
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Fixed Effects Testing in High-Dimensional Linear
Mixed Models

Jelena Bradic , Gerda Claeskens & Thomas Gueuning

To cite this article: Jelena Bradic , Gerda Claeskens & Thomas Gueuning (2020) Fixed Effects
Testing in High-Dimensional Linear Mixed Models, Journal of the American Statistical Association,
115:532, 1835-1850, DOI: 10.1080/01621459.2019.1660172

To link to this article:  https://doi.org/10.1080/01621459.2019.1660172

View supplementary material 

Published online: 03 Jan 2020.

Submit your article to this journal 

Article views: 1419

View related articles 

View Crossmark data

Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2019.1660172
https://doi.org/10.1080/01621459.2019.1660172
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1660172
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2019.1660172
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1660172
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2019.1660172
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1660172&domain=pdf&date_stamp=2020-01-03
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1660172&domain=pdf&date_stamp=2020-01-03
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2019.1660172#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2019.1660172#tabModule


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2020, VOL. 115, NO. 532, 1835–1850: Theory and Methods
https://doi.org/10.1080/01621459.2019.1660172

Fixed E!ects Testing in High-Dimensional Linear Mixed Models

Jelena Bradica, Gerda Claeskensb, and Thomas Gueuningb

aDepartment of Mathematics, University of California San Diego, La Jolla, CA; bORStat and Leuven Statistics Research Center, KU Leuven, Belgium

ABSTRACT
Many scienti!c and engineering challenges—ranging from pharmacokinetic drug dosage allocation and
personalized medicine to marketing mix (4Ps) recommendations—require an understanding of the unob-
served heterogeneity to develop the best decision making-processes. In this article, we develop a hypothe-
sis test and the corresponding p-value for testing for the signi!cance of the homogeneous structure in linear
mixed models. A robust matching moment construction is used for creating a test that adapts to the size
of the model sparsity. When unobserved heterogeneity at a cluster level is constant, we show that our test
is both consistent and unbiased even when the dimension of the model is extremely high. Our theoretical
results rely on a new family of adaptive sparse estimators of the !xed e"ects that do not require consistent
estimation of the random e"ects. Moreover, our inference results do not require consistent model selection.
We showcase that moment matching can be extended to nonlinear mixed e"ects models and to generalized
linear mixed e"ects models. In numerical and real data experiments, we !nd that the developed method
is extremely accurate, that it adapts to the size of the underlying model and is decidedly powerful in the
presence of irrelevant covariates. Supplementary materials for this article are available online.
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1. Introduction
In many applications, we want to use data to draw inferences
about the common underlying e!ect of a treatment. Examples
include medical studies about the computation of e!ect sizes for
assessing the clinical importance of covariates on pharmacoki-
netic or pharmacodynamic responses, and to the study of drug–
drug interactions or studies that quantify the e!ects of di!erent
advertising mediums that take into account other variables such
as pricing, distribution points, and competitor tactics, for exam-
ple, commonly used by technology "rms to optimize budget
over these di!erent mediums. Historically, most datasets have
been too small to meaningfully explore unobserved heterogene-
ity beyond dividing the sample into independent subgroups.
Recently, however, there has been an explosion of empirical
settings where it is potentially feasible to gather large-scale
observations and therefore better customize estimates across
both population and individuals.

An impediment to exploring unobserved heterogeneous
e!ects is the fear that researchers will iteratively search for
subgroups with high treatment levels, and then report only the
results for subgroups with extreme e!ects, thus exploring and
utilizing heterogeneity that may be purely spurious. Moreover,
procedural restrictions have o#en been used to control for the
unobserved randomness. However, such procedural restrictions
can make it di$cult to encompass strong but unexpected het-
erogeneity which naturally occurs in practice. In this article,
we seek to address this challenge by developing a method for
hypothesis testing of "xed e!ects, while allowing models to
have heterogeneous and random components, that yields valid
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Color versions of one or more of the !gures in the article can be found online at www.tandfonline.com/r/JASA.
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asymptotic con"dence intervals and p-values for the true under-
lying "xed e!ect.

Classical approaches to test "xed e!ects in the presence of
random e!ects include Breslow and Clayton (1993), Kenward
and Roger (1997), and Crainiceanu and Ruppert (2004); see, for
example, Verbeke and Molenberghs (2009). These methods per-
form well in applications with a small number of covariates, but
quickly break down as the number of covariates increases. In this
article, we explore the use of doubly robust ideas from the liter-
ature to improve the performance of these classical methods in
the presence of an exploding number of covariates. We develop a
family of moment matching tests, which allows for %exible mod-
eling of interactions in high dimensions by allowing models that
are not entirely sparse (not even approximately). The developed
moments are related to Neyman orthogonalization principles in
that they are robust to model misspeci"cations and estimation
of nuisance parameters; however, the tests di!er in that they
are also robust to the misspeci"cation (and/or misestimation)
of random e!ects in the case of linear mixed models—this is
especially important in environments with many covariates with
possible complex interactions and the presence of unobserved
model heterogeneity.

Despite their widespread success in estimation and inference
in high-dimensional linear models, there are important hurdles
that need to be cleared before penalized estimators are directly
useful in linear mixed models. Ideally, an estimator of complete
variability in the model needs to be constructed, so that a
researcher can use it to test hypotheses and establish sampling
distributions. However, in the case of mixed models, estimation
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of random e!ects is typically more di$cult than that of "xed
e!ects one is interested in. Developing inferential tools that do
not necessarily rely on good quality estimates of random e!ects
would therefore be extremely useful. Yet, such procedures have
been largely le# undeveloped, even in the standard contexts.

This article addresses these limitations, develops a robust
method for "xed e!ect testing that allows for a tractable asymp-
totic theory and valid statistical inference even when the esti-
mation of random e!ects is not consistent. Our proposed test
is composed of an estimator of the correlation between the
model error under the null hypothesis and the error of carefully
constructed feature projections.

In the interest of generality, we begin our theoretical analysis
by developing the desired consistency and asymptotic normality
results in the context of high-dimensional linear mixed mod-
els. We prove these results for a particular variant of mixed
models that uses Gaussian random e!ects with unknown clus-
ter variances while allowing the number of "xed e!ects to be
much larger than the sample size. However, the results do not
rely on Gaussianity or quality of estimators of the unknown
variance components. This property is achieved by the doubly
robust construction of the test statistic, as well as new high-
dimensional estimators of the "xed e!ects. We also show that
such robustly motivated estimator is consistent in l1 norm
whenever the actual model is sparse. Our proof is built on
within cluster analysis and a martingale representation of the
test statistic between the clusters. We show that the consis-
tency of the test adapts to the quality of estimation of the
"xed e!ects by successfully leveraging correlation properties
among the features. Given these general results, we next show
that our ideas extend from the linear setting to the nonlin-
ear setting as well as settings with unknown cluster correla-
tion. We also illustrate that the proposed "xed e!ect estima-
tor can be utilized for estimation of the unknown variance
components.

Although our main focus in this article is the inference on
"xed or common e!ects, we note that there are a variety of
important applications of the p-value construction in a pure
variable selection context. Ryzhov, Han, and Bradic (2016)
seek to improve the construction of marketing campaigns for
nonpro"t organizations by detecting which marketing strategy
yielded a better donor retention (in terms of continuous in%ux
of small to medium donations). Donors are grouped naturally by
the observed frequency of donations thus yielding a natural lon-
gitudinal structure in the observations. Here we need rigorous
predictions for the probability that a donor would continue its
activity if a speci"c marketing strategy was selected as the most
bene"cial for the observed data. Our results would be one of the
"rst to develop rigorous variable selection that enables the use
of large-scale data for this purpose.

1.1. Related Work

There has been a longstanding understanding in the high-
dimensional statistics literature that prediction methods based
on regularization (e.g., Tibshirani 1996; Fan and Li 2001) per-
form well outside of the class of linear models: if the goal is pre-
diction, then we should de"ne a proper likelihood function and

the method will be considered as good as long as the likelihood
function is convex (see Bühlmann and Van De Geer 2011 for
more details). However, good performance in prediction does
not necessarily translate into good performance for estimation
or inference about model parameters. In fact, it can o#en be
quite poor. In a Neyman orthogonalization framework we use
to formalize our inferential results, we show that the testing of
signi"cance of "xed e!ect can be done asymptotically exactly
regardless of the error in estimation of the random e!ects or the
additional nuisance parameters of the model. Thus, when eval-
uating estimators of the "xed e!ects, asymptotic theory plays
a much more important role than in the standard prediction
context.

