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Abstract

The quantization of pure 3D gravity with Dirichlet boundary conditions on a finite bound-
ary is of interest both as a model of quantum gravity in which one can compute quantities
which are “more local" than S-matrices or asymptotic boundary correlators, and for its
proposed holographic duality to TT-deformed CFTs. In this work we apply covariant
phase space methods to deduce the Poisson bracket algebra of boundary observables.
The result is a one-parameter nonlinear deformation of the usual Virasoro algebra of
asymptotically AdS; gravity. This algebra should be obeyed by the stress tensor in any
T T-deformed holographic CFT. We next initiate quantization of this system within the
general framework of coadjoint orbits, obtaining — in perturbation theory — a deformed
version of the Alekseev-Shatashvili symplectic form and its associated geometric action.
The resulting energy spectrum is consistent with the expected spectrum of T T-deformed
theories, although we only carry out the explicit comparison to O(1/4/c) in the 1/c ex-
pansion.
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1 Introduction

Within the framework of our current understanding of quantum gravity, the only observables
with a mathematically precise definition involve asymptotic quantities, such as the S-matrix
in Minkowski space or boundary correlators in (A)dS. Yet in order to understand a variety of
problems of conceptual and observational interest, notably those involving black holes and
cosmology, it seems necessary to broaden the range of calculable quantities, and indeed much
effort has gone into trying to define observables which are more “local" in character; some
references, mainly within the AdS/CFT context, include [1-14].

By obvious analogy with the case of the electromagnetic field, it is natural to ask whether it
is sensible to define quantum gravity in a “box", in the sense of imposing boundary conditions
on the metric on a timelike boundary of finite spatial extent. At the classical level, such a
setup is relevant for numerical relativity; for a review see [15]. Again at the classical level,
this has been considered [16] within the framework of the fluid-gravity correspondence [17],
where one considers the boundary to enclose a black hole whose horizon leads to dissipative
effects. The problem of making sense of quantum gravity confined to a subregion is of interest
in the context of entanglement; e.g. [18]. At the level of free field theory, the gravitational
analog of the Casimir effect between parallel plates was calculated in [19]. Various subtleties
involving Dirichlet boundary conditions can arise, such as apparent superluminal propagation
[20]. Also, in the case of Euclidean signature, the Einstein equations with Dirichlet boundary
conditions have the unpleasant feature of not admitting a sensible perturbation theory; see
[21] for a review. A separate type of question is whether Dirichlet boundary conditions on
the metric are physically realizable — is it possible to construct the gravitational analog of a
conducting plate? Other references with a similar spirit as the present work include [22-27].
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The situation is simpler in lower dimensional gravity due to the absence of local degrees
of freedom. In two-dimensional Jackiw-Teitelboim gravity [28,29] one can consider the path
integral over two-dimensional metrics of fixed constant curvature with a boundary of fixed
length [30,31]. Our focus here is on pure three-dimensional gravity with negative cosmolog-
ical constant. We will not attempt to compute the full path integral over all bulk geometries;
instead we take spacetime to have fixed topology with a boundary on which the metric is that
of a cylinder, dsg = F%C(dd)Z + dt?),! with circumference set by the variable parameter p,.
Our aim is to compute the classical algebra of observables, to define a Hilbert space that fur-
nishes a unitary representation of this algebra, and to calculate the energy spectrum of the
quantum theory in this sector. Attempting to define the full quantum theory is a much more
difficult problem, which remains ill-understood even in the simpler case of an asymptotically
AdS; boundary; see [32] for the current state of the art.

A major motivation for considering this problem is its connection to T T-deformed CFTs
[33-35]. We recall that this corresponds to a one parameter family of two-dimensional QFTs
labelled by A whose action obeys the flow equation 9,S, = —%f f d?x det T, where T; ; is the
stress tensor of the deformed theory with parameter 1.2 Since det T is an irrelevant deforma-
tion of the A = 0 seed theory, we expect dramatic effects in the UV. While these remain to be
properly understood, the special properties of the det T operator allow certain quantities to
be computed in the absence of this knowledge [33—-40]. Most relevant for present purposes is
the energy spectrum of the deformed theory on a spatial circle of circumference 27, for which
there exists a general formula in terms of the spectrum of the seed theory. Focusing on CFTs
and on the Virasoro descendants of the vacuum state, the energy and momentum eigenvalues
of the seed CFT are

E:—lc—2+N+1V, P=N-N, (1.1

where (N, N) are the level numbers, which are non-negative integers. The A-deformed energy
spectrum is [33, 34]

c 12 —, 36 —
E(pc)za(l_Q 1+PC_TPc(N+N)+C_2PCZ(N—N)2)
c

_ c N+N+%(N+ﬁ)z—a2(N—ﬁ)2

T 6(1+a) a c a3 +0(). (1.2)

Here, we are expressing the parameter A in terms of bulk gravity language as

G
A:m’ (1.3)
TT

and we defined

a=+1+p,. (1.4)

Also, throughout this work c is related to gravity variables by the standard Brown-Henneaux
formula, ¢ = 3/2G in units where the AdS length is 1. In the second line of (1.2) we have ex-
panded in 1/c while holding p. fixed. The momentum spectrum is unchanged, P(p.) = N—N,
as follows from its integer quantization. For positive A the spectrum (1.2) exhibits unusual
features due to the square root; energies can acquire imaginary parts and the spectrum is
unbounded from below. Whether this signals incurable difficulties or not remains to be seen.

We work in Euclidean signature, but given the product structure of our manifold the Wick rotation to Lorentzian
signature is straightforward.
2Note that we often follow convention and refer to a “T T" operator, even though we really mean det T.
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According to the proposal of [41], a TT deformed CFT is related to the holographically
dual bulk theory with a radial cutoff; i.e. the bulk has a cylinder boundary as described above.
The discrete quantum spectrum (1.2) is a prediction which remains to be verified directly in
this bulk spacetime.® In the undeformed case with p, = 0 the bulk spectrum corresponding
to (1.2) is well understood: there are no local degrees of freedom but, as originally identified
by Brown and Henneaux [42], there are boundary gravitons. Thus, we can think of our task
as understanding these boundary gravitons, but now at a finite boundary. Similarly, in the
asymptotically AdS case Brown and Henneaux demonstrated the emergence of the Virasoro
algebras present in the CFT; how are these algebras deformed if we impose Dirichlet boundary
conditions at finite p.?*

Another goal is to gain a better understanding of observables that probe the UV structure
of TT-deformed theories; indeed there are reasons to expect (e.g. [46-48]) that the theory
becomes nonlocal at a distance scale v/A. One route to gaining insight is by computing stress
tensor correlation functions [49-52], or equivalently correlation functions involving boundary
gravitons.

We also note that there is another way of thinking about the bulk description of a TT
deformed CFT. Instead of working with a Dirichlet boundary condition on a cutoff surface
one can impose a mixed boundary condition at the asymptotic AdS; boundary, which encodes
the effect of adding the double trace TT interaction [43]. At the level of classical pure gravity
these two descriptions are equivalent, as adding the TT deformation can be shown to coincide
with subtracting the bulk action associated with the spacetime region between the cutoff and
the asymptotic boundary [53]. In the present work we focus on the Dirichlet cutoff picture.

Summary and results

We now explain our approach and summarize our main results. We work in the general frame-
work of the covariant phase approach to canonical quantization [54, 55], which is standard
for this type of problem since it has the advantage of maintaining covariance. Covariant phase
space in the presence of boundaries has been considered before (e.g. [22, 23, 56-58]) with
a useful overview presented in [27]. However, we will work from the ground up, since our
problem violates some of the assumptions that are typically made, for instance in [27].°

As stated, we consider the space of metrics with fixed topology while demanding that
the metric on the boundary is ds? = pi(dqb2 + dt?). Before initiating quantization, we first
compute the Poisson bracket algebra of observables by putting the classical theory in canonical
form. This involves characterizing the general classical solution (these are essentially the cutoff
versions of the Bafiados geometries [59]) and writing down a candidate symplectic form on
this space. To render this form non-degenerate, we need to identifying appropriate gauge
orbits, each of which defines a point in covariant phase space. The next step is to identify
the spacetime vector fields £ that preserve the boundary metric. The associated charges Q[&]
constitute the set of classical observables of the theory. Unsurprisingly, they are given by
integrals of the boundary (Brown-York [60]) stress tensor,

. 27
QlE] = %f T;Eldg. (1.5)
T Jo

3At the classical level, the quasi-local energy of BTZ black holes was found in [41] to agree with 1.2, which in
fact was one of the main arguments in favor of their proposal.

“Related questions were addressed in [43—-45]; we discuss the relation of these references to the present work
in the main text.

SNamely, because we are interested in the algebra of all boundary observables and not just symmetry generators,
we consider diffeomorphism which move the location of the boundary and are not symmetries of the action.
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Unlike the situation in asymptotically AdS, e.g. [61-63], or that in [27], these charges in gen-
eral are not conserved in time and do not correspond to symmetries in any useful sense (as far
as we can tell), with the exception of the energy and angular momentum charges. In particu-
lar, the diffeomorphism associated to a generic & moves the location of the boundary and so
does not leave the action invariant; indeed, if it did leave the action invariant Noether’s the-
orem would yield a corresponding conserved charge. Instead, we simply think of the charges
as being useful functions on phase space.

Following a standard line of logic that we review in the main text, the Poisson brackets
of the charges may be extracted by computing the variation of the charges under boundary
preserving diffeomorphisms according to the formula i{Q[£;],Q[&,]} = =6, Q[&,]. To justify
this formula and work with it we need to appreciate an important subtlety, which is that the
vector fields & are “state dependent". This is to say that the space of £ fields depends on
the particular solution to which the diffeomorphisms are being applied. The most important
effect of this for us is that the Poisson bracket algebra is not a (centrally extended) Lie algebra;
rather, the Poisson bracket of two charges results in an expression nonlinear — indeed non-
polynomial — in the charges.® The charge algebra, which is one of the main results of this
work, is given in formulas (5.29).

We have not specified the spacetime topology to arrive at this result. If we take it to be
Disk x R, we can expand the general result in 1/c around global AdS5, which gives

i{Lm) Ln} = L(ms - m)5m+n + % [(4 + ch)Lm-i-n _pc(zmn + 1)Z'—m—n] + O(l/C) ’

12a

T Lo} = ——(m® — )8 mn + —— [(4+3p)Lsn — pe(2Zmn+ 1)Ly ] + O(1/c),
12a 4q2

i{L,,L,} = —46;2 [(m —n—2mn?®)L,_,+(m—n+ 2m2n)f.n_m:| +0(1/c), (1.6)

where the higher order contributions are nonlinear in the generators. Setting p, =0 (i.e.a=1)
we recover the standard result for asymptotically AdS; gravity, namely a pair of Virasoro alge-
bras with the Brown-Henneaux central charge ¢ = 3/2G.

The second part of this work involves tackling the quantization problem in a systematic
manner. Here we take inspiration’ from the coadjoint orbit approach, which has been worked
out in the asymptotically AdS; case, reproducing the results of Alekseev and Shatashvili, and
of Witten [68,69]. We note in particular [26], which used the Chern-Simons formulation to
achieve this and worked out various implications (see also [70, 71], which adapted some of
this discussion to TT deformed theories.) Here we work purely in the metric formulation,
but the basic logic is the same. From our perspective, the point is that the symplectic form is
highly nonlocal when expressed in terms of the Fourier modes of the boundary stress tensor,
even though they are the physically relevant functions on space. This is a reflection of the fact
that the natural symplectic manifold is not the space of all stress tensors but rather a single
orbit, which is the same as the space of stress tensors related to each other by large gauge
transformations (i.e. coordinate transformations that act nontrivially on the boundary). One
may therefore take the gauge transformation parameters as coordinates on phase space.

To set this up, we first give a simple derivation of the Alekseev-Shatashvili symplectic form
in a way that is straightforward to adapt to the case of a finite cutoff. As expected based
on the fact that the charge algebra is non-polynomial in the presence of a radial cutoff, the

5The same phenomenon occurs, for the same reason, in AdS; higher spin gravity, where one encounters non-
linear W-algebras [64, 65]. Field dependence also enters in the central charge of BMS algebra in asymptotically
flat space [66], which can be written as a Lie-algebroid.

