𝑥) of 𝑓 are 𝑥 = −1 and 𝑥 = 3, and both are
repelling, as illustrated in Fig. 2. The forward orbit of any 𝑥 ∈ ℝ is∞ except for a closed
Cantor subset Λ of [−3, 3] that we describe below (see [8] for a detailed discussion).
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Figure 3. Action of 𝑓−1. As described in the main text, the func-
tion 𝑓−1 acting on [−3, 3] divides it into two image intervals 𝐼 and
𝐽. Successive application of 𝑓−1 causes further fragmentation. The
images 𝑓−𝑚([−3, 3]) are shown above for 𝑚 = 1, 2, 3. The image in-
tervals are indicated as thick, dark blue, lines, and labeled 𝐼𝑚,𝑗 and
𝐽𝑚,𝑗 . Each such interval has two end points, labeled by 𝑎 and 𝑏. The
𝑎-type endpoints are 𝑓−𝑚(3) and once they appear remain fixed un-
der further application of𝑓−1. The 𝑏-type endpoints are𝑓−𝑚(−3) and
are successively removed each time. Therefore, the 𝑎’s are in Λ, but
the 𝑏’s are not.

Note that 𝐼 = [−2, 0] and 𝐽 = [1, 3] are mapped homeomorphically to [−3, 3] under 𝑓.
Here the external end points {−2, 3} correspond to 𝑓−1(3) and the internal ones {0, 1}
to 𝑓−1(−3). All points outside of 𝐼 or 𝐽 are mapped after iteration to (3,∞) and hence
after further iterations to∞. Repeating this cuts out two subintervals in each of 𝐼 and
𝐽, outside of which 𝑓2 maps to (3,∞).
𝑓−𝑚([−3, 3]) consists of 2𝑚 intervals, half of them to the left of 0 and half to the

right of 1, symmetrically placed about 1/2. A sketch of these intervals for𝑚 = 1, 2, 3 is
shown in Fig. 3. The intervals 𝐼𝑚,𝑗 , 𝑗 = 1, 2, . . . , 2𝑚−1 and 𝐽𝑚,𝑗 , 𝑗 = 1, 2, . . . , 2𝑚−1 have
end points denoted by 𝑎 ∈ 𝑓−𝑚(3) and 𝑏 ∈ 𝑓−𝑚(−3). Once an 𝑎 endpoint appears for
some 𝑚, it remains an endpoint for all levels 𝑡 ≥ 𝑚. It follows that the points 𝑓−𝑚(3)
all lie in Λ where

(5) Λ =
∞

⋂
𝑚=1

𝑓−𝑚 ([−3, 3]) .

Note that 𝑓−1 ([−3, 3]) ⊃ 𝑓−2 ([−3, 3]) ⊃ 𝑓−3 ([−3, 3]) ⊃ ⋯, and that Λ is a non-
empty Cantor subset of 𝐼 ∪ 𝐽. For 𝜉 ∈ Λ, define 𝑠(𝜉) in the compact topological space
𝐹 = {0, 1}ℕ by 𝑠(𝜉) = (𝑥1, 𝑥2, 𝑥3, . . . ), where 𝑥𝑗 = 0 if 𝑓𝑗(𝜉) ∈ 𝐼 and 𝑥𝑗 = 1 if 𝑓𝑗(𝜉) ∈ 𝐽.
Then 𝑠 ∶ Λ → 𝐹 is a homeomorphism and it conjugates the action of 𝑓|Λ to the shift S
given by S ∶ (𝑥1, 𝑥2, 𝑥3, . . . ) ↦ (𝑥2, 𝑥3, . . . ) (see [8]). That is

(6)
Λ
𝑠
��

𝑓
// Λ

𝑠
��

𝐹 S // 𝐹
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is a commuting diagram.
The dynamics of 𝑓 ∶ ℝ → ℝ consists of two very different behaviors. On ℝ\Λ every

forward orbit of a point goes to∞, while on the invariant setΛ the action of 𝑓 is chaotic,
being conjugate to a one-sided shift on the two-point infinite sequence space 𝐹. Note
that the two fixed points of 𝑓, −1 and 3, correspond to the fixed points (0, 0, 0, . . . ) and
(1, 1, 1, . . . ) of S, respectively.
To make use of (3) when iterating𝒯, we need to keep track of 𝑓−𝑚(−2) and 𝑓−𝑚(0)

for 𝑚 = 1, 2, 3, . . . . Now −2 ∈ Λ as is⋃∞
𝑚=0 𝑓−𝑚(−2), these being the “𝑎-endpoints”

of the intervals defining Λ. On the other hand 0 ∉ Λ and its pre-periodic points
⋃∞

𝑚=0 𝑓−𝑚(0) consist of half of the “𝑏-endpoints” of the intervals defining𝑓−𝑚([−3, 3]).
While none of these points are in Λ, the limit points of⋃∞

𝑚=0 𝑓−𝑚(0) are all contained
in Λ, as is clear from its definition. Hence if

(7) 𝐴 ≔ Λ⋃(
∞

⋃
𝑚=0

𝑓−𝑚(0)) ,

then 𝐴 is a closed subset of [−3, 3], which consists of the Cantor set Λ and the infinite
set⋃∞

𝑚=0 𝑓−𝑚(0) of isolated points.

Theorem 4. 𝐴 is a minimal planar spectral set, and all 𝑌 ’s in X for which 𝜎(𝑌) ⊂ 𝐴 lie
in finitely-many𝒯-orbits, moreover, cap(𝐴) = 1.

Proof. Let 𝑌4 be the 3-regular graph on four vertices shown in Fig. 1a. 𝜎(𝑌4) = {−1}3 ∪
{3}, and since both−1 and 3 are inΛ, it follows from (3) and the 𝑓-invariance properties
of Λ and of 𝐴 that 𝜎(𝒯𝑚(𝑌4)) ⊂ 𝐴 for𝑚 ≥ 0. This shows that 𝐴 is spectral, and planar
since 𝒯𝑚(𝑌4) is planar. To see that it is minimal, let 𝑌𝑛 ∈ X with |𝑌𝑛| → ∞ and
𝜎(𝑌𝑛) ⊂ 𝐵 with 𝐵 ⊂ 𝐴, a closed set. Since 𝜎(𝑌𝑛) ⊂ [−2, 3], if follows from (4) that for
𝑛 large, 𝑌𝑛 = 𝒯(𝑍𝑛) and 𝜎(𝑌𝑛) = 𝑓−1(𝜎(𝑍𝑛)) ∪ {−2, 0}. Now since 𝜎(𝑌𝑛) ⊂ 𝐵 ⊂ 𝐴, we
have that 𝜎(𝑌𝑛) ⊂ 𝑓−1([−2, 0]) ∪ 𝑓−1([1, 3]), so

𝑓−1(𝜎(𝑍𝑛)) ⊂ [𝑓−1([−2, 0]) ∪ 𝑓−1([1, 3])].

It follows that
𝜎(𝑍𝑛) ⊂ [−2, 3].

Hence, using (4) again we have that for 𝑛 large enough 𝑍𝑛 = 𝒯(𝑍𝑛′), that is 𝑌𝑛 =
𝑇2(𝑍𝑛′) for 𝑛 large.
Repeating this argument 𝑘 times, we see that for 𝑛 large, 𝑌𝑛 = 𝒯𝑘(𝑍𝑛). However,

this then implies that

𝜎(𝑌𝑛) ⊃ 𝑓−𝑘(−2)⋃ 𝑓−𝑘(0)⋃ {3}.

Since this holds for all 𝑘, we have that

(8) 𝐴 ⊃ 𝐵 ⊃
∞

⋃
𝑘=0

[𝑓−𝑘(−2)⋃ 𝑓−𝑘(0)]⋃ {3}.

From the description of the 𝑓-action on Λ in terms of S on 𝐹, it is clear that
⋃∞

𝑘=0 𝑓−𝑘(−2) is dense in Λ, while ⋃
∞
𝑘=0 𝑓−𝑘(0) covers the discrete part of 𝐴. Since

𝐵 is closed it then follows from (8) that 𝐵 = 𝐴. This proves that 𝐴 is a minimal spectral
set.
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In the above argument, given𝑌 ∈ Xwith𝜎(𝑌) ⊂ 𝐴, we repeatedly found𝑌 = 𝒯(𝑍1),
𝑍1 = 𝒯(𝑍2), . . . , 𝑍𝑗−1 = 𝒯(𝑍𝑗), as long as |𝑍𝑗−1| > 𝐶0, where 𝐶0 is the constant in (4).
It follows that 𝑌 = 𝒯𝑘(𝑍) for 𝑍 in the finite set of graphs in X with |𝑍| ≤ 𝐶0 and some
𝑘 ≥ 0. This proves the second part of Theorem 4, namely that any such 𝑌 lies in a finite
number of 𝒯-orbits. The number of such orbits is the number of 𝒯-inequivalent 𝑌 ’s
with |𝑌| ≤ 𝐶0 and 𝜎(𝑌) ⊂ 𝐴. One such orbit is that of 𝑌4 shown above. In addition to
this, we know of two more which are given in Section 2.2.
To complete the proof of the last statement in Theorem 4 we need to compute the

capacity of 𝐴. Since the points of 𝐴 which are not in Λ are isolated, it follows that
cap𝐴) = capΛ). We apply (5.2) of Theorem 11 of [12] which, when applied to our 𝑓,
yields that if

𝐸0 ⊂ [−3, 3] is closed
and 𝐸1 = 𝑓−1(𝐸0) then cap𝐸1) = √cap𝐸0). Applying this to 𝐸0 = [−3, 3]we have that
cap𝐸0) = 3/2, (the capacity of an interval of length 𝐿 is 𝐿/4) and hence

cap(𝑓−1([−3, 3])) = √
3
2.

Applying this repeatedly yields that

cap(𝑓−𝑚([−3, 3])) = (32)
1/2𝑚

.

Letting𝑚 → ∞ we get that

cap(⋂
𝑚
𝑓−𝑚([−3, 3])) = capΛ) = 1. □

Before moving on to consider multigraphs which lead to additional 𝒯-orbits, we
apply the triangle map 𝒯 to show that every 𝜉 ∈ [−3, 3) is planar gapped, that is that
for every such 𝜉 there is a neighborhood 𝑈 of 𝜉 which is a planar gapped set.
Theorem 1. Every 𝜉 in [−3, 3) is planar gapped.
Proof. In Section 4.3 we present some special Abelian covers which show by explicit
constructions that every point 𝜉 ∈ [−3, 2√2], and in particular, every point of 𝐼, is
planar gapped. We use 𝒯 to deal with the remaining points:
Note first that if 𝑓(𝜉) is planar gapped, then so is 𝜉. Indeed, according to the above

−2 and 0 are in 𝐼 = [−2, 0] and are planar gapped. Let 𝑈 be a neighborhood of 𝑓(𝜉)
which is gapped, witnessed by a sequence 𝑌𝑚 which 𝜎(𝑌𝑚) ∩ 𝑈 = ∅. Since 𝜎(𝒯(𝑌𝑛)) =
𝑓−1(𝜎(𝑌𝑛)) ∪ {0, −2}, we have that

𝑓−1 (𝜎(𝑌𝑛))⋂ 𝑓−1(𝑈) = ∅,
and 𝜉 ∈ 𝑓−1(𝑈).
Let𝑉 be a neighborhood of 𝜉 contained in𝑓−1(𝑈) and not containing 0 or−2 (which

we can assume since by the remark above 𝜉 ∉ {0, −2} as these two points are gapped),
then

𝜉 ∈ 𝑉 and 𝑉 ⋂ (𝑓−1 (𝜎(𝑌𝑛))⋃ {−2, 0}) = ∅.
Hence, 𝒯(𝑌𝑛) certifies that 𝜉 is gapped, and in fact planar gapped. Iterating this argu-
ment 𝑘 times yields:
(9) If 𝑓𝑘(𝜉) is planar gapped, then so is 𝜉.
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Applying (9) to the point 0, which is already known to be planar gapped, we conclude
that:

(10) Any point in 𝑓−𝑚(0),𝑚 ≥ 0 is planar gapped.

