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Abstract For integers k, we consider the affine cubic surface Vi given by
M(x) = xl2 + x% + x% — x1x2x3 = k. We show that for almost all k¥ the Hasse
Principle holds, namely that Vi (Z) is non-empty if Vi (Z,) is non-empty for
all primes p, and that there are infinitely many k’s for which it fails. The
Markoff morphisms act on Vj(Z) with finitely many orbits and a numerical
study points to some basic conjectures about these “class numbers” and Hasse
failures. Some of the analysis may be extended to less special affine cubic
surfaces.

Mathematics Subject Classification 11D25 - 11D45

1 Introduction

Little is known about the values at integers assumed by affine cubic forms F
in three variables. Unless otherwise stated, by an affine form f in n-variables
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we mean f € Z[xy,..., x,] whose leading homogeneous term fj is non-
degenerate ! and such that f — k is (absolutely) irreducible for all constants
k.Fork € Z, set

Vierp = {X = (x1,x2,x3) © F(X) =k}, (D

and v (k) := |Vi, r(Z)|. The basic question is for which k is Vi r(Z) # @, or
more generally infinite or Zariski dense in Vi g ?
A prime example is F' = §, the sum of three cubes:

S(x1,x2,X3) = X + 3 + x3. )

There are obvious local congruence obstructions, namely that Vi s(Z) = ¢
if k = 4 or 5 (mod 9), but beyond that it is possible that the answers to all three
questions is yes for all the other k’s, which we call the admissible values (see
[20,38]). It is known that strong approximation in its strongest form fails for
Vi.s(Z); the global obstruction coming from an application of cubic reciprocity
[16,18,28]. Moreover, [33] and [3] show that V; s(Z) is Zariski dense in V] g.

The case when the cubic polynomial F(x{, x2, x3) factors into linear fac-
tors can be studied algebraically using divisor theory, and is apparently quite
different to our irreducible F. If F is the split norm form N (x) = x|x2x3, then
every Vi n is non-empty, and for k& non-zero, vy (k) is finite and is a divisor
function.

For a Q-anistropic torus given by N (x) = Nmg q(a1x1 + az2x2 + a3x3),
where o1, oo, a3 is a Z-basis of an order in a cubic number field K, the
Dirichlet Unit Theorem coupled with the action w — uw of the unit group
on the homogeneous space and the theory of divisors, allows for the study
of Vi n(Z). It consists of a finite number by (k) of orbits (putting hy (k) =
oy (k) = 0if Vi y = 1), is infinite if it is non-empty and is Zariski dense if K
is totally real. The dependence of h (k) on k is subtle, especially if the class
number H of the order is not one. Most k’s are not represented; in fact [40]
shows that

1
[{Ik] < X :oy(k) # 0} ~ E\{|k| < X : k admissible}| ~ CX (log X)~ 7,
3)

as X — oo. The question of the density of Hasse failures for norms of elements
in a number field K is studied in [14].

To measure the richness of representations by f, we say that f is perfect if
Vi, (Z) is Zariski dense in Vi ¢ for all but finitely many admissible k’s; we

! That is it cannot be transformed to a polynomial of fewer than n variables by a linear change
of variables.
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Integral points on Markoff type cubic surfaces 691

say it is almost perfect if the same holds for almost all admissible k (in the
sense of natural density); and f is full if v (k) — oo as k — oo for almost
all admissible k’s. For an affine form, it follows from [32] and [41] that the
admissible k’s are given in terms of a congruence condition as in the case of
S.

Much more is known about cubic forms in the “subcritical” case of forms in
four or more variables or diagonal forms f = xf' +.. .—i—xZ” with Z?:] aj_l >
1 and b > 3 (see [11,30,45] for example) and in the “super-critical” case of
two variables [24]. The basic analytic feature in the subcritical case is that the
average number of representations of k is k® (log k)4 for some § > 0, while in
the critical case, § = 0.1If f isacubic polynomial,n > 10and fj is nonsingular
then f is perfect [13].2 In a recent paper [30], it is shown that if f = fj and
is nonsingular with n > 5, then f is full, while conditional on the Riemann
Hypothesis for certain Hasse-Weil L-functions, the same is true for n > 4.
Moreover, it is conjectured there that any such f with n > 4 is perfect. For
cubic f in two variables (supercritical case) the celebrated theorems [44], [43]
assert that Vi ¢(Z) is finite and moreover only for very few of the admissible
k’s is Vi ¢(Z) non-empty [42].

Returning to the critical dimension n = 3 for affine cubic forms, there are
well-known examples of F which are not perfect, see ( [17,37])% and also
our example of M below; however it is possible that F is always full (see the
discussion at the end of the Introduction).

This paper is concerned with F' = M where

M(x) = x12 +x% +x32 — X1X2X3. @

The affine cubic surface Vj 3(Z) was studied by Markoff [35,36]; the points
(x1, x2,x3) € Vo,m(Z) with x; € N being essentially the “Markoff triples”.
The reason that one can study Vj »(Z), or more generally Vi p(Z) is that
there is a descent group action albeit non-linear. The Vieta involutions 7/; with
V1 (x1, x2, x3) = (x2x3 — X1, X2, x3) and similarly for 75, 73, preserve M,
as do permutations of the x;’s and switching the signs of two of the x;’s.
We denote by I' the group of polynomial affine transformations generated as
above. Then, I" preserves Vi ys(Z) and except for the case of the Cayley cubic
with k = 4 (see Sect.4.3), Vi y(Z) decomposes into a finite number by (k)
of I"-orbits. For example, if k = 0, then h,(0) = 2 corresponds to the orbits

2 They show that | Vi, £(Z)| = oo for k admissible from an asymptotic count which is flexible
enough to deduce that Vi ¢(Z) is Zariski dense in Vi r.

3 The projective cubic surface for [17], namely F(x1, x3, x3) = lei with F(xq, xp,x3) =
SX? + 12x§’ + 9x§’ , fails the Hasse principle over Q; from which it follows that Vi r(Z) fails

the Hasse principle over Z for k = 10w?. There are many other such projective cubic surfaces
over QQ (see Sect.4 of [12]).
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692 A. Ghosh, P. Sarnak

of (0,0,0) and (3, 3, 3) [36]. If Vi m(Z) # ¥ (so that hp(k) > 0)and k > 5
or k < 0 with k not a square, which will be our cases of interest, then each
I"-orbit is infinite and even Zariski dense in Vi ps (see [15,21] and Sect. 5). In
particular, for £ > 5 and & not a square, or k < 0

Vim(Z)y #0 it Vi p(Z) is Zariski dense in Vi py. &)

Moreover, Vi p(Z) contains polynomial parametric solutions x(¢) if and only
if k = 4 + v2, in which case it contains a line (see Sect. 5 for a direct proof).
In [10] and [9], it is shown that these affine cubic surfaces with Vi 3/ (Z) # ¢
satisfy a form of strong apgroxirnation,4 after taking into account the possible
finite orbits of ' in Vi 3/(Q). Our goal in this paper is to study the set of k’s
for which b (k) > 0.

The first issue is to determine the congruence obstructions for k. This is ele-
mentary and in Sect. 6 we show that Vi y/(Z/p"Z) # () unless k = 3 (mod 4)
or k = £3 (mod 9). Recall that k is admissible means k does not satisfy any
of these congruences. The number of 0 < k < K (or 0 < —k < K) which are
admissible is %K + O(1). Any admissible k for which h(k) = O is called a
Hasse failure (since in this case Vi p(Z) is empty but there is no congruence
obstruction).

In order to study hjs(k) both theoretically and numerically, we give an
explicit reduction (descent) for the action of I" on Vi (Z). For this purpose,
it is convenient to remove an explicit set of special admissible k’s, namely
those for which there is a point in Vi »(Z) with |x;| = 0, 1 or 2. These k’s
take the form (i) k = u?+v2 or (ii) 4(k — 1) = u?+3v? or (iii) k = 4+u?. The
number of these special k’s (which we refer to as exceptional) with0 < k < K
is asymptotic to C’ \/loLTK‘ The remaining admissible k’s are called generic (all

negative admissible k’s are generic). For them, we have the following elegant
reduced forms

Theorem 1.1 (i). Let k > 5 be generic and consider the compact set
Si=ueR :3<u <up <us, ui+uj+u3+ujuus =kj.

The points in S,“: (Z) = S,:FDZ3 are I'-inequivalent, and anyx € Vi y(Z) is
[-equivalent to a unique pointw’ = (—uy, uz, uz) withu = (uy, uz, u3) €
3L (D).

(ii). Let k < 0 be admissible and consider the compact set

_ 1
S =lueR:3<u < up Su3 = Uy, u? +u3 + u3 — uyuquz = kj.

4 nits strongest form this fails as is shown using quadratic reciprocity in Sect. 8, see (20).
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Integral points on Markoff type cubic surfaces 693

Fig. 1 Lattice points and
fundamental set (triangular)
for k = 3685

Fig.2 Closeup of
fundamental set (triangular)
for k = 3685

The points in §; (Z) = §;, N 73 are I-inequivalent, and any x € Vi yp(Z)
is I'-equivalent to a unique point w = (uy, uz, u3) € §; (Z).

The Theorem is illustrated for k > 5 in Figs. 1 and 2 with £ = 3685
where h;(3685) = 6, and for k < 0O in Figs. 3 and 4 with k = —3691,
where b (—3691) = 9. The lattice points Vi p(Z) are highlighted and the
fundamental sets indicated in a polygonal region.

Some simple consequences of Theorem 1.1 are (see the discussion in Sect. 2
and also Secs.7 and 8) :
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694 A. Ghosh, P. Sarnak

Fig. 3 Lattice points and
fundamental set for
k = —3691

Fig. 4 Closeup of fundamental set for k = —3691

(a). Vue(Z) = 0, that is by (46) = 0, this being the first positive Hasse failure.

(b). har(—2) = 1 with all solutions equivalent to the point (3, 3, 4); while
k = —4 is the first negative Hasse failure.

©). buk) <. |k|%""8 as k — Zo0. This follows from the fact that when
considering the values taken by the corresponding indefinite quadratic
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Integral points on Markoff type cubic surfaces 695

form in the y and z variable, for each fixed x, the units are bounded in
number due to the restrictions imposed by the fundamental sets.

(d). Let b3, (k) = |§F(Z)| where £ = sgn(k), this being defined for any
k. Then Theorem 1.1 implies that for generic k, bic,l(k) = hp (k) while
otherwise hs (k) < hff,,(k). We have

> b (k) ~ CEK (log K)?, 6)
k4

lk|<K

where C* > 0 and K — oo (see Lemmas 7.2 and 7.3).

So, as expected in this case of critical dimension 3, the numbers ;s (k) are
small on average. On the other hand the fact that this average grows, albeit very
slowly, is a key feature as it suggests that b, (k) might be non-zero for many
k’s. In Sect. 10, we report on some numerical experiments using Theorem 1.1
to find the Hasse failures among the generic k’s when 0 < k < 6 x 108, These
suggest that

Z 1~ CoK?, (7)

0<k<K
k admissible
b (k)=0

with Cop > 0 and 6 =~ 0.8875... We also provide results concerning other
statistics for the hys(k)’s for k near this range (see Sect. 10 for the numerics
concerning the numbers b, (k) and some conjectures that these support).

Our main result concerns the values assumed by M and the Hasse failures
in (7); we prove that M is almost perfect but not perfect.

Theorem 1.2 (i). There are infinitely many Hasse failures. More precisely, the
number of 0 < k < K and —K < k < 0 for which the Hasse Principle
fails is at least «/E(log K)_% for K large.

(ii). M is almost perfect, that is

#{|k| < K : k admissible, (k) =0} = o(K),

as K — oo and for almost all admissible k, Vi (Z) is Zariski dense in Vy.

Remark 1.3(a). The proof of (i) is based on quadratic reciprocity and a global
factorization that arises for special k’s connected to the singular Cayley
cubic V4 pr. If k = 4 + B2, with B carefully chosen and v’s having its
prime factors in certain arithmetic progressions, we show that Vi y(Z) =
() even though k is generic. Explicit examples are given in Sect. 8. Some of
these obstructions to integer solutions are similar to ones found by Mordell
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696 A. Ghosh, P. Sarnak

[37] for similar cubic equations, and also to the “Integer Brauer-Manin
obstructions” in [18]. Following our posting of an earlier version of this
paper, [34] and [19] computed explicitly the Brauer groups of these affine
Markoff surfaces, as well as the corresponding integral Brauer-Manin
obstructions. They find that the Hasse failures in (i) and (ii) of Prop. 8.1
are accounted for by their obstructions. However, the analysis leading to
Hasse failures in part (iii) of the Proposition uses both reciprocity and
Markoff descent, and they are not accounted for by the integral Brauer-
Manin obstruction alone. In any case, all of these algebraic obstructions
are far fewer (they are of order of magnitude ~/K) than the Hasse failures
that we found numerically, indicating that any simple description of the
latter is perhaps not possible.

(b). In the recent paper [25], the Hasse failure (i) is exploited to give failures
of profinite local to global principles for commutator equations in SL>(©)
for © aring of S-integers.

(c). The proof of (ii), when combined with Theorem 1.1 yields further infor-
mation about the hy;(k)’s for generic k’s. If r > 0 is fixed, then

#{0 < |k| < K : by (k) =1, k generic} = o(K),

as K — 00. So for generic k, b7 (k) — oo for almost all .