’The usual starting point for coadjoint orbit quantization is a Lie group, such as the Virasoro group (see [67]
which emphasizes the group theoretical point of view). Here we instead start from a space of metrics related by
coordinate transformations, which has no natural Lie group structure because the space of coordinate transforma-
tions that preserve the boundary conditions depends on the metric on which they act.
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deformed version of the Alekseev-Shatashvili symplectic form is significantly more complicated
to obtain, and we do not yet have a closed form expression for it. We content ourselves with
working out the first few orders in the large ¢ expansion. Within this perturbative procedure,
we can proceed to quantize the theory by identifying a vacuum state as well as creation and
annihilation operators for the left and right movers. We thus construct a Hilbert space and
find an operator expression for the stress tensor.

In particular, we work out the leading interaction of the boundary gravitons, which is cubic
and appears at order 1/4/c. Naively, this would seem to lead to O(1/+/c) terms in the energy
spectrum; however we show that this contribution vanishes, in accord with the predicted TT
spectrum (1.2). In fact, we find a unitary transformation on the Hamiltonian that eliminates
any contribution of order 1/4/c in the resulting operator.

We have not gone beyond this order in the 1/c expansion, as would be required to derive
interesting new results, say for stress tensor correlators. We expect that this is possible once a
suitable field redefinition is identified to simplify formulas; indeed we note that in the pure Vi-
rasoro case a field redefinition renders the symplectic form and stress tensor purely quadratic,
which (as noted in [26]) makes it easy to compute things like the partition function. The fact
that the TT spectrum (1.2) is known strongly suggests that a judicious field redefinition will
yield major simplifications here as well.

We leave the search for such a field redefinition to future work, but close the main text with
a discussion of how we expect things to work at higher orders. Essentially, we find that the 1/c
expansion of the Poisson algebra, along with some plausible assumptions about the operators
in the theory, implies the (O(1/c) correction to the energy expected from (1.2). Furthermore,
we observe that the }‘T spectrum (1.A2) predicts the existence of an operator unitarily equiv-

alent to —75 + N + N where N and N are level number operators. This statement is similar
to [40] where the TT deformation was found equivalent, in part, to a unitary transformation.
The existence of such a unitary operator is supported to low order by our direct perturbative
calculations.

Outline

The rest of this paper is organized as follows. In Section 2 we review the canonical formu-
lation of classical mechanics and field theory using the covariant phase space method. We
set up the classical formulation of GR with a Dirichlet boundary in Section 3. We discuss the
gravitational symplectic form and find that large diffeomorphisms are generated by charges
that can be written in terms of the stress tensor on the spatial boundary. These concepts are
illustrated in Section 4 for an asymptotically AdS; spacetime. The explicit expressions for the
charges and their Virasoro algebra are reviewed, as well as the Alekseev-Shatashvili symplectic
form in terms of the gauge transformations that parameterize the coadjoint orbit. We also set
up the perturbative expansion that we will use for the AdS; spacetimes with a finite cylinder
boundary. Such spacetimes are reviewed in Section 5. After writing the geometry, boundary
charges, and the spacetime vectors that preserve the boundary metric, we calculate how these
transformations act on the charges. This leads to the nonlinear Poisson bracket algebra in
equation (5.29), which is the central result of the first part of this work. Expanding in orders
of 1/c around the global AdS values, we obtain the deformed algebra of “Virasoro” generators
L,, and L,,. In Section 6 we prepare to quantize this theory perturbatively around AdS; with a
cutoff. We find the Hamiltonian, the momentum and the symplectic form up to third order. The
expressions are simplified drastically using a field redefinition to Darboux coordinates, after
which all is in place for quantization in Section 7. We find the symplectic form and boundary
charges in terms of creation and annihilation operators. In particular, we calculate the Hamil-
tonian up to third order, allowing us to find the spectrum at order 1/+/c in agreement with the
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known formula (1.2). In Section 8 we discuss some observations which hint towards a possible
all-orders calculation of the spectrum and Section 9 contains our concluding discussion.

2 Canonical formulation and covariant phase space

2.1 Canonical formulation

We begin by recalling some elements of the symplectic formulation of classical dynamics that
will be needed for what follows. We start with a symplectic manifold I', which by definition
is an even dimensional manifold equipped with a closed, non-degenerate two-form Q. For
the immediate discussion we take I' to be finite dimensional, dim(I") = 2n, anticipating the
extension to the infinite dimensional case relevant to our field theory context. Closure is
defined as 69 = 0, where § is the exterior derivative on I'.® Non-degeneracy means that
the equation i, Q2 = 0 implies V = 0, where V is a vector field on I' and iy, is the standard
contraction operation taking a p-form to a (p — 1)-form, given in coordinates momentarily.
We now define local coordinates {q'}, i = 1,2,...2n, in terms of which Q = %Qijéqi NS
with Qj;; = —Q;;. The contraction operation is (i, Q); = ViQij. We define QY via Q”‘ij = 5;,
noting that Q;; is invertible by the non-degeneracy assumption. QU is used to define the
Poisson bracket. Namely, given two functions on phase space F(q) and G(q) we define

{F,G} =QY5,F3,G, (2.1)

where J; = aiqi'

Given a vector field V = V3, we have the associated Lie derivative £,,. We recall that it
obeys
Evﬁw - £W£V = ‘C[V,W] N (2.2)

where [V,W]i = VJ 8jWi —wi EjVi is the commutator. When acting on differential forms it is
extremely useful to work with the Cartan formula

where X denotes an arbitrary differential form over T

Infinitesimal canonical transformations correspond to flows generated by vector fields V
that preserve the symplectic form in the sense that £,,£2 = 0. To obtain such vector fields, let
F be a function on phase space and define its associated “Hamiltonian vector field" V} as

Vi=QUgF. (2.4)
This expression may be inverted as
6F =—iy Q. (2.5)
Using this, along with the Cartan formula and the closure of 2, we have
Ly,Q=5iy,Q=—5F =0. (2.6)
The Poisson bracket may now be written in various forms as

{F, G} = iVG5F = _iVF5G
= ﬁVGF = _ﬁvFG . (2.7)

8We reserve the symbol d to denote the exterior derivative on spacetime.
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Using these formulas and (2.2) it is straightforward to verify that the Poisson bracket obeys
the Jacobi identity.

As an aside, we note Darboux’s theorem, which is the statement that we can choose local
coordinates (P%,Q%), a = 1,2,...n, such that Q = 6P% A 6Q® which produces the standard
Poisson brackets.

In the canonical formulation of a classical system the equations of motion take the form

q'={¢',H} =QYgH, (2.8)

where H = H(q) is by definition the Hamiltonian. A function Q = Q(q, t), where a possible
explicit dependence on time is indicated, is conserved if

dQ 9Q

—=—+{Q,H}=0. 2.9

= ot {Q.H} 2.9

We now explain how we compute charge algebras in the context of asymptotic symmetries.

The definition (2.1) is inconvenient due to the need to invert £; j It is more convenient to use
(2.7). We also adopt the notation 5VFG = L’VF G, so that the Poisson bracket becomes

{F’G}:6VGF:_5VFG' (2.10)

In the context of asymptotic symmetries, we start by identifying spacetime diffeomorphisms
that preserve some stated boundary conditions. These give rise to vector fields on phase space
V¢ (a labels the vector field, not a component), which act as canonical transformations. We
then deduce that V¢ are Hamiltonian vector fields, in the sense of (2.4). The corresponding
function F on phase space is called the associated charge Q“. Given the explicit form of V¢
and Q* we can compute 6 VaQb, and thereby deduce the Poisson bracket

{Q%,Q" =—6v.Q". (2.11)
Suppose that the vector fields V¢ obey an algebra
[Eva,ﬁvb] = ifabcﬁvc 5 (212)

where the structure constants f ¢ are possibly nontrivial functions on phase space. We can
use this to infer the Poisson bracket algebra of the charges Q¢, up to central terms. To this end,
let F be an arbitrary function on phase space and use the Jacobi identity to write

{{Q%,Q"}, F} = {{Q% F},Q"} — {{Q", F},Q"}. (2.13)
Using (2.7) this may be written as
{{Q%, Q") F} = —[Lya, LysIF = —if P Ly.F . (2.14)
Recalling {Q°, F} = —L,.F we deduce that we must have
{Q%,Q"} =if**°Q° + 2, (2.15)

where Z? is a central term that has vanishing Poisson brackets with everything. In general,
this is not an ordinary (centrally extended) Lie algebra, since the structure constants f 2 can
be field dependent, i.e. be nontrivial functions on phase space.

The usual context in which one does obtain an ordinary Lie algebra (with possible central
extension) is as follows. As a concrete and relevant example [42], it is useful to have in
mind the theory of gravity coupled to matter in an asymptotically AdS spacetime. In that
case, and more generally, we have some asymptotic boundary conditions which are preserved

8
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by diffeomorphisms generated by some fixed vector fields £%. By “fixed" we mean that the
same vector fields may be used for all solutions in the theory that respect whatever boundary
conditions have been imposed. For example, in the asymptotically AdS,,; case with d > 2, the
vector fields can be chosen to be Killing vectors of global AdS; acting on a general solution these
vector fields do not leave the solution invariant, but they do preserve the relevant boundary
conditions.” These spacetime vector fields will obey a Lie algebra [£%, £P] = if2P¢E¢ with
fixed structure constants f°¢. Furthermore, when acting on covariant objects (built out of
the metric and curvature tensor and covariant derivatives of matter fields), the phase space
vector fields corresponding to the £ will obey the same Lie algebra as the £, and from this it
follows that so too will Q%, up to a possible central extension. So under these conditions, we
know that the Poisson bracket algebra of the charges will coincide with the Lie algebra of the
spacetime vector fields up to a possible central extension, and so all that remains is to compute
the central extension.

The argument of the previous paragraph does not go through if the vector fields £¢ are field
dependent, or more precisely if the structure constants in [£9,£%] = i f2P°£€ are non-constant
on phase space. The field dependence shows up in the fact that Q® will now obey a nonlinear
algebra. This nonlinear algebra may be computed from (2.11).

2.2 Covariant phase space

We adopt the widely used method of covariant phase space, since it allows for a canonical
formalism without sacrificing manifest spacetime symmetry. Essentially all that we will need
is contained in the elegant original discussion in [54]. The basic idea is to think of phase space
as the space of classical solutions (modulo gauge transformations). The usual p’s and ¢’s are
thought of as particular coordinates on the phase space, corresponding to initial data on some
chosen Cauchy slice, but to retain manifest symmetry one can refrain from committing to such
coordinates or to a particular Cauchy slice.

We now collect the main formulas and points of notation. We denote the collection of dy-
namical fields as ¢“(x), which are subject to some classical equations of motion. Temporarily
ignoring issues of gauge redundancy, we define phase space as the space of classical solutions
obeying specified boundary conditions. If 6:¢“ represents some variation of fields on this
space (that is, 5:¢“ is a solution of the equations of motion linearized around a particular
solution) we define the corresponding vector field

Ve=| dxo b'e 2.16
3 f () ——— 5o ( X (2.16)
where the integral is over all of spacetime M. As usual, we define a dual space of differential
forms and an exterior derivative &, so that 6¢%(x) is a one-form. We write i;, to denote
contraction with respect to the vector field V as in the previous section. For example, the
contraction of the vector field V; with the one-form 6¢%(x) is

iy, 6¢%(x) = Ly 9 (x) = 6:9%(x), (2.17)

which is the notation introduced in the last section extended to the covariant phase space.
To clarify notation, we emphasize that if ¥ is a p-form on phase space, then 6W¥ is a (p + 1)-
form while 6,V is a p-form; that is, 6 ¥ represents a particular variation and not an exterior
derivative.

It is important to keep straight the distinction between operations in spacetime versus
those on phase space. In spacetime we have vector fields & = 5“%, differential p-forms

For AdS, there is an enhancement due to the inclusion of vector fields that act as conformal Killing vectors of
the boundary metric, but again these can be taken to be fixed vector fields.

