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Abstract

We construct a vacuum of string theory in which the magnitude of the vacuum
energy is < 1071 in Planck units. Regrettably, the sign of the vacuum energy is

negative, and some supersymmetry remains unbroken.



1 Introduction

Explaining the smallness of the observed dark energy density [1, 2],

Pobs A= 107123014 (1.1)

pl»

is a profound challenge [3-5]. The idea that anthropic selection in a landscape could
account for the smallness of pops [6] has been influential, and in broad strokes appears to
align with known and suspected properties of string theory [7]. Toy landscapes of flux
configurations in compactifications of string theory [8-10] admit a vast number N, .. of
solutions, and the values that the classical vacuum energy pq.ss takes in such ensembles
can be finely-spaced, with differences Apeass ~ ;fl [ Noae < Pobs-

One natural objection is that the true explanation might be a richer one, involving
dynamics or a different sort of mechanism, and we might fail to seek it by too-readily
accepting an anthropic approach. We will do nothing to overcome this concern, remarking
only that in the absence of any framework for a dynamical explanation, perhaps the best
one can do is to sharpen the landscape argument.

A more practical complaint is that exploring a landscape of vacua of string theory,
and finding solutions therein in which the actual value py,. of the vacuum energy obeys
Pyac & Pobs, appears out of reach. The mechanism proposed by Bousso and Polchinski [7]
relies on the high dimensionality of the space of fluxes, and so one faces a search for
special, exponentially rare solutions in a high-dimensional energy landscape. At least in
its full generality, this problem’s computational complexity makes it inaccessible by a direct
assault [11-13]. Even worse, given a candidate de Sitter vacuum in string theory, one can
at best imagine computing py,. order by order, and nonperturbatively: in the string loop
expansion, in the o/ expansion, and perhaps in other approximations at the same time.
Achieving in this way a precision of order p.,s does not seem possible to us. The difficulty
of exhibiting de Sitter vacua of string theory with pyac = pons thus presents an obstruction
to bringing the landscape argument for the cosmological constant problem into sharp focus
in quantum gravity.

An essential part of the problem is achieving scale separation in cosmological solutions of
quantum gravity: can one find isolated solutions of string theory in which the Kaluza-Klein
radius Rxk of the internal space is not extremely large in units of the Planck length ¢,
and yet the noncompact spacetime has a cosmologically-large radius of curvature, Reogm. ~
10% 7,7 In a theory with unbounded continuous parameters this question might not arise.

However, the known classes of realistic solutions of string theory come in large but finite



families (see, however, [14]), and their low-energy parameters are ultimately determined
by inherently quantized parameters of the string vacuum, such as the topological data of a
Calabi-Yau flux compactification. Whether or not Reogm, = 109 ¢, can occur in a particular
setting evidently depends on the ranges of values that these quantized parameters can take,
and on how py,. depends on these parameters.

In this note we exhibit a solution of type IIB string theory with |py.c| ~ 10740, in
which the internal space — an orientifold of a Calabi-Yau threefold — has radius Rxk =~
10*¢,. This vacuum is an example of extreme scale separation, but in AdSy, not dS,: the
solution preserves N = 1 supersymmetry, and the cosmological constant is negative.

Although this compactification cannot describe our universe, it provides an intriguing
angle on the cosmological constant problem. To stumble upon a solution with vacuum
energy 5]\/[31 in a complex landscape of vacua in which the characteristic scale is My, one
would naively expect to have to explore (9(1 / 5) distinct vacua. The actual distribution of
cosmological constants could play a role, of course, but the above expectation should be a
reasonable guide unless the set of solutions manifests an exponentially strong concentration
around p = 0 — which is to say, unless the landscape furnishes a bona fide statistical
solution to the cosmological constant problem, a possibility that we shall discount in this
work. In particular, to find vacuum energy 5M§1 in a high-dimensional landscape of flux
vacua, one generally has to search through (9(1 / 5) choices of quantized flux.