(d). Our approach to proving that M is full is to look for points in Vi p(Z)
with |k| < K in a region & where x; is small (roughly of size a power
of log K) and x, x3 vary in a sector (so they are of the same size). R is
contained in the fundamental domains 3,3: and retains the tentacles (cusps)
of the latter, this being critical to ensuring that the average for |k| < K,
of the number of points in Vi p(Z) N SR grows with k. For a given x1, M
is a (indefinite) binary quadratic form in x», x3 and this allows one to use
the methods developed in [8] and [6] to show that M assumes a positive
proportion of the k’s. Our proof that M is full is much more delicate. As
with the proofs that cubic forms in many variables (starting with the case
of a sum of four cubes [22]) represents almost all admissible numbers, we
compare the number of points in Vi j(Z) N R, to an arithmetic function
8 (k) (see Sect.9; here m is a secondary parameter) which is a product of
local densities of solutions. While this heuristic for the count can be way
off for certain k’s (e.g. for the Hasse failures), we show that its variance
from the actual count when averaged over k, is small enough to conclude
that for almost all k’s, 8™ (k) is a good approximation. The fullness
then follows after showing that 8§ (k) is large for most k’s. That M is
almost perfect then follows from (5) and that M is full. The proof of the
vanishing of the variance boils down to examining the “diagonal” and “off-
diagonal” terms in (44). For the first, we make use of the divisor analysis
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Integral points on Markoff type cubic surfaces 697

for varying quadratic forms [6], while for the second a modern treatment of
Kloosterman’s method for ternary quadratic forms [39] allows for uniform
control of the contributions of the varying forms.

To end the introduction, we return to a discussion of the general affine cubic
form F in three variables. The study of the level sets Vi as(Z), for example
(5) using the Markoff group is very special. It applies to F’s of the form
F = Fy + G, where

Fo=cxixpx3 and G = Zaijx,-xj + Zaixi +a, (8)
ij i

withaj; = £1forj =1, 2, 3andc, a, a;j, a; € Z,as well as F’s obtained
from these via integral affine linear substitutions (see Appendix A). Among
these special affine forms are ones for which Vi carry explicit integral points
and even parametric curves, for every k. This coupled with the action of the
corresponding Markoff group leads to Vi (Z) being Zariski dense for every k.
Thus, the form is both perfect and ‘universal’ in the sense that it represents
every k. Explicit examples are

Uji(xy, x2,x3) = X1 +x12+x%+x32—x1x2X3, 9
and
Us(xy1, x2,x3) = x2(x3 — x1) + x% + x% + x32 — X1X2X3. (10)

See Sect. 5 for an analysis of these forms. The only perfect F’s that we are
aware of are of the form (8).

On the other hand, our treatment of the fullness of M applies more gener-
ally. We leave the precise details and proofs of the following comments to a
forthcoming paper. If Fj is reducible in Q[x1, x2, x3], then F is full. In this
case Fy has a linear factor, which is the condition that F' has f-invariant [23]
equal to 1 (see Appendix A for a discussion of these arithmetic invariants of
F). The linear factor yields a rational plane in Fp(x1, X2, x3) = 0 which can
be used as the small variable and to generate a family of planes and of binary
quadratic forms and a tentacled region. If Fj is irreducible in Q[x1, x2, x3]
then our moving plane method fails. Nevertheless one can still create tenta-
cled regions R in R3 using neighborhoods at infinity of the curve Fp(x) = 0
in P2(R). As before, on average over k with |k| < K, the number of points
ra (k) in Vi p(Z) NR grows slowly with k. The study of the variance of rg (k)
from its expected number (i.e. a product of local densities) reduces to counting
points on the hypersurface F'(x) — F(y) = 0 with (x,y) € R x R. While this
is well beyond the available tools from the circle method, a natural hypothesis
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698 A. Ghosh, P. Sarnak

in this context along the lines of ([Hoo16]) 5 would lead to F being full. In
particular, this applies to ' = S in (2). The much stronger suggestion that S
is perfect ( [28]),° which was mentioned at the start is a fascinating one, as
is the question of the existence of any perfect homogeneous F. All k’s are
admissible for the homogeneous form xf + xg’ + 2x33 and it is a candidate for
being both perfect and universal over Z. It is interesting to note that this form
is universal when considered over the S-integer ring Z[é], and has infinitely
many solutions for each k. This is seen by taking

6k
-

6k ¢ 6k

X1=—>5+—-, Xx2=-—5— X3 =
g2 6

€
g2 6
for any unit e.

We point out that the analogous problem for quadratic polynomials in two
variables is very different in that f is never absolutely irreducible, and indeed
the typical such f is never full.

Finally, we note that the Vi r’s for F' = M are the relative character varieties
for the representations of 771(X 1) into SL; (here ¥, , is a surface of genus
g and n punctures) and the group I' is essentially the mapping class group
action on the Vi ps’s (see Goldman [27]). As such, many of the questions that
we address in this simplest case make sense with X1 ; replaced by X, , (see
Whang [47]). In particular it is shown there that the key feature that the integral
points for these varieties consist of finitely many I"-orbits, persists. However
both for ¥ ; and in this more general setting, this finiteness fails when the
integers are replaced by S-integers in a general number ring. This makes for a
quite different picture and analysis to which we will return in a future work.

Notation: For the remainder of the paper we suppress the reference to the
Markoff equation. So for example Vi would mean Vj j;. We also use (%) L to

denote the Legendre symbol (%) to avoid any confusion with fractions.

2 The descent argument revisited

The descent argument was first considered by Markoff in [36], and later
extended by Hurwitz [31] and Mordell [37] (see also [2] for a study of
fundamental solutions associated with a special case of these several vari-
able hypersurfaces). In particular, Hurwitz used a “height” function given by
h(x1, x2, x3) = |x1| + |x2| + |x3|, which was then utilized subsequently in

5 Very recently, Wang [46] has shown that S is full if one assumes various standard conjectures
about automorphic L-functions.

6 Recently, Vi g(Z) for k = 33 and 42 were shown to be nonempty, completing the list of such
for 1 < k < 100 (see Booker [7] and Booker-Sutherland [48]).
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Integral points on Markoff type cubic surfaces 699

the literature. The descent argument led to a finite number of points plus those
with minimal height. Our initial analysis is a revisit of this descent argument
but without the use of the height function (we later use a new function for a
finer analysis).

For k € Z, consider the set of integral points on the Markoff surface

Vi : xf + x% + x% — x1xox3 = k. (11)

After invariance by permutations and also changing two signs but leaving
out Vieta involutions (which we call narrow equivalence), we see that (i) if
k < 0, we may consider only solutions 0 < x; < xp < x3, and (i1) if £ > 0,
there are two types of solutions namely those with all variables non-negative
and so 0 < x; < xp < x3; and those in the compact set &1 (k) with exactly
one negative variable and two positive.

For k < 0 we note that x = 0, 1 or 2 are not possible (since they give
k=x3+x3,4k—1) = 2x2 — x3)> +3x3 and (x, — x3)> = k — 4
respectively) so that we assume 3 < x; < xp < x3 in this case.

Whenk > 0,x = 0and x = 1 give at most finitely many triples (x1, x2, x3).
and we denote this set by % (k). Thus in this case, (x1, x2, x3) is a solution
implies it is equivalent (narrowly) to one in & (k) U T(k) or it satisfies 2 <
X1 < x2 < x3.

We now consider the Vieta involution acting on (xp, x», x3), sending it to
(x1, x2, x1x2 — x3). If x;x0 — x3 < 0, so that k > 0, then (x1, x2, x3) 18
equivalent to a solution in & (k). Next suppose x1x — x3 > x3, so that
2x3 < x1x2. Solving for x3 in (11) gives 2x3 = x1xp = 0 where 0 =

\/x%x% — 4(x% + x% — k), so that necessarily 0 = x1x2 — 2x3 < (x] — 2)x3.

Squaring and simplifying gives (x1 — 2)x§ < (xl2 — k).

If x; > 3 and k > 0, we conclude that x% < xlz, a contradiction. If x| = 2,
we conclude that k < 4. Thus we derive a contradiction for all £k > 4, so
that in this case we have 0 < x{x» — x3 < x3. But more is true, namely
0 < x1x2 — x3 < xp shown as follows: if x, < xjxp — x3 < x3, then
X1x2 < 2x3 < 2(x; — 1)x2, so that necessarily 2x3 = x;x3 + o. Then
o < (x1 —2)x, and the argument above gives a contradiction. Hence we have

Lemma 2.1 If k > 4 and if (x1, x2, x3) is a lattice point on Vi in (11), it is
equivalent to one in the compact set S (k) U T(k) where

ST (k) = {(—M,Xz,xs) D3 <X Sx0 <33 X XF 4 XF 4 X101 =k] nz3,

or if not then it is equivalent to (x1, x1x2 — X3, x2), with 3 < x1xp — x3 <
xp < x3 and x| > 3.
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700 A. Ghosh, P. Sarnak

The special cases 1 < k < 3 are settled as follows: (i) there are no solutions
when k = 3 since there are none modulo 4; (ii) for k = 2, we can use the
descent argument above and conclude that we need only look for solutions
to x2 + y? + z2 4+ xyz = 2 with all variables non-negative or we solve the
Markoff equation with x; € {0, £1, £2}, giving us the point (0, 1, 1) and its
infinite orbit under I'; and for £ = 1, the same analysis results in the point
(0, 0, 1), for which there is only a finite orbit under I'. The cases k = 0 and
4 we consider in the next sections (they correspond to the original Markoff
surface in Sect. 3.1 and the singular Cayley surface in Sect. 4.3).

For k < 0, the estimate (x] — 2)x§ < (x% —k) given above is still valid when
we assume x1xp —x3 > x3, with 3 < x; < xp < x3.Then, if x; > 4, it follows
that 2x3 < x7 + |k|, which then implies x, < /K], so that x3 < %2 < ";—‘.

If x; = 3, then clearly xo < /9 + |k|, and so x3 < % 9 + |k|. The same
argument shows that for large values of |k|, x; < |k|.%, Xy K % and

x3 K +/|k|x1. Next, supposing xo < x1x» — x3 < x3, we see that the point
(x1, x2, x3) is '-equivalent to (y1, y2, y3) = (x1, X2, X1 X2 — x3), where now
Y1y2 — y3 > y3, the same inequality considered above. Thus we have

Lemma 2.2 Fork < 0, if (x1, x2, x3) is a lattice point on Vi in (11), it is then
equivalent to one in the compact set S~ (k) C U(k), where

1
& (k) = {(X1,X2,X3) 3<x1=<x=<x3= 5X1X2} N Vi(Z),
and
3
(k) = {(XI’XZJQ) 3=<x1=x=VIkl+9 3<x3= §(|k| +9)},

or if not it is equivalent to (x1, X1x2 — x3, X2) With3 < x1x2 — x3 < X2 < X3
and x| > 3.

The lemmas above form the basis of the descent argument with repeated
application of the Vieta involution so that ultimately any integral solution is
equivalent to one in a corresponding finite set.

3 Bhargava cubes and Markoff

To construct the fundamental sets in the next section, we utilize a function
A(x) given in (12), that proves useful in tracking the images of points under
the action of the group I'. While we could define A without comment, we give
here our original construction using Bhargava cubes.
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Integral points on Markoff type cubic surfaces 701

Fig. 5 Bhargava cube XY x5
associated with M / /
1 x2
/ xz | / |
T

Let x1, xp and x3 be arbitrary integers and consider the Bhargava cube ([4])
as shown in Fig. 5.
The Bhargava slicings give rise to the three matrix pairs:

(1 x| [ x) x
M, = ,ov =T
X3 X1 xp 1
[ 1 x3] [ x5 x1 ]
M, = o M=
X1 X2 x3 1
(1 x; ] [ x5 x1 ]
M3 = 1, N3 = 34
X2 X3 xy 1

These in turn give the following three quadratic forms Q; (u, v), where

01 = (x2x3 — xu’ + (1 +x7 — x5 — xDuv + (xax3 — x1)v?,

07 = (x1x3 — xz)u2 + (14 x% — x12 — x32)uv + (x1x3 — XQ)UZ,

03 = (x1x2 — x3)u2 + (1+ x32 — xlz — x%)uv + (x1x0 — x3)v2.

All three quadratic forms have the same discriminant A = A(x1, x2, x3) which
also factorizes to give

A= —l—x% —x% - x%)2 —4(x1x3 — x2)%,

12
=T +x;+x2+x3)(d+x2 —xp —x3)(1 +x3 —x1 —x)(1 +x1 —x2 — x3). (12)

Note that

(a). A =0or 1 (mod4) depending on if x% + x% + x% is odd or even respec-
tively.

(b). A is invariant under permutations.

(c). Aisinvariant if one variable is fixed and the sign is changed on the other
two variables.

(d). If 2 < x; <x3 <x3,then A < Qifandonly if xp < x3 < x1 + x3 — 2.
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3.1 Thecasek =0

Recall (Markoff [36]) that the solution set has two orbits with fundamental
roots (0, 0,0) and (3, 3, 3). We have A(0,0,0) = 1 and A3, 3,3) = —80.
We show here that

A(x1, x2,x3) <0 if and only if (x1, x2, x3) = (3, 3, 3). (13)

Thus, the two orbits each have a minimal value for A, taken at the associated
fundamental roots. In other words, there are two components of Vy(Z) and
in each component A has a minimum value, taken at a unique point, which
can then be used as a generator for that component. This phenomenon repeats
itself when k > 5 below.

We prove (13) as follows: since x12 + x% + x32 = x1xpx3, it follows that
X1, x2 and x3 are all positive or exactly two are negative (we avoid the trivial
solution here). By the properties of A itemized above, we may assume that
1 < x; < x2 < x3. The Markoff equation is equivalent to the equation
(x} — (x5 —4) — 16 = (2x3 — x1x2)%, from which it follows that 3 <
x1 < xo < x3, which we assume. Suppose A(xy, x2, x3) < 0, so that x, <
x3 < x1 + x2 — 2 < 2x». Solving for x3 in the Markoff equation gives us

2x3 = x1xp = 0, where 0 = \/(xlxz)z —4(x} +x3) > L.

If x; > 4 we must discard the positive sign since x3 < 2x;. So in this case,
X1x2 — 0 = 2x3 > 2x;, from which, by expanding and simplifying, one gets
4x§ < xlx% < x% + 2x% < Sx%, a contradiction.

For x; =3, wehave xo < x3 <x; +xp —2=x,+ 1, sothat x3 = xp or
x3 =xp+1.If x3 = xo, Wehave9+2x%—3x§ = 0sothatx; = xp = x3 = 3.
Finally if x3 = x, + 1, we must have 9 + x5 + (x2 + 1) = 3(x3 + x2), which
is impossible.