From a technical point of view, the main contribution of
this article is an asymptotic normality theory enabling statisti-
cal inference in the context of high-dimensional linear mixed
models while simultaneously allowing misspeci"cation in both
the model and the random e!ects. Recent results by Zhang and
Zhang (2014), Van de Geer et al. (2014), Javanmard and Monta-
nari (2014a), Cai and Guo (2017), Belloni, Chernozhukov, and
Kato (2014), and others have established asymptotic properties
of tests in a particular variant of the sparse high-dimensional
linear models (Ren et al. 2015; Jankova and Van De Geer 2015;
Ning and Liu 2017; Athey, Imbens, and Wager 2016). To our
knowledge, however, we provide the "rst set of conditions under
which tests are both asymptotically unbiased and Gaussian for
the linear mixed models, thus allowing for classical statistical
inference; the estimator of the "xed e!ects used to achieve
asymptotic normality proposed in this article is also new. We
review the existing theoretical literature on linear mixed models
in more detail in Section 3.1.

A small but growing literature, including Belloni et al. (2015)
and Chernozhukov, Hansen, and Spindler (2015), has consid-
ered the use of Neyman orthogonalization for the purposes
of high-dimensional inference. These articles use the Neyman
orthogonalization method of Neyman (1959) together with
sample splitting and de-biasing (e.g., Chernozhukov et al. 2016),
and report con"dence intervals or p-values resulting from sig-
ni"cance testing, obtained by Belloni et al. (2017). A limitation
of the existing work is in that it cannot allow for the unobserved
heterogeneity in the model (e.g., like the presence of random
e!ects).

We view our contribution as complementary to this litera-
ture, by showing that Neyman orthogonalization need not only
be viewed as successful in linear models (or generalized linear
models), and can instead be modi"ed and used for rigorous
asymptotic analysis in high-dimensional model with random
e!ects. We succeed in showing that our construction allows one
more degree of robustness—the random e!ects can be estimated
rather poorly without changing the asymptotic null distribution
of the test. Even in low dimensions advancements of this type
would be of considerable interests as there are no fully reliable
ways to identify the best covariance model; as many studies have
revealed biased inference for the "xed e!ects with an under-
speci"ed covariance structure; the problem is only multiplied
when there is a growing number of "xed e!ects in the model.
The methodological and theoretical tools developed here are
useful beyond the speci"c class of algorithms studied in our
article. In particular, our tools allow for a fairly direct analysis
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of variants of the Bayesian hierarchical linear regression models
(e.g., Quintana et al. 2016).

Finally, we note a growing literature on estimating "xed
e!ects in the presence of unobserved heterogeneity using di!er-
ent regularization methods. Schelldorfer, Buhlmann, and van de
Geer (2011), Groll and Tutz (2014), and Hui, Müller, and Welsh
(2017) developed lasso-like methods for estimation of "xed
e!ects in a sparse high-dimensional linear mixed model setting.
Nonconvex methods were investigated by Wang, Zhou, and Qu
(2012) and Ghosh and Thoresen (2016), among others. Fan and
Li (2012) and others discussed variable selection procedures for
the "xed or random e!ects that enable o!-the-shelf methods
to be used for optimal estimation (see a review article Müller,
Scealy, and Welsh (2013) for more details). Additionally, Bonnet,
Gassiat, and Lévy-Leduc (2015) estimated heritability in sparse
linear mixed models, relying on a special asymptotic scenario
where the sizes of the clusters are proportional to the number
of observations. However, none of the approaches above pro-
vides guarantees about honest p-values or con"dence interval
constructions.

2. Inference in Linear Mixed Models

We consider a linear mixed model in which observations are
grouped. Suppose that we have a sample of N subjects. Let
i = 1, . . . , N be the grouping index and ni the number of
observations in group i. The total number of observations is
denoted by n = ∑N

i=1 ni. For the ith subject we represent the
model as follows

yi = Xiγ
∗ + Ziβ

∗ + Wibi + εi, (1)

where yi = (yi1, . . . , yini)
" ∈ Rni collects the response variable

of the ith subject, Xi ∈ Rni×(p−1) with Xi = (x"
i1, x"

i2, . . . , x"
ini

)"

the design matrix of the "xed e!ects where xij ∈ Rp−1 for j ∈
{1, . . . , ni}. Similarly we denote with Zi = (zi1, zi2, . . . , zini)

"

the design vector of the "xed e!ects which we are interested
in, with zij ∈ R. The vector of population speci"c "xed e!ect
coe$cients is split into a (p − 1)-dimensional vector γ ∗ and a
univariate β∗. The subject speci"c random e!ects are de"ned
through a q dimensional vector bi = (bi1, . . . , biq)" ∈ Rq for
which we assume bi ∼ Nq(0, ψ) for a bounded q. Here, ψ is
the unknown covariance matrix of the random e!ects which can
be correlated with each other. The corresponding deterministic
design matrix for group i is denoted with W i ∈ Rni×q. In
addition, εi is the random error vector with components iid with
mean zero and an unknown variance 0 < σ 2

ε < ∞. We would
like to remark that the independence assumption can be gener-
alized to a positive de"nite variance covariance structure. This
generalization still "ts into the theoretical framework presented
in Section 3. Nonetheless, for the sake of notational simplicity,
we restrict to the case of group independent errors.

The goal of this article is to develop a test which is able to
detect whether β∗ is equal to β0 or not, that is,

H0 : β∗ = β0 versus H1 : β∗ (= β0, (2)

for some given value β0 ∈ R. We study the asymptotics with
N → ∞ and assume that ni is bounded in N, while allow-
ing a large number of "xed e!ects in that p * n, that is,

log p = o(
√

n). The main di$culty is that we can only ever
test the "xed e!ects if the random e!ects are either known or
estimated well. However, in practice this is never achievable and
we cannot directly test for the "xed e!ects using existing tools
and techniques. In general, we cannot estimate the variance
components consistently simply from the observed data without
further restrictions on the data generating distribution. A stan-
dard way to make progress is to assume models selection con-
sistency of the "xed e!ects, that is, that estimated "xed e!ects
are correctly selected. The motivation behind this assumption
is that it enables direct dimensionality reduction as it e!ectively
implies correct selection of the true "xed e!ects; thus, imposing
restrictive minimal signal strength assumptions together with a
irrepresentable condition. In this article, we take a more indi-
rect approach: we show that, under simple assumptions, our
approach can use moment conditions to achieve consistency
of a test without needing to explicitly estimate the variance
component.

Let vectors Y , b, and ε, and matrices X, Z be obtained by
stacking vectors yi, bi, and εi and matrices Xi, Zi, respectively,
underneath each other, and let $ = diag(ψ , ..., ψ) ∈ RqN×qN

so that Wb ∼ Nn(0, W$W") with a block-diagonal matrix
W = diag(W1, . . . , WN) ∈ Rn×qN . In particular, b =
(b"

1 , . . . , b"
N)" ∈ RqN is the random e!ect vector and Y|(X, Z)

has mean Xγ ∗ +Zβ∗ and variance σ 2
ε In +W$W". We further

standardize the design matrix X such that each column has the
same norm. The linear mixed e!ects model (1) can be rewritten
as

Y = Xγ ∗ + Zβ∗ + Wb + ε. (3)
The n components of the noise vector ε are iid with mean
zero and variance 0 < σ 2

ε < ∞. We assume that ε, b,
and W are mutually independent and that ε is independent of
X, Z. Observe that we do not require the error to have Gaus-
sian distribution (see Schelldorfer, Buhlmann, and van de Geer
(2011) and Fan and Li (2012), where Gaussianity was explicitly
assumed); if we restrict our attention to Gaussian error then the
independence above can be replaced with uncorrelatedness with
no signi"cant changes in the proofs. Note that γ ∗ and β∗ can
be seen as being derived from an original p-dimensional vector.
The notation (3) emphasizes the fact that β∗ is the component
of this original vector on which we want to perform hypothesis
testing.