Any point not in 𝐴 is planar gapped as witnessed by 𝒯𝑚(𝑌4),𝑚 ≥ 0. (9) and (10)
leave the points in Λ as the only ones which have not as yet been shown to be gapped.
Now, if 𝜉 ∈ Λ and 𝜉 ≠ 3, then 𝑠(𝜉) = (𝑥1, 𝑥2, 𝑥3, . . . ) with at least one 𝑗 ≥ 1 having
𝑥𝑗 = 0, then 𝑓𝑗(𝜉) ∈ 𝐼 for that 𝑗. Now all points of 𝐼 are planar gapped, so by applying
(9) it follows that 𝜉 is gapped. This completes the proof of Theorem 1. □

Figure 4. Iterates of𝒯 andHanoi graphs. a: A typical neighbor-
hood for a graph𝑌 ∈ X. Dashed edges show someof the edges leaving
the neighborhood. Under application of𝒯 vertices are converted into
triangles, and a typical neighborhood resembles b. Further applica-
tion of 𝒯 transforms vertices into the Hanoi graphs for 3 pegs 𝐻𝑚

3 .
c–e show these graphs for𝑚 = 0, 1, 2, respectively.

We end this sectionwith some remarks about the shapes of large iterates of𝒯. Given
an initial 𝑌 ∈ X, applying 𝒯 𝑚 times replaces the vertices of each successive gener-
ation with triangles. Sketches of characteristic neighborhoods in 𝑌 and 𝒯𝑚(𝑌) are
shown in Fig. 4a, b. Alternatively, one can look directly at 𝒯𝑚(𝑌) and look at the
larger neighborhood that arises from each original vertex of 𝑌 . For one iteration, the
new neighborhood is a simple triangle, more generally the structure that appears is
a tower of Hanoi graph for 3 pegs and 𝑚 discs 𝐻𝑚

3 [15], or equivalently, the infinite
Sierpinski pre-lattice in [18]. The progression of these graphs is shown in Fig. 4c–e.
Thus, for large 𝑚, the local shape of 𝒯𝑚(𝑌) is dictated by that of 𝐻𝑚

3 . The spectra
of the graphs𝐻𝑚

3 with loops added at the three vertices of the outer triangle were com-
puted explicitly in [15] and [18]. Not surprisingly, our minimal spectral set 𝐴 emerges
as the closure of their spectra (see Theorem 1.1 [15]).
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It would be interesting to extend the map 𝒯 to the closure of X in the space of
Benyamini-Schramm limits and graphings [25] and to study the dynamics of𝒯 on these
spaces.

Figure 5. The multigraph 𝐵1. The multigraph 𝐵1 and iterates of
it under 𝒯. a: 𝜎(𝐵1) = {3, 2, −1, −2} ⊂ 𝐴. b: 𝒯(𝐵1) still has multiple
edges; however, 𝒯2(𝐵1), shown in c, does not. If 𝑌1 = 𝒯2(𝐵1), then
𝑌1 ∈ X and 𝜎(𝑌1) ⊂ 𝐴. 𝒯𝑚(𝑌1) is a new𝒯-orbit distinct from the orbit
of 𝑌4 discussed in the text.

Figure 6. The multigraph 𝐵2. The multigraph 𝐵2 and iterates of
it under 𝒯. a: 𝜎(𝐵2) = {3, 2, 2, −1} ⊂ 𝐴. b: 𝒯(𝐵2) still has multiple
edges; however, 𝒯2(𝐵2), shown in c, does not. If 𝑌2 = 𝒯2(𝐵2), then
𝑌2 ∈ X and 𝜎(𝑌2) ⊂ 𝐴. 𝒯𝑚(𝑌2) is a new𝒯-orbit distinct from the orbit
of 𝑌4 discussed in the text, and that of 𝑌1 (shown in Fig. 5).

2.2. Relevant graphswithmultiple edges and loops. While we predominantly re-
strict to considering only graphswith single edges and no loops, there are severalmulti-
graphs which are extremely relevant. Two such examples are shown in Figs. 5 and 6.
The action of 𝒯 on such graphs is well defined, and after a few iterations of 𝒯, the re-
sulting graphno longer possesses anymultiple edges or loops, as shown in Figs. 5 and 6.
In this way, multigraphs can initiate orbits of𝒯 in the space of graphs with nomultiple
edges or loops. Such is the case for 𝐵1 and 𝐵2 (Figs. 5 and 6). The spectrum of both of
these graphs is contained in 𝐴: 𝜎(𝐵1) = {3, 2, −1, −2} ⊂ 𝐴, and 𝜎(𝐵2) = {3, 2, 2, −1}. In
fact, the images under 𝒯 of the multigraphs 𝐵1 and 𝐵2 constitute two new orbits, both
distinct from that of 𝑌4 which was used above to establish the spectral properties 𝒯
and 𝐴 and prove Theorem 4. Another relevant multigraph will be discussed in Section
4.2 where it arises as the smallest possible primitive cell for an example Abelian cover
which realizes the bipartite maximal gap interval (−1, 1).
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3. Abelian covers and Bloch waves

3.1. General covering space and the character torus. In order to construct small
spectral sets, we examine large regular covers of a fixed graph and their relation to 𝜒-
twisted operators on the base graph. We review the general theory and then specialize
so as to make explicit computations. For detailed exposition of the topological notions
in the context of graphs see ([39] and [38]).
If 𝑌 is a finite connected graph, we can view it as a one-dimensional topological

space. Let ̃𝑌 be its universal cover and 𝜋1 = 𝜋1(𝑌, 𝑦0) the fundamental group of 𝑌
based at 𝑦0. 𝜋1 is a free group on 𝑘 = 𝑚 − 𝑛 + 1 generators, where 𝑚 is the number
of edges of 𝑌 and 𝑛 the number of vertices (see below for explicit generators). Any
3-regular graph can be constructed from the 3-regular tree by equating vertices and
“stitching” branches together. The 3-regular tree is thus the universal cover ̃𝑌 of all
3-regular graphs, and any such 𝑌 by modding out the corresponding group of vertex
automorphisms on the tree. Thus 𝑌 ≅ ̃𝑌/𝜋1 and finite covers 𝑍 of 𝑌 correspond to
finite index subgroups Δ of 𝜋1.

̃𝑌
↓
𝑍 = ̃𝑌/Δ
↓
𝑌 = ̃𝑌/𝜋1

If Δ is a normal subgroup of 𝜋1, then 𝑍 is a regular cover of 𝑌 with deck (Galois)
group 𝐺 = 𝜋1/Δ acting on the points of 𝑍 lying over a given point in 𝑌 . Abelian covers
of 𝑌 are ones for which 𝐺 is Abelian and we also allow 𝐺 to be infinite. It is difficult
to analyze the spectrum of a general regular cover 𝑍 of 𝑌 , however for Abelian covers
there is a torus that parametrizes such covers and allows for a finite analysis of their
spectra. We restrict our attention to these.
The Abelian covers𝑊 of 𝑌 correspond to epimorphisms

(11) 𝜌 ∶ 𝜋1 → 𝐺,

where 𝐺 is an Abelian group generated by 𝑘-elements, and𝑊 = ̃𝑌/(𝑘𝑒𝑟𝜌). Any mor-
phism 𝜌 in (11) factors through the maximal Abelian quotient 𝐻1(𝑌, ℤ);

(12) 𝐻1(𝑌, ℤ) = 𝜋1/[𝜋1, 𝜋1].

𝐻1(𝑌, ℤ) is the first integral homology group and

(13) 𝜋1
ℎ //

𝜌

77𝐻1
𝛽

// 𝐺

where ℎ is the Hurwitz quotient and 𝛽 a morphism of 𝐻1 onto 𝐺.
If𝑊𝑚𝑎𝑥 ≔ ̃𝑌/[𝜋1, 𝜋1], then𝑊𝑚𝑎𝑥 is an 𝐻1 cover of 𝑌 and it is the maximal Abelian

such cover. If𝑊 is any Abelian cover of 𝑌 , then𝑊 = 𝑊𝑚𝑎𝑥/𝐵 with 𝐵 a subgroup of𝐻1
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and𝑊 is an 𝐻1/𝐵 cover.

(14)

𝑊𝑚𝑎𝑥
↓
𝑊 = 𝑊𝑚𝑎𝑥/𝐵, 𝐺(𝑊/𝑌) = 𝐻1/𝐵.
↓
𝑌 = 𝑊𝑚𝑎𝑥/𝐻1

𝐻1(𝑌, ℤ) is isomorphic toℤ𝑘 (see below for explicit generators) and the key to our anal-
ysis is its dual torus 𝑇 = 𝑇(𝑌)
(15) 𝑇 ≔ (𝐻1(𝑌, ℤ))∧,
that is the topological group of all characters 𝜒 ∶ 𝐻1 → 𝑆1, 𝑆1 = { 𝑧 ∈ ℂ ∶ |𝑧| = 1 }.
𝑇 is isomorphic to (𝑆1)𝑘. These entities are used extensively in crystallography solid
state physics with different terminology. 𝑇 is equivalent to the Brillouin zone of𝑊𝑚𝑎𝑥
and the characters correspond to the phases exp 𝑖( ⃗𝑘 ⋅ ⃗𝑥) for quasimomenta ⃗𝑘, (see e.g.
[13]).
The spectra of the adjacency matrices of 𝑊 in (14) can be analyzed through the

spectra of the ‘𝜒-twisted’ operators:
(16) 𝑉𝜒 ≔ {ℎ ∶ ℎ ∶ 𝑊 → ℂ, ℎ(𝛾𝑥) = 𝜒(𝛾)ℎ(𝑥) for 𝑥 ∈ 𝑊𝑚𝑎𝑥, 𝛾 ∈ 𝐻1 }.
𝑉𝜒 is a linear space of dimension 𝑛 (the ℎ’s determined by their values on the projection
of 𝑥 to 𝑌 ). The adjacency operator Δ̄ preserves 𝑉𝜒, and we denote its restriction to 𝑉𝜒 by
Δ̄𝜒. It can be checked that with respect to the standard inner product on 𝑉𝜒 (again see
below in terms of a basis) that Δ̄𝜒 is hermitian and that its eigenvalues lie in [−3, 3].
Let
(17) −3 ≤ 𝜆1(𝜒) ≤ 𝜆2(𝜒)⋯ ≤ 𝜆𝑛(𝜒) ≤ 3
denote the eigenvalues with multiplicities. As functions of 𝜒 we can choose the 𝜆𝑗 ’s to
be continuous on 𝑇.
If 𝐵 is a subgroup of 𝐻1, the annihilator of 𝐵, denoted by 𝐵⟂ is the closed subtorus

(18) 𝐵⟂ = {𝜒 ∈ 𝐻̂1 ∶ 𝜒(𝑏) = 1 for all 𝑏 ∈ 𝐵 },
and
(19) 𝐵⟂ is canonically isomorphic to (𝐻1/𝐵)∧.
The spectrum of any finite Abelian cover𝑊 of 𝑌 (as in (14)) is equal to

(20) 𝜎(𝑊) =
𝑛

⋃
𝑗=1

𝜆𝑗(𝐵⟂).