9
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¢ = p%‘bul...updxul A...Adx", the contraction operation ig, and the exterior derivative d.
Associated to the vector field & is the Lie derivative L. Acting on a spacetime differential
form @ the Cartan formula is

On phase space we have vector fields V; as in (2.16), differential p-forms

1
U= dxl...dxp\IfalmaP(xl,...,xp)5d)a1(x1)/\.../\5q§‘1p(xp), (2.19)

P! Juw

the contraction operation ivg, and the exterior derivative 6. Acting on a phase space differential
form ¥ the Cartan formula is

Ev‘I/ = (51\/ + lvg)\I’ . (2.20)

We will adopt the convention that d and 6 commute: dé = 6d.
An important class of field variations corresponds to an infinitesimal coordinate transfor-
mation x*—x*+EH(x),

5:9(x) = Lz p*(x). (2.21)

We write V as the corresponding vector field on phase space, as defined in (2.16). For space-
time vector fields £ that are field independent in the sense of not varying over phase space we
have the useful equality

Le® =Ly, (2.22)

where @ is a “covariant tensor" (e.g. a local expression built out the metric and covariant
derivatives of fields). However, as mentioned in the previous section, we will be working with
field dependent vector fields £ that do vary over phase space, and it is important to note that
(2.22) does not hold in such cases. The issue can be appreciated from (2.20): & in the first
term acts nontrivially on the &£ in Vi, which spoils the equality with L. Note that this term is
absent if ® is a 0-form on phase space, in which case the relation (2.22) does hold.

3 Gravity with Dirichlet boundary conditions

In this section we discuss some general issues regarding gravity with a Dirichlet boundary
condition on the metric. From here on we work in Euclidean signature, but since we work
with spacetimes M with a single connected boundary of the form dM = 9% x R the Wick
rotation to Lorentzian is obvious. Our choice to work in Euclidean signature is essentially just
a notational choice, made for easy comparison with standard CFT formulas.

In spacetime dimension D = d 4+ 1 > 3 imposing Dirichlet boundary conditions on some
cutoff surface in Euclidean signature gravity is incompatible with a sensible perturbation the-
ory around a given background solution; see [21] for a review. The case of D = 3 is of course
special given the absence of local degrees of freedom, and indeed we will explicitly implement
a sensible perturbation theory in this work. In Lorentzian signature one sometimes encoun-
ters superluminal propagation with respect to the cutoff boundary metric [20], a feature that
is relevant [41] to the interpretation of TT deformed theories as being nonlocal.
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3.1 Gravity with a boundary

We consider the spacetime manifolds M which have boundary topology'® d M = 8% xR, where
Y should be thought of as a slice of M, restricted only to have boundary 6 ~ which is connected
and compact. We choose a radial coordinate p such that M = 9% xR lies at p = p,.. We take
x' to denote coordinates on dM. In a vicinity of the boundary it will be convenient to adopt
Gaussian normal coordinates such that g,; = 0. More precisely, in a vicinity of the boundary
we take

€2d
ds® = p +gij(p, x)dx! ‘dx7 3.1
4p2
where we take the region interior to the boundary tobe p > p,.. The metric on d M is therefore
written as g;; = g;;i(0¢, x k). The choice 8pop = i)z is convenient because in the asymptotically
AdS case in which p.—0 one has a small p expansion' pglj ~p%+p+....

We consider the Einstein-Hilbert action with cosmological constant A in Euclidean signa-
12
ture

1

_ d+1 _
S=—r— Jd x Vg(R—2A) + Spngy - (3.2)

Our main example will involve negative cosmological constant, in which case we write A =
—d(d —1)/2¢2. Einstein’s equations are then

1. d(d—1)

R,, — ERgI“, = Tgl“,. (33)

uv

We henceforth set £ = 1.
We fix the metric on the boundary by imposing the boundary condition 6 g;; |p =0. Given

our coordinate choice (3.1) this actually imposes 6 gw\p = 0. Stationarity of the action re-
quires us to include the Gibbons-Hawking terms

1

Spndy = —=—— | dx/g@DK + S, 3.4
bndy 871G J;}M g ct ( )
where we also allow for additional counterterms S, and 4/ g(d) = ,/detg; j- In the coordinates

(3.1) the extrinsic curvature is
P, 8ij> (3.5)

and K = gVK; i
The boundary stress tensor is defined in terms of the on-shell variation of the action [60]
1 d ij
68 = — dx/g DT 6g;;. (3.6)
4T Jam

10Since essentially all our work will be localized to the boundary of spacetime, it is sufficient for our purposes
to specify only the boundary topology.

HIn d = 2 and pure gravity the series contains only 3 terms. For d > 2 there are more terms, as well as possibly
log p terms.

2Here g in ,/g refers to the full d + 1 dimensional metric. When we want to refer to the d-dimensional metric
on a fixed p surface we will always make this explicit by writing g;; and +/g(@®.
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The boundary stress tensor is covariantly conserved with respect to the boundary metric,
V;TY = 0. From this it follow that if &' is a Killing vector of the boundary metric, 6:g;; =
V&;+ V;&; =0, then the corresponding charge'”

Qlg]= LJ d" x4/ g@-DTyn'e) (3.7)
o%

21

is conserved under time evolution. Here we have taken 4/ g(d=1) to be the volume element
on %, and n' is the unit vector in M normal to d%. For example, if we take the boundary
dM to be S?~! x R with line element dsg v = dt? + dﬂﬁ_l then we obtain a conserved energy
E corresponding to time translations and conserved angular momenta J° corresponding to
SO(d) rotations.

We will be interested in boundary condition preserving diffeomorphisms,
0:8uv = Vyu&y + V&, such that 6¢g,, o = 0. Vector fields &“ that achieve this have to
be field dependent in general, which is to say that in order to respect the boundary conditions,
&M must change when we change the solution under consideration. Another salient remark is
that we are taking the boundary to lie at fixed coordinate location p = p,. A diffeomorphism
such that £° |p # 0 may then be interpreted as moving the physical location of the boundary.
In general, these are not to be thought of as gauge transformations or symmetries, but rather
as particular transformations in phase space.

Given a general background solution it is not easy to find all diffeomorphisms that preserve
the boundary conditions. But since the problem involves respecting the boundary conditions
we can work locally near the boundary. Our strategy will be to define an initial time surface
on the boundary, choose arbitrary functions &' on that surface, and then fix £ everywhere in
the vicinity of the boundary by demanding & iguv| = 0. This procedure will be made fully

Pe
explicit in our main case of interest, namely AdS; gravity.

3.2 Symplectic form and boundary charges

To define the symplectic form it is convenient to think of the Lagrangian density L as a differ-
ential (d + 1)-form on spacetime, writing

S:J L+J Lb’ (38)
M oM

where we also included a boundary term. The variation of the Lagrangian density can always
be written in the form
6L =E,6¢4%+dO. 3.9

This holds for a general theory and we are denoting the collection of all dynamical fields as
¢®. See [72] for a pedagogical discussion and further references. Also, in this formula —
but nowhere else in the text unless explicitly indicated otherwise — the symbol 6 denotes a
general off-shell variation of the configuration space fields rather than a phase space exterior
derivative. The Fuler-Lagrange equations are by definition E, = 0. Of course, (3.9) only
defines © up to the addition of a closed form. To fix this ambiguity we require that © be a
local covariant expression, and that the on-shell variation of the action, 6S = f (© +06Ly),
vanishes under variations that preserve the boundary conditions. We refer to [27] for more
discussion, and just note that here we will use an explicit formula that fulfills all requirements.

Going forward we work in the framework of covariant phase space, so that ¢ is a 1-form
defined on the space of classical solutions. Since © is linear in field variations it is also a 1-form

13The factor of i is due to our choice of Euclidean signature.
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on this space. On the other hand, © is a d-form on spacetime. To define the (pre)symplectic
form Q2 we integrate the exterior derivative of © over a Cauchy surface %,'*

Q= if 60. (3.10)
by

By construction, 2 is a closed 2-form on the space of classical solutions. This Q cannot
yet be identified as a symplectic form since it is degenerate: diffeomorphism invariance of
the action implies that ivgﬂ = 0 where & is any vector field that vanishes at the boundary.
We therefore define equivalence classes of classical solutions so as to remove the degenerate
directions. In the context of the present work, we emphasize that solutions related by “large"
gauge transformations, which here refers to coordinate transformations that do not vanish on
the boundary, need not lie in the same equivalence class because the vector fields that take
us among such solutions are not degenerate with respect to the symplectic form. This is the
mechanism by which “pure gauge" degrees of freedom become physical in the presence of a
boundary. Anticipating that we will later project out these pure-gauge directions, we will be
loose with terminology by referring to €2 as the symplectic form.

Reference [27] gives a clear and useful exposition of covariant phase space in theories with
a boundary, but we should highlight some points that render some of their results inapplicable
to the problem we wish to solve here. In [27] emphasis is placed on spacetime symmetries
and their associated conserved charges. Given a covariant Lagrangian defined on a space with
boundary, the action is only invariant under coordinate transformations that map the bound-
ary to itself (i.e. interpreted in an active sense, they do not move the boundary). Also, the
authors primarily restrict attention to diffeomorphism vector fields £ that do not vary on phase
space. Here, our goal is not just to identify symmetries but rather to lay the groundwork for
quantization, which involves working with arbitrary functions and transformations on phase
space. For this reason, we will be dealing with vector fields that violate both of the conditions
mentioned above, although vector fields corresponding to symmetries are present as special
cases.

Coming back to (3.10), we can alternatively write  as

Q= if A%, v/8J%, (3.11)
PN

where the symplectic current J* is the Hodge dual of 60,
50 =J%/g(d%),. (3.12)

Here

1

d+1— _
APy, = p!(d+—1_p)!8ul...up Vo1 Vast

dx"p 1 AL Adx Ve (3.13)

with ¢ the fully antisymmetric symbol with entries =1 and O so 1/§dd+1x is the spacetime

volume form. The symplectic current is conserved on-shell, V,J* = 0. This follows from

the identity d6© = Vajaﬁdd+1x, along with d5© = §d© = §%L = 0. So with suitable

boundary conditions on d M — Dirichlet in our case — € is the same for any choice of X.
The symplectic current J* was computed in [54],

1 1 1
a_ _ - a Uy 4 = Guv e au , L au
J% = 16nG [5Fuv/\(5g + 2g 51ng) 51—"uv/\(5g —+ 2g 51ng):| . (3.14)

14We have inserted a factor of i due to the fact that we are working in Euclidean signature.
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Let £ be a spacetime vector field corresponding to the infinitesimal coordinate transfor-
mation x*—x* + £#, under which the metric varies as

Se8uy=V,uE,+V,E, . (3.15)

We denote the corresponding vector field on phase space as V:. A key relation is given by con-
tracting this vector field with the symplectic current, iy.J ¢, and identifying it as the derivative
of an antisymmetric tensor. The result is [54]

1
[y JE =V X 3.16
e T6mG (3.16)

with

X = [(VMSg‘“’ +V'5Ing)e* +V7ogh*E, —v %6 g — %V”E“Slng] —(ae—> ).
(3.17)

For completeness, we provide a few more comments on the above in Appendix B. Defining the
(d —1)-form

X =X*/g(d %)y, (3.18)
we have
i i
iy, Q= dX = X. 3.19
Ve TonG JZ 167G LZ (3.19)
Here 0% lies at fixed p, and for simplicity we also take it to lie at fixed t. This gives
: L d—1 t
iy, Q= f d 7 x/gXP". (3.20)
¢ 161G ),y
With the boundary condition & gW| = 0 it is simple to evaluate XP!, since & 8uy must

appear with a p-derivative in order not to vanish. So in (3.17) we can make the replacements

V,=6,,0,and V¥ = 4p25Hp8p We also note that apégpu|pc =d,08"* oo = = 0. Almost all

terms vanish, and we find

XPt=-VP5Ing& —VvPsgh g,
=—4p2g"0,5g;;E" +4p?0,68;;8'"E". (3.21)

It is convenient to separate the coordinates on the boundary into space and time as x' = (¢, x9).