2.1. From the Parametric Null to the Matching Moments
Condition

At a high level, Wald and score tests can be thought of as
two contrasting methods with likelihood based constructions.
Given a particular score function (typically a "rst derivative of
the likelihood function), a classical method such as Rao’s test,
performs estimation only under the null hypothesis and forms a
test based on the "rst moment condition, that is the expectation
of the score should be close to zero. In contrast, orthogonaliza-
tion methods seek to "nd appropriate directions that are close
to the score, where the closeness is de"ned with respect to a
projection of a certain kind. The advantage of orthogonalization
is that hypothesis testing of a parameter of primary interest
can be done rather e$ciently in the presence of the nuisance
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parameters. This is achieved by constructing a class of functions
(dependent on the null hypothesis) that is orthogonal to the
scores of the nuisance parameters. Neyman then considers a
particular construction of regressing the scores of the parameter
of interest onto the scores of the nuisance parameters. Then the
test, formulated by exploring this orthogonality, can potentially
lead a to a substantial increase in power.

In this section, we seek orthogonalization principles that are
adapted to the presence of random e!ects in a linear regres-
sion model. Suppose "rst that we observe independent samples
(yi, Xi, Zi) and want to build a orthogonalization criterion suit-
able for testing (2) in a model (3). We start by splitting the feature
space until we have partitioned it into Zi, a set of covariates in
the null, and Xi, associated with the nuisance parameters. Then,
given observations (Xi, Zi) only, we evaluate the regression of Zi
onto the remaining covariates Xi by setting

Z = Xθ∗ + U , (4)

where θ∗ ∈ Rp−1 and with components of U are iid with
mean zero and unknown variance 0 < σ 2

u < ∞. Heuristically,
this strategy is well-motivated if we believe the covariates of
the "xed design have a Gaussian distribution and that the rows
are roughly identically distributed. There are possibly several
other procedures on how to best design this regression; but for
simplicity we consider a linear case—other more elaborate cases
follow from our methodology with easy extensions of the proofs.

We assume that U is independent of X, ε, and b. How-
ever, uncorrelatedness can replace the independence with little
changes in the proof whenever the errors in the model take
Gaussian structure. Note that the coe$cients θ∗ are functions
of the variances and covariances of the design matrices X and
Z, that is, θ∗ and of σ 2

u depend on X = (X, Z). They can
be explicitly computed if the rows of X are iid with normal
distribution Np(0, '). In that case, denoting by j the column
of X corresponding to Z, it follows from Anderson (1984) that
the conditional density f (Zi|Xi) is a (p−1)-variate normal with
mean X"

i '−1
−j,−j'−j,j and variance σ 2

u = 'j,j−'j,−j'
−1
−j,−j'−j,j,

where '−j,−j ∈ R(p−1)×(p−1) is obtained by removing the jth
row and column of ', and '−j,j ∈ Rp−1 is the jth column of
' without its jth component. It follows that θ∗ = '−1

−j,−j'−j,j.
Table 1 gives the exact values of θ∗ and σ 2

u for the setting
considered in our numerical work. More details are provided in
the Appendix.

Finally, given regression (3) together with (4) our procedure
for testing (2), generates the pseudo response

V = Y − Zβ0 (5)

Table 1. Exact values of θ∗ and σ 2
u for the settings considered in our simulation

study.

Design θ∗ Particular case

Toeplitz Sparse ρ = −0.5 ⇒
{

θ∗ = (0, . . . , 0, −0.4, −0.4, 0, . . . , 0)

σ 2
u = 0.6

Equi-correlated Dense ρ = 0.8 ⇒
{

θ∗ = (0.002, . . . , 0.002)

σ 2
u = 0.2

NOTE: Note that for the Toeplitz case, if Z the !rst (resp., the last) column of X is
tested then θ∗ is slightly di"erent; only its !rst (resp., last) component is nonzero,
with value ρ. Furthermore in that case, σ 2

u = 1 − ρ2.

and observes that under the null hypothesis V −Xγ ∗ = Wb+ε
and Z − Xθ∗ = U are uncorrelated and are such that

E[n−1(V − Xγ ∗)"A(Z − Xθ∗)] = 0 (6)

for a n × n positive de"nite matrix A. This moment matching
equation can be seen as a speci"c orthogonality condition where
Zi are treated as confounders in the model on V. Conversely,
we observe that under the alternative hypothesis the above two
terms are correlated since V − Xγ ∗ = Z(β∗ − β0) + Wb + ε;
we compute that

E[n−1(V − Xγ ∗)"A(Z − Xθ∗)] = σ 2
u n−1trace(A)(β∗ − β0).

The advantage of the above orthogonalization, (6), is that
the form of a moment above resembles double-robust construc-
tions where only one of the two residuals, ε or U , needs to be
estimated well enough. Double robustness is to be understood
in the sense that either model (4) can be misspeci"ed but not
both. Due to the assumed independence between U and X, ε
and b, a nonzero correlation between V − Xγ ∗ and U =
Z − Xθ∗ does not occur under the null hypothesis. Even if ε
contains further random e!ects structures, as long as they are
independent/uncorrelated of the "xed e!ects, the correlation
under the null should stay zero. Of course gross misspeci"cation
(of the likes of using a linear model when the model is highly
nonlinear) is not considered. Misspeci"ed is meant in light of
the sparsity assumptions in each of the two models.

We will see that for a particular choice of the matrix A the
above observation leads to optimal inference for the "xed e!ects
without requiring any knowledge or even consistent estima-
tion of the random e!ects. Such approach is of interest on its
own right (even for low-dimensional problems) and would be
extremely bene"cial for practical purposes in high-dimensional
longitudinal studies where estimation of random e!ects is par-
ticularly di$cult.

2.2. Estimation of the Unknowns

In our discussion so far, we have emphasized the %exible nature
of our methods: for a wide variety of the structure of γ ∗,
distributions of ε and of the random e!ects, $ , our methods
can be tailored, we achieve both consistency and asymptotic
normality, provided the sample size n scales at an appropriate
rate. Our results do, however, require the features corresponding
to the "xed-e!ects are not correlated extremely highly: features
are sparsely correlated if the precision matrix is row-sparse, that
is, each row has small number of nonzero elements. We discuss
a new class of estimators for both γ ∗ and θ∗ that satisfy this
condition and are adaptive to the structure of the random e!ects.

Our "rst algorithm, which we call a doubly robust estimator,
achieves adaptivity in estimation of γ ∗ regardless of its structure
and the consistent estimation of the random e!ects. It achieves
honest estimation by incorporating a pseudo response vector V ,
(5), and a proxy correlation matrix P̃ directly into its construc-
tion. To motivate our estimation procedure, let us observe that
if ε would be normally distributed, the underlying joint density
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of (V , b) would be

f (V , b) = f (V|b)f (b) = (2π)−(n+qN)/2σ−n
ε |$|−1/2

× exp
{

− 1
2σ 2

ε

(V − Xγ − Wb)"(V − Xγ − Wb)

− 1
2

b"$−1b
}

. (7)

We treat f (V , b) as a quasi-likelihood function; our method
does not require normality of ε. For a given γ , the maximum
likelihood estimator of b is then

b̂(γ ) =
(

W"W + σ 2
ε $−1

)−1
W"(V − Xγ ).

We can plug-in this estimator into (7) to construct a pro"le
likelihood for γ . We de"ne E = W"W + σ 2

ε $−1 and P =
(In − WE−1W")(In − WE−1W") + σ 2

ε WE−1$−1E−1W"

and, dropping the constants, we obtain the following pro"le log-
likelihood

L(γ , b̂(γ )) = − 1
2σ 2

ε

(V − Xγ )"P(V − Xγ ). (8)

By Lemma B.1 in the supplementary materials, P = (In +
σ−2

ε W$W")−1. Note that if ε is normally distributed then
Wb + ε ∼ Nn(0, σ 2

ε P−1). However, observe that the above
pro"le log-likelihood is a nonconvex function of all of the
unknown parameters, γ , $ , σε . Moreover, in the presence of
high-dimensional "xed e!ects, the pro"le log-likelihood has too
many stationary points.