We have arrived at | pyac| < 10712 M;fl without performing such a costly search. Instead,
we have exploited structures in the quantized parameters occurring in string compactifica-
tions: specifically, three-form flux quanta in an orientifold of a Calabi-Yau threefold X, and
the Gopakumar-Vafa invariants [15,16] of curves in the mirror threefold X. We have found
choices of flux for which the part of the flux superpotential [17] that descends from pertur-
bative contributions to the prepotential in compactification of type IIA string theory on X
vanishes ezxactly, while the nonperturbative terms, which arise from worldsheet instantons
on X , fall into the form of a racetrack. The competition of two such instanton terms
then generates an exponentially small number [18]. When the fluxes and Gopakumar-Vafa
invariants are modest integers like 1 or 2, the resulting hierarchy is similarly modest. But
there exist, and we have found, Calabi-Yau threefolds for which the integers in question

are, for example, 2 and 252, and the hierarchy in the vacuum energy is proportional to

92 58
<ﬁ) ~ 10712, (1.2)

In this paper we will present one such example.



2 A Vacuum

To define a compactification! of type IIB string theory on an orientifold of a Calabi-Yau
threefold hypersurface X in a toric variety V', we consider the reflexive polytope A [20]

with vertices given by the columns of

1 =3 =300 0 -5 —2
0 -2 -1 001 -3 —1

(2.1)
00 -1010 0 1
000 0 100 —1 —1

We define toric varieties V and V', respectively, in terms of fine regular star triangulations of
A and its polar dual A°. The anti-canonical hypersurfaces in V and V are a mirror pair of
Calabi-Yau threefolds X and X, with h%!(X) = h21(X) = 113, and h*!(X) = A1 (X) = 5.
We find an O3/07 orientifold involution of X with 26 O7-planes and 48 O3-planes, and
obeying h™' = hi’l = 0. The D3-brane tadpole is 60.

In this compactification, the three-form fluxes

F=(1012 8004002411 -3),

i=(0s 15 11 =2 13 0 0 0 0 0 0), (2.2)

which carry D3-brane charge 56, lead to an exponentially small flux superpotential. The

dominant instantons along the perturbatively flat valley, as defined in [18], have Gopakumar

Vafa invariants —2 and 252, respectively. The flux superpotential takes the form

43

Wi (7) = \/ % (—2 27735 | 952 62””'778> My+0 <€2mT'1TG) : (2.3)

The string coupling is g, &~ 0.011, and we find

9 29
Wo = ([Whux|) = 0.526 X <@> M~ 6.46 x 107%M . (2.4)

Turning now to the Kéhler moduli, we find 114 prime toric divisors D; that are rigid, and
whose uplifts to divisors in F-theory have trivial intermediate Jacobian. These divisors

therefore generate nonvanishing superpotential terms [21], and their Pfaffian prefactors

Extensive discussion of this and other examples can be found in the companion paper [19]: in par-
ticular, the full data of the construction is available in the supplemental material associated to the arXiv
e-print [19].
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Figure 1: Left: the logarithm of the size &, of the n-th term in the series of worldsheet
instantons resulting from a sample of 1728 rays in Ho(X). Right: histogram of the slopes
of the lines in the left panel. The sum evidently converges.

Ap, are pure constants [22]. Thus the total superpotential takes the form

W = WO+ZAD1 exp(—i—;rTDl) =+ ... s (25)
1

where ¢; = 6 if there is an s0(8) stack of seven-branes on Dy, and ¢; = 1 otherwise.

With this superpotential we find a A/ = 1 supersymmetric AdS, vacuum at which the
volume of the internal space in string units is V & 945. At this point in Kéahler moduli
space there are perturbative and nonperturbative corrections to the Kahler potential IC, but
these lead to a controllably small multiplicative correction to the vacuum energy [19]. The
overall scale of the vacuum energy is dictated by the superpotential, which does not suffer
renormalization at any perturbative order [23,24]. Convergence of the series of worldsheet
instanton corrections to K is shown in Figure 1.