It is convenient to extend this to any closed subgroup 𝑆 of 𝑇 (such a subgroup is a
finite union of connected subtori and translates thereof by finitelymany torsion points)
setting

(21) 𝜆(𝑆) ≔
𝑛

⋃
𝑗=1

𝜆𝑗(𝑆).

𝜆(𝑆) is a finite union of closed intervals in [−3, 3] called bands.
Our construction of spectral sets proceeds by choosing 𝑆 to be infinite but small,

in fact, one dimensional. It contains arbitrarily large finite subgroups which we can
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take to be 𝐵⟂’s, and then, according to (20), we have that for any such𝑊 whose 𝐵⟂ is
contained in 𝑆,

(22) 𝜎(𝑊) ⊂ 𝜆(𝑆),

and hence 𝜆(𝑆) is a spectral set. Note that since 𝜒 = 1 is in 𝑆,

(23) 𝜆(𝑆) ⊃ 𝜎(𝑌).

Our engineering of extremal spectral sets, which we describe in detail in Section 4, is
to start with a 𝑌 with suitable gaps in its spectrum and then to search for special one-
dimensional subtori 𝑆 of 𝑇 for which the inclusion in (23) is as tight as possible. It
cannot be too tight since according to Theorem 2 the capacity of 𝜆(𝑆) is at least 1.
The extension in (21) can be interpreted in terms of the spectral theory of Δ̄ on infi-

nite Abelian covers of 𝑌 , often referred to as Bloch wave theory in this setting. If𝑊 in
(14) is an𝐻1/𝐵 Abelian cover of 𝑌 and 𝜎(𝑊) is the ℓ2-spectrum of Δ̄, where Δ̄ is a self-
adjoint operator on the natural ℓ2-space of functions on 𝑊 , then Bloch wave theory
[13, 32] yields

(24) 𝜎(𝐴𝑊 ) = 𝜆(𝑆), where 𝑆 = 𝐵⟂,

and (21) is the familiar band structure of the spectrum.
The torus 𝑇 also gives an alternative description of the Abelian covers 𝑊 in (14).

Each closed subgroup 𝑆 of 𝑇 determines a𝑊 by taking 𝐵 = 𝑆⟂ = { 𝑏 ∈ 𝐻1 ∶ 𝜒(𝑏) =
1 for all 𝜒 ∈ 𝑆 } and 𝑊 = 𝑊𝑚𝑎𝑥/𝐵. 𝑆 is then canonically the dual group of this 𝐻1/𝐵
cover of 𝑌 . See Section 4 for an explicit description of how to construct such con-
strained covers graphically.

3.2. Explicit bases and flat bands. In order to make fruitful computations, we need
to choose generators for 𝐻1(𝑌, ℤ). The method below for finding these generators is
well-known and a more detailed description can be found in standard references such
as [4, 14]. Here we present the general outline and set up the definitions so that these
conventional graph-theoretic methods can readily be connected to the Bloch-wave for-
malism used to compute spectra in Section 4. To begin, fix an orientation for the edges
𝑒 of𝑌 and a spanning tree 𝜏 of𝑌 . There is a unique path in 𝜏 (without backtracking) the
starts at a vertex 𝑦0 and ends at the origin 𝑜(𝑒) of a given oriented 𝑒 ∈ 𝐸(𝑌)\𝐸(𝜏), where
𝐸(𝑌), 𝐸(𝜏) are the edge sets of a 𝑌 and 𝜏, respectively. Continue this path traversing 𝑒
and then back to 𝑦0 along edges of 𝜏, again the last is unique. In this way the oriented
edge 𝑒 ∈ 𝐸(𝑌)\𝐸(𝜏) determines a closed path in 𝑌 from 𝑦0 to 𝑦0. These |𝐸(𝑌)\𝐸(𝜏)| = 𝑘
paths generate 𝜋1(𝑌, 𝑦0) freely. Their images in 𝐻1(𝑌, ℤ) generate 𝐻1(𝑌, ℤ) as a free
ℤ-module. These can be realized by the 𝑘-closed cycles in 𝑌 which start at 𝑡(𝑒) and go
to 𝑜(𝑒) along the unique path in 𝜏 and close up by going from 𝑜(𝑒) to 𝑡(𝑒) along 𝑒. These
cycles 𝑐𝑒 for 𝑒 ∈ 𝐸(𝑌)\𝐸(𝜏) are a ℤ-basis for 𝐻1(𝑌, ℤ). With this we can identify the
torus 𝑇(𝑌) with 𝑧 ∈ (𝑆1)𝑘 by setting

(25) 𝜒𝑧(𝑐𝑒) = 𝑧𝑒, for 𝑧 = (𝑧𝑒)𝑒∈𝐸(𝑌)\𝐸(𝜏), |𝑧𝑒| = 1.

Using the standard basis for functions on 𝑌 so that the adjacency matrix of 𝑌 is the
𝑛 × 𝑛 matrix whose 𝑣, 𝑤 entry is 1 if (𝑣, 𝑤) ∈ 𝐸(𝑌) and 0 otherwise,we find that the
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matrix Δ̄𝜒 acting on 𝑉𝜒 has 𝑣, 𝑤 entry

𝑎𝜒(𝑣, 𝑤) =
⎧⎪
⎨⎪
⎩

0 if there is no edge from 𝑣 to 𝑤 in 𝑦
1 if 𝑣 is joined to 𝑤 in 𝜏
𝑧𝑒 if 𝑜(𝑒) = 𝑣, 𝑡(𝑒) = 𝑤, 𝑒 ∉ 𝐸(𝜏)
𝑧−1𝑒 = ̄𝑧𝑒 if 𝑜(𝑒) = 𝑤, 𝑡(𝑒) = 𝑣, 𝑒 ∉ 𝐸(𝜏)

(26)

Clearly Δ̄𝜒 is 𝑛× 𝑛Hermitian in this basis, as seen explicitly in the following example.

Figure 7. Example 3-regular graph 𝑌 with 6 vertices and 9 edges.
The spanning tree 𝜏 is indicated by the thicker light blue edges. The
edges 𝑒1, . . . , 𝑒4 not in the spanning tree may freely be redirected to
link different decks of a cover of 𝑌 . If, however, edges of the spanning
tree are also redirected, then vertices can become isolated from their
own deck, and the cover can become disconnected. The torus 𝑇 is
thus four dimensional, even though 𝑌 has 9 edges.

Consider the 3-regular graph 𝑌 shown in Fig. 7. It has 𝑛 = 6 vertices,𝑚 = 9 edges,
and 𝑘 = 4 edges not in the spanning tree 𝜏, as indicated in Fig. 7. The matrix of Δ̄𝜒 in
the standard basis is:

(27) Δ̄ ⃗𝑧 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 𝑧4 𝑧1 0 1 0
𝑧−14 0 1 0 0 1
𝑧−11 1 0 1 0 0
0 0 1 0 1 𝑧−12
1 0 0 1 0 𝑧−13
0 1 0 𝑧1 𝑧3 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The algebraic functions 𝜆1( ⃗𝑧), . . . , 𝜆𝑛( ⃗𝑧) can be computed from the secular equation
(28) 𝑃(𝜆, 𝑧) = det(𝜆𝐼𝑛×𝑛 − 𝐴 ⃗𝑧) = 0.
𝑃 is a polynomial in 𝜆 of degree 𝑛 with coefficients which are Laurent polynomials
of degree one in each variable 𝑧𝑗 . When we restrict 𝑃 to a subtorus 𝑆 of 𝑇 as we do
in Section 4, the number of variables goes down but the degree of those variables in
the coefficients goes up. Our connected subtorus 𝑆 will be chosen to be of dimension
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1 or 2. In the example above (27) and Fig. 7), passing to the one-dimensional torus:
𝑧3 = 𝑧4 = 1 and 𝑧1 = 𝑧2 yields one of our extremal spectral intervals. Note that when
𝑆 is one dimensional, the corresponding cover of 𝑌 is infinite cyclic.
A rare feature shared by our extremal examples, and which is often responsible for

special properties, is the existence of flat bands. This occurs if the restriction of 𝑃 to 𝑆
(in terms of the 𝑧𝑗 variables) has one of the 𝜆𝑗 = ̂𝜆which is constant on 𝑆. Equivalently

(29) 𝑃( ̂𝜆, ⃗𝑧) = 0 for ⃗𝑧 ∈ 𝑆.

If there are exactly 𝑟 𝜆𝑗 ’s equal to ̂𝜆 for ⃗𝑧 ∈ 𝑆, then we say that the flat band has multi-
plicity 𝑟. In terms of the secular polynomial this is equivalent to

(30) 𝑃( ̂𝜆, ⃗𝑧) = 𝜕𝑃
𝜕𝜆 (

̂𝜆, ⃗𝑧) = ⋯ = 𝜕𝑟−1𝑃
𝜕𝜆𝑟−1 (

̂𝜆, ⃗𝑧) = 0 for ⃗𝑧 ∈ 𝑆.

̂𝜆 must be an eigenvalue of 𝑌 and the flat bands keep this eigenvalue with very high
multiplicity, which works to keep the inclusion in (23) tight.
The flat bands also have a well-known interpretation in terms of corresponding to

localized eigenfunctions of Δ̄ with eigenvalue ̂𝜆 on the 𝐻1/𝑆⟂ cover𝑊 of 𝑌 (See [32]).
In certain situations, such as the ones in Section 4, these localized states are of finite
support and their presence can be explained by explicit local configurations.
Our computations of the general 𝜆𝑗( ⃗𝑧) for ⃗𝑧 ∈ 𝑆 are numerical and there are certain

end points of bands that we need to know exactly. For this analysis we make use of a
classical theorem of Rellich [33] which allows us to conclude that, at least if 𝑆 is one-
dimensional, the 𝜆𝑗 ’s can be chosen to be real analytic functions of 𝑧 (not just continu-
ous), and the corresponding eigenvectors 𝑣𝑗 can also be taken to vary real analytically
and also orthogonal to each other.

4. Construction of Abelian covers with large/extremal gaps

4.1. Bloch-wave formalism and generation of band spectra. In order to find
graphs with large or extremal gap sets, we carried out a targeted numerical search of
one- and two-dimensional Abelian covers of small 3-regular graphs. First, we chose a
target seed graph, or unit cell, 𝑌 such that 𝜎(𝑌) has large gaps. The book [7] proved
extremely useful for identifying good candidates as it has all 3-regular graphs up to de-
gree 12 tabulated, along with their spectra. (Note: the spectra of graphs 3.2 and 3.3 are
swapped in this table.) Basic one-dimensional covers𝑊1(𝑌) can be constructed from 𝑌
taking infinitely many copies of 𝑌 , which we designate by 𝑌 (ℎ), and choosing an edge
̃𝑒 ∈ 𝐸(𝑌) through which to connect the 𝑌 (ℎ). The edge ̃𝑒 has a copy ̃𝑒ℎ in each 𝑌 (ℎ).
Each ̃𝑒ℎ is then cut and reattached to the corresponding point in the next unit cell:

(31) ̃𝑒ℎ → ̃𝑒′ℎ = {𝑜( ̃𝑒
′
ℎ) = 𝑜( ̃𝑒ℎ)

𝑡( ̃𝑒′ℎ) = 𝑡( ̃𝑒ℎ+1).