Following the idea of Fan and Li (2012), we replace the
unknown variance matrix σ−2

ε $ by a known "xed symmetric
matrix M which serves as a proxy. We discuss in the next section
how to choose M; our theory allows for many choices of M. We
de"ne proxy versions of E, P, and L by replacing σ−2

ε $ by M;
we de"ne Ẽ = W"W + M−1 and P̃ = (In + WMW")−1 and
obtain the following proxy log-likelihood

L̃(γ , b̂(γ )) = − 1
2σ 2

ε

(V − Xγ )"P̃(V − Xγ ). (9)

Observe that the proxy log-likelihood does not have a good
quality approximation of the true L. Instead it serves as a proxy
to give inspiration for a new estimator of the unknown "xed
e!ects γ ∗. Provided that the l1 penalization of the above proxy
log-likelihood heavily depends on the correct model speci"-
cation and the form of the likelihood function, we take on a
di!erent perspective and design a new estimator that is inspired
by the Dantzig selector. We de"ne γ̂ as the solution to the
following optimization problem

γ̂ = argminγ∈Rp−1 ‖γ ‖1

subject to
∥∥∥n−1X"P̃(V − Xγ )

∥∥∥
∞

≤ ηγ

n−1V"P̃(V − Xγ ) ≥ η̄γ∥∥∥P̃(V − Xγ )
∥∥∥

∞
≤ µγ

(10)

with ηγ 0 (log n)
√

n−1 log p, µγ 0
√

log n and 0 <

η̄γ < n−1trace(σ 2
ε P̃P−1) suitably chosen tuning parameters.

The l1 norm induces sparse solutions whereas the constraints
ensure good theoretical properties. The above constraints arise

from the score vector of the pro"le log-likelihood function L̃;
the "rst ensures that the score vector is minimized and the
second ensures that the variance of the residuals is properly
guessed. However, observe that we do not assume that the pro"le
log-likelihood is correctly speci"ed, and for that matter a last
constraint is needed to guarantee small size of the estimated
residuals in the model

P̃1/2V = P̃1/2Xγ + e, (11)

where var(e) = σ 2
ε P̃P−1. The tuning parameter η̄γ provides a

proxy for the unknown variance of the error in the model above.
Hence, the size of the residuals is constrained in a similar way as
robust loss functions are truncated to down-weight the e!ect of
overly large outliers.

Remark 1. The estimator γ̂ de"ned in (10) is new and of
potential interest in its own right. We show that under suitable
conditions,

∥∥γ̂ − γ ∗∥∥
1 = OP(ηγ ‖γ ∗‖0) meaning that this

estimator is consistent if ‖γ ∗‖0 = o(
√

n/ log(p)/ log(n)). It is
worth pointing that this result does not impose any restrictions
on the minimum signal strength or that the matrix P̃ correctly
speci"es variance parameters of the random e!ects and in that
sense is honest and robust. Beside providing a reliable estimator,
the optimization problem (10) is fast since it can be reformulated
as a linear program. Existing regularized schemes, such as the
one introduced by Schelldorfer, Buhlmann, and van de Geer
(2011) for example, do not provide such quick implementation.

The estimation of θ∗ is based on model (4). Unlike linear
models, where node-wise lasso is su$cient to estimate feature
correlation, for the case of linear mixed models, we observe that
the matrix P̃ should contribute to the estimation procedure—
we see from (11) that the covariates are premultiplied with P̃1/2.
Namely, the presence of random e!ects induces a larger than
usual dependence in the design matrix of the "xed e!ects. We
incorporate such requirement in a new estimator de"ned below.

θ̂ = argminθ∈Rp−1 ‖θ‖1
subject to

∥∥n−1X"(Z − Xθ)
∥∥

∞ ≤ ηθ∥∥∥n−1X"P̃(Z − Xθ)
∥∥∥

∞
≤ η′

θ

n−1Z"(Z − Xθ) ≥ η̄θ

‖Z − Xθ‖∞ ≤ µθ

(12)

with tuning parameters ηθ , η′
θ 0 (log n)

√
n−1 log p, µθ 0√

log n and 0 < η̄θ < σ 2
u .

The "rst and the second constraint enable adaptive and auto-
matic estimation of the correlation of the features of the "xed
e!ects without prior knowledge (or correct estimation) of the
correlation of the random e!ects. In particular, the "rst ensures
that the gradient of the square loss is close to zero, whereas the
second one looks at the reweighed gradient where the weights
are de"ned through the matrix P̃. The presence of the second
constraint allows us additional %exibility with the choice of the
matrix P̃. We can remove the second constraint if we impose
that λmax(W"MW) is bounded; however, this would restrict
our choices of the matrix M and in particular it would not allow
for M = log(n)In which we found to be bene"cial whenever the
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variance in the random e!ects is particularly large. Lastly, the
last constraint excludes features X that are highly correlated with
Z; as our task was to remove heterogeneity (by de-correlating
features), such reasoning is needed for a successful test statistic.

The Dantzig estimators can be obtained by linear program-
ming (see, e.g., Koenker and Mizera 2014, Appendix D).

2.3. Asymptotic Inference for Linear Mixed Models

Our results are achieved under the asymptotics where N → ∞
and ni/N → 0, a regime di!erent from that used in simple linear
models, and require very mild conditions on the choice of the
matrix P̃, that is, the matrix M, which needs to have the same
diagonal structure as WW". However, given these high level
conditions, we obtain a widely applicable result that applies to
several di!erent linear mixed models.

To de"ne a test statistic, we focus on the moment condition
(6) and in particular consider A = P̃. That is, the moment
condition that we wish to test is now taking the form E[n−1(V −
Xγ ∗)"P̃(Z−Xθ∗)] = 0 whenever the null hypothesis H0 holds.
For the alternative hypothesis, this moment takes the form
E[n−1(V − Xγ ∗)"P̃(Z − Xθ∗)] = σ 2

u n−1trace(P̃)(β∗ − β0).
We then proceed to form a test statistic. The moment above

produces a doubly robust test statistic as long as one of two com-
ponent regression models is correctly speci"ed and assuming
that there are no unmeasured confounders, giving the analyst
two chances to correctly specify at least one of the regression
models, (3) and (4), respectively. To standardize the test statistic
appropriately, we de"ne σ̂ 2 = n−1||P̃(V − Xγ̂ )||22 and σ̂ 2

u =
n−1||(Z − Xθ̂)||22. Whenever the models are correctly speci"ed,
they produce residual variance estimates. However, the quality
of testing does not rely on them being consistent estimators;
in fact, as the proxy log-likelihood is not exact, this will not
be achievable; we show in Lemma B.7, in the supplementary
materials, that σ̂ 2 = σ 2

ε n−1trace(P̃P−1P̃) + oP(1).
Now, we proceed to de"ne the test statistic as

Tn = n−1/2(Z − Xθ̂)"P̃(V − Xγ̂ )

σ̂uσ̂
. (13)

The doubly robust test statistic combines the initial model
under the null hypothesis with a regression model of the rela-
tionship between covariates and the feature related to each of
the parameters of interest in such a way that, as long as either
the initial model or the feature regression model is correctly
speci"ed, the e!ect of the initial null hypothesis on the trans-
formed moment is correctly estimated. In the case of linear
mixed models, the initial model is only correctly speci"ed when
the variance parameters $ are known, making the test statistic
above particular useful for cases when there is no such knowl-
edge.

Our "rst result is that the test statistic has asymptotically
a standard normal distribution whenever the null hypothesis
holds (see Theorem 3). For this result we do not require sparsity
of the "xed e!ects, but rather sparsity of the precision matrix
of the design matrix of the "xed e!ects. However, we do not
require any consistent estimation of the covariance parameters
* . To obtain the asymptotic distribution under the alternative
hypothesis, H1 : β∗ = β0 + n−1/2h, we need to assume

that the vector of nuisance parameters γ ∗ is sparse (or approxi-
mately) with a small number of nonzero elements, although our
simulations show that the power is preserved even if the "xed
e!ects have as many as n nonzero elements (see Theorem 4). To
our knowledge, all existing results regarding inference of linear
mixed models require consistent estimation of the covariance
parameters and low-dimensionality of the "xed e!ects vector.
Although some empirical work has demonstrated that incon-
sistent variance estimation does not e!ect Type I error control
(in low-dimensional settings), theoretical guarantees were never
established.