4 Fundamental sets and Theorem 1.1

The descent arguments of Markoff, Hurwitz and Mordell show that there is a
finite set of lattice points from which all lattice points of the Markoff surface
(11) can be obtained as images under I'. This section provides a proof of
Theorem 1.1 by showing the inequivalence of the points in the finite set.

4.1 Thecasek > 5
Recall from Sect.?2 that if k > 5, any solution x = (x1, x2, x3) to the Markoff

equation (11) is equivalent to one in a compact reduced set (by Lemma 2.1
and descent). We order the coordinates first such that 0 < |xq| < |x2| < |x3].
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In the next section, we show that the Markoff equation has no solutions for
those k’s (positive or negative) satisfying any of the following congruences:
k = 3 (mod4) and k = £3 (mod 9), these then accounting for %K + 0()
members in the interval 5 < k < K, and we call them non-admissible; the non-
admissible k’s have local obstructions. The remaining k’s we call admissible,
and there are A(K) = 17—21( + O(1) of them.

We say that k is exceptional’ if there is a solution to (11) with |x il=0,1
or 2; these k’s satisfy at least one of the equations (i) u?> + v> = k , (ii)
u? 4 3v% = 4(k — 1), or (i) u® = k — 4. Consequently, for k’s in an interval
of length K, they account for at most O (K (log K )_%) members, and we

will ignore them in what follows. The remaining 17—21( + 0 <K (log K )_%>

numbers k in the interval 5 < k < K we shall call generic.

It follows from Sect.2 that every solution x associated to a generic k is
equivalent to one in the set G (k) given in Lemma 2.1. We now show that the
elements in this set, when non-empty, are inequivalent under I, so that & (k)
is a fundamental set.

We will use the A-function given in (12) to form an ordering on the tree
of solutions to the Markoff equation. Given any x = (x1, x2, x3), the three
Vieta maps are T (x1,x2, x3) = (x2x3 — X1, X2, X3), Th : (X1, X2, X3) >
(x1,x1x3 — x1,x3) and 75 : (x1, x2, x3) — (x1, X2, x1x2 — x3). Recall that
the group I" is generated by permutations, double sign-changes and the Vieta
maps. The A-function is invariant under the first two motions and we denote
A; = A o%;. Then, itis easy to check that when x is a solution of the Markoff
equation, one has

A1(x) — A(X) = x2x3(xax3 — 2x1) [2(k — 5) + (x3 — 4 (x3 — 4],
Ar(x) — A(X) = x1x3(x1x3 — 2x2) [2(k — 5) + (x7 — D) (x3 — H)], (14)
A3(x) — A(X) = x1x2(x1x2 — 2x3) [2(k — 5) + (xf = H (x5 — D]

The expressions in the square brackets in all three formulae above are strictly
positive when k is generic and if x is any solution of the corresponding Markoff
equation.

We set up the tree associated with solutions as follows: each solution x =
(x1, x2, x3) will be a vertex and neighboring vertices are edge connected if
they are obtained from x by one of the three Vieta maps. As such, we identify
coordinates if they are obtained by permutations or double sign changes (noting
that A is unchanged under them). By this latter identification, the coordinates

7 The removal of the points x with one of its coordinates in {—2, —1, 0, 1, 2} corresponds to
avoiding the region at infinity on which I" acts ergodically (when k& > 20) in [27], and to the
notion of “small” in [1] Sect. 5.

@ Springer



704 A. Ghosh, P. Sarnak

are one of two types, namely all positive or exactly one negative. It is then
possible to rearrange them into the following canonical forms: (xp, x2, x3) or
(—x1, x2, x3) with 3 < x1 < xp < x3. We call the former positive nodes and
the latter negative nodes. By Lemma 2.1, for k > 5, every positive node is
equivalent to a negative node (or otherwise, by descent is equivalent to the
node (3, 3, 3) which corresponds to k = 0).

We look at the action of the Vieta maps on a positive node. It is clear
that xox3 — 2x1 and x;1x3 — 2x, are strictly positive so that Aj(x) > A(X)
and A>(x) > A(x). Moreover, the nodes 7} (x) and 75 (x) are both positive,
Next, the argument showing descent in Sect.2 shows that xjx» — 2x3 > 0
is impossible so that A3(x) < A(x). Here 75(x) may be either positive or
negative. We represent these observations by the images Fig. 6a, b, where
square nodes are positive nodes, disc nodes are negative nodes, dark nodes are
the Vieta images while the original point is a light node (the vertical ordering
of the nodes is determined by the signs of the A-differences from (14)).

Next, if we begin with a negative node (so that one replaces x; with —x
in the formulae above, it is obvious that A;(x) > A(x) for all i and (after
a double sign change and reordering) that the %; (x) are all positive. This is
represented by Fig. 6c.

It follows now that the tree decomposes into components and each compo-
nent has a root that is a negative node (Fig. 6). Moreover, the negative node
occupies the lowest point on the tree, with all other nodes in that component
being positive (in other words, A has a minimum on each component and that
minimum is determined by a negative node). Thus the negative nodes form a
fundamental set, giving us the first case of Theorem 1.1.

4.2 Thecasek <0

From Sect.2 and Lemma 2.2 every lattice point in Vj is equivalent to one
in &7 (k). We show that the points in this set are inequivalent. First using
(x} =4 (x3 —4) = 2x3 — x1x2)? — 4(k — 4) in (14) and the similar formulae
with the variables permuted, we see that the three terms in square brackets in
(14) are all positive. Thus the signs of the differences of the A-functions in
(14) are determined by the three terms xx3 — 2x1, x{x3 — 2x2 and x1x2 — 2x3.
The first two are obviously positive, and one sees that the last is non-negative if
and only if (x1, x2, x3) € &~ (k) Thus, in the tree determined by these points
one sees that we have nodes of the type shown in Fig. 6¢ with two or three
black square vertices emanating from points in &~ (k), while for points in the
complementary set, we have nodes of the type in Fig. 6a. It follows that the
points in &~ (k) can serve as the roots of the components of the tree, from
which the second case of Theorem 1.1 follows.
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Fig. 6 Node blocks; top: (a, b); bottom: (c)

4.3 The Cayley surface k = 4

Most of the argument above for k > 5 can be applied to the case k = 4, and
we indicate the necessary modifications. First, we consider solutions of the
type (—x1, x2, x3) with x1, x2, x3 > 0 satisfying x12 + x% + x% + x1x2Xx3 =
4. It is obvious that there are only two solutions up to equivalence, namely
(=2,0,0) ~ (0,0,2)and (—1, 1, 1) ~ (1, 1, 2). Hence we need only consider
solutions of the type (x1, x2, x3) with 0 < x; < x» < x3.If x; = 0, the only
solution is (0, 0, 2) while if x; = 1, then the only choice is (1, 1, 2). Then by
the descent argument in Sect. 2, if x; > 3, the solution (x1, x3, x3) is equivalent
to one with one of the coordinates equal to 2. It is trivial that the only solutions
of this kind are one of the type (2, a, a), with a > 0 integers. It suffices now
to check the equivalence of these solutions. It is easily checked that the orbits
of (2,0,0), (2,1, 1) and (2, 2, 2) contain no other points of the type (2, a, a)
except themselves, so that we assume a > 3.

Following the three formulas in (14), if x = (2, a, a), then two of the Vieta
transformations keep it fixed while the third creates a node above it, this new
node not being of the same type (we say “above” to mean A;(x) > A(X)).
Also following the argument used for k > 5, if x = (x1, x3, x3), with x; > 3,
then two Vieta transformations create nodes above it while a third creates a
node below it. It is then easily seen that a tree containing a node of the type
(2, a, a) cannot contain a different node of the same type. Hence we have
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Proposition 4.1 The Cayley surface V4(Z) has infinitely many inequivalent
orbits, each determined by a solution of the type (2, a, a), with a > 0.

One checks that the (2,0, 0) ~ (-2, 0, 0)-component has only 1 element
(upto permutation and double sign-change) and so the minimal A-value is
A(—2,0,0) = 9. Next, the (2, 1, 1)-component has only 2 elements namely
(2,1,1) and (—1, 1, 1). The minimal A-value is A(—1,1,1) = —16 while
A2,1,1) = 5. Finally, A(2,a,a) = 9 — 4a*> < 0 for a > 2. Then the
same argument used in Sect. 3.1 can be used to show that any lattice point x
not of these type satisfy A(x) > 0, so that the minimal A-value is uniquely
determined. Thus, even here each component has a unique minimal A-value,
whose point can be used as a generator.

One can use the A-function and the analysis above to deduce a descent
procedure. One concludes that either every positive node descends to a negative
node or if not, there is an infinite chain of positive nodes on which A(x) is
strictly decreasing. The latter is not possible since A(x) > 0 on positive
nodes. There are only finitely many negative nodes in & (k). So we conclude
that there are finitely many orbits. Repeating the analysis in the paper also
shows that all the negative points are I"-inequivalent and in each orbit A has a
minimum value taken at the root of that orbit, so at the only (modulo double
sign-changes) negative point on that orbit.

Using Lagrange multipliers on the region on Vi with x; > 3 and k — o0,
one can show that :

(). minges+ gy AKX) > k2 + ISk% 188k + %kl% +0():
(il). maxyes-) A(X) < k? —418k‘z + 88k — k2 + 0(1);
(ifi). mingeg-x) A(X) > —3k3 + O (k).

v

Hence asymptotically, A behaves like a Minkowski gauge-function, with
“successive minima” taken at the root of the orbits; that is if (k) is the number
of orbits, the first h(k) minimal values (counted with multiplicity) of A on the
lattice points on Vi occur at the negative points.

5 Parametric solutions on Markoff-type surfaces and Zariski density
We show in this section that for generic k, the Markoff surface has no parametric

integral points and that the solution set is Zariski dense. We also consider the
surfaces given by U and U; mentioned in the Introduction.
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5.1 Parametric solutions
Lemma 5.1 Foranyk € Z, let M}/ be the surface given by M*(x) = k, where

3
M*(x) = Z ajx; + (B1x2x3 + Bax1x3 + B3x1x2) +x% +x% + E)C% —xyx2x3,  (15)
j=1

wheree = £landaj, Bj € Zforall j. Suppose there are polynomials P;(t) €
Z[t] each with non-zero degree, such that M*(Py, Py, P3) = k identicallyint.
Then there are polynomials Q1, Q> € Z[t] of non-zero degree and a constant
q € 7 such that M*(q, Q1, Q2) = k identically in t.

Proof Let P; have degree d; # 0 for j = 1,2, 3 as above. By comparing
degrees in (15) we cannot have di = dp = d3, so that there is either a unique
d; exceeding the other two or exactly two of the degrees are the same. The
latter does not happen as it implies that at least one of the polynomials is a
constant. Hence (comparing degrees in (15)) we have that d” = d’ + d for
some choice of the degrees. It will not matter which subscript represents the
largest degree in what follows, so that we put d3 = d| + dp, with dy, dr > 1.

There is a Vieta affine transformation acting on the surface given by x3 +—
X4 = X1X2 — a3 — Brxa — Pox; — ex3, so that if P4(¢) is the polynomial
determined by x4, we have

P3Py =k — P} — P; — B3P1 Py — a1 Pl — o Ps,

identically in ¢. If d4 is the degree of P4, we have d3 + dy < 2max(dy, d3), so
thatds < max(d;, d») —min(d;, d2) < max(dy, d2). Thus we have polynomi-
als Py, P», Pyinplaceof Py, P>, P3representing integral points on the surface,
with the maximal degree reduced by at least one and the new maximum degree
is determined by P; or P,. Either P4 has degree zero, in which case we are
done, or if not, all the new polynomials have non-zero degree. Repeating this
descent argument (with a different Vieta transformation) shows that there must
be parametric solutions with at least one polynomial constant, and the other
two polynomials of non-zero degree. O

It is not possible to have parametric solutions to (15) with two of the poly-
nomials constant. It follows from the lemma that if parametric solutions exist
then there exists ¢ € Z and Q1, Q> € Z[t] of the same degree d satisfying
(15) (it is possible to show that d < 2, if it exists). We now consider some
special cases:

1. For the Markoff equation we have Q% + Q% —q Q10> = k—q?*. Comparing
the highest degree term shows that there are integers ¢, g2 such that ql2 +
q% —qq192 = 0. It follows that ¢ = £2 and k — 4 = . Moreover if
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k = 4 + w?, then one has a parametric family of solutions g =2, Q| =t
and 0> =t 4+ w. In particular, this means that if k is generic, there are no
parametric solutions to the associated Markoff level set.

2. Consider the Markoff-like surface x12 + x% — x% — x1x2x3 = k. If we have
parametric solutions as above of the type (Q1, O», q), then the argument
is identical to the Markoff case so that we conclude there are no such
parametric solutions except when k + 4 = w?, in which case we have the
parametric family (¢ + w, ¢, 2). Next, if either x; or x; is ¢, we have the
equation Q% — Q% —q0102 =k — qz, so like the case above, we have
q12 — q22 —qq1q92 = 0. We conclude that ¢ = 0 so that when k # 0, O and
Q> have degree zero, a contradiction. When £ = 0, we have the parametric
family (Q1, 0, £Q1) for any polynomial Q.

Remark 5.2 This surface has the following features: (i) there are no local
obstructions, (ii) for k = 4%k” with @ > 0 and k' odd, it has the integral points
(0, 2“"/i1, 2"‘]‘/7_1), (iii) if K # 1 or > 3, there are infinitely many integral
points, and (iv) there are infinitely many Hasse failures (in particular, k = 94
is a Hasse failure). This latter statement follows from an analysis similar to
that in Prop. 8.1.

3. Consider the linear deformation U; of the Markoff equation consid-
ered in (9), namely x; + xlz + x% + sxz% — x1x2x3 = k. For any integer
k, and ¢ = =1, we have the parametric family of integral solutions
(=12 +k —de, =12 + 1+ k —4¢,2).