The result is a periodic infinite (or finite cyclic) graph𝑊1(𝑌, ̃𝑒). Two-dimensional cov-
ers were constructed in an analogous fashion by laying out copies of 𝑌 in a grid and
selecting two edges along which to connect:

(32) ̃𝑒ℎ,𝑘 → ̃𝑒′𝑗,𝑘 = {𝑜( ̃𝑒
′
ℎ,𝑘) = 𝑜( ̃𝑒ℎ,𝑘)

𝑡( ̃𝑒′ℎ,𝑘) = 𝑡( ̃𝑒ℎ+1,𝑘)
and ̄𝑒ℎ,𝑘 → ̄𝑒′ℎ,𝑘 = {𝑜( ̄𝑒

′
ℎ,𝑘) = 𝑜( ̄𝑒ℎ,𝑘)

𝑡( ̄𝑒′ℎ,𝑘) = 𝑡( ̄𝑒ℎ,𝑘+1)
.
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Figure 8. Cover construction. a: An example seed graph 𝑌 . b:
A one-dimensional cover is constructed by severing one link (dotted
light blue edge) and reconnecting (dashed light blue edge) to neigh-
boring copies (not shown). c: For a two-dimensional cover, two links
are severed, one reconnected along 𝑥 (light blue) and one along 𝑦 (or-
ange). d: A two-link one-dimensional cover is formed by connecting
both links in one direction. e: Three unit cells of the cover in d. An
alternate drawing of this cover is shown in Fig. 10aii, where the red 4-
cycles become the “hourglasses” and the light blue edges the vertical
bars.

The resulting graph 𝑊2(𝑌, ̃𝑒, ̄𝑒) is structured like a square grid. The covers 𝑊1(𝑌, ̃𝑒)
and 𝑊2(𝑌, ̃𝑒, ̄𝑒) are the simplest possible covers with one link between copies (decks)
per dimension, and can easily be generated by iterating through all 𝑒 ∈ 𝐸(𝑌) and all
pairs of edges 𝑒1, 𝑒2 ∈ 𝐸(𝑌). A sketch of this construction is shown in Fig. 8b for𝑊1
and c for𝑊2.
Because these structures are Abelian covers of a finite unit cell, they are translation

invariant and the full adjacency matrix Δ̄𝑊 commutes with translations in the link
directions. Solutions which are also eigenfunctions of these translations will have the
same form 𝑣𝜃 on each 𝑌 (ℎ) except for a phase factor 𝑧 = exp(𝑖𝜃) and are known as
Bloch waves. In this basis the full Hilbert space can be broken into sectors each of
fixed 𝜃 in which Δ̄𝑊 is block diagonal. In this basis, solutions are of the form

(33) 𝜓𝜃1,𝜃2 = 𝑣𝜃1,𝜃2(𝑌 (ℎ,𝑘)) × 𝑒𝑖(ℎ𝜃1+𝑘𝜃2),

where 𝑣𝜃1,𝜃2 is a complex-valued function of𝑌 which depends on the two phases 𝜃1 and
𝜃2 for two-dimensional covers, or a single phase angle for a one-dimensional cover.
Note that while solutions of this type are not technically ℓ2-normalizable, for finite-
dimensional Abelian covers such as those considered here, they are in the closure of
the ℓ2 space. We will therefore compute with them directly rather than including an
envelope functionwhich decays sufficiently rapidly at infinity and then taking the limit
of the width of the envelope going to infinity.
The key feature which makes 𝜎(Δ̄𝑊 ) easy to compute numerically is that the action

of Δ̄𝑊 on solutions of this form, i.e. the diagonal blocks, can readily be determined
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(see for example a solid-state physics textbook such as [13]). There are𝑚 equivalence
classes of edges of 𝑊 , corresponding to each of the edges of 𝑌 , and 𝜓𝜃1,𝜃2 obeys this
same symmetry. As a result the full problem can be recast as an effective eigenvalue
problem on 𝑌 with a modified adjacency operator

(34) Δ̄𝑊𝜓𝜃1,𝜃2 = 𝜆𝜓𝜃1,𝜃2 ⇔ Δ̄𝜒𝑣𝜃1,𝜃2 = 𝜆𝑣𝜃1,𝜃2 ,
where Δ̄𝜒 is the 𝜒-twisted adjacency operator on 𝑌 defined in (26) on a subtorus with
two nonzero 𝑧𝑖. This definition absorbs the phase factor 𝑒𝑖(ℎ𝜃1+𝑘𝜃2) into the adjacency
operator and replaces the infinite-dimensional Hilbert space of𝑊 with infinitelymany
finite (𝑛) dimensional Hilbert spaces parametrized by the twists angles. The spectrum
of Δ̄𝑊 can then be computed by numerical diagonalization of Δ̄𝜒 in a grid covering
the subtorus 𝑆. For each value of 𝜃1 and 𝜃2, there will be 𝑛 different solutions. These
solutions 𝜆𝑗 as a function of 𝜃 are the bands of𝑊 .

Figure 9. Two-dimensional band structure. a: Two-
dimensional surface plot of the bands 𝜆𝑗(𝜃1, 𝜃2) of a two-dimensional
Abelian cover of the multigraph in Fig. 10bi. The domain is the un-
folded torus 𝜃1 ∈ [−𝜋, 𝜋], 𝜃2 ∈ [−𝜋, 𝜋], i.e. the first Brillouin zone.
This seed graph has four vertices, so the cover has four bands, shown
in gold, cyan, green, and blue. b: Projection of the bands along the
𝜃1 = 𝜃2 direction. c: Projection of the bands along the 𝜃1 = −𝜃2 di-
rection, which reveals that the green and cyan bands are flat along the
line 𝜃1 = 𝜃2. While the full two-dimensional cover is not gapped at
zero due to the conical band touches between green and cyan bands
clearly visible in b. The one-dimensional cover along 𝜃1 = 𝜃2 is and
realizes the maximal gap interval (−1, 1), as shown in Fig. 10bi–iii

In order to find the bands numerically, we discretize the torus 𝑆 in an evenly spaced-
𝑁 ×𝑁 square grid for two-dimensional examples, and size 𝑁 grid for one-dimensional
ones. At each point of the grid we find the matrix Δ̄𝜒 and diagonalize it numeri-
cally using a standard numerical diagonalizer optimized for Hermitian matrices (from
numpy.linalg pythonwrapper for BLAS and LAPACK). Sample plots of the eigenvalues
as surfaces as a function of 𝜃1 and 𝜃2 are shown in Fig. 9. Collecting all of the eigenval-
ues from all values of 𝜃1 and 𝜃2 then provides an estimate of spectrum of Δ̄𝑊 . These
eigenvalues are sorted, and we examine all the intervals between adjacent eigenvalues.
Most such intervals are spurious and merely represent the discretization of the grid in
𝜃. We therefore reject all intervals smaller than the generous threshold of 0.05, and the
remaining large intervals are interpreted as the gaps of Δ̄𝑊 . Generally, this provides an
overestimate of the gaps because the leading source of error comes from possibility that
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the mesh in 𝜃 does not include the exact maximum orminimum of a band, rather than
from the numerical diagonalizer. In the case of gaps bordered by flat bands, this step
size is not an issue, and the numerical gap will typically be an underestimate which is
limited by errors from the numerical diagonalizer around the 10−14 level.
When generating covers to compute, we neglect to identify a spanning tree and in-

stead compute the spectrum of all possible𝑊2(𝑌, ̃𝑒, ̄𝑒), all of which will be connected
since 𝑌 is 3-regular and we are redirecting at most two edges. Many of the resulting
covers are redundant if 𝑌 has a high degree of symmetry, which is the case for the
cells shown in Fig. 10ai and bi. While some 𝑊2 with large gap intervals were found,
none realized maximal gap intervals. However, each two-dimensional torus contains
infinitely many subtori (circles in this case), corresponding to setting a relation

(35) 𝑎𝜃1 = 𝑏𝜃2,

for integer coefficients 𝑎 and 𝑏. Such a relation corresponds to a more complicated
one-dimensional cover in which multiple links go between unit cells (decks). For ex-
ample, setting 𝜃1 = 𝜃2 corresponds to cutting two edges in 𝑌 and connecting them
both to the same neighboring unit cell, rather than in two separate directions of a grid.
Fig. 8d,e shows one such cover. The spectrum and bands of each of these two-link
one-dimensional covers can be found by looking along the corresponding line in the
full two-dimensional solution. In this manner, the square-grid two-dimensional cov-
ers𝑊2 were used to search the space of two-link one-dimensional covers, beyond the
simple one-link cases realized for𝑊1 = 𝑊2(𝜃2 = 0).
Using this search method, two sets of special one-dimensional covers were found.

First, four non-planar examples that realized the extremal gap intervals (−2, 0) and
(−1, 1) and are described in Section 4.2. Second, a set of four planar examples with
large (but not maximal) gaps, the union of which cover the interval [−2, 0]. As shown
in Section 2, with these four graphs as input, the map 𝒯 can produce a gap anywhere
in the interval [−3, 3).

4.2. Extremal gap sets. The four initial cells 𝑌 which yield Abelian covers which
realize maximal gap intervals are shown in Fig. 10ai–bi. In all four cases the extremal
covers were found to be two-link one-dimensional covers and were initially identified
as special directions in two-dimensional examples. These extremal covers, 𝑊̄𝑎 and 𝑊̄𝑏,
are shown in Fig. 10aii–bii, and details of the construction of 𝑊̄𝑎 are shown in Fig. 8.
The three graphs in Fig. 10bi produce the same extremal graph. The first (cube) graph
gives rise to two copies of the fundamental domain per deck and the second results in
three. In order to obtain only a single copy of the fundamental domain the starting
graph must be the final graph in bii, which has multiple edges. The common feature
between all of these graphs is a 4-cycle connected to the left and right at opposite pairs
of corners. This feature is a drawn as an hourglass in Fig. 10aii–bii and gives rise to all
of the flat bands that these models exhibit.
The band structures of 𝑊̄𝑎 and 𝑊̄𝑏 are shown in Fig. 10aiii–biii. Each band is color

coded, showing the continuous evolution of the eigenvalues 𝜆𝑗(𝑆) versus the twist angle
𝜃, and the gap sets for each are highlighted in insets to the right of the main plot. Nu-
merically, each extremal cover was determined to have gap intervals which are consis-
tent with (−2, 0) and (−1, 1). In order to prove that these gaps are exact, it is necessary
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Figure 10. Graphs with extremal gap intervals. ai–bi: Four ex-
amples of graphs𝑌 carrying infiniteAbelian covers realizing extremal
gap intervals. The graph in ai yields the extremal cover shown in aii,
while the three graphs in bi yield the same extremal cover, shown in
bii. The two seed in graphs bi without multiple edges each contain 2
and 3 copies of the fundamental domain of the cover. In order to ob-
tain only one copy per deck, the cover must be made from the multi-
graph in bi. aiii–biii: Numerical Bloch-wave bands for each cover
graph as a function of character angle 𝜃. Each plot shows two funda-
mental domains, i.e. two loops around the dual torus. The gap sets
for each example are highlighted in the insets. Solid lines indicate
gap intervals and cross markers their boundaries. Graph a realizes
the extremal gap interval (−2, 0), and b realizes (−1, 1).

to supplement the numerical band structure calculation and establish two additional
facts exactly:

(i) the flat bands are exactly flat and located precisely at {−2, 0} for 𝑊̄𝑎 and {−1, 1}
for 𝑊̄𝑎,