It is also convenient (though not necessary) to choose these coordinates so that gm| a5 = 0.
Collecting the terms multiplying £‘ and £ we have
XPt=—4p.g" (6(Ky — g0 KE" + 5K iE”) (3.22)

where the extrinsic curvature is given in (3.5). The variation of the boundary stress tensor is

6Tl] -

1
Using this, along with ,/gg'" = % v/ gd=Dn' where n* = 1/,/g;, is the unit normal, we find

JEXPt =—8G4/gW@d-D5T,;nt &L, (3.24)

We then obtain the main result of this section

iy, 2 =—56Q[&], (3.25)
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with!®

Q[g]zif dd—lx,/g(d—l)Tijnigj. (3.26)
2T J 55

Several important comments are in order. First, as usually defined the boundary stress
tensor contains certain terms that depend solely on the boundary metric and not its radial
derivatives. Such terms are typically included in order to obtain finite conserved charges when
the boundary surface is taken to infinity [61], or from other considerations [73]. We are free
to include such terms in T;; since they have no variation under our boundary conditions. In
other words, our arguments determine the charges Q[&] up to a contribution that is constant
on phase space.

Second, the change in the metric (3.15) induced by £* must respect the boundary condi-
tions 6g,,, oo = 0, and as we have discussed this requires £ to be field dependent; i.e. &
is non-constant on phase space. On the other hand, in passing from (3.24) to (3.25) we ev-
idently took & &! |p = 0 in order to write the result as 6(...). Why doesn’t this contradict the
statement that £ is non-constant on phase space? The point is that although £ indeed has
to vary on phase space in order to preserve the boundary conditions, we are free to choose
& arbitrarily on 8% for a fixed slice, as we will see. The (field dependent) form of £ away
from 9% is then determined by enforcing the boundary conditions which, as we will derive
below, take the form of a differential equation for 8,£". However, there is no obstacle to taking
5& | o5; = 0 on some fixed slice. We will make this explicit when we compute the boundary
condition preserving coordinate transformations.

We emphasize that the charge Q[£] is not conserved under time evolution unless & is
a Killing vector of the boundary metric. This follows from the fact that Vi(Tijij ) = %Tij
(VIET + V/EY), where we used conservation of the boundary stress tensor. The relevance of
the general Q[&] is that it is the function on phase space whose corresponding Hamiltonian
vector field is Vi, whose action matches that of £ for O-forms over phase space, as was discussed
at the end of Section 2.

We also note that in certain cases, such as AdS; with an asymptotic cylinder boundary, the
boundary stress tensor is traceless, in which case there are additional conserved charges Q[£],
with &' a conformal Killing vector of the boundary metric. In the asymptotic AdS; case one
thereby obtains the conserved charges that appear in the asymptotic Virasoro algebra. In the
general case we will obtain an algebra of charges Q[& ], but we refrain from referring to it as
a symmetry algebra since the charges are not conserved in any useful sense.'®

3.3 Pure AdS; gravity and its connection to the TT deformation

One motivation for this work is the result of Zamolodchikov and Smirnov [33,34] on the energy
spectrum of TT deformed CFT which, combined with the conjecture [41] gives a prediction
for the spectrum of pure AdS; gravity with Dirichlet boundary conditions. We now review
relevant aspects of this story, mostly following [41,43,49,53].

The TT deformation describes a one-parameter family of two-dimensional quantum field

theories labelled by A whose action obeys the flow equation'”
s, 1 9 ;

15The covariant form of the result makes it clear that it does not depend on our assumption g,, | an=0.

1®Here we mean that while we could include an explicit time dependence in the definition of the charges in
order to make them conserved, determining what this time dependence must be involves solving the equations of
motion, which defeats the purpose.

70ur conventions follow [53].
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where it is important to keep in mind that the stress tensor itself depends on A. We restrict
attention to the case where the theory at A = 0 is a CFT, and also take the background metric
7ij to be flat. We are writing the metric as y;; because it will be related by a rescaling to the
bulk metric g;;. For a deformed CFT, the parameter A, which has mass dimension —2, is the
only dimensionful scale, and so the statement of dimensional analysis S 2, (o> guv) = S,(8uy)
together with the definition (3.6) of the stress tensor imply that (3.27) is equivalent to

T{ = nAdet T}, (3.28)

up to total derivatives.

The simplest route [49] to seeing the connection with a bulk description is to note that
(3.28) is equivalent to one of the Einstein equations for pure AdS; gravity with Dirichlet bound-
ary conditions at a radial cutoff, as we now review.

Writing the metric as in (3.1), the Einstein equations R,,, = —2g,,, read

K*>—KYK;; =R(g;;) +2,
vi(Kij —Kgi;)=0,
1
208, (Kyj — g;K) + 2Ky K — 3KK;; + 28 [K™ Ky +K*]— g1 =0, (3.29)

where V; is the covariant derivative with respect to g;;. We consider a surface at p = p, and
relate the bulk and deformed CFT metrics as

1
8ij(pe, x) = p—Yij(X)- (3.30)

For AdS; the boundary stress tensor defined according to (3.6) (and with the standard choice
of S written explicitly below) works out to be

1
Ti-:4_G(Kij_Kgij+gij)~ (3.31)

If we use (3.31) to trade K;; for T;; and use v to raise indices, it is simple to check that the
top line of (3.29) becomes

. 1
T} =4Gp et T} — - =R(y), (3.32)

which agrees with (3.28) (for a flat boundary metric) under the identification

__4Gp,
=—.

A (3.33)

The boundary stress tensor on the cutoff surface therefore obeys the defining property ofa TT
deformed CFT. For example, this property is enough to fix stress tensor correlation functions at
the classical level in the bulk, and so these will agree with the corresponding correlators in the
CFT at large c, as has been verified explicitly in a few cases [49,50,52]. This discussion also
makes it clear that the simple relation between a Dirichlet cutoff and the TT deformation is
lost if bulk matter is included, since the matter stress tensor will show up in the Einstein equa-
tion (3.29) leading to modifications of (3.32). This implies that imposing Dirichlet boundary
conditions in the presence of matter fields is dual to a more complicated deformation on the
CFT side involving nonlocal multitrace operators [49]. One question of interest to us here
is whether the simple connection involving pure gravity extends to the quantum level in the
bulk. In the latter part of this paper we initiate the quantization procedure and give evidence
that the connection holds in perturbation theory in G ~ 1/c.
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It is also illuminating to understand the bulk description of TT by applying the standard
AdS/CFT dictionary in the presence of double trace interactions [43]. Here one starts from
standard AdS/CFT setup and adds a double trace interaction: Scpr—Scpr + %fdzx det T;
Stationarity of the action implies mixed boundary conditions which can be described as fixing
a new deformed metric at the conformal boundary of AdS, built out of the original metric and
stress tensor. The specific double trace interaction is chosen so that the stress tensor that is
conjugate to the deformed metric obeys the trace relation (3.28). It turns out that on-shell the
deformed metric is nothing but the induced metric on the p = p, slice in the bulk, leading
to a derivation of the Dirichlet formulation in pure gravity. In this way of thinking, it seems
that the full bulk is really “there” — the surface p = p. does not appear as a cutoff but just
as a way of thinking about the modified boundary condition. However, for pure gravity the
absence of local degrees of freedom implies that there is no sharp distinction between these
pictures. Indeed there is a simple way of understanding the relation between them [53]. We
start from the bulk action'®

1 1
S = d®x/g(R+2)— 8eG J d?x4/g@(K —1)+ Sanom - (3.34)
T

167G M oM

We then consider “integrating out" the region between p = p, and the AdS boundary at p =0,
which is to say that we compute the on-shell action for the enclosed annular spacetime regime.
In a theory with local degrees of freedom this would yield a complicated nonlocal expression
in terms of data on the two boundary surfaces, but for pure gravity the result is very simple.
The answer is simply S,,, = —% f d?x det T].i, where we have written the result in terms of the
undeformed metric and stress tensor at the AdS boundary. Coming back to the double trace
formulation, we see that the effect of including the double trace interaction is to subtract the
action of the annular region, leaving just the action for the region interior to the cutoff surface
at p = p.. It then follows immediately that the double trace and cutoff prescriptions agree, at
least at the level of pure gravity in the classical limit.

Let us make a comment on the universality of our starting point, which is the standard
two-derivative Einstein-Hilbert action (3.34). A more general action would include higher
derivative terms, including those arising from integrating out massive matter fields. However,
in three-dimensions, we can perform a field redefinition to put the action back in the form of
(3.34).%° In particular, since the Riemann tensor in 3D may be expressed in terms of the Ricci
tensor, a general higher derivative term is a function of the Ricci tensor and its derivatives.
Using the field equation of the two-derivative theory, R, + 2g,,, = 0, the field redefinition
guv—8uvr 08,y changes the two-derivative action as 6S ~ fd3x VER"+2gH")6g,,,, where
we have used 6 to indicate a variation rather than a phase space differential, and so by choos-
ing 6g,, appropriately we can generate all the higher derivative terms. This universality of
the action (3.34) is the bulk explanation for why correlators of the boundary stress tensor in
asymptotically AdS; space are completely fixed by Virasoro symmetry and the value of the cen-
tral charge, with no other dependence on the form of the bulk action. This is also the reason
why pure gravity in 3D is renormalizable [ 75]. We expect this universality to hold in our case
as well.

183, .om is needed to cancel log divergences associated with the Weyl anomaly [74]; see [53] for its explicit form.
19This assumes parity invariance, otherwise a gravitational Chern-Simons term should also be included. We also
assume that the higher derivative terms can be treated as a perturbation around the Einstein-Hilbert action.
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4 Warmup: Asymptotic AdS;

This section provides a warmup for the main case of interest. We first recall how to extract a
pair of Virasoro algebras from the asymptotic symmetry group of AdS;. This is standard mate-
rial. We then discuss how to derive the geometric action and symplectic form first discussed by
Alekseev and Shatashvili [68]. This was obtained from the Chern-Simons formulation in [26].
Our approach is based on the metric formulation and is easily generalized to the case with a
radial cutoff.

4.1 Asymptotic symmetry algebra of AdS;

We work with the Bafiados metric [59]

dp? 1 —
ds? = WI;Z +—(dw+ pLWAWNdW+ p LOw)dw), 4.1)

where w = ¢ + it is a coordinate on the cylinder with ¢ = ¢ + 27. Global AdS is obtained by
taking L= L = —%. The boundary stress tensor computed at the p = 0 boundary is

1 1 —
Tww = _4_G£> TW = _4_G£’ TWW =0. (4.2)

The asymptotic Killing vector £ with components
1
gV =e(w)— EaéE(W)p +0(p?),
&7 = (W) — 5 02e(w)p + O(p?),
£° = (Bue(w) + a5e(m)p + 0(p?), (4.3)

preserves the asymptotic form of the metric in the sense that the variation 6 g, = V,£,+V,&,
does not change the terms in the metric of order 1/p. However the stress tensor components
change as

1
OrTyw = 2Ty Oy€ + 3, Tyy€ + Eé‘je ,

_ _ 1 4
5§TW = 2TWaV—V6 + awTWe + 8_G WBE . (44)
The charges (3.26) are
; 2 )
QlE]= 5 f Ty&'d. 4:5)
T Jo
We separate out the parts proportional to € and €,
1 27 1 27
Qle]l=—— Tywedd, Qel=—— Tawedd . (4.6)
2w |, 2w J,

Since we established the relation (3.25) we can extract the Poisson brackets of the charges
using (2.11), which here reads

{Qle1],Qle]} = —6¢,Qle,], {Q[€,1,Qle,]} = —5516[52] ) (4.7)
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with the mixed bracket vanishing. This gives

27
1
{Qle1],Qlex 1} = “on J I:(awelez —€10,€3) Ty + 2%1(356162 - 513{362)]6105 (4.8)
0

and similarly for {Q[€;], Q[€,]}, and where we used the Brown-Henneaux formula ¢ = =

We now write the Fourier expansion®® o
Ty (W) =— > Qre™,
To(W) =— > Qe ™", (4.9)
ie.
Qn=0Qle™™], Qn=0Q[—™]. (4.10)
(4.8) then gives the Virasoro algebra?!
Qs Qu} = (1 = W) Qurin + 151 (4.11)

12

along with the same formula with Q’s replaced by Q’s.