3. Asymptotic Theory for Linear Mixed Models

To use the test statistics to provide formally valid statistical infer-
ence, we need an asymptotic normality theory in the desired
asymptotics. We begin by precisely describing the asymptotics
under the null hypothesis. We then proceed to describe the
asymptotics under the alternative hypothesis

H1 : β∗ = β0 + hn−1/2. (14)

Before stating our theoretical results, we give some de"ni-
tions.

De!nition 1 (P-condition). We say that a symmetric semide"nite
positive matrix A satis"es the P-condition if it has the same
block diagonal structure as W"W and if each element of A is
O(log(n)).

In Lemma B.4, we show that P̃ = (In + WMW")−1

satis"es the P-condition for any matrix M having the same block
diagonal structure as W"W. Furthermore, it holds that P and
P−1 satisfy the P-condition.

Next, we require that the errors ε in our model have sub-
Gaussian tails. A test statistic, as de"ned in Section 2.3, can be
used to give honest p-values or con"dence intervals; in Section 4
we illustrate its good properties even when the error is not sub-
Gaussian but exhibits heavy-tails.

De!nition 2. A random variable X is said to have an
exponential-type tail with parameters (b, γ ) if ∀x > 0, P(|X| >

x) ≤ exp[1 − (x/b)γ )]. Furthermore, a random variable X is
sub-Gaussian if it has an exponential-type tail with parameters
(b, 2).

To guarantee consistency, we also need to enforce that the
design matrix of the "xed e!ects satis"es some regularity condi-
tions. The conditions are standard in the high-dimensional liter-
ature and ensure that the population feature covariance matrix is
a well-conditioned matrix. Here, we follow Rudelson and Zhou
(2013), and achieve this e!ect by enforcing sub-Gaussianity in
the design in the following condition. Let Cmin, Cmax, and κ

denote positive constants.

Condition 1. The matrix ' = E[X"X]/n ∈ R(p−1)×(p−1) is
such that Cmin ≤ σmin(') ≤ σmax(') ≤ Cmax with σmin(')

and σmax(') the minimal and maximal singular values of '.
The vectors '−1/2xi, ε, and u are centered with sub-Gaussian
norms upper bounded by κ . Moreover, σu, σε ∈ [Cmin, Cmax].
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The elements of the symmetric and invertible matrix $ and of
the deterministic design matrix W are bounded.

The remaining de"nition is more technical. We use a regular-
ity condition to control the shape of the correlation in the fea-
tures and in the variance covariance matrix $ . Such condition
is used regularly in high-dimensional estimation and inference
(see Bickel, Ritov, and Tsybakov 2009).

De!nition 3. We say that the restricted eigenvalue condition
holds for a triplet (s, κ , X) if

min
J0⊆{1,...,p−1}

|J0|≤s

min
δ (=0∥∥∥δJc

0

∥∥∥
1
≤‖δJ0‖1

‖Xδ‖2√
n

∥∥δJ0

∥∥
2

≥ κ .

Rudelson and Zhou (2013) showed that the restricted eigen-
value condition holds with large probability if the sample size n
is large enough and the rows of the design have sub-Gaussian
distributions.

We note that our test statistic (13) does not depend on
the inverse of $ . So although we started this section with the
nonsingularity assumption of $ , in practice our method can be
directly applied even when noise random e!ects exist.

Given these preliminaries, we state our main result on the
asymptotic normality of the test statistic Tn. As discussed pre-
viously, we require that the sample size scales as

√
n/ log(p) =

o(1) as N → ∞. If the subsample size grows slower than this, the
test statistic will still be asymptotically normal, but the it may be
asymptotically biased. Although we treat n, s and p as functions
of N, for clarity, we state the following result without this explicit
dependence.

Theorem 1. Suppose that we have N independent observations
(yi, Xi, Zi, Wi) ∈ Rni × Rni×(p−1) × Rni × Rn1×q. Suppose
moreover that the features satisfy Condition 1. Let the matrix
P̃ be such that De"nition 1 holds. Given this data-generating
process, let γ̂ and θ̂ be estimators of the nuisance parameters
and the feature dependence as de"ned in (10) and (12). Finally,
suppose that the sample size scales as n1/2/ log(p)/ log(n) =
o(1) and maxi ni/N = o(1) and that the models are normalized
so that ||γ ∗||2 = O(1) and ||θ∗||2 = O(1). Then,

Tn
d= N (0, 1) + √

n(β∗ − β0)
n−1trace(P̃)

√
n−1trace(P̃P−1P̃)

+ oP(rn),

where rn = n1/2ηθηγ

∥∥θ∗∥∥
0 κ−2η̄−1

γ σε/σu whenever β∗ = β0
and
rn = n1/2ηγ ‖γ ∗‖0 κ−2η′

θσε/σu +ηθ

√∥∥θ∗∥∥
0σε/σu +√

n(β∗ −
β0)N/nσε/σu whenever β∗ (= β0.

The construction of p-values is based on the asymptotic
distribution of the test statistic Tn. For the null hypothesis H0 :
β∗ = β0 , we de"ne the p-value for the two-sided alternative
as P0 = 2(1 − ,(|Tn(β0)|)). Of course, we could also consider
one-sided alternatives with an obvious modi"cation. Whenever
the conditions of the Theorem 1 hold, then for any 0 < α < 1,

lim sup
n→∞

P [P0 ≤ α] = α if H0 holds .

Furthermore, for any sequence an → 0 ( n → ∞) which
converges su$ciently slowly, the statements also hold when
replacing α by an. A discussion about detection power of the
method is given in Section 3.

The proof of Theorem 1 is organized as follows. In Sec-
tion 3.2, we provide bounds for the l1 norm error in estimation
of both γ ∗ and θ∗, while Section 3.3.1 studies the sampling
distributions of the test statistic under the null hypothesis and
establishes asymptotic Gaussianity. Given a subsampling rate
and sparsity requirements in the two models, (3) and (4),
we showcase the asymptotic distribution under the alternative
hypothesis in Section 3.3.2. Before beginning the proof, how-
ever, we relate our result to existing results about linear mixed
models in Section 3.1.

3.1. Theoretical Background

There has been considerable work in understanding the the-
oretical properties of linear mixed models. The convergence
and consistency properties of estimation have been studied
by, among others, McCulloch (1997), McGilchrist (1994), and
Lindstrom and Bates (1988) in low-dimensional setting, Goe-
man, Van Houwelingen, and Finos (2011) with growing dimen-
sions, and Schelldorfer, Buhlmann, and van de Geer (2011) in
high-dimensional setting. Meanwhile, the inference has been
analyzed by Breslow and Clayton (1993) in low-dimensional
setting. However, to our knowledge, our Theorem 1 is the "rst
result establishing conditions under which inference in linear
mixed models can be performed despite the presence of a large
number of "xed e!ects and taking into account model selec-
tion. Moreover, Theorem 1 establishes this result without even
resorting to a proper (let alone consistent) estimation of the
random e!ects therefore enabling inference in linear models
with misspeci"ed random e!ects (the structure or distribution);
we believe that such result is unique in inferential theory of
linear mixed models.

Probably the closest existing result is that of Fan and Li
(2012), who showed that selection of "xed e!ects can be
achieved without resorting to proper estimation of random
e!ects. They establish model selection consistency results under
conditions similar to ours; however, we note that they impose a
slightly more restrictive choice of the matrix P̃ whereas we allow
more general choices—for example, choice of M as an identity
matrix is not allowed in their work, but it is in ours. Moreover,
the authors therein do not discuss asymptotic distributions and
hypothesis testing problems. Thus, their results cannot be used
for valid asymptotic statistical inference about "xed e!ects.

Inference for linear mixed models that is robust to the nor-
mality assumption in random e!ects or the model error has been
studied exclusively in low-dimensional setting in Zhang and
Davidian (2001), who showed that normality can be substituted
with a broader class of distributions and an EM algorithm can be
used for estimation. However, their results still heavily depend
on a correct likelihood speci"cation. Identical conclusions hold
for a class of semiparametric linear mixed models introduced
in Lachos, Ghosh, and Arellano-Valle (2010) or a linear mixed
model with random mixture of normals (Verbeke and Lesa!re
1996; Song, Zhang, and Qu 2007). See Heagerty and Kurland
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(2001) for an illustration of the e!ects of inconsistent variance
estimation for the likelihood based inference on "xed e!ects.
Additional work on this topic (Litiére, Alonso, and Molenberghs
2007; Hobert and Casella 1996) had only highlighted connec-
tions to statistical tests and the e!ects of misspeci"cation of the
random e!ects, but did not establish any formal justi"cation
for it.