(ii) the curved bands never cross these flat bands.
In the absence of a fully analytic solution for 𝜆𝑗(𝜃), wemakeuse of the fact that the band
structure is periodic in 𝜃, along with a theorem by Rellich [33] that the eigenvalues as
function of 𝜃 can be taken to be real analytic, in order to show that these gaps are exact.
Both band structures are periodic in 𝜃 with a period of 2𝜋, and the bands are very well
behaved functions of 𝜃. Therefore, in both cases there is only one point in the dual torus
where the curved bands approach the flat bands and near which they could potentially
cross: 𝜃𝑡 = 0 for 𝑊̄𝑎 and 𝜃𝑡 = 𝜋 for 𝑊̄𝑏.
To characterize this point, we examine the twisted adjacency operator Δ̄𝜃 at the band

touch point. While Δ̄𝜃 is in generalHermitian, at 𝜃 = {0, 𝜋} it is a real symmetricmatrix
with entries either −1, 0, or 1, and admits real eigenvectors. Due to this particularly
simple structure, the eigenvectors and eigenvalues can be found exactly, and using
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Figure 11. Eigenstates of graph a. Eigenvectors of the Abelian
cover shown in Fig. 10aii at 𝜃𝑡 = 0, shown in order of bands
from largest to smallest lambda. Unlike the numerical spectrum in
Fig. 10biii, all eigenvectors and eigenvalues are exact. Eigenvectors
are plotted as colored circles overlaid on the vertices of the graph. Red
(dark) circles indicate positive sign and yellow (pale) negative. The
radius of the circle indicates the amplitude of the eigenvector. Plot-
ted eigenvectors are unnormalized and not orthogonalized in order
to represent the graph’s structure most simply: except for the state in
e which goes up to values of ±2, a full set of (non-orthogonal) eigen-
vectors can be produced from vectors with entries only 0, ±1. Eigen-
vectors corresponding to flat bands have compact support.

a

b
λ = 1

λ = 1
c

d
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λ = -1

Figure 12. Eigenstates of graph b. Exact eigenvectors of the
Abelian cover shown in Fig. 10bii at 𝜃𝑡 = 𝜋, shown in order of bands
from largest to smallest lambda. Unlike the numerical spectrum in
Fig. 10biii, all eigenvectors and eigenvalues are exact. Eigenvectors
are plotted as colored circles overlaid on the vertices of the graph.
Red (dark) circles indicate positive sign and yellow (pale) negative.
The size of the circle indicates the amplitude of the eigenvector. Plot-
ted eigenvectors are unnormalized and not orthogonalized in order to
represent the graph’s structure most simply. Eigenstates correspond-
ing to flat bands have compact support.

(33) these can then be converted into eigenvectors of Δ̄𝑊 . In the case of the dispersive
(non-flat) bands, the only exact eigenvectors are of this Bloch-wave form. However, the
degeneracy of the flat bands allows other bases to be chosen in which the eigenvectors
are localized. In this case, the Bloch-waves can be understood as a sum of translates of
these localized solutions each with a phase twist exp(𝑖ℎ𝜃). The resulting eigenvectors
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are shown in Fig. 11 for 𝑊̄𝑎 and Fig. 12 for 𝑊̄𝑏. The eigenvectors are plotted as col-
ored circles overlaid on the sites of the graph where the size of the circle indicates the
magnitude of the vector on that site and the color the sign.
The action of Δ̄𝑊 on these vectors can then be double checked by adding up the

value on all neighboring sites and comparing to the on-site value. This therefore estab-
lishes that at the band touch angle 𝜃𝑡 the cover 𝑊̄𝑎 has eigenvalues {3, 1, 0, 0, −2, −2}
and 𝑊̄𝑏 has eigenvalues {1, 1, −1, −1}, exactly. Note that we have chosen to draw the
eigenvectors so that they are as simple as possible and the eigenvalues easiest to verify.
They are unnormalized and may be only linearly independent rather than orthogo-
nal. Proper orthonormal eigenbases can be found via Graham-Schmidt on finite cyclic
covers and extrapolated to infinite ones. (However, the resulting states are needlessly
difficult to visualize.) In the case of the five flat bands, we have plotted states in the lo-
calized basis where they are particularly simple and of compact support. Translates of
these states are also eigenstates with the same eigenvalue. These can then be plugged
in (33) to produce Bloch-wave solutions as a function of 𝜃, which will in turn all have
the same eigenvalue. Thus, these bands are exactly flat, and not merely numerically
so.
Finally, it only remains to establish that the dispersive bands (which are analytic by

Rellich [33]) do not encroach on the gap by crossing the flat bands. In both cases, Δ̄𝜃
is symmetric around 𝜃𝑡 such that
(36) Δ̄𝜃𝑡+𝛿 = transpose(Δ̄𝜃𝑡−𝛿).
and by symmetry, the entire band structure {𝜆𝑗}must be symmetric about 𝜃𝑡. Since the
flat bands are already symmetric and the dispersive bands never cross, this forces all
the bands in 𝜎(𝑊̄𝑎) and 𝜎(𝑊̄𝑏) to be symmetric about 𝜃𝑡 individually and constrains the
first derivative versus 𝜃 of each band to zero at 𝜃𝑡. The numerical calculations already
establish that the dispersive bands have non-zero second derivative at 𝜃𝑡, and it then
follows that 𝜃𝑡 is a local (and in fact global) extremumof all the dispersive bands of both
𝑊̄𝑎 and ̄𝑊𝑏. Hence, these graphs realize the gap intervals (−2, 0) and (−1, 1) exactly.
The spectrum of 𝑊̄𝑏 follows trivially from here since it has no other gaps. 𝑊̄𝑎 has

two other gaps whose extrema are at 𝜃 = 𝜋. An analogous treatment can be carried out
herewith slightlymore algebra required to determine the eigenvectors and eigenvalues.
The exact spectra and gaps are

(37)
𝜎(𝑊̄𝑎) = [−1 + √17

2 , −2]⋃ [0, −1 + √17
2 ]⋃ [2, 3]

[−3, 3]\𝜎(𝑊̄𝑎) = [−3,−1 + √17
2 )⋃ (−2, 0)⋃ (−1 + √17

2 , 2) ,

and

(38)
𝜎(𝑊̄𝑏) = [−3,−1]⋃ [1, 3]

[−3, 3]\𝜎(𝑊̄𝑏) = (−1, 1).

The infinite cubic graphs 𝑊̄𝑎 and 𝑊̄𝑏 can be used to construct infinite sequences
of finite graphs whose spectra are contained in 𝜎(𝑊̄𝑎) and 𝜎(𝑊̄𝑏) by taking suitable
quotients. For 𝛼 = 𝑎 or 𝑏, let 𝐺𝛼 be the automorphism group of 𝑊̄𝛼, and let Γ𝛼 be
a subgroup of 𝐺𝛼, then the spectrum of Δ̄ restricted to the Γ𝛼 periodic functions on
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𝑊̄𝛼 is contained in 𝜎(𝑊̄𝛼). This follows from 𝐺𝛼 being amenable. If Γ𝛼 acts freely on
the vertices of 𝑊̄𝛼, i.e. any element 𝛾 ≠ 1 in Γ𝛼 fixes none of the vertices of 𝑊̄𝛼, then
the quotient 𝑊̄𝛼/Γ𝛼 is a multigraph whose spectrum is contained in 𝜎(𝑊̄𝛼). If Γ𝛼 acts
without fixing any edges, then the quotient is a graph. We examine each case 𝛼 = 𝑎, 𝑏
in turn.

Figure 13. Finite planar quotients of 𝑊̄𝑏. a: The infinite graph
𝑊̄𝑏. Four sample involution symmetry points are indicated by black
dots. b: The quotient obtained with respect to the automorphism 𝜎0:
rotation about 𝑂 or 𝑂′ by 𝜋. New edges induced by the quotient are
indicated in red. In this case, no loops or multiple edges appear. c:
The quotient with respect to 𝜎𝑃 . In this case, two loops appear. d: The
quotient with respect to reflection about the central axis. Infinitely
many multiple edges appear. e, f : The quotient with respect to 𝜎𝑂
and 𝜎𝑂′ , when 𝑂 and 𝑂′ are four unit cells apart. This quotient is a
planar graph which is (−1, 1) gapped.

Consider first 𝑊̄𝑏. Its automorphism group is generated by four types of elements.
(i) Translations 𝑡(𝑛) by n unit cells. The quotients 𝑊̄𝑏/⟨𝑡(𝑛)⟩ for 𝑛 ≥ 2 are the

hamburger graphs𝑊𝑏(𝑛) shown in Fig. 14b.
(ii) The involution 𝜎𝑂 rotating about a central point 𝑂 by 𝜋. Two example points

𝑂 and 𝑂′ are shown in Fig. 13a. The quotient 𝑊̄𝑏/⟨𝜎𝑂⟩ is the graph shown in
Fig. 13b.

(iii) The involution 𝜎𝑃 rotating about a central point 𝑃 by 𝜋. Two example points 𝑃
and 𝑃′ are shown in Fig. 13a. The quotient 𝑊̄𝑏/⟨𝜎𝑃⟩ is a multigraph, shown in
Fig. 13c.
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Figure 14. Non-planar quotients. a: Finite periodic quotient
𝑊𝑎(𝑛) of the graph 𝑊̄𝑎. b: Finite periodic quotient𝑊𝑏(𝑛) of the graph
𝑊̄𝑏. c,d: Sketches showing that𝑊𝑎(2) and𝑊𝑏(3) contain subgraphs
which are topologically equivalent to the complete bipartite graph on
two sets of three vertices: 𝐾3,3. One set of vertices is indicated by
the light-blue circles, and one by 33red diamonds. The existence of
this type of subgraph shows that𝑊𝑎(𝑛) and𝑊𝑏(𝑛) are non-planar for
𝑛 ≥ 2 and 𝑛 ≥ 3, respectively.

(iv) The reflection ℛ about the central axis, which switches the top and bottom
vertices. 𝑊̄𝑏/⟨ℛ⟩ is the multigraph shown in Fig. 13d.

The hamburger graphs𝑊𝑏(𝑛) (shown in Fig. 14b) have 4𝑛 vertices. They are bipar-
tite, and 𝜎(𝑊𝑏(𝑛)) ⊂ 𝜎(𝑊̄𝑏). Hence,𝑊𝑏(𝑛) is (−1, 1) gapped. These𝑊𝑏(𝑛)’s were pre-
viously constructed and shown directly to be (−1, 1) gapped in [16]. The graph𝑊𝑏(2)
is the cube and is planar, but for 𝑛 ≥ 3 𝑊𝑛(𝑛) is not planar. By Kuratowski’s theorem
[23] the only obstruction for a cubic graph to be planar is that it contain a topological
𝐾3,3. Such a 𝐾3,3 is shown in Fig. 14d for𝑊𝑏(3), and the same is true for𝑊𝑏(𝑛) with
𝑛 > 3.
To produce finite planar quotients of 𝑊̄𝑏, we use two involutions of type (ii) cen-

tered at two distinct point 𝑂 and 𝑂′ which are 𝑛 unit cells apart. The quotient graphs
𝑃𝑏(𝑛) ≔ 𝑊̄𝑏/⟨𝜎𝑂, 𝜎𝑂′⟩ have size 4𝑛 and are planar with four triangular faces and
2(𝑛 − 1) hexagonal faces. The resulting quotient for 𝑛 = 4 is shown in Fig. 13e, in
the realization that derives naturally from a. Fig. 13f shows an alternate realization
for 𝑛 = 5 which is manifestly planar. The planar graphs 𝑃𝑏(𝑛) are (−1, 1) gapped,
proving the corresponding statement in Theorem 3.
Next we turn to 𝑊̄𝑎. Its automorphism group is also generated by four types of ele-

ments.
(i) Translations 𝑡(𝑛) by n unit cells. The basic unit cell is now larger, consisting

of an hourglass and a vertical bar. The quotients 𝑊̄𝑎/⟨𝑡(𝑛)⟩ for 𝑛 ≥ 1 are the
hamburger graphs𝑊𝑎(𝑛) shown in Fig. 14a.