4.2 The Alekseev-Shatashvili symplectic form

We now wish to use (3.25) to extract a useful expression for 2. The phase space of interest is
not the full space of gravity solutions with specified boundary conditions, but rather a single
coadjoint orbit, which here refers to the space of all stress tensors that can be obtained by some
diffeomorphism transformation starting from global AdS. On general grounds, this space is a
symplectic manifold and the symplectic form may be obtained as a particular case of a more
general construction due to Kirillov and Kostant [ 77]. Rather than going through the details of
this construction, we can obtain the result of interest in a way that follows easily from what we
have so far. Focusing on the holomorphic stress tensor, we recall that global AdS corresponds
to T,,, = 57. We then perform a finite diffeomorphism, which on the boundary at fixed time
acts as ¢—f (¢ ). This can be carried out explicitly in the bulk, but all we need is the familiar
statement that the stress tensor transforms as a tensor plus a Schwarzian term, and so we
obtain

c (1,
Tow =15 (372 + U 92.91). (412)
with
_ f/// 3]://2
{f(¢)’¢}_7_§f_’2' (4.13)

There is a gauge redundancy is passing from the space of stress tensors to the space of functions
f(¢) since the starting point T,,, = 5 is invariant under an PSL(2,R) group of reparameteri-
zations that maps

f
_)atan(z)er. 414
ctan(’%)+d

[ ]
—

tan (

20The minus signs are included for agreement with standard CFT conventions, where they originate from the
conformal transformation from the plane to the cylinder. See for example [76].
*IThe shifted modes L,, = Q,, + 576, obey the more familiar i{L,,,L,} = (m—n)L,,, + 5m(m*—1)5, _,.
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Indeed, (4.12) is just the same as ¢/12{tan(f /2), ¢}, so this result follows from the invariance
of the Schwarzian derivative under PSL(2,R). Therefore, the phase space is really the coset
diff(S')/PSL(2,R) [69]. We want to compute the symplectic form on this space. To clarify, we
could in principle write the symplectic form in terms of the stress tensor but the result would
be nonlocal (one essentially needs to invert (4.12)), while the result in terms of f is local and
relatively simple.

Expressed in terms of f the charges are

21
c 1 f/// 3f//2
=—— d — ’2+——— 4.15
Qlel =7, | ¢(2f R (4.15)
To extract Q it will be convenient to contract with a vector field and write (3.25) as
iVel ivezﬂ = _ivel 6Q[€2] . (4.16)

By considering the composition of the reparameterization ¢ — f (¢ ) with an infinitesimal repa-
rameterization ¢ —¢ + €(¢) we deduce

5.f =iy 6f =f'e. (4.17)

We now compute the right hand side of (4.16) and integrate by parts to put the result in a
form that is manifestly antisymmetric under €, «— €,. We find

2r 1 1
iy, Qle) = —g,— | - do (37 + U @100 )Eler—ere + 3 er—ered]
(4.18)

Using (4.17) it is now simple to solve for Q2 as

_ c 2n /2 f / 5f 1 5f " 5f
o= a0 [( Loz (o), ¢)})(f, )r+3(F) Aﬂ L @419)
After integrating by parts this can be simplified to

21

___c SfINGf" )
Q= ey dqb( 72 Of N&f (4.20)
We further note
Q=067, (4.21)
with
C 5f// ,
T= pr dqb(f/ +f5f). (4.22)

We also have the obvious analogous expressions on the anti-holomorphic side.
These formulas can be further simplified by defining (e.g. [26])

=if +Inf’ (4.23)
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in terms of which

c (1
T = (—F’z —F”) ,

12\ 2
c 27
Q=—— d¢SF NSF’,
4871 0
c 27
T=—"— dpFSF' . 4.24
481 0 ¢ ( )

These expressions are simply the stress tensor and symplectic form for a free boson whose stress
tensor includes a linear dilaton (or background charge) contribution. One should however
recall the PSL(2,R) gauge symmetry. In this form it is clear that quantization yields a Hilbert
space that corresponds to the Virasoro vacuum module.

In the above we started from the vacuum stress tensor value T,,, = 57, but it is simple
to generalize to other values. Starting from T,,,, = 57k the only change is that we multiply
the second term on the right hand of (4.20) by . For generic values of x the SL(2,R) gauge
symmetry is now U(1). The enhancement to SL(2,R) occurs for k = % The n > 1 cases
correspond to conical defect solutions in the bulk [26].

Given an expression for the symplectic potential T and the Hamiltonian H, we can imme-
diately write down a phase space action S = f(T —Hdt). By design, the corresponding phase
space path integral computes Virasoro characters [68,78].

4.3 Perturbative expansion

We now write out the above formulas in a form that facilitates comparison to the results we
will derive at finite cutoff p.. We write the coordinate transformation in the form

w— f(W)=w+A(p,t)+iB(p,t), w— fF(W)=w+A(p,t)—iB($,t) (4.25)
corresponding to
¢— ¢ +A(p,t), t—t+B(¢,t). (4.26)

We note that A+iB (A—iB) is necessarily (anti-)holomorphic by definition in (4.25). Expanding
in powers of A and B we have to cubic order,

Ttt = _(Tww + TW)
C / 11/ 112 112 ! Alll I p/l! /2 /2
:E(—l—ZA—zA 4+ 3A"2 _3B"2 4 9A'A" —2B'B" — A + B

—6A'A"? +12A"B'B” + 6A'B"? — 2A?A" + 24" B + 4A’B’B’”) +...,
T¢»t = i(TWW - TW)

— E(_B/_B///+3A//B//+A///B/+A/B///_A/B/

6
—3A"?B’ —6A’A"B” + 3B'B"? — 2A'/A"'B’ — A”B" + B’ZB”’) .., (4.27)
where now ' = %. Tracelessness implies Ty, = —T;,. The symplectic form can be read off
from
T= —% d¢ ([B'+ (B —24'B' + 34°B' —B*)"] 5A
T
+[1+A +(A +B?—A?—34B*+A%)|6B+...) . (4.28)

21


https://scipost.org
https://scipost.org/SciPostPhys.11.3.070

Scil SciPost Phys. 11, 070 (2021)

5 Cutoff geometries and their charge algebra

5.1 Metrics obeying Dirichlet boundary condition

We now discuss the general three-dimensional gravity solutions with negative cosmological
constant whose boundary is a finite cylinder. Specifically, we impose ds?| p=p, = pidde
where w = ¢ +it and ¢ = ¢ + 2. Such solutions can be obtained starting from (4.1), which
we now write in primed coordinates,
dp”
dsz = 4p/2
P

+ I%(dw + o' LW)AW)(dW + p’ LW )dw'). (5.1)

At this stage, we temporarily relax any periodicity requirements on the functions £(w) and
L(w)), and instead allow them to be arbitrary. We then define new coordinates (w, w) via®?

dw = dw’ + p L(W)dw',
dw =dw' + p L(W)dw’, (5.2)

along with p = p’. With this we arrive at a metric satisfying the desired boundary conditions

21 [A—ppLL)AW+(p —p)Ldw][(1—pp LL)AW + (p — p.)Ldw] 5:3)
. . (5.

(1—p2LL)?

dp

ds®> =
4p2

This is a solution provided the functions £ = £(w,w) and L(w,w) obey

av_v‘c = _pczawﬁ
3, L =—p L3GL, (5.4)

which are of course equivalent to the statements that these functions are (anti)holomorphic
with respect to the primed coordinates. Recalling that w = ¢ + it with ¢ = ¢ + 21, we
now also write £ = £(¢,t) and £ = L(¢,t), and demand that these functions respect the ¢
periodicity. If we rewrite (5.4) as

1+p.L

—i0,L = —d, L,
' 1—p L 4
A= 1+p L —
oL = 0 5.5
L tc 1_pC£ ¢‘C5 ( )

we see that we can start with some t = ¢, initial data (£(¢, to),Z(qb, to)) that respects the ¢
periodicity, and that solving (5.5) will preserve the periodicity. Hence the space of solutions is
labelled by two arbitrary periodic functions of ¢ giving the initial conditions.

The stress tensor evaluated at the cutoff surface using (3.31) is

Tww = ! # ww — ! # ww — Pe L (56)

4G1—p2LL’ 4G 1—p2LL’ 4G1—pC2EZ'
We verify that the cutoff stress tensor obeys the TT trace relation

Ty = —4GPc( Ty T — (Ty)?) (5.7)

22gince at the moment we are not imposing any periodicity requirement there is no obstacle to integrating (5.2)
to obtain (w, w).
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5.2 Boundary preserving vector fields

Given a solution of the form (5.3) we define a “boundary preserving vector” £ to be a smooth
vector field such that 6¢g,, = V,&, +V,&, obeys 6:g,, pmp. = 0. That is, it leaves all
components of the metric at the boundary invariant. We showed in Section 3.2 that such
vector fields will lead to charges (3.26).

Due to the nature of our problem we can perform a local analysis near the boundary. We

start with the ansatz

& (p,w,w) = f"(w,w)+O(p —p,.),
Y (p,w,w) = f*(w,w) +O(p —p,),
EP(p,w,w)=pfP(w,w). (5.8)

Respecting the boundary conditions requires

pc£ w
Bof " =——P (5, 4 af™,
1+p2LL
_ L _
B f " =——L (7 4 af™), (5.9)
1+p2LL

and we also find that f© is determined as

1_p02£Z w w
I Evwer [CEARS ) (5.10)

This is not yet sufficient, and we also need to add O(p — p..) terms to £**. The final result is
then

£ (p,w,) = (0, ) — 28f * (1, W0 — p) + O((p = po)?),

(o, w,) = 7w, )= 3.8, ()0 — p0) + O((p — ),
EP(p,w,w) =pfP(w,w). (5.11)

If we wished to fix radial gauge, g,; = 0 away from the boundary we would need to deter-
mine the full extension of & into the bulk. However, this is not necessary since the details of
this extension are “pure gauge" and do not affect the boundary charges or their transforma-
tions. Related to this, working at the above order is sufficient to allow us to use (3.31) with
K;j = —pd, g;; to compute the boundary stress tensor, since the violation of radial gauge away
from the boundary has vanishing effect on T;; once we set p = p..

In Section 5.1 we emphasized that bulk solutions could be labelled by a pair of free periodic
functions on the boundary circle at some initial time t,. We can parameterize the boundary
preserving vector field in a similar fashion. This is important, because this construction will
render its components tangent to the boundary field independent on the boundary circle at
t = ty even though the full vector field is field dependent. This property will be crucial when
computing the charge algebra. To this end, we rewrite (5.9) as

. 2p.L _
—i0,f" = 0 f " + — (B f " + 8, f™),
S T a—pni-pD)
_ _ 20.L _
i8,f" = 8,f" + Pe @ f" +3,f™). (5.12)

(1 - pcﬁ)(l - pcz)
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We then write down fixed initial data for (f¥, f") on the same t = t,, surface which we use to
define the charges. This ensures that when we compute §Q[£] we can take §&' = 0.

It is worth comparing this result with the analysis in [43] and [44]. The relation with the
former follows most straightforwardly by matching (5.11) with equations (3.34) in [43] at
o = p., giving f¥(w,w) = f(W) — p, L_f(W’) and its right-moving conjugate. It was noted
that the functions £, have nonzero winding around the spatial circle even when f doesn’t, an
issue which was studied in detail in [44]. Here, we find a different way around the issue, by
using the functions (", f¥) as a basis to label the diffeomorphisms. These functions do not
have nonzero winding, as discussed in the previous paragraph, and we will find a different
Poisson bracket algebra for the charges in this basis.

The relation with [44] can also be clarified at this point. As explained in this section, we will
label our changes by specifying the functions f*(¢) and f"(¢) on the surface t = t,. These
are fixed functions of a state-independent coordinate. In [44], however, the charges were
labeled by fixed functions f and f of state-dependent coordinates (coinciding with (w’,w’) in
(5.1)). These necessarily have nonzero variations, for example {J,f,} = f ! {HR—_HP, -} in the
notation of that paper. If we were to redo the calculation [44] without the contributions from
these Poisson brackets, we would find the classical part?® of the result we will obtain in (5.29).