3.2. Estimation Properties

We start by bounding the bias of the newly introduced high-
dimensional estimators. Our approach relies on showing that
the true parameter vector lies in the constraint set of the prob-
lems (10) and (12) for appropriate choices of the tuning param-
eters de"ned therein. A sparsity assumption then allows us to
bound the bias. We show that the error of estimation is optimal
and is not e!ected by the misspeci"cation of the random e!ects.
To state the result, de"ne ||γ ∗||0 as the number of nonzero
elements of a vector γ ∗.

Theorem 2. Suppose P̃∈ Rn×n satis"es the P-condition. Sup-
pose that Condition 1 holds and that there exists κ > 0 such that
the restricted eigenvalue condition holds for (||γ ∗||0, κ , P̃1/2X).
Then there exist constants C1, C2, c0 > 0 such that for
any ηγ ≥ C1 log(n)

√
n−1 log p, µγ ≥ C2

√
log n and η̄γ , ∈

(0, n−1trace(σ 2
ε P̃P−1) − c0), for a large enough constant C3 it

holds with probability 1 − p−C3

∥∥γ̂ − γ ∗∥∥
1 ≤ 8ηγ

∥∥γ ∗∥∥
0 κ−2, and (15)

n−1
∥∥∥P̃1/2X(γ̂ − γ ∗)

∥∥∥
2

2
≤ 16η2

γ

∥∥γ ∗∥∥
0 κ−2. (16)

This theorem then directly translates into a bound on the
bias in estimation. Namely, with ηγ 0 log(n)

√
n−1 log p, µγ 0√

log n and 0 < η̄γ < n−1trace(σ 2
ε P̃P−1) the estimator γ̂ of a s

sparse vector γ ∗,
∥∥γ̂ − γ ∗∥∥

1 = OP(s log(n)
√

log p/n).

The conditions required for the above result seem very mild.
Finite sample oracle risk properties have been established in
Schelldorfer, Buhlmann, and van de Geer (2011); however, the
result therein crucially depends on correct estimation of vari-
ance components. In contrast, our results hold for a wide variety
of choices of variance estimators; in particular, it remains valid
for even non-consistent estimators—the only assumption is on
the structure of the matrix P illustrated through the P-condition.
Furthermore, the rate above matches the rate obtained by the
mle estimator of Schelldorfer, Buhlmann, and van de Geer
(2011) highlighting excellent robustness properties of the pro-
posed estimator γ̂ and indicating optimality at estimation.

3.3. Testing Properties

Our analysis proceeds in two steps: the "rst discusses asymptotic
normality of the test statistic whenever the null hypothesis
holds, whereas the second discusses the case under the alterna-
tive hypothesis.

3.3.1. Size
Analyzing speci"c linear mixed models can be challenging espe-
cially if the model (1) is not fully or correctly speci"ed. Below
we establish asymptotic normality of the proposed test statistic.
The result is independent of the size of the sparsity of the
nuisance parameters as long as the signal-to-noise ratio is not
unbounded or equivalently as long as l2 norm of the nuisance
parameters is bounded. A collection of very many weak signals
or a mixture of a large number of weak and a small number of
strong signals would satisfy this setting. Moreover, it does not
require consistent estimation of the variance components.

Theorem 3. Suppose P̃∈ Rn×n satis"es the P-condition. Sup-
pose that Condition 1 holds and that there exists κ > 0 such that
the restricted eigenvalue condition holds for (||θ∗||0, κ , P̃1/2X).
Furthermore, assume that

∥∥θ∗∥∥
0 = o(

√
n/ log(p)/ log(n)) and

‖γ ∗‖2 = O(1),
∥∥θ∗∥∥

2 = O(1). Then, under the null hypothesis
H0 : β∗ = β0, it holds that Tn

d→ N (0, 1).

Theorem 3 establishes the asymptotic distribution of our test
statistics under the null hypothesis; it does not require minimal
signal strength in the model (1) or an irrepresentable condition.
This "nding is further illustrated numerically in Section 4 where
we observe stable control over the Type I error rate for a wide
range of sizes ||γ ∗||0.

Furthermore, using some arguments of the proof of Theo-
rem 4, interchangeability of sparsity conditions can be shown:
if γ ∗ is sparse then θ∗ does not need to be sparse. Note that
the o(

√
n/ log(p)/ log(n)) sparsity rate is up to a log(n) term

matching those of simple linear models (see, e.g., Van de Geer
et al. 2014; Javanmard and Montanari 2014b). The additional
log(n) term is needed in controlling the random e!ects and
can be though of as a price to pay for being able to provide
optimal estimation despite the possibly incorrect speci"cation
of the random e!ects.

Besides providing the size property of the Tn statistic, The-
orem 3 can also be used to construct con"dence intervals. The
1 − α con"dence interval for β∗ can be de"ned as

{
β : 1 − ,−1(1 − α/2) ≤ Tn(β) ≤ ,−1(1 − α/2)

}
,

where , is the standard Gaussian cumulative distribution func-
tion and where Tn(β) is the test statistic derived under the null
hypothesis β∗ = β .

3.3.2. Power
In the previous section, we showed that the Type I error is
asymptotically equal to α for a given level α ∈ (0, 1). In this
section, we show that the test statistic furthermore has tight
control of the Type II error and preserves power asymptotically
while allowing inconsistent variance estimation. In this regard,
we believe that our result stands out in the existing literature.
In addition, we quantify the asymptotic e$ciency loss due to
misspeci"cation of the random e!ects.

Theorem 4. Suppose P̃∈ Rn×n satis"es the P-condition, Condi-
tion 1 holds and that there exists κ > 0 such that the restricted
eigenvalue condition holds for (||θ∗||0 ∨ ||γ ∗||0, κ , P̃1/2X). Fur-
thermore, assume that both

∥∥θ∗∥∥
0 = o(

√
n/ log(p)/ log(n))
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and ‖γ ∗‖0 = o(
√

n/ log(p)/ log(n)) and that the normalization
‖γ ∗‖2 = O(1),

∥∥θ∗∥∥
2 = O(1) holds. Then, under the

alternative hypothesis H1 in (14), it holds that with n → ∞

Tn
d= N (0, 1) + hσuσ

−1
ε

n−1trace(P̃)
√

n−1trace(P̃P−1P̃)
+ oP(1).

Theorem 4 establishes the power properties of our
test and requires both γ ∗ and θ∗ to be sparse with a
o(

√
n/ log(p)/ log(n)) sparsity rate. The deviation term

depends on the choice of the matrix P̃ and by the Cauchy–
Schwarz inequality it can be shown that

n−1trace(P̃)
√

n−1trace(P̃P−1P̃)
≤

√
n−1trace(P).

This implies that using the proxy matrix P̃ instead of the true
unknown matrix P leads to an asymptotic loss of power.

If we consider the particular, naive choice of the proxy matrix
M = 0Nq×Nq then P̃ reduces to the identity matrix INq. In that
case the method reduces to the method entirely based on simple
linear model and leads to a signi"cant loss of power. For a simple
choice of the matrix M = cINq where c is a constant positive
number, the matrix P̃ takes the form (In + cWW")−1.

Using Theorem 4 we can explicitly derive the expression for
power of the Tn statistics under nominal level α as

Power = 2 − ,
(
,−1(1 − α

2
) − Dn(h)

)

+ ,
(
,−1(1 − α

2
) + Dn(h)

)
,

where Dn(h) = hσuσ−1
ε

n−1trace(P̃)√
n−1trace(P̃P−1P̃)

.
Furthermore, the length of the 1 − α con"dence interval of

β∗ constructed from Theorem 3 is given by 2n−1/2|hα| for hα

satisfying 2,
(
,−1(1 − α/2) − Dn(hα)

)
= 1 − α which can

easily be estimated numerically.
We also note that the result can be extended to include fully

dense models where ||γ ∗||∞ is not allowed to grow rapidly with
n but the l0 norm can be as large as p; or mixture settings
with many small elements and only a small number of strong
elements (here the sum of the small elements would be allowed
to grow with p). We conjecture that the power function will look
the same as it does in Theorem 4.