(ii) The involution 𝜎𝑂 rotating about a central point𝑂 by𝜋. Two example points𝑂
and 𝑂′ are shown in Fig. 15a. The quotient 𝑊̄𝑎/⟨𝜎𝑂⟩ is the multigraph shown
in Fig. 15e.
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Figure 15. Finite planar quotients of 𝑊̄𝑎. a The infinite graph
𝑊̄𝑎. Four sample involution symmetry points are indicated by black
dots. b The quotient with respect to reflection about the central axis.
New edges induced by the quotient are indicated in red. Infinitely
many loops appear. c The quotient obtained with respect to the au-
tomorphism 𝜎0: rotation about 𝑂 by 𝜋. New edges induced by the
quotient are indicated in red. In this case, two loops appear. If a quo-
tient is taken with respect to two distinct 𝜎𝑂 and 𝜎𝑂′ , the result is a
planar (−2, 0) gapped multigraph with four loops, shown in d. e The
quotient with respect to 𝜎𝑃 . In this case, one loop appears. If a quo-
tient is taken with respect to two distinct 𝜎𝑃 and 𝜎𝑃′ , the result is a
planar (−2, 0) gapped multigraph with two loops, shown in d.

(iii) The involution 𝜎𝑃 rotating about a central point 𝑃 by 𝜋. Two example points 𝑃
and 𝑃′ are shown in Fig. 15a. The quotient 𝑊̄𝑎/⟨𝜎𝑃⟩ is also amultigraph, shown
in Fig. 15c.

(iv) The reflection ℛ about the central axis, which switches the top and bottom
vertices. 𝑊̄𝑎/⟨ℛ⟩ is the multigraph shown in Fig. 15b.

The hamburger graphs𝑊𝑎(𝑛) (shown in Fig. 14a) have 6𝑛 vertices, and 𝜎(𝑊𝑎(𝑛)) ⊂
𝜎(𝑊̄𝑎). In particular, 𝑊𝑎(𝑛) is (−2, 0) gapped, which establishes the corresponding
claim in Theorem 3. As with the 𝑊𝑏’s, 𝑊𝑎(1) is planar (see Fig. 10ai), while 𝑊𝑎(𝑛),
𝑛 ≥ 2 are not. The topological 𝐾3,3’s that these contain are shown in Fig. 14c.
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None of the quotient graphs of 𝑊̄𝑎 are planar, and we do not know if (−2, 0) can be
planar gapped. However, if we allow multigraphs, then this can be done. Choosing
two involutions 𝜎𝑂 and 𝜎𝑂′ which are 𝑛 unit cells apart yields a multigraph 𝑃𝑎(𝑛) ≔
𝑊̄𝑎/⟨𝜎𝑂, 𝜎𝑂′⟩, which looks like Fig. 15e at both ends. Amanifestly planar realization of
this quotient with 𝑛 = 4 is shown in Fig. 15f. The graphs 𝑃𝑎(𝑛) are planar multigraphs
with two loops, and |𝑃𝑎(𝑛)| = 6𝑛.
If instead we chose two involutions 𝜎𝑃 and 𝜎𝑃′ of type (ii) with 𝑃 and 𝑃′ which are

𝑛 unit cells apart, we obtain the mutigraphs 𝑄𝑎(𝑁) ∶= 𝑊̄𝑎\⟨𝜎𝑃 , 𝜎𝑃′⟩, which looks like
Fig. 15c at both ends. A manifestly planar realization of this quotient with 𝑛 = 4
is shown in Fig. 15d. The graphs 𝑄𝑎(𝑛) are planar multigraphs with four loops, and
|𝑄𝑎(𝑛)| = 6𝑛.
The spectra of both 𝑃𝑎(𝑛) and 𝑄𝑎(𝑛) are contained in 𝜎(𝑊̄𝑎), and hence, these are

planar multigraphs which are (−2, 0) gapped, proving the corresponding statement in
Theorem 3.
In forthcoming work with Fan Wei, we construct planar multigraphs which are

(−2, 0) gapped and have exactly two multiple edges and no loops. They are not re-
alized as quotients of 𝑊̄𝑎, but rather as two-sided “cappings” of it: a construction and
analysis that we develop in order to study the gap sets for fullerene graphs.

4.3. Planar gap sets. While most of the covers generated above (and all of the ex-
tremal covers) are non-planar, special sets of links generate planar Abelian covers. In
the case of one-dimensional planar covers, all finite cyclic versions of the cover are also
planar. This can be seen by drawing the unit cells in an annular geometry, instead of
a straight ribbon. Four such examples which yield relatively large gap sets are shown
in Fig. 16a–d, and their gap sets are shown in Fig. 16e. We denote these four exam-
ple graphs by 𝑃𝑎, . . . , 𝑃𝑑 and their gap sets by 𝒢(𝑃𝑎), . . . , 𝒢(𝑃𝑑). The gap sets are found
by taking the complement of numerical estimates of the bands. The exact edges of
the bands and gaps are therefore uncertain, primarily due to discretization in 𝜃 when
computing the bands. However, these four graphs were chosen such that their gaps
overlap by more than the numerical resolution. This redundancy eliminates most of
the numerical uncertainty so that together these four graphs possess the property that

(39) 𝔾 = 𝒢(𝑃𝑎)⋃ 𝒢(𝑃𝑏)⋃ 𝒢(𝑃𝑐)⋃ 𝒢(𝑃𝑑) ⊃ [−3, 2√2].

Therefore any point 𝜉 ∈ [−3, 2√2] is planar gapped by at least one of these four graphs.
Supplementing these four with the existence of (necessarily non-planar) Ramanujan
graphs establishes that any 𝜉 ∈ [−3, 3)may be gapped.
Furthermore, these four examples may be used as inputs to the map 𝒯 discussed

in Section 2, which then transfers their gaps to other locations according to the map
𝑓−1. Because [−2, 0] ⊂ 𝔾, every point in [−3, 3) is in the image of 𝔾 for some power
of 𝑓−1. These graphs therefore complete the proof of Theorem 1 and establish that
every 𝜉 ∈ [−3, 3) may be planar gapped. The only point that cannot be gapped this
way is 3. All of the Abelian covers discussed here (even the non-planar ones) have
amenable deck groups and are therefore too simple to be expanders. The constant
function, which has eigenvalue 3, will always be in the closure of the ℓ2 space. Thus
there will always be a highest band whose maximum is 3. The action of 𝒯 cannot
eliminate this band. Instead it produces gaps in the interval [2√2, 3) by compressing
this band closer and closer to 3. The study of the dynamics of 𝒯 and 𝑓−1 in Section
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a

b
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d

e

Figure 16. Planar gaps covering [−2, 0]. a–d: Finite sections of
four infinite planar graphs whose finite periodic quotients are also
planar and which were obtained as one-dimensional Abelian covers
of small 3-regular graphs. The gap sets of these four graphs are shown
in e in alphabetical order from left to right. Solid lines are used to indi-
cate the gap intervals, and cross marks the limits of the gap intervals.
Horizontal grey lines are guides to the eye which indicate the special
values −2, 0, and 2√2. Except for the special point 𝜆 = −3, the ends
of all the gap intervals are open and not included. For example, graph
c has a flat band at 𝜆 = −1, and so this point is only gapped in graph
a. The union 𝔾 of all four of these gaps sets, shown in dark blue, in-
cludes not only the interval [−2, 0] needed to establish Theorem 1,
but also [−3, 2√2].

2 shows that this band can be compressed arbitrarily, allowing for gaps underneath it
and arbitrarily close to 3.

5. Proofs of maximal gap intervals

We return to the proof of Theorem 2

Theorem 2. Let 𝐾 be a spectral set, then
(i) cap(𝐾) ≥ 1.
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(ii) If 𝐼 is an interval contained in (−1 −√2, 1 +√2) whose length is greater than 2,
then

𝐼 ∩ 𝐾 ≠ ∅.

For both statements in the theorem we need large geodesic segments in 𝑋 , so we
begin by producing them. If 𝑋 has diameter 𝑑 and 𝑥0 and 𝑦0 are in 𝑋 and are distance
𝑑 from each other, then any path 𝑔𝑑 from 𝑥0 to 𝑦0 of length 𝑑 is a goedesic (that is for
any 𝑣, 𝑤 vertices in 𝑔𝑑 the distance from 𝑣 to 𝑤 along 𝑔𝑑 is the same as their distance
in 𝑋). Every vertex in 𝑋 has distance at most 𝑑 from 𝑥0, and hence |𝑋| ≤ 3 × 2𝑑−1, the
latter being the cardinality of the ball of radius 𝑑 in the 3-regular tree. It follows that

𝑑 − 1 ≥ log2 (
|𝑋|
3 ),

and hence

(40) 𝑑 > 𝕃(𝑋) ≔ log2 (
|𝑋|
3 ).

We conclude that any 𝑋 contains a geodesic segment 𝑔𝑑 with 𝑑 satisfying (40).
To prove (i) of Theorem 2, we must show that if 𝐾 ⊂ [−3, 3] is closed and cap(𝐾) <

1, then there are only finitely many 𝑋 ∈ X with 𝜎(𝑋) ⊂ 𝐾. The spectrum 𝜎(𝑌) of
the adjacency matrix of any graph 𝑌 consists of numbers 𝜆 which are real algebraic
integers, all of whose conjugates are also in 𝜎(𝑌). According to Fekete’s theorem [9],
since cap𝐾) < 1, there are only finitely many such algebraic integers 𝜆 all of whose
conjugates lie in 𝐾. It follows that the eigenvalues of any 𝑋 with 𝜎(𝑋) ⊂ 𝐾 must lie in a
finite set 𝐹𝐾 . Since Δ̄𝑋 is a diagonalizable, the minimal polynomial of Δ̄𝑋 must divide

(41) 𝑃𝐾(𝑥) ≔ ∏
𝜆∈𝐹𝐾

(𝑥 − 𝜆) = 𝑥𝑘 + 𝑎𝑘−1𝑥𝑘−1 +⋯+ 𝑎0,

where 𝑘 = |𝐹𝐾 |.
If follows that Δ̄𝑋 satisfies

(42) 𝑃(Δ̄𝑋) = Δ̄𝑘𝑋 + 𝑎𝑘−1Δ̄𝑘−1𝑋 +⋯+ 𝑎0I = 0.
We show that if the diameter 𝑑(𝑋) is greater than or equal to 𝑘, which is the case if
𝕃(𝑋) ≥ 𝑘, then (42) cannot hold. For 𝑥, 𝑦 ∈ 𝑉(𝑋), the 𝑥, 𝑦 entry of the matrix (Δ̄𝑋)𝑚 in
the standard basis for the adjacency matrix is equal to the number of paths in 𝑋 from 𝑥
to 𝑦 of length𝑚. Take 𝑥 = 𝑥0 and 𝑦 = 𝑦0, where the distance from 𝑥0 to 𝑦0 is 𝑘, which
can be done because 𝑑(𝑋) ≥ 𝑘. For 0 ≤ 𝑚 ≤ 𝑘 − 1 the 𝑥0, 𝑦0 entry of (Δ̄𝑋)𝑚 is 0, while
the entry for (Δ̄𝑋)𝑘 is not zero. Hence, the 𝑥0, 𝑦0 entry of 𝑃(Δ̄𝑋) is not zero and this
contradicts (42). This shows that if 𝕃(𝑋) ≥ |𝐹𝐾 |, then 𝜎(𝑋) cannot be contained in 𝐾.
Thus, the set of 𝑋 ’s with 𝜎(𝑋) ⊂ 𝐾 is finite, proving Theorem 2(i).
To illustrate our proof of Theorem 2(ii), we prove a special case first. Assume that

𝑋 has a Hamilton path, that is a path along the edges of 𝑋 which passes through every
vertex exactly once. Not every 𝑋 ∈ X has such a path and, more surprisingly, nor does
every planar 𝑋 [34, 41], but most do.