5.3 Boundary charges

As in (4.5) the boundary charge (3.26) associated to a boundary preserving vector field & is
defined to be

2
Ql¢]= —f Ty&'de. (5.13)
T Jo
As noted in the previous section, we are free to specify vector fields
Enli=t, = e "%5,, €n|t=t0 = _ein¢aw (5.14)

on the t = t; surface. This suggests generalizing the Virasoro charges (4.10) according to
(5.13) and (5.6) by

Q,= Q[e_ind) aw] =

>

1 Jd(i)(l—pCZ)Ee_imp

8nG 1_pCZ£Z
— - 1 (1—p.L)L .
—O[—e"? g 1= d I ping 5.15
Q, =Q[—e'""? 5] 8nt ¢ 1_P?££e ) ( )

which we have evaluated on the t = ¢t surface. The energy and momentum charges are now

H=Q[-i8,]=Qy+Qo,
P=Q[3,]1=Qy—Qo. (5.16)

It will be useful to compute the bracket of these charges with the Hamiltonian indirectly
here so we can later check that it is reproduced by our direct calculation of the full Poisson
algebra. Recalling (2.9), we see that the charges can have both an explicit time dependence in
their definition and a time dependence due to the Hamiltonian’s flow on the phase space. The
only possible source for an explicit time dependence in the charges Q[£,,] and Q[&,,] would be
the from the components of &, and &,. Indeed, these will have non-trivial time dependence

BWith “classical part” we mean the part where { is reintroduced in (5.29) and then set to 0. For the undeformed
CFT, this removes the central charge of the algebra, which is classically not accessible.
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implied by the evolution equations (5.12). However, we see in (2.9) that if we calculate the
time derivative ignoring any explicit time dependence, the result must be the Poisson bracket
with the Hamiltonian. Using (5.5), we take the time derivative of the expression in (5.15) and
integrate by parts to get

LL .
ath _ —nQn . n Jd(,b Pc _e—m¢
1—p2LL

pC‘CZ_ein(p )
1—p2LL

8,Qu =—1Qy— = J de (5.17)
4nG

We now make some remarks regarding the (non)conservation of these charges. We first
of all note that energy and momentum are conserved, d,H = 9,P = 0, following from the fact
that the boundary metric is invariant under translations in t and ¢. Furthermore, we see from
(5.12) that &£, and EO are constants in time, so the total time derivatives of H and P vanish in
addition to their bracket with the Hamiltonian. The n # 0 charges are not conserved. In the
asymptotically AdS case with p. = 0, we can of course define conserved charges by introducing
explicit time dependence, Q,e™ and Q,e"™. At nonzero p, no such simple construction is
available.

5.4 Variation of the stress tensor

We now wish to compute the variation of the stress tensor under our boundary preserving
vectors. We proceed by computing (6:£,6:L) and then by using (5.6). To extract these

variations we first evaluate 6:3, gij’pc and then ask what (5:L, 552) reproduces this. Note

that the problem is over constrained since we have two free parameters but three equations.
The existence of a solution requires that the following consistency condition holds

(1+p2LL)3,05fP + p (LOEfP + LOZfP)=0. (5.18)
With some work, by using (5.4) and (5.9) this can indeed be shown to hold. We then find
_ _ 2 _
SeL=(f"—pLf")0,L+——=(8,f" —pZLLEf")L
1+p2LL
1—p2LL
P (p2r2g2pe g2pe), (5.19)
2(1+p2LL)

as well as the same formula with barred and unbarred quantities exchanged. Plugging into
(5.6) gives the transformation of the stress tensor, but we refrain from writing this out.

5.5 Charge algebra

The Poisson bracket algebra among the charge Q[ £] may be extracted from the transformation
of the charges under an asymptotic symmetry, the master formula being
{Q[&,1,Q[&-.1} = —5V£1Q[§2], as in (2.11). We use the basis of charges (Q,,Q,) defined
in (5.15), and we should use the same basis for our boundary preserving vectors. We use
(6,,,6,,) to denote variations with respect to boundary preserving vectors &, and &, intro-
duced in (5.14). That is, we have?*

5m: fW:e_im¢) fWZO)
8,: f¥=0, 7 =—em$ (5.20)

24We are now working on the t = t, surface.
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In this notation we have

Q> Qu} ==6mQn> {Qm>Qu} =—6mQns {Qm»>Qu} =—5,Q,- (5.21)

To arrive at the charge algebra we need to compute these variations using (5.19) and then
express the result in terms of the charges.

However, we first need to reexpress (5.19) in terms of our initial data on the t = 0 surface,
which in particular means using (5.5) and (5.12) to trade away all t derivatives in favor of ¢
derivatives. This is straightforward but somewhat messy and we do not write out the explicit
result for (6:L,6 52) in this form. Taking these expressions and using them to evaluate the
variations in (5.21) we encounter a nice feature: the integrands are exponentials multiplying
a function of (£, £) and their ¢ derivatives, but it turns out that all ¢ derivatives appear as
total derivatives. We therefore integrate by parts and take the ¢ derivatives to act on the
exponentials, where they simply generate polynomials in m and n. Again, the algebra is a
bit messy, but easy enough to carry out on the computer. We arrive at the following Poisson
brackets:

1 27 1 E

i{Q,,Q,} =—— dpe i mtMé L Zm3 4 (m—n)————
L—1p£?—1p L +p2LL +2p2L2L —2p LT — pPL2L }

(1—pLP(1—p.L)? ’

1
— 5 mn(m—n)p.

(5.22)

L

1—p2LL

L—1p.L%— %pCZZ +p2L2L+ 2p§/:ZZ —2p.LL— p§c2ZZ }
(1=pcL)(1—p LY ’

27
i{%@hﬁjo 99 L+ (m =)

1
— 5 mn(m—n)p,

(5.23)
2m v
. - 1 —i(m—n mn(m—n+2np.L) mn(m—n—2mpL
HQumQuy = == | dpe™ ”’{— ( 2npel) _ mn y )
8nG 0 4(1 —pcﬁ)z 4(1 - pc'c)
" (m—n)pcfﬁ}. (5.24)
1—p2LL

A sensitive check of the intermediate steps is that {Q,,,Q,} and {am,an} are found to be
anti-symmetric under m < n.

The Poisson brackets involving the Hamiltonian H = Q, +Q, and momentum P = Q,—Q,
are relatively simple,

27 -
. pcﬁﬁ —ing
H, =— - e — ,
Qo) ==y = g | do T E e
27 -
o _  n PLL  ins
HOY=-n0 ——— _BPE>ing 5.25
Q) ==nQu= o5 | o T e (5.25)
i{RQn}:_nQn>
i{RQn} = nQ,. (5.26)
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The fact that the Poisson brackets involving P have no p. dependence implies, upon replacing
Poisson brackets by commutators, momentum quantization. On the other hand, the p_ de-
pendence in the Poisson brackets involving H is expected given that the energy spectrum of a
TT deformed theory is modified. As expected, the brackets with the Hamiltonian match our
earlier indirect calculation (5.17).

To complete the story we need to use (5.15) to trade away (L, L) for (Q,,Q,). It is conve-
nient to define

Q@) =4G D Que™, q$)=4G ) Que ™, (5.27)
so that
q(¢) = q(¢)
L(P)=—""—"—, L(Pp)=—T"—. 5.28
@) 1—-pcq(¢) @) 1—pcq(¢) (5:28)
This gives 2°
27
. 1 i 1 (1-pcq)q
— i(m+n)¢ ) =3 _ ¢
1{Qm,Qn} &G J, doe {zm +(m n)l—pc(q+6)
—lmn(m—n)P q—%pc(q+c_1)2}
2 ‘A-plg+9)? )’
271 ——
e 1 , 1 (1-p9)g
— i(m+n)p ) = .3 _
HQm Qn} =g . doe {2m +(m n)l_pc(quq)
1 —\2
1 L 4= 3p(q+q)
pmnm=mp C(l—pc(q+ﬁ))2}’ 5:29)
2n = =P =2
. - 1 (e p.(m—n)qq 1 ng—mq+ 5 (m—n)(q+q)
_ i(n—m)¢ 2
Ham @l =505 ), 49¢ {1—pc(q+a) 2P T 1= p g+ D

We emphasize that this result has been derived without assuming any details about the back-
ground spacetime other than its finite cylinder boundary. In the limit p. — 0 the right-hand
side becomes linear in the functions (q, q) that label the state. It reduces to the asymptotic sym-
metry algebra (4.11) of asymptotically AdS; spacetimes. In the next section, we will analyze
this result perturbatively around global AdS;.

Let us also comment on the range of validity of this charge algebra. The starting point was
the usual Einstein-Hilbert action. However, as discussed in Section 3.3, adding higher deriva-
tive terms will not change the story, since in 3D these can be removed by a field redefinition.
Furthermore, if other matter fields are present we can imagine integrating them out. As long
as they are massive and have sufficiently local interactions such that this procedure results in
a series of higher derivative terms for the metric, our reasoning should go through.

It is sometimes useful to rewrite this result in terms of the combinations

Phn=Qn+Q_n, Jn=Qmn—Q_, (5.30)

and similarly p = q+q, j = ¢ —q. Indeed, the Poisson bracket for P,, with itself simplifies and
is in fact independent of p,,

. 1 —i .
i{Pn, Py} = Y J doe im+mé (m —n)j = (m— W man - (5.31)

251t is straightforward to reintroduce the factors of £ into this result. The terms of cubic order in (m,n) should
be multiplied with £? whereas the linear terms are unchanged.
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The other Poisson brackets are

1 s p.mn

i{J ,.] — d i(m+n)¢ — '(]__|_—C )’

UmJn} = g5 | dPe =i+ g
1 . 2 _ _ 2_ 2

i{Jm, Pn} — 8_ J d¢ e—1(m+n)¢ (mB _ pPcmj (m n)p PcNp pc.mn p) ) (5.32)
nG 1—=pcp

In terms of these generators, the result with p, = 0 becomes the bms; algebra in the limit of
large AdS radius [72].

It is also interesting to consider the sub-AdS limit p,— oo, which zooms in on a small patch
of space. This gives

— . 2
i{Qm: Qn} = m=n J d¢) e—l(m+n)¢ q

8nG q+q°
i o nTm —i(m-m)¢ _99
i{Qum, Qu} = dep e imme L 5.33
{Qm, Qn} 8nG J ¢ 1+ (5.33)
and their conjugates. In terms of (J,,,, P,,) we have
i{P,, P} =i{Jp,Jn} =(m—n)Jin
1 : 2
i{J,, P} =—nP, .+ —— | dpeitmme L (5.34)
8nG p

6 Perturbation theory around global AdS; with finite cutoff

We now turn to the systematic treatment of quantizing the gravitational field perturbatively
around global AdS; with a finite cutoff. We proceed by first identifying the phase space and
computing the symplectic form and boundary charges. After simplifying the expressions using
a field redefinition in Section 6.4, we promote functions on phase space to operators and define
a Hilbert space in Section 7.

Global AdS; corresponds to (4.1) with £ = £ = —}‘. We perform a simple coordinate
redefinition in order to bring the metric at p = p, to our standard form ds? = p%deW This
procedure yields a particular case of (5.3),

dp* 1 [(A—ppL)dw+(p —p)LodW][(1—ppL3)dW + (p — p)Lodw ]

dSZ - >
4p? p (1—p2L3)>
(6.1)
with
2
1—/1+
coz—(—pc) . 6.2)
pe

For reference, in Appendix A we write out the six Killing vectors of global AdS; in the coordi-
nates (6.1). It will sometimes be convenient to use the parameterization (see (1.4))

1

pc:a2_17 ‘CO:
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6.1 Charge algebra near global AdS

We will start by expanding the Poisson bracket algebra of the charges (5.29) perturbatively
around global AdS. To this end we write?®

-1 " F(p) = —— 4 OSTT i
1) =5+ ZLe A=yt Ll 69

Expanding in 1/c gives

m

. —n -
l{Lm:Ln} E(m _m)5m+n 4(12 [(4+3pc)Lm+n_pc(2mn+ 1)L—m—n]

2
P m—m)[(mn— 1)L 0 — B+ 1)
C

(mn—D)(LL)pmin + O(1/?),

i{L,,L,} = —4%:2 [(m —n—2mn?)L,,_, +(m—n+ 2m2n)f.n_m:|
3p2 )
~3 63 [(m —n—m?*n—3mn?)(L?),_, + (m—n+3m*n + mnz)(L2)n_m:|
ca
3 _
+ 22— m)(2 = pe(mn— )LL)y + O(1/c?), 6.5)

where we have defined

LD =D LiLpoy (LD)w =D Lutmln » LD = D Lol - (6.6)

The result for i{L,,L,} is obtained from i{L,,L,} by interchanging barred and unbarred
quantities. Taking p.—0 gives back the usual pair of Virasoro algebras of asymptotically AdS;
geometries.