4. Consider the quadratic deformation U, of (10): xpx3 — x1x2 + x12 + x% +
x% — x1x2x3 = k. For any k, we have the parametric solutions (—t2 +r+k—
L, —t>+k—1,1).

5.2 Zariski density

5.2.1

We prove (5) for the Markoff surface for k£ not a square (this ensures that
if Vi (Z) # 1, then it has a lattice point with at most one coordinate zero).
First note that if X = (X1, X2, X3) € Vi(Z) and |X;| > 2 for some j, then
|Vk(Z)| = oo. To see this, say |x;| > 2; then the composition of the Vieta
transformation 73 with the permutation of x, and x3 yields the transformation
(x1, x2, x3) > (x1, x1x2 — x3, x2) in I". This preserves the plane x; = x| and
x1 —1
1 0
this element in SL>(Z) is of infinite order, so that its orbit is infinite (since it
is not acting on the origin) and its Zariski closure contains the conic section
{x1 = X1}N Vi. We now argue as in [21]. If Vi (Z), the Zariski closure of Vi (Z)

Vi, and it induces the linear action on this plane. Since |x| > 2,
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is not Vi, then it is contained in a finite union of curves in Vj. Hence there can
be at most finitely many x|’s with (X1, X2, X3) € Vi(Z) with |X;| > 2 (since
otherwise Vi(Z) contains infinitely many distinct conic sections as above).
The same applies to X, and X3, giving |V (Z)| < oo. That is we have shown
that |Vi(Z)| = oo implies that Vi (Z) = Vk. To complete the proof of (5)
note that if |k| > 20 and (X1, X2, X3) € Vi(Z) then for at least one of the j’s,
|X;| > 2 and so |Vx(Z)| # ¥ implies Vi (Z) = Vi. For the k’s with |k| < 20
we check directly that (5) holds. One can show that when k = 1, 9, 49, for
example, Vi y(Z) # ¥ but has only a finite orbit. On the other hand, when
k= k% with k1 having an odd prime factor congruent to one modulo 4, then
Vi.m (Z) has an infinite orbit, and by the argument above, is Zariski dense.
522

We next consider the surface U; discussed above and in (9). The argument
is almost the same as for the Markoff surface except that now we have an affine
transformation and a lack of full symmetry in the variables.

As in the case for the Markoff equation, assume that Vi ¢, (Z) # Vi.u,
so that it is contained in a finite union of curves. Consider the two Vieta
transformations: 7/ (x) = (xox3 —1—x1, x2, x3) and T5(x) = (x1, X2, X1X2 —
x3), keeping x, fixed. Put w = (x, x3)T so that 7} and 74 act on w. By abuse
of notation, we have

T (w) = [_()1 )6121|W+|:_01i| and T5(w) = |:—1xz _01j|W,

so that we write 71753(w) = Aw + b, with

_ _1_)(«-% —X2 _ -1
A_[ Y _l]eSL(z,Z), and b_[o]_

Hence (7173)"'w = A"w + Z?;}) AJb for n > 1. If U5 has order n, it
follows that (A" — I[(A — I)W + b] = 0. Now, if xo # 0, then A has infinite
order and A" — I is invertible, so that we have (A — I)w = —b. This is
impossible since (A — I)~'b is not integral. Hence %4 has infinite order so
that the orbit V175 (x1, x2, x3) with xo # 0 fixed is infinite. The assumption
of Zariski density implies that there are only finitely many x;’s.

Since the surface given by U; is symmetric in xp and x3, it follows that
there are only finitely many x, and x3’s, from which we conclude that there
are at most finitely many lattice points (since x is determined). Starting with
the base point p = (k — 4, k — 4, 2) which is on the surface, we see that this
is impossible since the orbit 775 (p) is infinite if k& # 4. Hence Vi vy, (Z) is
Zariski dense in Vi y, for all k # 4. For k = 4, we use instead p = (—1, 2, 0)
so that w # 0, and the argument above gives an infinite orbit, and Zariski
dense.
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523

The argument for U; is almost identical: we use the Vieta transformations
T1(X) = (x2x3 + x2 — x1, x2, x3) and V3(x) = (x1, x2, X1x2 — X2 — x3), and
have the corresponding matrix equation for 7;73(w) = Aw + b, with

_ 2 _ 2
A=[ T+x xZ}eSL(z,Z), and b=[ xz*"z].
b ) —1 —X2

The analysis is the same as for U; except now we have that A" — [ is invertible
if |x2] > 3. As above, we derive a contadiction of the finite order assumption
since (A — I)~'b is not integral. In particular, taking the base point p =
(k—1,k—1, 1), we conclude that Vi 1, (Z) is infinite if |k| > 4. The reasoning
above using the Zariski density assumption shows that there are only finitely
many x»’s.

Due to the lack of symmetry in the variables, we redo the analysis with x
fixed, using 72753 (w) = Aw + b, with 75 (x) = (x1, x1x3 + X1 — X3 — X2, X3),
% as before, w = (x2, x3)7 and

x;—1 —1

B |:x1(x1 —2) 1 —x;
- 0

} € SL(2,7), and b= [“].

If|x;—1| > 3, weconclude (A—1)w = —b, and derive a contradiction regard-
ing the finite order assumption. Thus the Zariski density hypothesis implies
that there are only finitely many x1’s. Hence, again since x3 is determined by
x1 and x, Vi v, (Z) is finite, giving a contradiction. Thus Vi v, (Z) is Zariski
dense in Vi y, for all |k| > 4. For |k| < 4, a direct computation gives many
eligible candidates for lattice points that lead to Zariski dense.

A much stronger theorem concerning I" invariant holomorphic curves and
structures for the surfaces corresponding to (8) is proved in ([15], Theorem D).

6 Local solutions in Z

Proposition 6.1 Given k € 7Z, the congruence x% + x% + x32 — X[X2X3 =
k (mod p") has solutions for all primes p and n > 1 except for the following
exceptions : k = 3 (mod 4), k = £3 (mod 9).

We break up the proof into several cases.

It is particularly easy to verify the Proposition for powers of primes p > 5
as follows: recall the Fricke trace identity, namely for any real unimodular
matrices A and B,

S(A)? + &(B)* + G(AB)* — G(A)S(B)G(AB) = G([A, B]) +2,
(16)
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where [A, B] = ABA~ !B~ is the commutator, and &() denotes the trace of
the matrix.

Restricting the matrices to SL(2, Z), one obtains integral solutions to (11),
with k = t 4+ 2, where we denote G([A, B]) by t. We have

Lemma 6.2 For any prime p > 5, n > 1 and any integer t, there exists
matrices A, B € SL(2,7Z/p"Z) such that

S(A)? + G(B)> + G(AB)?> — 5(A)S(B)S(AB) =1 + 2 (mod p") .

Proof For

ab e 0 n
A:|:cd:|’ B:[Of]’ A,BeSL2,7Z/p"Z),

we have S([A, B]) = 2adef — be(e? + f2) =2 — be(e — f£)? (mod p").
Since p > 5, there exists e and f such that (e — f, p) = 1 with ef =

1 (mod p™). Then, we choose ¢ so that c(e — f)?> = 1 (mod p™). Finally, we

choosea=1,b=2—tandd =1+ bc. O

Corollary 6.3 For p > 5 andn > 1, the Markoff congruence x12 +x§ + x32 —
x1x2x3 = k (mod p") has the solution x1 =2 — (k — 4)c, xp = e + f and
x3=e— f+ fxi, withe, f and c as in the proof of the Lemma.

The argument above gives the existence of solutions for powers of p > 5.
It is useful to have a precise count for the number of solutions modulo p. For
this, it is not any harder to consider the more general problem in

Lemma 6.4 For p > 3, let N, denote the number of solutions to x12 + x% +

x% —ax1xax3 = B modulo p. Then

2 -8 .
p +p(p>L if ple,

e <042ﬂT—4>L [3 + (%)L] p otherwise.

Proof 1t is clear we need only consider the cases « = 0 and o = 1, the latter
when p t &, upon which we multiply through with > and change variables.

2wix
Write S,(a) = ), ep(auz) (where e,(x) = e 7 ) so that when p 1 a,
one has S, (a) = %)L Sp(1). When o = 1, putting u = 2x3 — x1x2 (mod p)
shows that we have the same number of solutions as the congruence

4(x} + x3) 4+ u® — x{x5 = 4p (mod p),
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so that

1
Np = p* ==Y Ty(@S,(a)e,(—4ap); (17)
a#0

here we obtained p? solutions when a = 0 (mod p), and we put

Tp@)= > e, (aldxi +4x3 — x{x3)) = Y _ep(4ax])S, (a(d —xD)).

X1,X2 X1

Breaking the sum over x| in T}, above depending on when x| = £2 or not
gives us

4—X12

p

Ty(a) = 2p ep(16a) + (%) (O (
L X

) ep(4ax12).
L
Summing over a in (17) gives N, = p2 + &1 + &, where

& =28, (%) ep (a(16 — 48)) = 25,(1)> (#) . (18)
a L L

and
Er==5,(1)*)_ > ey (daxt — B)). (19)
p X1 p L a#0
Summing over a in (19), we write &, = —&> 1 + &2 with
Sp(1)? 4 —xi
82’1 = p( ) Z <_xl> ,
p ey p I3
_ 52 [Z (4—x12> ~ <4—ﬂ) [1 N <g> H
p o rJ P /L pPJL
and
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p

- S, [ — -
Np = p* +25,(1) <—4 ﬂ) IO <—1> +Sp(1)? (4—'3) [1+(é> ]
r JL p P /L P JL PJL

Using Sp(l)2 =p (;l)L then gives us

)
Since 3, (4 xl) =— (%)L it follows from (18) and (19) that
L

p

I O)

It follows that N, > p?> —4p +1 = (p —2)> =3 > 0if p > 5. This is also
true of p = 3 as can be checked with different values of 8.
Next, if pla,

1 S (1 3
Ny =12 = o T ep-pas, @ = 2 Y ep-pa) () -
a;éO a L

If p|B, then N, = p>. If p { B, then the right hand side is p (_Tf‘)L. O

6.1 Prime powers: p > 5

We have already considered this case in Corollary 6.3, but for completeness we
give here the argument using Hensel’s lemma. Let f = x%-i—x% —i—x32 —X1X2X3—
k, considered as three functions of each variable. We use Df to represent one
of the three partial derivatives (the choice being understood from the context):
2x1 — xpx3, 2xp — x1x3 or 2x3 — xyx2. To obtain solutions modulo p”+1
from those modulo p”, it suffices that at least one of these derivatives not
vanish modulo p”. We call such triples non-singular. If (x, x2, x3) is such
a non-singular solution modulo p” with say 2x; — xpx3 # 0 (mod p™), then
Hensel’s lemma gives a solution to f = 0 (mod p”“) of the form (y1, x32, x3)
with y; = x1 (mod p™). This new triple is non-singular modulo p”"*! so that
by induction a non-singular solution modulo p lifts to one modulo p” for any
n > 1, forany prime p > 5. Note that (3, 3, 3) is a non-singular solution when
plk, giving solutions modulo p".

Next suppose the triple (x1, x2, x3) is a singular solution of the congruence
f = 0(mod p) for p t k, so that we have 2x; = xpx3, 2x; = xjx3 and
2x3 = x1x2 (mod p). If we assume p 1 x1x2x3, then necessarily x% = x% = x%
and x1xyx3 = 2x12 (mod p). Substituting into f = 0 (mod p) gives xl2 =
k (mod p) so that kK must be a non-zero quadratic residue modulo p, so say k
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u? (mod p). But then (&, 0, 0) is a non-singular solution to f = 0 (mod p),
and so by above, lifts to a non-singular solution modulo p” for all n > 1.

Finally, suppose p|xixx3 with (x1, x2, x3) singular. Then p divides x1, x»
and x3, so that p?|k. But then (3, 3, 3) is a non-singular solution modulo p?
for all p > 3. We can now apply Hensel’s lemma as above, starting modulo
p? and lifting to solutions modulo p” foralln > 2 and p > 3.

6.2 Prime powers: p =3

The congruence f = 0 (mod3) has the following non-singular solutions :
when k = 1, take (1, 0, 0); and when k = —1, take (0, 1, 1). These solutions
lift to solutions modulo 3" forn > 1.

When k = 0 (mod 3), the only solution is the singular (0, 0, 0). We now
consider this case modulo 9. Since 3 divides each of x;, xo and x3, then
necessarily when k = 3 or 6 mod 9, there are no solutions. So assume 9|k, in
which case (3, 0, 0) is a non-singular solution modulo 9 and so lifts to solutions
modulo 3" withn > 2.

6.3 Prime powers: p =2

Modulo 2, Df = x1x3 or x1x3 or x2x3. Thus if £ is even, one may use the non-
singular solution (1, 1, 1) to obtain solutions modulo powers of 2. When £ is
odd, the only solution is the singular (0, 0, 1). Then necessarily k = 3 (mod 4)
has no solutions. So assume k = 1(mod4) and we find the non-singular
solution (1, 0, 0) modulo 4 (note that here one uses Df = 2x; — x0x3 #
0 (mod 4)). This then lifts to higher powers of 2.

7 The average of hfl(k): counting lattice points

We show here that the average of hzth/I(k) is C*(logk)?, by counting lattice
points in the domains given in Theorem 1.1 ((see the paragraph containing (6)
for definitions). We provide the details for k > 5.

Fixu; =awith3 <a <« K% and write up, = m and u3z = n. We determine
the asymptotics of N, (K), the number of pairs (i, n) satisfying the inequality
a’ +m? +n? +amn < K witha < m < n. We have

1
m<n < 5 (—am+VAK —a) + @ = 4m?).
so thatm < K,, with K, = %‘; Hence
1 K
Ny(K)=— E {\/4(K—a2)+(a2—4)m2—(a+2)m}+0(,/—).
2 a
a<m=<K,
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The function in the sum is decreasing in m and the contribution from the
endpoints are O (+/ K). Hence

Ny (K) = %/f {\/4(1( — ) (@@ — 42— (a +2)x} dx + O («/E) .