We have therefore found a supersymmetric AdS; vacuum with vacuum energy
Vo = —3M 2 |W[* ~ —1.68 x 107" M), . (2.6)

The Kaluza-Klein radius is Rxk = 10 £, so the hierarchy of scales is Reosm./Rxx ~ 10%.
We have constructed a number of comparable vacua in flux compactifications on orientifolds
of Calabi-Yau hypersurfaces with 4 < h*»! <7 and 51 < bt < 214 [19)].



3 Discussion

The cosmological constant problem demands that we explain how exponentially large uni-
verses arise in theories with small fundamental length-scales. We have taken a step in
this direction by exhibiting an AdS, solution of string theory in which the AdS length is
approximately 1072/, but the Kaluza-Klein radius remains modest, Rxk =~ 10%/,.

A key feature of our class of constructions is the exact cancellation of all perturba-
tive terms in the superpotential. Specifically, we have arranged the quantized three-form
fluxes so that all perturbative? contributions to the flux superpotential cancel perfectly:
this is possible because the superpotential is ultimately determined by integer data. All
remaining terms in the scalar potential are proportional to nonperturbative effects. We
have made further discrete choices to arrange that these effects balance in a controlled
minimum, finding an orientifold of a Calabi-Yau threefold X that supports an array of
nonperturbative superpotential terms from Euclidean D3-branes and gaugino condensa-
tion, and whose mirror X enjoys a pattern of Gopakumar-Vafa invariants that give rise
to a racetrack of worldsheet instantons [18]. These choices lead to stabilization of all the
moduli in a supersymmetric vacuum, as foreseen in [25], with a cosmological constant that
is exponentially small in Planck units.

The smallness of the vacuum energy in our construction is natural, in the sense that it is
determined by a competition among exponentials, once we have ensured the absence of all
perturbative terms in the superpotential by making discrete choices of topology and fluxes.
Of course, it is very well-known that small scales can arise dynamically in supersymmetric
theories [26], and in four-dimensional N' = 1 effective supergravity one can easily write a
racetrack superpotential whose minimization yields a supersymmetric AdS, vacuum with
small vacuum energy. But presented with such an effective description, one could ask
how finely-balanced a racetrack is allowed by ultraviolet completion in quantum gravity.
Thus, something is gained by realizing such a construction in string theory, where all the
underlying parameters are quantized, and their allowable values can be determined.

Our solution is well-controlled as a result of the residual supersymmetry as well as
the smallness of the string coupling. However, it is completely unrealistic, and not solely
because the cosmological constant is negative and N = 1 supersymmetry is unbroken.
Although the Kaluza-Klein scale is not very far from the Planck scale, some of the moduli

are extremely light, with masses proportional to Wj /Mgl. For this reason, we find it im-

2The Gukov-Vafa-Witten flux superpotential [17] in a type IIB compactification on a Calabi-Yau
threefold X is purely classical, but it descends from a prepotential that, from the viewpoint of type ITA
on the mirror X, contains both perturbative and nonperturbative terms.



plausible that one could construct a realistic model by achieving supersymmetry breaking
and an uplift to de Sitter space in the particular compactification we have described here.

We hasten to state that the fundamental problem of arranging for small positive vac-
uum energy after supersymmetry breaking has not been addressed by this work, and it
is not yet clear that our constructions will aid in that quest. Even so, one can speculate
that the smallness of the observed vacuum energy in our universe might be governed by
nonperturbative effects in a configuration in which perturbative contributions exactly van-
ish, and the exactness of the cancellation is ensured by the quantization of fundamental
parameters. In this spirit, exploring solutions of the sort we have presented might lead to

a new approach to the cosmological constant problem.
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