6.2 Perturbation theory

Writing w = ¢ + it as usual, our goal is now to identify finite diffeomorphisms that preserve
the form of the metric as p = p,

dp? dwdw dp?* dt*+d¢?
A iy

ds?| = =
Pe4pz - pc 4p? Pe

(6.7)

Solving this problem in general appears to be difficult, and so we will proceed in perturba-
tion theory. We work locally near the boundary circle at p = p,. and t = 0, since this is
sufficient for determining the boundary stress tensor, while the full extension into the bulk is
pure gauge. As in Section 4.3, we look for a diffeomorphism x* = x* + y*(p’,t’ ¢”) with
2%(p:,0,¢") = A(¢"), and y'(p.,0,¢") = B(¢"), where (A(¢),B(¢")) are freely specifiable
periodic functions. Perturbation theory here means working order by order in powers of (A, B).
The full diffeomorphism is fixed by demanding (3,)"5g,,, =0,forn=0,1,2,....

t'=0,p"=p,
The value of n is correlated to the order in (A, B) we work at.

26The (L, L,) reduce to the usual Virasoro generators at p, = 0; for nonzero p, they of course do not obey the
Virasoro algebra.
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We write the ansatz

¢ = +A@D )+ Y AN+ (p' —p) D Unld Nt +...,

n=1 n=0

t=t"+B(¢")+ D By +(p = p) D Vald )t +
n=1 n=0

o0 oo
p=p"+p" D Cal@N"+p? D Fu(p)t" ..., (6.8)
n=0 n=0

and then impose the boundary conditions to determine all unknown functions in terms of
(A(¢"),B(¢")), order by order in powers of the latter. This gives us a construction of the
phase space, as labelled (modulo redundancies) by the freely specifiable periodic functions
(A(¢"),B(¢")).
For example, at lowest order in perturbation theory we find the nonzero functions
A, =-B', B, = %A’, Co= EA’, Uy = —iA”, Vo= iB”. (6.9)
a a 2a 2a

Implementing perturbation theory on the computer is straightforward. In particular, order by
order one only encounters algebraic equations, allowing one to obtain the coordinate trans-
formation to any desired order. We then transform the metric to the primed coordinates. The
output of this procedure is a metric expressed in terms of (A, B) and obeying the cutoff bound-
ary conditions. We then compute the boundary stress tensor for this metric. Here we just write
out the result to quadratic order

tt_E_ 1 _l/ 1A///
6 1+a a a
+ i(AA/” B'B" + 3A//Z 3B//2_1A/2 n 13/2)
a3 2 2 2 2
Pc 11 12 " I/t "o E "2 1 2
+$( —A'A" A" + 24 A" ~B'B" + 24"~ B +23) +...,
T,y = < _lB/_lB///_i_i(A/B///_i_BA//B//_A/B/+A///B/)
? "6 a a as
n p—;(A””B//—A/”B/+A///B”/—A/B/+A/B”/+A”B//):| _— (6.10)
a

Ty 4 is fixed by the trace relation (5.7). As a check, note that as we take the cutoff to infinity,
corresponding to setting p. = 0 and a = 1, we recover the asymptotically AdS expressions
(4.27).

The stress tensor in hand, we obtain the charges as usual from Q[&] = ﬁ 02 " T, Eldg,
the integration being performed at t = 0. Since we will use them later, we write out the
Hamiltonian and momentum to cubic order,

c c P
H=————+—|d ——A+A”A+ B+B")YB + cA’3
6(1+a) 247rf ¢|: ( ) ( )y
(2+5pc)AA//2+ pCAB/Z+ 2(2 pc) B B//
as as
2+ 2
( a?)pC)AB//Z pcA//B//B///} ., (611)
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_ lC
127'5

1+2 1
p= dp| — —(A+A”) B+ —Peazyp = (g2)'B
2a3 2a

(AB a4 P c ”)”A’} ¥ 6.12)

6.3 Computation of the symplectic form

We now wish to determine the symplectic form in terms of the functions (A, B). The strategy is
the same as in Section 4.2. We use the relation iVEQ = —56Q[&] to compute 2 given expressions
for the charges.

The first step is to obtain the variations (6 A, 5:B) under an infinitesimal (boundary con-
dition preserving) diffeomorphism specified by vector field £#. Recall the meaning of this
statement. We start with some metric labelled by functions (A, B). We then perform a trans-
formation labelled by vector field £#, using the construction in Section 5.2. We then label the
resulting metric as (A+ 0:A,B + 5¢B).

It is simplest to think in terms of composing the transformation (6.8) with a second in-
finitesimal transformation. Our goal here will be to work out (64, ¢B) to first order in
(A, B), in which case we can take the infinitesimal transformation to be

o' = 9" +E (9",

t/ — t//+§t(¢//)

o' =p"+ pC(gd)) +. (6.13)
where we are restricting to the locus (p” = p.,t” = 0), which is all we need to compute

the variation of the charges. Composing this with (6.8) and using (p” = p,,t” = 0) where
convenient, we arrive at

P=0¢" +A+EP +AE? LA E +

t=t"+B+B'E? +Blgt+%(§¢)’vo, (6.14)
where all functions on the right-hand side are functions of ¢”'. We therefore have,

SA=E® +AE? —B’gf ~Bearety +..,

5:B=¢"+B'E? +- A gt 4 B”(g¢) +. (6.15)

where the omitted terms are at least quadratic in (A, B).
As a consistency check, we note that the relation ngQ = —6Q[&] and the antisymmetric
nature of  imply the integrability condition

6¢,Q[E2]1=—6¢,Q[&,], (6.16)

where we use the notation 6, Q[£,] = ngl 6Q[&,]. Using our expressions for the charges Q[£]
and the transformations (6.15) this can indeed be confirmed.

It is now straightforward to extract the symplectic form by solving iy, 2 = —0Q[&]. The
closure of Q implies that we can write (at least in perturbation theory)

Q=06T7, (6.17)
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for some 1-form T on phase space. Writing out a general ansatz and then fixing coefficients
one eventually arrives at

_dc
12nm

1+2pc

27
dé [ — l(A+A”)’esB 4 2P pryisp (3’2)”53 +- (A B'Y'5A
0 a

+ p—;(A”B”)”éA] +
a
(6.18)

Using integration by parts it is easy to see that upon taking the asymptotically AdS limit
(p. = 0,a = 1) the result reduces to (4.28) up to exact forms, which do not contribute to
Q.

From this expression we observe a six-dimensional degenerate subspace, associated to the
six isometries of global AdS;, which by definition have no effect on the metric and hence are
pure gauge. Concretely, at lowest order we have

27 .
1c

d¢[_%(5A+5A//)//\5B} = —fznd¢[§5AA(SB+53//)’]J 6.19)
0

ic

Q=—
127

127
so we see that Q has vanishing contraction against vector fields V; with 5V£A ~ e"® or

19) VEB ~ ¢ei"® with n = —1,0, 1. These linearized isometries obtain nonlinear corrections when
we consider zero modes of Q with more terms included.

To remove the degeneracy we can fix a gauge. The simplest option to write a mode expan-
sion and simply omit the degenerate modes,

A@)= D ae™, B(¢p)= D be’. (6.20)
[n|>1 [n|>1
Substituting the mode expansion into Q2 we thereby arrive at a non-degenerate symplectic form
on the phase space with coordinates (a,, b,) with |n| > 1.

6.4 Field redefinition

To facilitate quantization we now perform a field redefinition to Darboux-type coordinates in
which the symplectic form has constant (i.e. field independent) components.
We wrote T in (6.18) in a form that motivates the following field redefinition

. 1+2 - 1 .
(A+A//)/ — (A+A”)/+ Zazpc (A/Z)//_E(B/Z)H:

X 1 ., -
(B+B"Y =B+B") + E(A’B’)” + %(A”B”)”, (6.21)
which yields
1
T= 112c d¢ [ - —(A+A”) 5B+ (quartlc)] (6.22)

where “quartic" stands for terms like A>5B etc. More precisely, to interpret (6.21) we should
use the mode expansion (6.20) along with the analogous expansion for the new fields,

Ap)= D ae™, B(¢p)= D be?, (6.23)

|n|>1 |n|>1
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so that (6.21) gives us a nonsingular relation between the old and new modes for |n| > 1.
We now apply this field redefinition to the Hamiltonian and momentum. The momentum
is particularly simple:

pP= —T dqb[ 1 (A+A”)’]§’] + quartic. (6.24)

The fact that the cubic terms are completely removed follows from the role of P as the gener-
ator of ¢ translations; in the quantum theory it follows from momentum quantization as will
become manifest below.

The Hamiltonian becomes

c c p Pec x
H=———-"——+ d ——A+A” A+ =(B+B")YB + °A’3+ AB
6(1+a) 247’[J ¢[ ( )y ( Y
'O;AA”2 pCA B'B” + pcA B”2] + quartic. (6.25)
a

As expected, the Hamiltonian does retain non-quadratic terms, although we observe that these
vanish upon setting p. = 0.
For what follows we note that if we define

1. ~ 1. ~
C=—-A+iB, D=—-A—iB, (6.26)
a a
then
H=——" ¢ dqb[—i(c+c”)’c’—i(D+D”)’D’
6(1+a) 241 2a 2a
+ &(C’2 —C")D' + &C’(D’2 — D”z)] + quartic. (6.27)
202 202

7 Quantization

It is straightforward to quantize a theory given operators which obey the commutation re-
lations of creation/annihilation operators. Given a quadratic symplectic form, like the one
implies by (6.22), it is always possible to perform a linear field redefinition which produces
the standard commutation relations of creation and annihilation operators. So towards this
end, we first define new modes as

21 1 o
Cp = \ —Clnl(n ) (_&n + lbn) B
12 a
cln|(n2—1) (1. -
c;rl = \ — 13 (aa_n + lb_n) )
. cnj(n2-1)71_. -
dr,l = \ T (aan—lbn) ,
c|n|(n2—1)( )
d =\ ——= —ib_ .1
" \ 12 a ! 7.1

for n > 1. It will be useful, however, to define c_, = ¢! and d_, = d'.?’ In the p, = 0 limit
the ¢, and d,, modes will correspond to right and left movers. The symplectic form becomes

Q=—i ) (5ci Abc, +6d] ASd,) (7.2)

n>1

?’Note that we have (ib,)" = ib_, due to our choice of Euclidean time.
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and from which, using the rule [-,-] = i{-, -}, we obtain the commutation relations

[/ e ]=1[d!,d]=6pn- (7.3)
The momentum is
P=> n(cic,—dldy,), 7.4
n>1

so that ¢) creates n positive units of momentum, and d, creates n negative units of momentum.
The Hamiltonian may now be written

H:H0+H2+H3+..., (75)
with
Hy=—— (7.6)
o7 6(1+a)’ '
n .
H, :Za[cr‘;cn—kdr’ldn], (7.7)
n>1
and
V3ip,
Apnp(CmCndy — ¢, dindy )0 p man > (7.8)
3 1/_(12 n;p P p p,m+
where we defined
0 if m,n,pe{-1,0,1},
Amnp = |mnp| (7.9)

sgn(mnp)q 2

(mn+1) otherwise

—D(n*-1)(p>—-1)

We also note that the general charges take the following form to linear order,

Q,= __° 5 1/ sgn(n)\/ |n|(n? —1)c, + quadratic,

2+t
— c . [c .
Q= —m&l,o —1y/ Esgn(n)\/ [n|(n2 —1)d, + quadratic. (7.10)

7.1 Spectrum

We can now work out the spectrum to the first few orders in the 1/4/c expansion. Starting
with the free theory, H = Hy + H,, we define the obvious vacuum state c,|0) = d,|0) =0, for
n=2,3..., and then build up the Hilbert space by acting with the creation operators (c )
This is of course the theory of a free scalar, except that the n = —1,0,1 modes are absent. In
term of the number operators N = >, _ ncic,and N =3 _, ndZdn we have

_ c +N+Iv+
 6(1+a) a T
P=N-—N. (7.11)

Next we go to O(1/+/c) by including H. The spectrum (7.11) has degeneracies, and so we
need to apply degenerate perturbation theory, which as usual involves computing the matrix
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elements of H; between states within the same degenerate subspace and then diagonalizing
within each subspace. Since [P,H;] = 0, the only potentially nonzero matrix elements are
those involving states of the same P. Along with the equal energy requirement, we see that
the two states must have the same N and the same N values. We now note from the explicit
form of Hs that each term involves either a single rightmoving c-type operator, or a single
leftmoving d-type operator. Such operators necessarily change the value of either N or N, and
hence the matrix elements in question all vanish. The vanishing of the matrix elements of H
between degenerate states implies that the energy is uncorrected at O(1/4/c), as predicted
from the TT analysis.