Changing variables gives

N Ky =25 = [Tl e dx+0(ﬁ),

where 8 = —V"z_z anda = O@akK 7%). Replacing o with zero gives an error
of O(\/E ) and the integral becomes

1 2
5{,3 1+52+1og<ﬁ+,/1+ﬂ2)—%ﬁ2}.

Simplifying gives us

Lemma 7.1 For 3 < a < K%, the number of pairs (m, n) satisfying the
inequality a’+m?+n?4+amn <K witha <m <nis

+0(f)

Na(K) = log [‘/“ 2;”/“ + 2} W

Lemma 7.2 Let RY(K) be the number of points (x1, x2, X3) satisfying xl2 +
x% +x32 + x1x0x3 < K, with3 < x1 < xp < x3. Then

RT(K) = iK(logK) + O(K log K).

Proof 1t follows from the previous lemma that

Ja—-2+a+2 K
+ _
RYK) = Y 10g|: : } a2_4+0(1{

N

).

1
3<a<K3

1
The main term is asymptotic to & > D a loga ~ %(log K3)%. O

We also state, without details, the analogous count for the case of k < 0 in
Theorem 1.1(i1).
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Lemma 7.3 Let R~ (K) be the number of points (x1, X2, X3) satisfying xl2 +
x% +x32 —x1x2x3 = —k, withO <k < Kand3 <x1 <xp) <x3 < %xle.
Then

1
R™(K) = - K (log K)> + O(K log K).

8 Failures of the Hasse Principle

The fundamental sets allows us to determine Hasse failures for small £ very
readily. For example, direct computations reveal that the smallest positive
Hasse failure occurs with k = 46. That k = 46 is a Hasse failure can be
verified by applying Theorem 1.1 as follows: either k = 46 is exceptional or
there exist 3 < x1 < x» < x3such thatx% —|—x% —|—x§ + x1xpx3 = 46. The latter
cannot occur since the smallest value of the polynomial is 54. To determine
if 46 is exceptional, since it is not a sum of two squares and since 42 is not
a square, it remains to check if the equation x% + x% — xx3 = 45 has any
solutions with x, x3 € Z. The equation implies that 3|x> and 3|x3, so that
we consider the solvability of y% + y% — y1y2 = 5. This is equivalent to the
solvability of u% + 3u% = 20, which is impossible by congruence modulo 5
or otherwise.

Let Vi (Z) denote the integral points on the surface x12+x§+x32 —Xx1x2x3 =k,
for k € Z. For k = 4 + d, the surface Vi is the singular Cayley sur-
face when reduced modulo d. Its features, coupled with global quadratic
reciprocity, yield failures of strong approximation (mod 4d). For example,

assume that n — (%) is a primitive Dirichlet character (mod 4d) and let

S4 C Z/4dZ be the multiplicative closed set {n : (%4) = 0 or 1}. Then, for
any X = (x1, x2, x3) € Vi(Z) one has

23 —4 € Sy (mod4d), for j =1,2,3. (20)

These congruences on x; imposed by (20) are not consequences of local con-
siderations and so strong approximation fails for V;(Z), at least (mod 4d).
To see (20), we rewrite (11) as

w? —4d = (x{ —4) (x3 —4), 21

with w = 2x3 — xjx2. Now, if xl2 —4 = py1p>...p; with p; primes (possibly
with repetition), then w? = 4d (mod pj) and hence <j;—4> = O or 1. Thus
J

pj € Sq for each j, and hence so does x12 — 4. The same applies to x% —4
and )632 — 4. Quadratic reciprocity then implies that the x ;s must lie in certain
congruence classes (mod 4d).
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As we now show, by specializing the k’s and enhancing the analysis above,
we can eliminate all the candidate congruence classes and produce families
of Hasse failures. We turn to these and the proof of Theorem 1.2(i) in the
Introduction, which follows from Prop. 8.1 below.

Proposition 8.1 For the following choices of k, Vi.(Z) is empty but Vi(Zp) is
non-empty for all primes p :

(i). Fork < 0, choose k = 4 — 2v%, with odd v having all its prime factors
congruent to 1 or 3 modulo 8.

(ii). Fork > 4, choose k = 4+2v? with v having all of its prime factors in the
congruence classes {£1} modulo 8, and in addition withv € {0, £3, +4}
modulo 9.

(iii). Suppose € > 13 is a prime number with £ = £4 (mod 9). Then choose
k =44 262

The smallest positive k here is 342.

Proof Writing k = 4 + 2¢v? with € = =1, with odd v, the congruence
conditions ensure that Prop. 6.1 implies Vi (Z,) # < for all primes p.
Let (x1, x2, x3) be a solution to

x% —I—x% +x32 — X1XX3 = 4+26v2, (22)
with the corresponding
w? —8ev? = (xf —4)(x3 — 4), (23)

with w = 2x3 — x1x3.

Since v is odd, 4 + 2v? is not divisible by 4, so that at least one of x1, x» or
x3 is odd, so say x;. Then xl2 —4=5= -3 (mod 8).
Case (i): It follows that x12 — 4 is divisible by a prime number ¢ = —1 or —
3 (mod 8). Since g 1 v, it follows from (23) that —2 is a quadratic residue
modulo ¢, a contradiction.
Case (ii): It follows that x% —4 isdivisible by a prime number g = %5 (mod 8).
Since g 1 v, it follows from (23) that 2 is a quadratic residue modulo ¢, a
contradiction.
Case (iii): Recall that for £k > 5, if k is not exceptional, every solution is

equivalent to one in the fundamental set 3 < x; < x» < x3 with xl2 +x% +x32 +

xX1x2x3 = k = 4 + 2¢2. This implies that 3 < x| < k% and x| < xp < (f—l 7.
Now, the proof above requires that at least one of the variables is odd; but
in fact at least 2 variables are odd (by considering the equation modulo 4). It

follows that we derive a contradiction if we follow the proof above with g # .
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On the other hand, if ¢ = ¢, since two variables are odd, we can choose one,
say x1 satisfying 3 < x1 < \/gwith Zl(xl2 —4). Then £|(x; —2) or £|(x1 +2)
so that x; + 2 > ¢t for some ¢t > 1. Then we get

44202
3 ’

0-2<lt—-2<x =<

so that 3(¢ — 2)% < 4 + 2¢2, which implies that £ < 13, a contradiction.

To complete the proof, it remains to check that our choice of k is not excep-
tional, that is there are no solutions with say x; equal to 0, £1 or £2. If
x1 = 0, then since two variables are odd, we have x» and x3 are odd with
x% + x% = 44 2¢7. The left side is congruent to 2 while the right is congruent
to 6 modulo 8. Next, if x; = %1, we have x% + x% — x2x3 = 3 + 2¢%2. Com-
pleting the square gives us (2x] — x3)2 + 3x§ = 4(3 4 2£?), so that 8¢ is a
quadratic residue modulo 3. This is a fallacy since 8¢ = 2. Finally, the case
x1 = %2 is trivially dealt with since it implies that 2 is a square. O

We continue below with variants of this construction of Hasse failures, their

densities being no more than the k’s in Prop. 8.1, which is K 2 (log K )_% and
establishes Theorem 1.2(1).

Proposition 8.2 Suppose v> = 25 (mod 32) with v having all prime factors
= +1 (mod 12). Then, Vi(Z) is empty with k = 4 + 12v2, but has local
solutions. The smallest v is 37, with k = 16432.

Proof 1t is obvious that with the choice of k, the conditions of Prop. 6.1 are
satisfied so that local solutions exist.

We first consider congruences modulo 12, where the squares are in
{0, 1, 4, 9}. Suppose (x1, x2, x3) is a solution to

x4 %3+ x5+ x1x003 =4+ 1202, (24)
with v as above.

If 2 { xjx2x3, then x% — 4 = 5 (mod 12) or is divisible by 3 (the same
holding for x> and x3). From (24) we have

w? — 487 = (x] — ) (x3 — 4), (25)
so that if x% —4 = 5 (mod 12), there is a prime p = £5 (mod 12) with
pl(xl2 —4). This is not possible since p t v implies that 3 is a quadratic residue

(mod p), a fallacy. The same holds for x> and x3, so that we may assume that
x? =x3 = x3 = 1 (mod 12), so that each lies in the set {1, £5} modulo 12.

@ Springer



Integral points on Markoff type cubic surfaces 719

If x; = %5, thenin x12 —4 = (x1 —2)(x2 +2), at least one factor is congruent
to £5, so that the argument above with a prime p gives a contradiction. Hence
we may assume that x; = 41 (mod 12), and the same for x, and x3. But then
9 divides the right hand side of (25), a contradiction.

Next, if 2 1 xjx2, but 2|x3, we see that a Vieta map gives the solution
(x1, x2, —(x1x2 4 x3)) with all coordinates odd, so that the previous analysis
give a contradiction.

Hence we assume x1, x> and x3 are all even, so that changing variables gives
us the equation

Vi 45+ 2y =1+ 3, (26)
with the corresponding
wi —3v = (7 — DGZ - D. 27)

If y; is odd, then 8|(y12 — 1) so that 3 is a quadratic residue mod 8, a fallacy.
Hence we assume all y;, y» and y3 are even. We now consider congruences
modulo 16. We first note that 1 + 3v2 = 12 (mod 16), so that we cannot have
4 dividing each of the variables.

Next, if4|y1,4[y2 and y3 = 2 (mod 4), then (26) gives us y5 = 12 (mod 16),
an impossibility. Similarly if 4|y; but y, = y3 = 2 (mod 4), then y% + y32 =
12 (mod 16), which we see again is impossible. Thus, we may assume that
y1 = y2 = y3 = 2 (mod 4), in which case we write y; = 2z1, y» = 2z and
y3 = 2z3, with 2 f z1z2z3. Then (26) becomes

2, .2, .2 _ v -1
Z]+Zz+Z3+4ZlZZZ3—1+3 4 .

The left hand side is congruent to 7 modulo 8, while the right is congruent to
3. Hence the result follows. |

Proposition 8.3 Suppose v = £4 (mod 9) with v having all prime factors
= 41 (mod 20). Then, Vi(Z) is empty with k = 4 + 20v2, but has local
solutions. The smallest v is 41, with k = 33624.

Proof The proof is very much the same as the one above, with a small change.
The squares modulo 20 lie in the set {0, 1, 4, 5, 9} and the odd primes in
{£1, £3, £7, £9}.

Write w2 —80v2 = (x12—4) (x%—4). If 5|x, there must existaprime p = £2
modulo 5 dividing xl2 —4, so that since p 1 v, 80 is a quadratic residue modulo
p, which is false using quadratic reciprocity. So we may assume 5 1 x1x2x3 SO
that sz. — 4 is not 1 modulo 20.
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If 2 f x1x2x3, since x1 is odd, we have xl —4 = —3 or 5 modulo 20. Assume
the former. Then, if there is a prime factor p|(x1 —4), with p = £3 or +7
(mod 20), then w? = 80v? (mod p), so that 5 is a quadratic residue modulo D
that is p a quadratic residue modulo 5, which is not true. Hence xl 4 must
have a prime factor p = 9 (mod 20). But then, x1 4 = 3 implies that there
must be another prime factor ¢ = 43 or :i:7 all modulo 20, and that leads to
a contradiction. Hence we cannot have xl 4=-3 (mod 20), and the same
being so for x7 and x3. Hence we must have x1 4 = x2 4 =5 (mod 20),
so that w? — 80v2 = (x1 4)(x2 4) implies that 25|80.

If 2 1 x1x2, but 2|x3, the Vieta map gives the solution (x, x2, —(x;x2 +x3))
with all coordinates odd, so that the previous analysis give a contradiction.
Hence we assume x1, x and x3 are all even, so that changing variables gives
us the equation

Vi3 5+ 2y = 14507, (28)
with the corresponding

wg =52 =G - Dys—1). (29)
If y1, y» and y3 are all even, then we have a contradiction in (28) since V2=
(mod 4). If y; is odd, then 8|(yf — 1) so that 5 is a quadratic residue mod 8, a
fallacy. The result follows. O

9 Proof of Theorem 1.2(ii)

The proofs for the case k > 0 and k < 0 are almost identical with the main
difference being in the choice of our functions and the domains of the variables.
We give here the details for the case £ > 0 and indicate the modification for
k < 01in a remark below.

Let K — o0 be our main (large) parameter, and let A be a secondary
parameter satisfying (log K)?> < A <, K¢, with ¢ > 0 sufficiently small. Let
ol be the interval [v/A, A]. Lastly we use a parameter m = I p<L pB, where

1 loglogA __ . .
we put L = 1og0§)§Aq)(A) and B = (;E(Z‘(;’z with ®(A) — oo with A. Then,

m ~A‘1>(A> as A — oo.
For any a € 4, put

2a(x1, x2) = x7 4+ x5 +axpxa and [, (x1, x1) = ga(x1, x2) +a*. (30)

It will be convenient to denote by D,, the discriminant a> — 4 of the indefinite
quadratic form g, above, for each a € d. Completing the square shows that
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4ga(x1,x2) = 2x —I—axz)z—Dax%, so that we consider the form G;(s1, s2) =

512 — ds? with d = D, (not a complete square). We then define the sector Sy
in the plane as

Sq = {(51,52) 151, 52 >0, 0<Gy(s1,8) <1, 2«/;1'S2 < 53\/675‘2 } s

1
xy, x2 >0, Oiga(m,m)iZ, 3D
= (9617362)1l | )
E(Zﬁ_a)xzfxlii(3«/tj—a)x2

Remark 9.1 For k < 0 we define g,(x1, x2) = xl2 + x% — ax1x, and define
the sector 8; with the constants 2 and 3 replaced by % and % respectively. This
then leads to some minor changes for the sector in the variable x| and x».