Proposition 2. If 𝑋 ∈ X has a Hamilton path, then for −2 ≤ 𝜆 ≤ 2

distance(𝜆, 𝜎(𝑋)) ≤ (1 + 16
|𝑋|)

1/2
.
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Proof. By assumption the vertices of 𝑋 can be labeled by a path 𝑣1, 𝑣2, . . . , 𝑣𝑡 with
𝑡 = |𝑋|. Let ℎ ∶ 𝑉(𝑥) → ℂ be given by
(43) ℎ(𝑣𝑗) = 𝑤𝑗 , 𝑗 = 1, . . . , 𝑡,
where 𝑤 is a function of 𝜆 and satisfies
(44) 𝑤2 − 𝜆𝑤 + 1 = 0.
Since −2 ≤ 𝜆 ≤ 2 we have that
(45) |𝑤| = 1, and 𝑤 + 𝑤−1 = 𝑤 + 𝑤̄ = 𝜆.
For 2 ≤ 𝑗 ≤ 𝑡 − 1

Δ̄𝑋ℎ(𝑣𝑗) − 𝜆ℎ(𝑣𝑗) = ℎ(𝑣𝑗+1) + ℎ(𝑣𝑗−1) + ℎ( ̂𝑣𝑗) − 𝜆ℎ(𝑣𝑗),
where ̂𝑣𝑗 is the third vertex adjacent to 𝑣𝑗 .
Hence for 2 ≤ 𝑗 ≤ 𝑡 − 1,

(46) |Δ̄𝑋ℎ(𝑣𝑗) − 𝜆ℎ(𝑣𝑗)| = 1.
For 𝑗 = 1 (and similaly for 𝑗 = 𝑡)

Δ̄𝑋ℎ(𝑣𝑗) − 𝜆ℎ(𝑣𝑗) = 𝑤2 + ℎ( ̂𝑣𝑗) + ℎ( ̂̂𝑣1) − 𝜆𝑤,
so that for 𝑗 = 1 and 𝑗 = 𝑡
(47) |Δ̄𝑋ℎ(𝑣𝑗) − 𝜆ℎ(𝑣𝑗)| ≤ 3.
Hence
(48) ∑

𝑣∈𝑉(𝑋)
|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤ 18 + 𝑡 − 2 = 𝑡 + 16.

On the other hand
(49) ‖ℎ‖22 = ∑

𝑣∈𝑉(𝑋)
|ℎ(𝑣)|2 = 𝑡.

Hence

(50) ‖Δ̄𝑋ℎ − 𝜆ℎ‖22
‖ℎ‖22

≤ 1 + 16
𝑡 .

If the eigenvalues and corresponding orthonormal basis of eignefunctions of 𝑋 are
denoted by 𝜆1, 𝜆2, . . . , 𝜆𝑡 and 𝜙1, . . . , 𝜙𝑡, then we expand ℎ as

ℎ =
𝑡
∑
𝑗=1

⟨ℎ, 𝜙𝑗⟩ 𝜙𝑗 ,

from which we find

Δ̄𝑋ℎ − 𝜆ℎ =
𝑡
∑
𝑗=1

⟨ℎ, 𝜙𝑗⟩ (𝜆𝑗 − 𝜆)𝜙𝑗 .

Hence

‖Δ̄𝑋ℎ − 𝜆ℎ‖22 =
𝑡
∑
𝑗=1

(𝜆𝑗 − 𝜆)2 ⟨ℎ, 𝜙𝑗⟩
2,

so that if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜎(𝑋), 𝜆) ≔ min𝑗 |𝜆𝑗 − 𝜆| = 𝛽, then
(51) ‖Δ̄𝑋ℎ − 𝜆ℎ‖22 ≥ 𝛽2‖ℎ‖22.
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Combining (50) and (51) yields Proposition 2. □

Ourmain result in this section is Theorem 5 which establishes Proposition 2 for any
large 𝑋 , but with some restrictions on 𝜆.

Theorem 5. Let −√2 ≤ 𝜆 ≤ √2 and 𝑋 ∈ X, then

distance(𝜆, 𝜎(𝑋)) ≤ (1 + 18
𝕃(𝑋))

1/2
.

Figure 17. Vertices connected to the geodesic. All vertices di-
rectly connected to the geodesic 𝑔𝑡 come in four types, illustrated in
a–d.

Proof. In place of the Hamilton path that was used in Proposition 2, we use a long
geodesic 𝑔𝑡 of length 𝑡 induced in 𝑋 . According to (40), such a geodesic exists from
some 𝑡 > 𝕃(𝑋). The support of the test function ℎ ∶ 𝑉(𝑋) → ℂ will be chosen to be a
neighborhood 𝑁𝑡 of the geodesic 𝑔𝑡, and it is chosen according to how 𝑔𝑡 embeds into
𝑋 . The vertices 𝑣 ∈ 𝑉(𝑋)\𝑔𝑡 which are directly (i.e. distance one) connected to 𝑔𝑡 come
in four types, each shown in Fig. 17.

𝑣𝑎: Connected to a single vertex in 𝑔𝑡.
𝑣𝑏: Connected to two vertices in 𝑔𝑡 which are of distance two in 𝑔𝑡.
𝑣𝑐: Connected to two vertices in 𝑔𝑡 which are neighbors in 𝑔𝑡.
𝑣𝑑: Connected to three consecutive vertices of 𝑔𝑡.

That these are the only possibilities follows from 𝑔𝑡 being a geodesic, a feature that will
be used repeatedly to limit the possible configurations, shown in Fig. 18. Using the
occurrences of vertices of types 𝑐 and 𝑑, we define a neighborhood 𝑁𝑡 of 𝑔𝑡 using the
list in Fig. 18. In all cases 𝑆 of the figure, the bottom horizontal segment is part of the
geodesic 𝑔𝑡. Let 𝛼𝑠 denote the left end vertex of this geodesic part of 𝑆 and 𝛽𝑠 the right
end vertex. We claim that we can decompose 𝑔𝑡 into segments 𝑆𝑗 , 1 ≤ 𝑗 ≤ 𝜈, such that
the segments link together in a chain and contain the entire geodesic 𝑔𝑡, using only
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Figure 18. Neighborhoods along the geodesic. Enumeration of
all of the possible segments 𝑆 along the geodesic 𝑔𝑡 which contain
vertices of types (c) and (d). In all cases the contained portion of the
geodesic is the horizontal chain running along the bottom, indicated
by thicker, lighter-colored edges. The values of the test function ℎ
defined along the Hamilton path of the segments is shown for types
IV, V, IX, and XI.

segments of the types shown in Fig. 18. A sketch of such a decomposition is shown in
Fig. 19. In this form, 𝛽𝑆𝑗 is connected to 𝛼𝑆𝑗+1 along 𝑔𝑡. (Note that a segment of type
XII can be of any length.) The point of this decomposition is that only type (a) and type
(b) vertices remain joined to the segments of type XII, as the other types are accounted
for by the types I to XI.
To see that this can be done we go over 𝑔𝑡 looking for segments supporting I to XI

from top to bottom of the table. For example, if we find a type I segment (i.e. a type
(d) vertex), then it defines one such 𝑆𝑗 , since the only places that a neighborhood like
I can continue in 𝑔𝑡 are at 𝛼 and 𝛽 (since the other vertices have degree 3). By moving



32 ALICIA J. KOLLÁR AND PETER SARNAK

Figure 19. Segments along the geodesic. Sketch of how the ge-
odesic 𝑔𝑡 is made up of a series of segments of the types shown in
Fig. 18 connected only by their end points 𝛽𝑗 and 𝛼𝑗−1. Connections
between neighboring segments are indicated in light blue with verti-
cal deviding lines to guide the eye.

down the table and using the fact that 𝑔𝑡 is a geodesic, one checks that the 𝑆𝑗 ’s can be
chosen so that there are no vertices of 𝑉(𝑋)\𝑔𝑡 which are joined directly to different
𝑆𝑗 ’s. In other words, if 𝑁𝑡 is the graph consisting of the 𝑆𝑗 ’s 1 ≤ 𝑗 ≤ 𝜈 connected along
𝑔𝑡 as above, then

(1) For any 𝑆𝑗 which is of type XII, the 𝑣’s not in 𝑁𝑡 joined to 𝑆𝑗 are of type (a) or
(b).

(2) Any 𝑣 ∈ 𝑉(𝑋)\𝑁𝑡 which is directly joined to some 𝑆𝑗 is not directly joined to
another 𝑆𝑘, 𝑘 ≠ 𝑗.

The 𝑆’s in Fig. 18 all have a Hamilton path running from 𝛼𝑆 to 𝛽𝑆 . These are in-
dicated for cases IV, V, IX, and XI. In this way we obtain a Hamilton path on 𝑁𝑡
starting from 𝛼𝑆1 and ending at 𝛽𝑆𝜈 . First traverse 𝑆1 from 𝛼𝑆1 to 𝛽𝑆1 using the 𝑆1
Hamilton path, then cross to 𝛼𝑆2 (uniquely) via 𝑔𝑡, and continue. Using this labeling
set ℎ ∶ 𝑉(𝑋) → ℂ to be

(52) ℎ(𝑣) = {𝑤
𝑘 for 𝑣𝑘 the 𝑘𝑡ℎ vertex in 𝑁𝑡

0 if 𝑣 ∉ 𝑁𝑡.
We turn to estimating

(53) 𝑅(ℎ) = ‖Δ̄𝑋ℎ − 𝜆ℎ‖22
‖ℎ‖22

in order to apply En. (51). Clearly
(54) ‖ℎ‖22 = |𝑁𝑡| ≥ 𝑡 ≥ 𝕃(𝑋).
Weestimate the contributions to the numerator in (53) coming from each 𝑆𝑗 separately.
If 𝑆 is not of type XII or IV, V, IX, XI, and we assume that 𝑆 does not contain one of

the two end points of 𝑔𝑡, then for 𝑣 ∈ 𝑉(𝑆)

(55) |Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)| = {1 if the degree of 𝑣 in 𝑆 is 3 or if 𝑣 = 𝛼𝑆 or 𝛽𝑆
0 otherwise, since deg(𝑣) in 𝑆 is 2.

The unique ̂𝑣 ∈ 𝑉(𝑆)which gives 0 is connected to a vertex in 𝑉(𝑋) that is not directly
connected to any 𝑣 ∈ 𝑉(𝑁𝑡) other than ̂𝑣 itself (by statement (2)). Hence
(56) ∑

𝑣∈𝑉(𝑆),
𝑣∉𝑉(𝑁𝑡)

connected to 𝑆

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 = |𝑆| − 1 + 1 = |𝑆|.