4. Numerical Experiments

In observational studies, accurate construction of p-values
requires to overcome three potential sources of bias. First, there
is the initial linear mixed model and in particular the size of the
sparsity of the nuisance parameters γ ∗. We need to make sure
that our test is reasonably stable whatever the structure of γ ∗

is. Then, second, there is the underlying precision matrix of the
design matrix. Here a bias can be introduced with presence of
large feature correlations and/or dependencies. Third, we need
to make sure that the test is reasonably stable regardless of the
exact structure of the random e!ects; we need to make sure
that the test is not biased by changing matrix $ , that is, ψ . The
simulations here aim to test the ability of the introduced test to
respond to all three of these factors.

4.1. Models and Designs

We consider the mixed model

Y = Xβ∗ + Wb + ε

with n = 200 observations coming from either N = 50 di!erent
groups of size ni = 4 or N = 20 groups of size ni =
10. The vector β∗ of "xed e!ects is of length p = 500. The
components of ε are independent and come from a standard
Gaussian distribution. The random e!ect vector is de"ned as
b = (b"

1 , . . . , b"
N)" ∈ RqN with bi ∼ Nq(0, ψ) for i =

1, . . . , N. We de"ne W = diag(W1, . . . , WN) ∈ Rn×qN with
the stack matrix (W"

1 , . . . , W"
N)" ∈ Rn×q consisting of the "rst

q columns of X. We consider three models:

• Model 1: The rows of X come from a multivariate normal dis-
tribution with zero mean and Toeplitz covariance matrix '
with 'ij = (−0.5)|i−j|. The components of β∗ are generated
as follows: β∗ = 5a/ ‖a‖2 with a = (a1, . . . , ap), where aj is
generated from a uniform distribution on (0, 1) if j ≤ 3s/2
and j/3 is not an integer; otherwise, aj = 0. We then have
‖β‖0 = s. The model contains q = 2 random e!ects with
covariance matrix ψ = diag(0.56, 0.56).

• Model 2: The setting is the same as in Model 1 except that q
= 3 and ψ = diag(3, 3, 2). For Model 2(b) in addition to the
setting of Model 2, cov(bi1, bi2) = 0.3, cov(bi1, bi3) = 0.1
and cov(bi2, bi3) = 0.2.

• Model 3: The setting is the same as in Model 1 except for '
which is such that 'ij = 1 if i = j, 'ij = −ρ/(1 + ρ2) if
|i − j| = 1, and 'ij = 0 otherwise, where ρ varies.

As noted in the Appendix, the Toeplitz design implies that
the underlying correlation model (4) is sparse with two nonzero
components being equal (for ρ = −0.5) to –0.4. Thus, for
Models 1 and 2, the vector θ∗ is sparse. Conversely, Model 3
is such that that the rows of . are sparse, while the row of its
inverse are not sparse. This in turn implies that θ∗ in (4) is a
dense vector. Regarding the random e!ect part, similar choices
of q and ψ are made by Schelldorfer, Buhlmann, and van de Geer
(2011).

4.2. Tuning Parameters

Tuning parameters need to be chosen in optimization problems
(10) and (12). Based on our investigation, we suggest the fol-
lowing choices. The sensitivity of our procedure to the choice
of the tuning parameters is given in Table 5. Similarly to Zhu
and Bradic (2018), we choose η̄γ = 0.05 V"P̃V/n. We de"ne
ηγ =

√
0.5n−1 log p σ̂ and µγ = 4

√
log n σ̂ with σ̂ =∥∥∥P̃(V − Xγ init)

∥∥∥
2

where γ init is obtained by a linear estimation
(without the random e!ects) with the scaled lasso. Such an
initial estimator of γ is also used by Rohart, San-Cristobal, and
Laurent (2014). The choice of the tuning parameters η̄θ , ηθ , µη,
and η′

θ is done in a similar way.
Regarding the choice of the matrix P̃ = (In + WMW")−1

serving as a proxy of P = (In + σ−2
ε W$W")−1, we

show in Lemma B.4 (see the Supplementary Materials) that
there is a large pool of possible choices guaranteeing good
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asymptotic results. Fan and Li (2012) suggest to use M =
(log n)INq. In the present simulation study, we use the slightly
more elaborate M = σ−2

ε,initdiag(ψ init, . . . , ψ init) where initial
estimators are derived similarly as in Rohart, San-Cristobal,
and Laurent (2014): using γ init obtained by a linear model
estimation with the scaled lasso, we compute σ

2[−1]
ε =

1
n−df

∥∥V − Xγ init
∥∥2

2 , ψinit = 0.4
q σ

2[−1]
ε Iq, and σ 2

ε,init =
0.6σ

2[−1]
ε .

4.3. Numerical Results

We test H0,j : β∗
j = β0,j for j = 3, 4, 100 and study the

behavior of our procedure. These values of j correspond to
di!erent types of coe$cients; components 3 and 100 are not
active while component 4 is active. Furthermore, in the Toeplitz
case, component 100 is almost not correlated with any of the
active variables. We set H1,j : β∗

j = β0,j + hn−1/2 where the
situation h = 0 corresponds to size properties while h (= 0
corresponds to power properties. All our results are based on
1000 replications and on a 5% nominal level. To the best of
our knowledge, our procedure is the "rst one to do hypothesis
testing for high-dimensional mixed models which makes it hard
to "nd competitors. We compare our mixed model method to
the linear model method of Zhu and Bradic (2018), that is, to a
model that ignores the random e!ects.

4.3.1. Gaussian Mixed Model
In Figure 1, we report size and power properties of our pro-
cedure for Model 1 and for di!erent components of β∗. In
Figure 1(a), we observe that the false discovery rate is close to the
5% nominal level whatever the sparsity level. Our procedure can
handle dense β∗ and this is one of its major features. Sparsity is
required only for either θ∗ or β∗ to obtain reliable results under
the null hypothesis. Note that under the alternative hypothesis
h (= 0, our theoretical results require both of them to be sparse,
see Theorem 4. In Figure 1(b), we provide the power of our test
for Model 1 in a sparse model (s = 5). Interestingly, the prob-
ability to reject the null hypothesis is not symmetric in h. This
can be explained by the fact that we use a penalized estimator

which shrinks coe$cients toward zero. The correlation between
the components compensates (here for h negative) or ampli"es
(here for h positive) the bias of the estimator, which leads to an
asymmetry of the results.

In Figure 2, we give size and power properties of our proce-
dure for Model 3 in which θ∗ is dense, that is, sθ = p − 1 in
this particular case. We vary the size of the correlation ρ with
larger values corresponding to larger size of the coe$cients of
θ∗. We observe that the proposed test is remarkably resilient and
controls Type I error in "nite samples. We observe that when γ ∗

is not sparse, which here corresponds to sparsity larger than 5
(note that

√
n/ log(p) ≈ 5 for n = 200, p = 500), our method is

not guaranteed to control Type I error; however, we see that our
method strikingly controls errors even in such cases whenever
ρ < 0.5. It is worth pointing that no method is expected to
perform well when all elements are dense and correlation is
high. Hence, we take this behavior to be close to optimal.

In Table 2, we compare our method, for Models 1 and 2, to
the method of Zhu and Bradic (2018) designed for linear models
and which thus does not take into account the group structure
of the mixed model. For both models, the probability to reject
the null hypothesis is closer to the 5% nominal level when the
null hypothesis holds (h = 0) and is larger under the alternative
hypothesis (h (= 0), compared to the linear model procedure.

Figure 2. Empirical rate of rejection of the true null hypothesis at a 5% nominal
level for Model 3 with dense vector θ∗ . We vary the level of sparsity of γ ∗ and
correlation level ρ. Hypothesis testing is performed on the second component of
β∗ . Empirical Type I errors are plotted for di"erent sparsity levels: black crosses 2,
red circles 3, blue triangles 4, orange diamonds 5, green upside-down triangles 10.

Figure 1. Empirical rate of rejection of the null hypothesis under (a) the null hypothesis, and (b) alternative hypothesis, at a 5% nominal level for Model 1. As described in
the text, hypothesis tests are performed on di"erent components of β∗: the third component (black crosses), the fourth component (red circles), and the 100th component
(blue triangles). Full lines are for ni = 4, dashed lines for ni = 10.
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Table 2. Probability of rejecting the null hypothesis as a function of the deviation
from the null.