Next, we define the scaled region
VXSs = (VX1 VXs2) 1 G152 €8

It is easily shown that

X
Vol X8;) = C—,
ol( d) Nz

with C = 1 log 3.
For 2 < k < K, we define

Ry(k) = # {(sl, 52) € VES; N7Z2: Gy(s1.s) =k and 2|(s1 — 52) } .
(32)

Lemma 9.2 For d and m as above we have

3 Ratk) = % + 0, (K%+8).
k<K

Proof By the definition of Sy, we break up the sum in s1 and s; into the ranges
so that 84 = S\ U 8{? with

K
s = {Sz <\ 5o 2Vds2 =51 = 3dsz. 2o - s2>] ,
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and
K K
85(12) = {,/8— <s < ‘/ﬁ’ 2W/dsy <51 <K +ds3, 2|(s1 — 52) }
The sums are easily evaluated. |

Lemma 9.3 For a and m as above and for any o1 and aa, we have

T gl
a

x1=oq(m)
xp=0ap(m)
Ja(x1,x2)<K
(x1,%2)eVAK Sp,NZ?

with the error term uniform is all other variables.

Proof By (30) we have trivially x, xp < VK. Assuming 0 < o; < m, we
put xj = aj +ml; with 1 < 1; < YK Then (x1,x2) € V4K Sp, N Z? and
X K K i+e gives at most O (K 2+e ) lattice points, so that we may assume
that K 3¢ &L x1, x3 < /K. Itis then easily checked that Cilr <1y < Cily,
with C;. =C; (1 + O(K*%“)),wherewehaveput C = % (2\/3— a) and
Cr=14(3vd—a)asin(31),

Next ’fa (x1, x2) —mzfa (L, lz)} < K%J“a. The error in replacing the condi-

tion f,(x1,x2) < K with the condition m?g,(I1, l) < K is at most O (K 27¢)

since we are counting lattice points in a hyperbolic segment of width K 2%,
with the variables restricted as above. Thus

> 1 = 3 1+ 0, (K%+8),

xi=a1(m) gallil)= %
xp=ap(m) m
fa(x1,x2)<K (,h)e,/*E 83 nz?
m a

(x1,x2)ev/4K Sp,NZ?

where $* means the constants have been perturbed by about O (K _%4'8), as
discussed above. Completing the square shows that the last sum is over the s
and s, variables as in (31) with the constraint that s; — s, is even, and with
the constants 2 and 3 defining the inequalities perturbed with the addition of

O(K _%‘HE). Applying Lemma 9.2 with K replaced with fn—lg gives the result,

with C replaced with C + O(K —yte ).
O
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Corollary 9.4 Fora € dd and k < K let

ro(k) = # {(xl,xz) € VAKS, N2 : fu(x1,x2) = k} .

Then
2CK 1
> ralk) = + 0. (K27¢).
k<K v Da ( )
We now set
ba(k) =Y ra(k), (33)
aed

and we are interested in this as a function of k for 1 < k < K. From Corol-
lary 9.4, we have

Z by(k) =CKlogA+ O(KA™), (34)
1<k<K

so that the mean-value of by (k) is C log A. Our main goal is to estimate the

deviation of by (k) from its predicted value in terms of local masses. Let § (V%)
denote the formal singular series for

Vi : x12 + x% + x% + x1x2x3 =k, 35)

so that §(V) =[] 8, (Vk), with

p<0oo

#Vi(Z/p'Z
8p(Vk) = vlm M

i
— 0 p

These are given explicitly in the Appendices and Section 5. Define

#V(Z/mZ)  rp (k)

S(m)(k) — — =

(36)

Note that 8™ (k) depends on k modulo m. With this, we define our variance

VK) = V(K. Am) = (bgg(k) — C(log A)(S(’")(k)>2. 37)

k<K
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We expand (37) as X1 + X + X3. We have

B3 =C*logA)* > ™M@ > 1,

[ (mod m) k<K
k=Il(mod m)
K
= C%(log A)? <— + 0(1)) > s,
m
[ (mod m)

= C*(log A2 (K + 0(m)) 8, (V®),
where we define
VO X x4 xd xixoxs = y7 s+ 3+ vy,

and 8,, (V@) is the singular series for V® over Z/mZ.
Next,

Ty =—2C(ogA) Y byk)s™ (k) =—logAa Y ™M@y Y by,

k<K [ (mod m) k<K

k=I(mod m)
= -2Clog A Z 8m (1) Z Z ra (k).
[ (mod m) aed k<K
k=I[(mod m)

Now, for each a € o, the last sum in (40) above is

Yo ralk) = > oL

k<K oq,02(mod m) y1=«q (mod m)
k=Il(mod m) Jfa(ay,a2)=l(mod m) yr,=ay (mod m)
fa1,y2)<K

1, y2)EVAK S,

Applying Lemma 9.3 to the inner sum gives

Y o= Y 2Eaiow),

2
am
k<K ay,ap (mod m)
k=l (mod m) fa(a1,00)=Il (mod m)
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so that

3 bmk):z%( 3 3 (a_1+0(a_3)>

k=K B (mod m) acsl
k=l (mod m) ar,ap (mod m) a=p (mod m)
fﬁ(ﬂtl a2)=l (mod m)
2CK
= 10gA+0(A 2) Z 1. 42)
m3 \2
B (mod m)
ay,ap (mod m)
Sp(ar,0)=I (mod m)
2CK
— ( og A+ O(A‘f)> s ().

Combining (40) with (42) gives us

K
T = 2025~ ((1og A’ + 0(A 1 log A)) 3 a2,
n [ (mod m) (43)
— _2C%K ((log A’ + 0(A 2 log A)) S (V).

It remains for us to analyze the difficult case X1. We have

Si=y bpo= Y > rakrek),

k<K ay,ared k<K
44
=er3(k)+ Z Zral(k)raz(k)- ( )
aed k<K ay,amed k<K

ay#ay
The diagonal term above can be estimated from
Lemma 9.5

(a). For Ry as in (32), we have

K Klog K
ZRd(k)<<f (@,

k<K

(b).

D> rat) < Klog A.

acdd k<K

where 7 () is the divisor function, and all implied constants are absolute.

Proof Since we are obtaining upper-bounds, we will discard the condition that
s1 — s2 is even in the definition of R;(k). By abuse of notation, we denote this
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modified counting function by R (k) in the proof. Part (b) follows from Part (a)
in the same manner that Lemma 9.3 follows from Lemma 9.2, and summing
over a € o, giving

) Klog K log A
> rat) < KlogA+ — < KlogA,
acd k<K A

since (log K)? < A < K.
For the proof of Part(a), we write s; = (s;, ;) for j = 1,2 to get

Rﬁ(k):#{(sl,sz) 52 —di =52 —did =k, sj e VKS4. j =1, 2},

so that we have

> Rik=t {15 sP-dif=s3 —did < K. s;eVKSy j=1.2).  (45)
k<K

Nows; € VK8, and sjz — dtjz. < K imply that

K
Sla52<<\/? and 11,h K E

Switching the roles of #; and #, in (45) shows that

1
1 K\?2
DRI <#(s1.82) 1 ST +dty =53 +dif, s; < K21 <<<g) ,j=1,2}.
k<K

Since the forms are now positive definite, we apply Theorem 2 of [6], which
gives the estimate in the Lemma. O

The inner sum in the off-diagonal term in (44) can be analyzed by using
Kloostermann’s method (see [29] and [39] for a modern treatment and unifor-
mity with our parameters) to give, for a; # a»

Dty (K)ray (k) = 888 (a1, a2) San(ar, az) + O(K'™%),  (46)
k<K

for some gy > 0. Here, Séf )(al, ay) is the singular integral and g, (ay, az) =

]_[p<oo dp(ay, az), where 8, (ay, az) is the singular series, both associated to
the equation

Val,az . ful (x1,x2) = faz(yl’ ¥2), 47)
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with

#V Z UZ
8p(ar, az) = lim ar.ay (Z/p"2L)

V—00 p3V

(48)

For the singular integral, let /4K Sy, o, = V4K Sy, X /4K S,, and let x4, 4,
be its characteristic function (here we abuse notation by writing §,; instead of

N Dy ). Then,

e}

88 (a1, an) =/

—00

[/ﬂé“ Xaj.ar (X, y) € (t(gtll (X) — ga, (y) + alz - a%)) dXdY] dr,

.1
= lim —.Vol ((x.¥) € VAK Sy, 1801 (0 = 8 () +a} — 3] <€),

B 4CK
- ajar

[1+0@™h].
(49)

Hence, from (44) and (46) we have

Stin(ar, az)
ajas

¥, = 4C2K (1 + O(A—l)) 3
al,azéﬁ
ay#az

+o0 (K log A + K1_8°A2> .

(50)

To analyse the main term in (50), we replace 8gq(ay, az) with 8™ (ay, an),
where
#Vy, .0, (L/MZ)

8" (a1, ay) = :
m

D

The error term in doing so in (50) has size

|8in(ar, az) — 8" (a1, ay)|

<KkY > v (52)

According to Appendix B, 8§ (ay, as) is suitably close to §gn(ag, a2) unless
s = ged (Dg,, Dg,) is in the set

pj.j with either e; > B or p; > L for some j
1

Sam =15:85=

t
Jj=
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Moreover, for such a; and ap, the difference |8ﬁn(a1, az) — 8" (ay, a2)| is
O (t(s)), with 7(.) the divisor function. Hence the contribution to (52) from
these is at most

1

PORLIONEED D (53)

s€Su.m aj,ared
ng<Dal ,Daz )=s

Since D, = 0 (mod k) occurs only if @ = £2 (mod 2%) with 0 < o < 3, the
sums in (53) above are bounded by

—_

-2

dogA? 3 T « (log 4)? min (£.2%) . (54)
N

SESe.m

because s € S, implies s > min(L, 28) and a;, ay # £2.
Next, for s ¢ Sy m, we write

Sin(ar, a2) = [ 8p(ar,a2) [ 8p(ar, ar).

p=<L p>L

Recall from Prop. B.5 that 8, (ay, az) = 140 (p™2) if p { Dy, Day (Da; — Das)
when p > 3. We denote these primes by () and include p = 2 in this set,
and denote the remaining finite set of primes by %@ . We decompose %
further into ) = {p=3: plged (Dy,, Dy,) } and its complement. Then
we write

[[6p@.a)= ] dptarna) [] 8plar.a),

p>L pep peP?@
p>L p>L
1
= [[ ért@.a) (1+ 0 <Z>)
pegs(Z)
p>L

Since s ¢ Sy m,if p > L we have (using Prop. B.5 again)

c 1
1 §p(ar, a) = L+ o0l-),
og [[ splaran= ) -+ <L>
pep® peP®
p>L p>L

with coefficients ¢, satisfying |c,| < 1. Since a; # da; and a; # £2, the set

P @ has the bound card(Q:’(z)) <7 Og’ﬁ)g 7 as it contains those primes dividing
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Dg, or Dg, or (Dg, — Dg,). Hence the sum over P above is bounded by

1 _
TToolos A lo(;glng & ®(A)~!. Thus, for s ¢ Sy, we have

1
Sin(ar. @) = [ 8p@r. a2 <1 o (@(A)))’

p=L

To analyse this further, we write §M(ay, an) = I1 p<L SE,m)(al, az). Then
one has

00 B
Sp(ar,a) =1+ Y Ni(ai,az) and 80" (a1, a2) =14 Ni(ar, az),
=1 =1

(55)
where
— D, — D,
Ni(ai, a) = p~™¥ Z* 3 e(gm(X) gaz(y)l+ » "2b).
b (mod p') x,y (mod p!) p
(56)

Then for s & Sy, one has by Prop B.4 that 8, (a1, az) = 85" (a1, a) +
O(p~%). It follows that the contribution to (52) is

_ s(m)
K'Y 3 |86in(ar, a2) — 8" (a1, a2)|

aja
s>1 ay, ayed 142

SESa.m aj #ay
gcd(Da1 ,Daz):s

< Kkmin(on,2r) "y BP@al
ay, ared
ay#ay

ayaz

-1
« K min (CD(A), 2B> (log A)?,

using 8" (ay, ax) < t(ged(ay, a2)).
We choose ®(A) = 1, /% so that ®(A)% < 28 = o(L). Substitut-
ing into (50) gives us

§m) ,
si=ack Y 2B L6 (ka4 oz ). (57)
aiar
ay, aped

ay#ay
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Since 8§ (a1, ap) is periodic modulo m, the sum in (57) can be analyzed as
in (38), giving

1 2

5 log A
w +0 (Ko(A) ! (log 4)?),
a1 (mod m) m (58)

ap (mod m)

= C?K (log )26, (V) + 0 (K&(4) ™" log A)?).

T =4CK Y 8™ (ar, )

Combining (38), (43) and (57) into (37) gives us the key cancellation and
hence the estimate on the variance V (K).