For 𝑆 of type IV, V, IX, XI, the analysis is a little bit different since the degree two
vertex ̂𝑣may have a ̂̂𝑣 joined to itself and also 𝛼𝑆 or 𝛽𝑆 . For example, with type IX, we
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Figure 20. Second neighbors of a type IX segment. Every type
IX segment has a single vertex ̂𝑣 which is not part of the geodesic 𝑔𝑡
and is of degree two. This vertex is connected to a single additional
vertex ̂̂𝑣 ∈ 𝑋 . In some cases (a) ̂̂𝑣 is also connected to 𝑔𝑡 and in other
cases (b) it is not. Similar situations occur for segments of types IV,
V, IX, XI.

might have either of the two configurations shown in Fig. 20. For these configurations

Δ̄𝑋ℎ( ̂𝑣) = Δ̄𝑋ℎ(𝑣3) = 0, |Δ̄𝑋ℎ(𝑣1)| = |Δ̄𝑋ℎ(𝑣2)| = 1
and |Δ̄𝑋ℎ( ̂̂𝑣)| = |𝑤2 + 1| = |𝜆|

in the first case, and
|Δ̄𝑋ℎ( ̂̂𝑣)| = |1|

in the second. Hence,

(57) ∑
𝑣∈𝑉(𝑆)
and 𝑣 = ̂𝑣̂

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤ 2 +max (1, |𝜆|2).

Since we have assumed that |𝜆| ≤ √2, we conclude that for this 𝑆 (and the same applies
to 𝑆 of type IV, V, XI) that
(58) ∑

𝑣∈𝑉(𝑆)
𝑣= ̂𝑣̂

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤ |𝑆|.

Thus, (56) holds for all 𝑆 not of type XII.

Figure 21. Neighboring vertices of type-XII segments. Sketch
of a segment of type XII and as set of possible directly connected ver-
tices. One type of neighboring vertex is denoted by 𝑣′, and is of type
(a). The other type of vertex, denoted by 𝑣″ is of type (b). No other
types are possible.

Finally, for 𝑆 of the last type, 𝑆 is a geodesic segment of size |𝑆| and all 𝑣’s in 𝑉(𝑋)\𝑆
which are joined to 𝑆 are of type (a) or type (b), an example of which is shown in Fig. 21.
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Hence, for 𝑣 ∈ 𝑆
(Δ̄𝑋ℎ − 𝜆ℎ)(𝑣) = 0,

while for 𝑣′ of type (a)
|(Δ̄𝑋ℎ − 𝜆ℎ)(𝑣′)| = 1,

and for 𝑣″ of type (b)
|(Δ̄𝑋ℎ − 𝜆ℎ)(𝑣″)| = |𝜆|.

Since we have taken |𝜆| ≤ √2, we conclude that

(59) ∑
𝑣∈𝑉(𝑆),
𝑣 directly
joined to 𝑆

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤ |𝑆|

If we add the contributions above, we get

(60)
𝜈
∑
𝑗=1

∑
𝑣∈𝑉(𝑆),
𝑣 directly
joined to 𝑆

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤
𝜈
∑
𝑗=1

|𝑆𝑗| = |𝑁𝑡|.

The above assumes that the 𝑣’s in 𝑔𝑡 that were encountered were not one of the two
extreme end points of 𝑔𝑡. For those one can get a contribution of at most 3. Hence,

(61) ∑
𝑣∈𝑉(𝑋)

|Δ̄𝑋ℎ(𝑣) − 𝜆ℎ(𝑣)|2 ≤ |𝑁𝑡| + 18.

Hence,

(62) 𝑅(ℎ) ≤ 1 + 18
𝑁𝑡

≤ 1 + 18
𝕃(𝑋) ,

which, together with (51), completes the proof of Theorem 5. □

An immediate consequence of Theorem 5 is that if 𝐼 ⊂ (−1 − √2, 1 + √2) and has
length larger than 2, then 𝐼 ∩ 𝜎(𝑋) ≠ ∅ for 𝑋 large, which proves part (ii) of Theorem
2. Indeed, if 𝜆 is the midpoint of 𝐼, then 𝜆 ∈ [−√2,√2], and (𝜆 − 𝛿, 𝜆 + 𝛿) ⊂ 𝐼 for
some 𝛿 > 1. Theorem 5 then implies that 𝜎(𝑋)∩ (𝜆−𝛿, 𝜆+𝛿) is non-empty for 𝑋 large
enough, and thus 𝜎(𝑋) ∩ 𝐼 is also non-empty.
The above applies to any interval 𝐼 ⫌ (−1, 1) or ⫌ (−2, 0). Combining this with the

the constructions in Section 4 showing that these intervals are achievable gap intervals
leads to the conclusion that they are also maximal gap intervals. This completes the
proof of Theorem 3.
To end this section, we remark that the method used to prove Theorem 5 can be ex-

tended to cover the range−2 ≤ 𝜆 ≤ 2, showing that Theorem2(ii) holds for any interval
of length bigger than 2. To do so requires extending the neighborhood𝑁𝑡 further to ac-
count for the vertices of type (b). The list of special segments corresponding to Fig. 18
grows substantially, and since we have no immediate application of this extension, we
omit the proof.
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6. Conclusion

To conclude, we elaborate on the entries in Tables 1 and 2 as well as some related
extremal spectral sets.
Themaximal gap interval (2√2, 3) is, as noted in Section 1, the Alon-Boppana inter-

val [31]. Until recently the only known construction of 𝑌 ’s avoiding this interval was
using number-theoretic tools, specifically proven cases of the Ramanujan conjectures
[26,29]. A construction of such 𝑌 ’s using techniques from interlacing polynomials and
variants of the Lee-Yang theorem [17] was achieved in [28]. That 𝑌 ’s achieving the gap
cannot be planar (in fact any sequence of 𝑌 ’s which is (3 − 𝜖, 3)-gapped with 𝜖 > 0
cannot be planar) follows from the separator theorem [24].
The “Hoffman interval” [−3, −2)has beendiscussed and exploited repeatedly through-

out the paper and especially its characterization in terms of the map 𝒯 (Section 2 (4)).
The gap intervals (−2, 0) and (−1, 1) are analyzed in Sections 4 and 5.
In the context of planar graphs, gaps at points other than 3 and −3 are important

in a variety of contexts. The gap between the smallest of the upper half of the eigen-
values and the largest of the lower half is a measure of the Huckel stability of carbon
Fullerenes [10, 11, 27]. It is also decisive in the properties of materials such as carbon,
where electrons fill half of the available states. Barring non-linear effects, lattices with
a gap at this point in the spectrum are insulating, and those without are conducting
[13]. Other chemical compositions or doping levels will lead to other relevant frac-
tions. The size of this gap is also critical in distinguishing, e.g., the semiconductors
that power modern electronics with relatively small gaps from strongly insulating ma-
terials with much larger ones.
We have shown that gaps can be created for planar cubic graphs; however, if one

limits the types of faces in such graphs, then it is much more difficult to produce gaps.
We examine this phenomenon in forthcoming jointworkwith FanWei, wherewe show
that (−1, 1) is the unique maximal gap set for planar cubic graphs which have at most
six sides per face. On the other hand, every point in [−3, 3) can be gapped for planar
graphs with at most 64 sides per face. For Fullerenes, that is planar cubic graphs with
twelve pentagon faces and the rest hexagons, the only points that can be gapped are
those in (−𝐸, 𝐸)\{𝜆𝑏}, where

𝐸 = √1 + 4 cos(𝜋/10) cos(21𝜋/30) + 4 cos2(21𝜋/30) = 0.382 . . . ,

and

𝜆𝑏 = 0.360⋯ =
[(2 cos( 2𝜋10 ))

2
+ (2 cos( 2𝜋10 ) − 1)

2
]

2 (2 cos( 2𝜋10 ) − 1)
−

√[(2 cos( 2𝜋10 ))
2
+ (2 cos( 2𝜋10 ) − 1)

2
]
2
+ 4 [2 cos( 2𝜋10 ) − 1]

2
[1 − (2 cos( 2𝜋10 ))

2
]

2(2 cos( 2𝜋10 ) − 1)
.

In particular, for any sequence of leapfrog Fullerenes [27], no point in [−3, 3] can be
gapped, which answers the question of whether such gaps can exists which was raise
in (Discussion of Figure 1(a)) in [10].



36 ALICIA J. KOLLÁR AND PETER SARNAK

Another question about the gap interval (−1, 1) that we do not know the answer to
is whether it is a maximal gap set. (−2, 0) is definitely not a maximal gap set since,
unlike the (−1, 1) case, the 𝑌 ’s in Fig. 10aii have a small gap below 2 as well.
We turn to theminimal spectral set𝐾1 = [−2√2, 2√2]∪{3}. The fact that𝐾1 is spec-

tral follows from the construction of non-bipartite Ramanujan graphs, which to date
have only been achieved using number theory. That 𝐾1 is minimal follows from [2],
who show that any growing sequence 𝑌𝑚 of non-bipartite (cubic) Ramanujan graphs
Benjamini-Schramm converges to the 3-regular tree. This in turn implies that the den-
sity of states probability measures

𝜇(𝑌𝑚) ≔
1

|𝑌𝑚|
∑

𝜆∈𝜍(𝑌𝑚)
𝛿𝜆,

𝛿𝜆 being a point mass at 𝜆, converge to the adjacency density for the 3-regular tree.
(Under the assumption that the girths of the 𝑌𝑚’s go to infinity this was shown in [36],
p100.) The latter was computed by Kesten [20] and its support is [−2√2, 2√2], and
hence 𝐾1 is minimal.
According to Proposition 1, 𝐾2 = 𝑓−1(𝐾1) ∪ {0, −2} is a minimal spectral set. Re-

peating this yields an infinite sequence 𝐾𝑛 of minimal spectral sets which interpolate
between the fattest, 𝐾1, and the thinnest, 𝐴, such sets.
We showed that 𝐴 has the smallest capacity among these sets, and we conjecture

that 𝐾1 has the largest, namely √2. Note that if (−1, 1) is a maximal gap set, then
[−3, 3]\(−1, 1) would be another minimal spectral set with capacity equal to √2 [12]
(apply Theorem 11 with 𝐸0 = [−4, 4] and 𝑓(𝑧) = 𝑧2 − 5). Finally, given that every
𝜉 ∈ [−3, 3) is planar gapped, it would be interesting to work towards a description of
realizable gap sets and investigate the sizes of the maximal gap intervals about 𝜉 for
various 𝜉. The spectral gap questions that we have investigated here for cubic graphs
can be posed more generally for 𝑟-regular graphs (𝑟 > 3). Many of the techniques that
we have used apply to these and it would be interesting to pursue such a study.

Code sources. Generation of different covers of base graphs was carried out using
a set of custom data structures defined in python 3 which automated generation of
the 𝜒-twisted matrices Δ̄𝜒 as well as looping over a meshing of the possible values for
each character. Diagonalization of these matrices was carried out using a standard
numerical diagonalizer optimized for Hermitian matrices (from numpy.linalg python
wrapper for BLAS and LAPACK), and the numerical spectrum computed by taking the
union of the values obtained for each character.
With the exception of Fig. 9, all plots were generated using the python package py-

lab, which is an alternate version of matlplotlib.pyplot. The 3D surface plots in Fig. 9
were generated using Wolfram Mathematica.
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