Given that H; does not affect the spectrum we can expect to be able to remove it by a
unitary transformation. Indeed, if we define

U=evX, (7.12)

with (the primed sum indicates that the p = 0 term should be omitted)

V3pe v 1
K=—"7 n;p ;Am’n’p(cmcndp — ¢, dnd,)8 p min (7.13)
it is easy to see that
Hy+ H,+Hy = U(Hy + Hy)U™ + quartic, (7.14)

where the quartic terms are O(1/c). The relation (7.14) makes it manifest that there are no
corrections to the energy spectrum at O(1/4/c). We do of course expect nontrivial corrections
to the spectrum at O(1/c) coming from H,, which we have not computed.

8 Expectation for the spectrum at O(1/c) and beyond

A main result of this paper was the classical Poisson bracket algebra obeyed by the boundary
charges (Q,,,Q,). The quantum version of this algebra should act on the Hilbert space and
is expected to determine the spectrum. Due to the nonlinear nature of the algebra there are
severe ordering ambiguities in passing from the classical to quantum case. One way to resolve
these is to extend our analysis in Section 7 to higher orders in the 1/c expansion, which here
plays the role of #i. Rather than doing so, in this section we will see how far we can get in
deriving the spectrum by making some educated guesses regarding how the charge algebra
acts in the quantum theory. As we will see, with some plausible assumptions we can obtain
the 1/c corrections to the energies, as well as get a glimpse of how things work at higher
orders. A more systematic treatment is left to the future.
We introduce generators (L,, L,) as in (6.4). The energy and momentum operators are

c — —
H=————+Ly+Ly, P=Ly—1L,. 8.1
6(1+a) 0 ° o0 -1
Now, with p. = 0, we have a pair of Virasoro algebras and (L_, ,_f_n) act as ladder operators
for (H, P), yielding the spectrum H = —55 + N + N and P = N —N. This ladder property is no
longer true at nonzero p,, as we see from (6.5). We therefore define

a+1 a—1—
L = 5 L,— 5 L_,,
- +1-— -1
I =4 e~ (8.2)

n= Ty T T b
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which obey

[H,L] :—%L;+O(1/c),

[H,I.]= —ﬁf; +0(1/c),
[BL ]1=-nL,,
[RL,1=nL,, (8.3)

where we have replaced Poisson brackets by commutators using the rule i{-,-} = [-,-]. The
form of the primed generators may be understood by comparing to the Killing vectors of global
AdS; written in (A.7).

At order c® we define the vacuum state to obey L'|0) = f;lO) =0 forn=-1,0,1. We

then fill out the Hilbert space by acting with strings of L’  and f/_n operators, and let (N, N)
be the associated level numbers. From (8.3) this gives the energy spectrum
c N+N

E:_6(1+a)+ " +0(1/c), (8.4)

in agreement with (1.2). We also have P =N —N.
Now we go to order 1/c. At this order we find

n 12p
[H,L}]=—=L, — : (LL)n,
a ca
—/ n— 12p
[H,Ln]z—aLn o < (LL)_n, (8.5)

where are writing (L’ f/)n Zp N +p_ and we note that this operator suffers from an or-
dering ambiguity at this order. This leads us to look for a modified Hamiltonian, for which

(L;,f;) act as ladder operators. We define

12p,

H =H—AH, AH= aLOZO+.... (8.6)

The ... refer to nonzero mode contributions to AH, which we return to in a moment. We then
compute

/ N+N
H =~ + S ) + 001/, 6.7

where |1 %) denotes a state with levels (N ,N), produced by acting on the vacuum with a

string of L , and f/_n operators. To obtain (8.7) we first of all chose to define (L’ f/)n via a
symmetric ordering. Second, we have only explicitly verified that the part of (8.7) which is
sensitive to the zero mode part of AH is satisfied, and we have assumed that the nonzero
mode part of AH can be chosen to satisfy the rest of (8.7). This latter point is a gap in our
argument that needs to be filled.

Assuming this holds, we have now succeeded in diagonalizing H’. However, we interested
in the eigenvalues of H, not H’. To obtain the former, we write H = H'+ AH, and view AH as
a perturbation of H’, whose eigenvectors and eigenvalues we know. The 1/c correction to the
eigenvalues of H are given by standard first order perturbation theory, namely by evaluating
the expectation value of the perturbation in the unperturbed state. To implement this we write

3pc

AH = ((LO +10)2 = (Lo—Lo)?). (8.8)
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Using (8.5) we obtain

3
<¢N,N|AH|¢N,N> = CI;C [

(N +N)?
==

. —(N—N)2]+(9(1/c2). (8.9)

Combining this with the lower contributions we arrive at

B c N+N+%(N+N)2—a2(N—ﬁ)2

T 6(1+a)  «a c o +0(1/c?), (8.10)

in agreement with (1.2).
We can also shed some light on how the all orders T T energy spectrum will arise. We note
that the exact spectrum,

_ C
6P,

12 —. 36 —
E (1—\J1+Pc_79c(N+N)+C_29?(N—N)Z) (8.11)

can be rewritten as
3 _
E—ﬁ(J:"Z—IJZ):—lC—2 +N+N, (8.12)
c

with P = N—N. This indicates that if we work out (H, P) expressed in terms of (c,,, d,,) obeying
[c;rn, ¢l = [dr’;, d,] = 6, and apply a unitary transformation we will obtain

3 + -
U(H_%(Hz_pz))U' :—1(:—2 +Zn(cr’1cn+d::dn). (8.13)

n>1

Indeed we already established a low order version of this in (7.14) when we transformed
away the cubic terms in H by a unitary transformation. This line of thought is similar to [40],
where the interpretation of the T T deformation as implementing a unitary transformation was
developed.

9 Discussion

In this work we developed the canonical formulation of pure 3D gravity with Dirichlet bound-
ary conditions imposed on a timelike cylinder of finite spatial circumference. We computed the
Poisson bracket algebra of observables in this theory, which are the Fourier modes of the bound-
ary stress tensor, and obtained a nonlinear algebra. This nonlinear algebra is a one-parameter
deformation of the usual pair of Virasoro algebras present with asymptotically AdS; boundary
conditions.

We initiated quantization of this system by applying a strategy analogous to that used in
the coadjoint orbit method. In particular, we restricted attention to the space of solutions
connected to global AdS by boundary condition preserving diffeomorphisms, and used the
diffeomorphism functions as coordinates on the orbit. Unlike in the asymptotically AdS; case
where the stress tensor is readily expressed in terms of these functions via the Schwarzian
derivative, at finite p. no analogous parameterization is immediately apparent, and so we
worked perturbatively by expanding the diffeomorphisms around the identity. We carried
this out far enough to check that the free spectrum and the leading cubic interaction are in
agreement with the prediction from TT (in particular the cubic interaction was shown to
vanish after implementing a unitary transformation).
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The charges considered here are different functions on the phase space than those in [44],
and their algebra differs as well. For the purposes of quantizing the theory, which was antic-
ipated to lead to problems in the setup of [44], our choice to label the charges in terms of
fixed functions of the state-independent coordinates on a fixed time surface turned out to be
well-suited. It would be interesting to apply this procedure for general T T-deformed theories
within a purely field-theoretical framework.

The most obvious extension of this work is to carry out quantization to higher orders in
the 1/c expansion. This is quite challenging if one follows the precise method used here, but
is likely simplified by performing a field redefinition at an appropriate stage. We expect to
be able to reproduce the full TT spectrum, inasmuch as the QFT derivation of this spectrum
only involves assuming certain properties of the stress tensor which appear to be satisfied by
the Dirichlet cutoff prescription. Of course, we would like to obtain more than just the energy
spectrum; in particular we aim for quantum expressions for the stress tensor operator, which
would allow us to compute its correlators at finite p., which in turn would shed light on the
(non)locality of TT-deformed CFTs.

There are also other natural extensions of this work, such as the quantization of other orbits
describing conical defects (see [79,80]) and black holes, and considering curved boundaries
(e.g. [81,82]), which would make contact with the challenge of defining the TT deformation
on a curved background geometry [83]. Finally, it would be interesting to apply this formalism
to different numbers of dimensions, most immediately to two-dimensional JT gravity where
one could make the connection with the results of [30,31].
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A Global AdS; Killing vectors

Here we write out the form of the six Killing vectors of global AdS;, adapted to our coordinates
with a boundary at p = p.. The metric takes the form

dp® 1 [Q1—pp LLYdW +(p —p)LdW][(1— pp LLYAW + (p — p)Ldw]

ds? = 5 = , (A1)
40 p (1—p2LL)?
with
2
— 1—4/1+
£:£:£O=—(—pc) (A.2)
Pc
and we are taking w = ¢ +it and w = ¢ —it with ¢ = ¢ +2n. In these coordinates the origin
isat p =—1/L,.

On the other hand, a more standard form of the global AdS;, adapted to the asymptotic
boundary is

d 12 1 /N2 1 /N2
P2 p P

with ¢’ = ¢’ + 2m. The two forms of the metric are related by

t
p/:—4£0p’ t/:—a’ ¢)/: ¢), (A.4)
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with a = /1 +p,.

Writing w’ = ¢’ + it’ the Killing vectors in the primed coordinates system are 9,,, &5 and

2
1+ 2 1 p’
gn =e" p1/62 O + Ep—pxzawl + inp/ap’ , n==£1,
1-T% — T
1+ /
— 1+ 1
£, =e W ;2awf+§p—waw,—inp’ap, , n=+1. (A.5)
1-T5 1-T5
These obey
[E1,E4]1=—2i3,,, [&,E1]1=2id.. (A.6)

The Killing vectors in the unprimed coordinates are then obtained from (A.4); here we just
write their form when restricted to the p = p, surface, and evaluated at t =0,

; a+1 a—1
g=e [ 220,420,

= ; 1 -1
gn = e—m¢ |:a-2i_ o5 + z aw] : A.7)

B Gravitational boundary charges

In this appendix we include a few more details on the construction of boundary charges within
the covariant phase space approach to gravity. The general formalism is discussed in many
places (for pedagogical treatments relevant to our considerations we recommend [27,72]); in
practice, almost everything we need is contained in [54].

We consider the Einstein-Hilbert action in (d +1)-dimensions, with Lagrangian (d +1)-form

— 1 _ d+1
L= (R—2A)ygd""'x. (B.1)

Writing its variation as 6L = E*”6g,,, + d© yields the symplectic potential d-form

=—— d
@__167.[G(guavv(sgav_gaﬁvuéga/j)\/g(d X)H' (B.2)
Using
Vlu5gaﬁ = gvaél“ll’ﬂ + gvﬁ6FJN = 2gv(a5l—'ﬁv)'u’ (B.3)
we can rewrite © as
= —1 ap sTH pa P d
©= _167rG(g STY, — 8810, ) V/E(d*x), . (B.4)

Viewing © as a 1-form on phase space and applying the exterior derivative § it is straightfor-
ward to compute §© = J*,/g(d%x), with

a 1 a 1 a 1 a
J [SI‘W/\(Sg‘“’JrEg“”6lng)—5r‘;v/\(6g “+§g“ 5lng)] , (B.5)

~ 167G

which (up to normalization) is the result in [54]. The symplectic form is then obtained by
integrating over a Cauchy slice, 2 =1 fz dx,,/gJ%, where the factor of i is due to our choice
of Euclidean signature.
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The other main result we need is (3.16)-(3.17), which establishes that the charges associ-
ated to diffeomorphisms are pure boundary terms. This is a straightforward, though moder-
ately lengthy, computation. The result for X*” is given in [54]. Our expression in (3.17) has
some sign differences compared to [54], which is due to the fact that in our conventions we
take 6¢g,,, to commute with 6.
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