Proposition 9.6 Let K — oo, let ol be the interval [N/ A, A]with A satisfying
(log K)? < A <. K& withe > 0 sufficiently small. Then with ®(A) =

1 / _loglog A
2\ logloglog A’ we have

i bw(k) _ (m) 2 —1
K;{[—log ——C8 <k>] < (AL

Remark 9.7 One can remove the auxiliary parameter B in the Proposition
above with

8™y = [T 8p)+ 025,
p<L

as follows. From (B4) and (35), we have §(V;) = ]_[p<oo 3, (k) with
Splk)y = 1+ lel Nj(k), where N(k) is given in (B3) with all evalu-
ated in the Appendix. Similarly, one shows that §M (k) = I1 p<L Sﬁ,m)(k),
with SE,m)(k) = 1+ Y <5 Ni(k). Then, it follows from Prop. B.1 that
Sém)(k) =§p(k) + O(p~8). Applying Prop B.2 then gives the result.
9.1 Lower bound for §™ (k) for most admissible k’s
To complete the proof of Theorem 1.2(ii), we need to estimate, for & > 0

{0 <k < K : kadmissible, 8" (k) < e}|. (59)
By Props. B.5 and B.12 in the Appendix, and Remark 9.7 , we can write

8§ (k) = ]_[ (14 Nip(k) +Cp(k)) + o(D), (60)
p=<L
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where we indicate the dependence of p in the definition of N;, and with C, (k)
coming from the N; ,,’s with [ > 2. Since we are assuming that k is admissible,
we can ignore the primes p = 2 and p = 3 since then these local factors are
bounded from below. For p > 5, the problematic case of C, (k) in (60) is, by
Prop. B.1, of the form 4# p~! + O (p~2). So, up to O (p~2), which can be
ignored for our purposes of bounding 8 (k) from below, we have that

3™ > ] <1 + N1 pk) + 0 (%)) +o(D),

p=<L

(61)
k—4) 3+ x(k
>>H(1+X( ) ( x())>’
p=L p
where x is the Legendre symbol modulo p. Hence
-1 k—4)@3 k
[5(m)(k)} <<l—[<1_x( ) B+ x( )))’
p=L P
B (62)

_ Z u(n)Ack, n)

n
n<mM

where A(k,n) = Ak, p1)... Ak, p) ifn = p1...p, M = (l_[pSL p> <
m <« K¢, and

_Jxtk=4 B+ xk)if p =5,
Alk, p) = { 0 otherwise. 63)
Since A(k, n) as a function of k is periodic of period n, we have
K
Y AGnmy== Y Alk.n)+ 0. (64)
n

k<K k (mod n)

By multiplicativity, the completed sum

YAk =[] Y. Ak.p) |=nm,

k (mod n) pln \k (mod p)

since ), (mod py X (k —4) =0 and >k (mod py X (k —4) x (k) = —1. Hence

Z Ak, n) = MK + O(n),
k<K n
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so that by (62) we have

3 [8(m)(k)]_l <K (Z %) M<K,

k<K n
k admissible

Hence, it follows that for any ¢ > 0
{0 <k < K : k admissible, §" (k) < ¢}| < K. (65)

Finally, combining (65) with the variance estimate in Prop. 9.6 gives Theo-
rem 1.2(ii). |

10 Computations

We computed all the Hasse failures (HF), and also the number of orbits b (k)
for positive generic k’s with k < K where K is about Ko = 564 x 10° (the
limitation imposed by memory usage and computation time). An extended
version of this section can be found in Sect. 10 of our preprint [26]. We state
some conjectures based on these computations.

The number of admissible k’s (see Sect. 3) in the interval [1, K | we denote by
A(K), and is asymptotically %K . The admissibles consist of the exceptional
k’s, of which there are 0(%) members, the generic k’s consisting of the

Hasse failures (HF) and the generic k’s with h(k) > 0. For K > 5,let Ay (K)
denote the number of HF’s in the interval [5, K]. By the arguments in Sect. 7,

Apr(K) > K 3¢ for any € > 0. While we do not know the exact order of
Ayr(K), Theorem 1.2(ii) shows that it is 0(K'), and we consider this question
computationally, for which we compare Ay (K) with A(K).

There are two possible models to consider, namely (1) A »(K) ~ CA(K)?
for some 0 < 6 < 1 or (2) Ayr(K) ~ CA(K)/(log A(K))?. Since K is of
limited size in our computations, we cannot distinguish between these two
cases with confidence, but the latter seemed unlikely from the data. For the
former, the graphical data for log A, (K)/log A(K) with A(K) = 17—21( is
in Fig. 7. Our data suggests that

AHF(K) ~ CK08875+ 0(1)’ (66)

for some constant C, at least for K in this range. The error is smaller than
0.1% for K > 107 and gets better for larger values of K.

For further justification that Ay »(K) ~ CA(K)? rather than Ay, (K) ~
CA(K)/(log A(K))?, we look at the distribution of HF’s within subinter-
vals. Taking K = Ko and subdividing the interval [5, K] into subintervals
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Fig.7 Plot of gA#r(K) “g“H{g )
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0.045

0.040

1000 2000 3000 4000 5000

Fig. 8 Average of Hasse failures in subintervals

of length h, we compare the average number of HF’s in each subinterval
% (App( + Dh) — Agp(h)) for 1 <1 < % with what we might expect
from the derivative of our predicted function. Taking & = 10° (chosen to
be comparable to +/Ky), we plot % (Agr({ + Dh) — Ayrp(lh)) against [ in
Fig. 8. The curve in the graph is an approximation, given by g(x) as x~0-0908,
This power decay suggests Ay r(K) ~ CA(K)? with a 6 close to that given
in (66).

Finally we include graphical data in Fig. 9 on the distribution of the number
of orbits h(k) with generic k < K with K = 107 (this smaller value compared
to Ko above due to long computational times). Here, n(h) = ng(h) is the
number of occurrences of &4 = (k) with k running through generic integers
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1.0¢
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0.4F
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20 40 60 80 100 120

Fig.9 Occurences of relative number of orbits: n(f(k))/n(0), generic k < 107. Approximation
curve % ~ ¢ 192905Vh+1 ) — (k) on x-axis

in [1, K]. Our count also includes the number of Hasse failures, denoted by
n(0). Since n(0) grows with K, we normalize our counts and consider the

distribution of %. We find that this quantity appears to behave like the graph
/1 1
of e=V+1_If so, this suggests that “Ef‘(;l“)l) ~1— %h_i as h — oo. This is

roughly consistent with our data where for example with 7 = 21, we have
D = 0.88921 while 1 — 1p=2 = 0.89089. By Lemma 7.2, the average

value of (k) with 0 < k < K has size about (log K )2. Since n(0) has size a
power of K, the data with its suggested exponential decay (at least in this short
range for K') suggests that the maximal value of (k) is probably a power of
log K, or at worst (k) < k€, for ¢ > 0. As mentioned in the introduction,

the best we know is h(k) <, k%“. For K = 107, the maximum value for

h(k) in our data was 131, while (log K)2 ~ 61 and K 3 ~ 412.
We end this section with some basic Conjectures concerning the class num-
bers h(k), suggested by our theoretical results as well as the discussion above.

Conjecture 10.1 For any ¢ > 0 and generic k
hk) <o [k|°.
Conjecture 10.2 1. The number of Hasse failures for 0 < k < K satisfies
{0 <k < K : h(k) = 0 and k admissible } | ~ CoK",
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for some Cy > 0 and some% <6 <.
2. More generally, for r > 1

[{0<k<K:hk) =1 }|~CK,

with C; ~ e“"‘/;, for some o > 0.
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Appendix

The appendix consists of (A) a discussion of invariants of affine cubic forms
referred to in the Introduction, and (B) computation of local masses &, for
primes p > 2 (with some details omitted); their structure is used in the proofs
in Sect. 9.

Notation: To reduce clutter we will use x () to denote the Legendre symbol
(%) L, with p fixed. We also use x4 and xg to denote some characters modulo
4 and 8 respectively.

Appendix A: Arithmetic invariants of affine cubic forms

A number of invariants of f as an element of the unique factorization domain
R = Q[x1, x2, ..., x,], enter into the study of the values assumed by such an
affine cubic form f. The first is the A -invariant from [23]: A ( f) is the minimal
integer h for which

fo=L101+L202+ ...+ LpOp, (A1)

where the L;’s are homogeneous linear and the Q;’s are homogeneous
quadratic members of R; equivalently n — 7. ( f) is the dimension of the largest
Q-linear subspace contained in Wy = {x : fy(x) = 0}, the linear space given
by Ly = L, = ... = Lj = 0. Note that A (f) = 1 iff fy is reducible in R,
and in this case W contains a rational hypersurface.
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Closely related are the Q-invariants € ( f) and  (f) defined as the dimen-
sions of the largest Q-affine linear subspaces Uy and U, of A" on which the
restriction of f to Uy is linear (non-constant) and to Uy, is quadratic. So, € ( f)
and ¢ (f) lie in [0, n — 1]. Of particular interest to us is that

R(f)=1 iff g(f)=n—1. (A2)

The group Aff,(Z) consisting of integral affine linear maps x — Ax + b
with A € GL,(Z) and b € Z", acts on the integral cubic polynomials by
a change of variable. The arithmetic invariants as well as the diophantine
questions concerning Vi, r(Z) are all preserved by this action. On the leading
homogeneous cubic term fy, the action is that of GL,(Z), which has been
well studied in terms of its invariants. With these fixed, there are finitely many
GL,(Z) orbits, see [5] for a recent discussion of the case n = 3, which is our
interest. In this case the vector space of fj’s is 10-dimensional and it’s quotient
by S L3 is 2-dimensional, given by the Aronhold invariants / and J. The vector
space of f’s is 20-dimensional and its quotient by Affs is 9-dimensional. The
invariants for this action up to the additive constant term and at a generic point
are I (fo), J(fo) together with the 6-dimensional vector space associated with
the homogeneous quadratic part of f.

We end with some examples of affine cubic forms and their invariants.

(. S&X) =x3 + x5 +x3, R(S) =3,€(5) = q(S) =0;

(2). M(x) = x? + x5 +x3 — x1x0x3, h(M)=1,€(M) =0, g(M) =2;

(3). T(x) = x1x2x3 + x1 + x2 (perhaps the mildest perturbation of the fully
split form x1x2x3), A (M) =1,€¢(M) = g (M) = 2 (the restriction of T
to x3 = 0 is linear). From the last it follows that v (k) = | Vi 7(Z)| = oo;
however T is not perfect or even almost perfect since Vi 7(Z) is not Zariski
dense in Vi 1 for k # 0.

4). P(x) = x1x2x3 + (x1 — 1) Q1(x) + (x2 — 1) Q2(x), with Oy, Q2 generic
quadratics. Then, €¢(P) = q(P) = 1 (with x; = xp = 1 giving the line
Ue). In particular, Vi p(Z) # ¥ for every k. We expect that P is full.

Appendix B: Analysis of the local masses
B.1 Computation of §, (k) for odd primes

For any integer k and prime p > 3, we determine
8p(k) = lim |Vi(Z/ p'Z)| p~.
[— 00
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Define

N =p Y e(&l_kb), (B3)

b (mod p') x (mod p') p

where x = (x1, x2, x3), f(X) = xl2 +x§ —i—x32 — x1x7x3 and the asterisk denotes
a sum over those b’s not divisible by p. Then one has

Sp(k) =1+ Ni(k). (B4)
=1

In what follows, we analyze the case [ > 2 (the case / = 1 is determined by
Lemma 6.4). For p > 3 one has

_ 22 2
Niky = p~ 3 Z* . (4(4 7 k)b> Z . ((2x3 X1x2) Exl 4H(x3 —4) b) |

b (mod p') p X p

(B5)
Making a change of variable shows that the inner sum over X is
—b(x{ —4)(x3 —4)
IO ( ) ( — = S(b; p')
U Xx1,x2 p
4b
x Z ( (x )> x S (b(x? —4); pl), (B6)

where for g > 1 we put

2
Shiq)= Y e(bi>. (B7)

r (mod q) q

Using properties of the Gauss sum, we get

Proposition B.1 For p > 3 we have
1 1
(a). Ni(k) = x(k =4H B+ x(k)]—+ —;
p p
(b). ifl > 3 is odd,

apm2 T (524) if p Nk - 4,

N;(k) = p 2(l+1)X (L) if pl_1|k,
P!
0 otherwise;

@ Springer



738 A. Ghosh, P. Sarnak

(c). ifl > 2 is even, then

—Pl_¥ {An—1k —4) + 1 (O} if p'Hlk(k — 4),

Nik) =4 p5 (1= L) tme = 4) + ) if plike - 4,
0 otherwise,

where we define n;(m) = 1 if p’ |m and is zero otherwise.

To compute §,, (k) for p > 3in (B4), we write §, (k) = 14+ Ny (k) + &, (k).
Define © > 0 by p*|lk(k — 4). By Prop. B.1, © = 0 implies N;(k) = 0
for I > 2, so that we have &,(k) = 0 for this case. For u > 1, we have
p*|l(k —4pB), with 8 = 0 or 1. Then we combine Prop. B.1 in (B4), to get

—1 st =53
p- —p? —p 2 if 21,
Sp)=4 x 1" " ., k—4p\\ - (B8)
p—p 2 (I=x 7)) if 2l

In particular, we see that if u = 1, then &, (k) = —4p p_2 while if u > 2
then G, (k) =4/ p~! + O(p~™>).
Combining (B8) with Prop. B.1(a) in (B4) gives

Proposition B.2 For p > 3, suppose p*||k(k — 4) with u© > 0. We have

(a). if w =0, then 8,(k) = 1+ x(k — 4) [3 + x (k)] % n #
(b). if pllk, then &, (k) =1 + 3X(—1)%;

(c). if pll(k —4), then §,(k) =1 — %;

(d). if © > 2 and plk, then

(L4 3x(=D) p~t 4 p=2 — pm3BHD — p=3td) yr g gy
Spk) =1+ -1 -2 —L k .

(43¢ p 4 p72 = p 5 (1= 1 (%)) i 21w
(e). if u >2and p|(k —4), then

4p= o+ p 2 —ap 20D 43I o gy,

=14 {4p—1 Hp7 = (1= () o 2

Remark B.3 The case (b) shows that §3(k) = 0 if k = 3 or 6 (mod 9), while
case (a) and (d) shows that §3(k) > O otherwise.
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B.2 Local factors associated with V,, 4,, odd primes

We next state (without details) the analogous results for the density function
dp(ay, az) in (48) for the surface V,, 4, in (47). Recalling the properties in (55)
and (56), since p is odd, completing the square gives us

Dy, — Dy, \ ————
Niara)=p=2 Y e (4b%) S(bDay; pPHS(bDay; ph).
/ p
b (mod p')
(B9)
Again, using properties of the Gauss sums gives us

Proposition B.4 Let a; # a> be fixed, and let p > 3.
(a). Suppose p 1 Dy, Dy, (Da1 — Daz). Then

_X(DalDﬂz) : _
Nl(al,az): {O [72 l_fl—17

otherwise.

(b). Suppose p 1 Dy, Dy, and p*|| (Dal — Daz) with i > 1. Then

< (1 - 1) ifl <u,
p p

Ni(ar, @) =\ —p=r=2 " ifl = i +1,
0 otherwise.

(c). Suppose p*||Dy, but p t Dg, with o > 1. Then

-1 -
Ni(ar, az) = {() otherwise.

(d). Suppose p"'||Dy,, p™|| D4, and p*|| (Dal — Daz) withny,np and u > 1.
Putting n = min (1, n2) gives us

(1-1) if1<l<n,
~1 .
ifl=n+1, ,
Niaj.a) =1 P o D, f U n #
—p" X<7)X<pn>lfl=77+1,771=772§li,
0 otherwise.

It then follows that
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Proposition B.5 Let a; # ay be fixed, and let p > 3.
(a). Suppose p t DayDay (Da; — Day). Then

X (Da, D)

Splar,az) =1 — .
P 2

(b). Suppose p { Dy, Dy, and p"|| (Da1 — Daz) with u > 1. Then

1 1
= (143) ()

(c). Suppose p|Dg, D, but p 1 (Da] — Daz). Then

8p(a1,a2) = (1 + l) .
p

(d). Suppose p"'||Dg,, p™|| Dy, and p*|| (Dal — Daz) withny,no and u > 1.
Putting n = min (11, n2) gives us

(14— 12 if m # m,
1 Dy D, .
Splar, ar) = (1+’7)—%—FX(pnl)X(pnz)lfm=772=M,
UJFW_"%‘W(IJF%) ifm=m<p.

Remark B.6 1f a; = a; = a and p > 3, one can deduce the result for 6 ,(a, a)
from parts (c) and (d) above, with © — oo, giving

(a). if p{ Dy, then§p(a,a) =1+ p~ !, and

(b). if p"||D, withn > 1, then §,(a,a) = (1 +1n) — %

B.3 The even local factor §; (k)

Since the analysis here is a bit more delicate, we provide some additional
details. Let [ > 0 and define Fi(c) = ), 042 € <C§—,2) . Recall the three

primitive real characters modulo powers of two: x4 modulo 4, xg and x4 xg
modulo 8, where

_4 1 if x =1 mod 4,
x4(x) = (—) =4 —1if x =3 mod4,
X /3

0 otherwise,
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and

] 1 if x = £1 mod 8,
xg(x) = (—) ={ —1if x =43 mod 8§,
J

X 0 otherwise.

For [ > 1 we define w;(k) to be 1 if 2/|k and O otherwise; if I < 0, we
define w; (k) to be 1 always. Given a term wj(k), we define k = % While
wi(k) = wi(—k), the corresponding “hat” function is not the same, and the
appropriate choice is determined by the w-function.

We have

Lemma B.7 Define 6 > 0 so that 29||c. We have
(a). if0 > 1, Fi(c) =2,
(b). if60 =1—1, Fi(c) =0;

(c). ifl = 2and?2 1 e, then Fi(c) = 22 xs(c) [1 + xa(c)il;
(d). ifl >3and1 <6 <[ —72, we have

140 c\!+t c\ .
File) =2""xs (79) [1+X4 (2—9)’];

(e). forl > 1andq € Z,

Yoe (Z—?) Filb) = or3(@) 2T cos (%n) [+ (=D,

b (mod 2/)

where § = 55, and the sum over b runs through odd numbers.

Lemma B.8 Forany b and ! > 0, put

2 2
X7 4+ x5 —axixy
Qi(b;a) = E e (b : 221 ) :

X1,x2 (mod 2%)

(). If2la, then Qi(b; ) = ) Fi (b(4 = 1)),
(b). If2 4 ab, then Q;(b; a) = (—2)'.
We now compute N;(k) given in (B3) with p = 2, where the sum over b

runs through odd numbers. It will be convenient to compute N;(k) for some
small values and we give it as
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Lemma B.9

(a). No(k) = 1;
(b). Ni(k) = 3(=D)F;
(c). Na(k) = §cos(k%) + 2 sin(k%);

(d). Na(k) = { 31T if k=1 (mod 4),
otherwise.

For [ > 4, we have

kb ba®
Nty =27 3 ( 2) > €<%)Qz(b;a)- (B10)

b (mod 2/) a (mod 2!)
Using the lemmas above, we conclude

Lemma B.10

(a). Ifkisoddandl > 4, Nj(k) = 0;
(b). ifl =4 then N4(k) = O unless 4|k, in which case

Ixa(5) if 4llk,
Ny(k) = )
$(=DsTif 8lk;

(c). ifl =5, Ns(k) =0 unless 8|k in which case N5(k) = 4X4 ( )

(d). ifl > 6, define k= 3 or Then, Nj(k) = 0 unless ke Z, in which
case

213

24 s (% ) [1 n (—1)l+’9] if 2173k,
Ni(k) =
omin(3, 1-5)- 5L . <% ) [1 + (- 1)l+k] if 2173 (k — 4).

Remark B.11 Note that cos (“’T“n) = %Xg(w) (1 - x4(w)) = % ((%)J
—(32),) for odd w.
Combining Lemmas B.9 and B.10 gives us

Proposition B.12 Suppose k # 0 or 4. Let (k) denote the mass at p = 2.
Then 83(k) = 0 only when k = 3 (mod 4). Otherwise §,(k) > %. More
precisely,
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(1). If k is odd then

3
82(k) = 1 (I + xa(k)) 2 — x8(k))

(2). if 2|k, then 65(k) = 1;
(3). if 4|\k, define n > 3 with 2"||(k — 4), and put 4 — k = 2"w with w odd.
(a). if n > 6is even,

13 6 —4 4 8 —8 =2
= () 5 (B) ()
4 w /y w/y w /g

(b). ifn > Tisodd, (k) = 3 — 277 + (—=1)*2~"T,
(c) ifn=73 6k =1,
(d). ifn=48® =2+ (), — (T))
(e). ifn =5 8(k) =2+ 7 (=D
(4). if 8|k, define n > 3 with 2"||k, and put k = 2"w with w odd.
(a). if n > 6is even,

5 _n6 —4 _nz4 8 -8 _n=2
o= (5) 7 (), ()
J J J

(b). ifn > 17 is odd, 82(k) $-27T — (-2 T
(c). ifn=3 8% =3,

(). ifn =480 =3 -1 (%), - (3),)

(e). ifn =58k =3 — 3(=D";

B.4 Local factors associated with V,, ,, for p =2

The analog of (B9) is

Ni(ar, ap) =274 Z* e (ba

b (mod 2/)

1 —a3 G
=) @ik, a0 @), (BID)

with §(ay, ap) = 1+ Z[’il Nj(ay, ap). In what follows we have [ > 1.
B.4.1

Suppose 2 { ajaz and 2"||(D,, — Dg,) with n > 3. Then, by Lemma B.8
we have Q;(b, a1) Qi (b, az) = 2%
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Hence we get

271 if 1< <,
Ni(ay,ap) = =277 Vif 1 =n+1, (B12)
0 if | >n+2,

so that 8(ay, az) = 3 (1 —27"71).
B.4.2

2
Next suppose 2|a; and 2  ay, so that n = 0. Put A = %1 — 1 and 29|14y,
with6 = 0or6 > 3. By Lemmas B.8, B.7 and (B11), we have N;(aj, az) =0
ifl=1o0rl =0 + 1. Otherwise, with [ > 2 we have

—1! *
Mmhwy:%%-ije@%)n@m@mx (B13)
b (mod 2)

where o = a% — a% is odd.
If2 <[ <6, Lemma B.7 shows that

Niar.an) = (=127 37" e (b3;) xs®) (14 4 ®)0)
b (mod 2)

We now use
Lemma B.13 Suppose 2" ||o with u > 0. Then,
(1). If1 =2,

* o ZM_HX %iifl=2+/:b,
= - [

otherwise;
b (mod 2/)
(2). Ifl =3, and a =0 or 1,

é o\ o . .

S e (b5) xsrxstey = § 27k ) s ()i 1 =3+
2 0 otherwise,

b (mod 2!)

If 6 > 3, then for 2 <[ < 6, we have

(B14)

Here we have used the fact that o = a% — a% = (2u?) — v? with u and v both
odd.
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Forl > 0 + 2, with 6 > 0, we get in (B13)

_ 1\
Ni(ar, az) = 2211)9 > e(bg) xs )

b (mod 2%)

((ED) R

Applying Lemma B.13 shows that N;(a;, ap) = Oforall/ > 0 + 2.

Thus, if 6 = 0, then 83 (ay, az) = 1, while for 0 > 3 we get §2(ay, az) = %
B.4.3

Assume a; and a; are both evenand put A; = (1)2 —1,sothat A; =0, 3

modulo 4. Put 2% ||A; with 6; > 0but0 #1,2and C; = A;27Y odd We
will assume that 6; < 0,. Then a1 — a2 = 4(A; — Ay) so that 17 =2 +1, say,
with 27||(A; — Ay) with ¢ # 1. We have

* 40’ [
Ni(ar,ap) =27% )" €<172L;>IFz(b)IZFz(bAl)Fz(bAz), (B15)

b (mod 2/)
where we put 6’ = A} — As.
Note that Nj(aj,a;) =0ifl =1 orl = 60; + 1, so we assume [ > 2.

(@M. If2 < [ < 6y, then Fy(bA;) = 2'. Using |F;(b)|*> = 2'*! and (B12)
shows that N;(a;, a) = 1.
(I). If6; +2 <[ < 6, using Fj(bA,) = 2! and Lemma B.7(d) gives us

31
Ni(ay, ap) = 272204 o (016 (ay, an),

where

/

* 4
Siaa) = Y e<b2—i>x8<b>l+9' [L+ixa®bCD]. (BI6)

b (mod 2})

Applying (B12) and Lemma B.13 shows that G;(a;, az) = 0 except for
the cases &g, y2(ay, a2) = 201+1 and S, +4a(ar, ax) = —20+1,

Thus in this range, if 6 —|—2 < 6, then Ng,42(ay, az) = 2,if91 +4 <6,

then Ny, +4(ar, a) = —3 L and N(ay, ay) = 0 for all other /.
(III). Forl > 6, + 2 we get

N 1
Ni(ay, ap) = 27 21T 200 50 () H0 30 (C2) T2 6 (a1, an),
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with

Si(ar, a2) =

. 40’
Yoo b2—‘7> xsBT2 (1 4 xa(C1C2) +i (xa(bC1) — xa(BC))] .
b(mod 2/)

Since C; and C; are both odd, we have C; = (—1)*C, modulo 4 with
a=20, 1.Hence

* 40’
Si(ar, az) =2i" ) e(b7>m<b>“x8<b)91+92. (B17)
b (mod 2!)

If0; # 6r,thent = 6y andl > 6, +2 > 3. We apply (B12) and
Lemma B.13 with u = 61 + 2 so that N;(a1, az) = 0 except possibly
when!/ =6; +3,0; +4o0r6; + 5.

If [ = 6; + 3 then necessarily 8, = 61 + 1, in which case we get
Ni(ar,az) = 0.

Ifl = 6 +4then 6 = 61 + 1 or 6o = 0; + 2. If the for-
mer, then Nj(aj,az) = 0. For the latter we get S;(aj,az) =
— (1 — x4(C1C2)) 2943 5o that Ny (a1, a2) = —4 (1 — x4(C1C2)).

Ifl=60;+5then6, =6, +1,01 +2o0r6; +3.If 6 = 0; + 2, then
Nyar, az) = 0.16; = 61+ 1, then & (a1, a2) = 2'~% x4 (C1) xaxs (C)
while if 6 = 01 + 3, then &;(a;, ap) = 21_%X4X8(C1)X4(C2)- In these
latter cases, we get Ni(aj, a2) = 274X4X8(C1)X4(C2) ifo =61 +1
and Nj(a1, a2) = 273 x4(C1) xaxs(C2) if 6 = 61 + 3.

Next, suppose 81 = 6, = 6 witht > 6 and/ > 6 4 2. Then, from (B17),
we have Nj(a, ap) = 0ifl > t 4+ 5. For the remaining cases we have
@. if 1 =1 +4, &1(a1, @) = —xas (152 u(C) = (€12

(b). if I =1 + 3, then S;(ai, a2) = — (1 + x4(C1C2)) 271
(). if 0 +2 <1 <t+2,then S;(ar, ar) = (1 + x4(C1Ca)) 2171,

Combining give us the following
Proposition B.14 Let ay # *a> and aj # £2.
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(1). Suppose 2 t ajaz and 2"||(Dy, — Dg,) with n > 3. Then

27 1<t <,
Ni(a,a) =y =27 Vif Il =n+1,
0 if 1> n+2;

(2). Suppose 2|ay and 2 { ay, and let 22+0) |Dg,. Then

Lifo>3andl € 2,3},
Nitar, ap) = {8 Oftherwise :
(3). For j =1, 2 suppose 2|a; , and put A; = %Daj, C; = AjZ*e-f with
291‘||A.,- and assume 01 < 0,. Also suppose 2'||(A] — Ap) so that t > 0.
We have
(i). Ni(ay,a2) =0forl=1,01 4+ 1and 0 + 1.
(ii). For2 <1 <64, Ni(a1,ap) = 1.
(iii). Forl > 01 + 2, and 61 # 6 we have Ni(ai, ax) = 0 except for the
following cases:

2~ xuxs(C)xa(Ca) if 1 =61 +5and 0> = 6; + 1,

21 if l =61 4+2and 6, > 6 + 2,
Ni(ar,a2) = { =272 (1 — x4(C1C2)) if | = 61 +4 and 6, = 6; + 2,
273 x4(C)xaxs(Ca) if 1 =61 +5and by =61 +3,
—272 if l=614+4 and 6, > 0; + 4.

(iv). If01 = 6, = 0, then

Ni(ay, ap)

—27 =0 yg(C1C)! (1 + xa(C1C)), i 0421 <142,
—2= =043 3o (C1Co) T+ (1 + x4(C1Ca)),  if I =143,

—27 0 (1 C) s (G2 ) Dxa(C) = e (Co)1if L =1+ 4,
0, ifl>1+45.

Corollary B.15 For ay # +a; and aj # +2, suppose 29||gcd(Da1, Dg,).

Then 8x(at, az) = 0 + O(1) and 8(ay, az) — 85" (a1, az) = O (27B), where
the implied constants are absolute.
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