Probability to reject the null hypothesis at a 5% level

Model 1 Model 2 2(b)

LM MM MM(a) LM MM MM

h = –6 0.85 0.96 0.96 0.46 0.65 0.60
h = –4 0.60 0.77 0.77 0.30 0.39 0.36
h = –2 0.29 0.30 0.31 0.19 0.16 0.14
h = 0 0.11 0.06 0.05 0.12 0.05 0.04
h = 2 0.11 0.16 0.20 0.07 0.05 0.06
h = 4 0.28 0.56 0.66 0.07 0.18 0.23
h = 6 0.55 0.89 0.92 0.13 0.42 0.47

NOTE: Nominal level is taken to be 5%. LM ignores the random e"ects and applies
the linear model procedure of Zhu and Bradic (2018) while MM consists in apply-
ing our mixed model procedure. The 4th component of β∗ is tested. Settings are
n = 200, p = 500, s = 5, ni = 4 except for (a) ni = 10. Model 1 contains 2 random
e"ects and Model 2 contains 3 random e"ects with large magnitude. For (b) the
random e"ects are correlated.

4.3.2. Model With Heavy-Tailed Design
In the next example, we consider a model that departs from
normality assumptions. Parameters choices are done in the same
way as in Model 1: n = 200, N = 50, p = 500, and q = 2.

• Model 4: The setting is the same as in Model 1 except that the
entries of '−1/2xi and of ε are generated from a Student’s t-
distribution with 10 degrees of freedom.

• Model 5: The setting is the same as in Model 1 except that the
entries of '−1/2xi and of ε are generated from a Student’s t-
distribution with 3 degrees of freedom.

We perform hypothesis tests for the fourth component of β∗

for Models 1, 4, and 5 and report empirical sizes and powers
in Figure 3. We observe empirical coverages close to the 5%
nominal level for the three models under the null hypothesis
whatever the sparsity level is. We also observe that the presence
of heavier tailed errors results in a decrease of power.

4.3.3. E!ects of Misspecifying the Random E!ects Structure
While the previous simulation settings already included the case
of ignoring the random e!ects structure, we here investigate
the e!ects of misspecifying the random e!ects structure in a
hierarchical mixed model with two random e!ects. We generate
from a hypothetical clinical trial where there are 5 doctors each
treating 10 patients with 3 repeated measurements per patient.
This corresponds to a hierarchical mixed model with a random

e!ect for doctor, assumed in the simulation N(0, 0.5), and a
random e!ect for the patient, assumed N(0, 1.2). We took the
error N(0, 1) and kept the covariate design as in Model 1 with p =
500 and s = 5. To investigate the misspeci"cation of the random
e!ect structure we "t the model in three ways: (i) assuming
the correct 2-level model, (ii) only "tting a random e!ect for
each of the 50 patients but ignoring that patients are clustered
by doctor, and (iii) only "tting a random e!ect per doctor
and ignoring the e!ect that there might be correlation due to
the repeated measurements per patient. The latter is a more
severe misspeci"cation. The simulation results are summarized
in Table 3 and Figure 4. We observe that the misspeci"cation
has no e!ect on the level of the test, while the more severe
misspeci"cation leads to some loss in power. Failing to include
the random e!ect per doctor is negligible in this setting.

4.3.4. Choice of the Proxy Matrix
The choice of the proxy matrix P̃ = (In + WMW")−1

has an in%uence on the power of the test. Our default
choice, presented in Section 4.2 and inspired by Rohart, San-
Cristobal, and Laurent (2014) consists in working with M =
σ−2

ε,initdiag(ψ init, . . . , ψ init). With these initial estimators, this is
equivalent to work with M = 2

3q INq. A second choice, proposed
by Fan and Li (2012), is to work with M = log nINq. Simulation
results for those choices of the proxy matrix are reported in
Table 4 for Models 1 and 2. We "rst observe that the two
choices provide the 5% nominal level under the null hypothesis.
Secondly, we observe slight di!erences in terms of power which
can be explained by how well the true variance structure is
approximated by the proxy matrix M.

Table 3. Empirical rate of rejection for a 2-level hierarchical setting !tting (i) both
levels correctly, (ii) “pat” only the e"ect of 50 patients, (iii) “doc” only the e"ect of 5
doctors.

Component 3 Component 4 Component 100

both pat doc both pat doc both pat doc

h = –6 0.95 0.95 0.88 0.93 0.93 0.83 0.90 0.89 0.82
h = –4 0.73 0.72 0.62 0.66 0.67 0.54 0.60 0.60 0.48
h = –2 0.36 0.36 0.30 0.26 0.26 0.19 0.20 0.18 0.18
h = 0 0.08 0.08 0.08 0.06 0.05 0.05 0.05 0.06 0.04
h = 2 0.06 0.06 0.06 0.14 0.15 0.13 0.22 0.21 0.17
h = 4 0.28 0.29 0.21 0.49 0.49 0.38 0.59 0.59 0.48
h = 6 0.64 0.64 0.52 0.84 0.85 0.73 0.89 0.89 0.80

NOTE: There are 3 repeated measurements per patient, p = 500 and s = 5.

Figure 3. Empirical rate of rejection of the null hypothesis under (a) the null hypothesis, and (b) alternative hypothesis, at a 5% nominal level for di"erent distributions of
the error: Gaussian (Model 1, black crosses), Student with 10 degrees of freedom (Model 4, red circles), and Student with 3 degrees of freedom (Model 5, blue triangles).
The hypothesis test is for H0,4 : β∗

4 = β0,4 versus H1,4 : β∗
4 = β0,4 + hn−1/2.
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Figure 4. Empirical rate of rejection at a 5% nominal level for the hierarchical
“patient-within-doctor” mixed model. Hypothesis tests are performed on di"erent
components of β∗ : the third component (black crosses), the fourth component (red
circles), and the 100th component (blue triangles). Results are for the correct 2-level
random e"ect structure (solid lines), only including the patient e"ect (dashed) and
only including the doctor e"ect (dotted).

Table 4. Probability to reject the null hypothesis in function of the deviation from
the null for a 5% nominal level, and in function of the choice of the proxy matrix.

Probability to reject the null hypothesis at a 5% level

Model 1 Model 2

M = σ−2
ε,initψ init M = log nINq M = σ−2

ε,initψ init M = log nINq

h = –6 0.96 0.91 0.65 0.79
h = –4 0.77 0.66 0.39 0.49
h = –2 0.30 0.25 0.16 0.19
h = 0 0.06 0.05 0.05 0.05
h = 2 0.16 0.15 0.05 0.09
h = 4 0.56 0.49 0.18 0.30
h = 6 0.89 0.85 0.42 0.64

NOTE: Parameters are n = 200, p = 500, N = 50, s = 5. The 4th component of β∗ is
tested. Model 1 contains 2 random e"ects and Model 2 contains 3 random e"ects
with large magnitude.

In our simulation setting for Model 1 the constant log(n)

gives a worse approximation to the value of the diagonal entries
in $ than when using 2/(3q), which results in slightly higher
power for the latter choice. For Model 2, the true values of $ are
in between log(n) and 2/(3q), though closer to log(n), which
might explain the slightly higher power for this choice of M.

4.3.5. Sensitivity to Tuning Parameters Choice
We conclude this simulation study by an analysis of the sensi-
tivity of our procedure to the choice of the tuning parameters.
We consider Model 1 and two scenarios: (h, s) = (0, 40) and
(h, s) = (4, 5) corresponding to a nonsparse model under H0

and an sparse model under the true alternative H1. We perform
hypothesis tests for the fourth component of β and provide
results for di!erent choices of the tuning parameters. Results of
Table 5 illustrate that the method is reasonably weakly sensitive
to the tuning parameters choice.

4.4. Hypothesis Testing for Ribo!avin Data

We study the Ribo%avin data which contains 4088 gene expres-
sions from 111 observations divided in 28 groups from size
2 to 6, and which has also been considered by Schelldorfer,
Buhlmann, and van de Geer (2011). The response variable is the
logarithm of the ribo%avin production rate of Bacillus subtilis.
In the context of linear models a related dataset was considered
in Van de Geer et al. (2014) and Javanmard and Montanari
(2014b). The data of our interest have a clear group structure,
and therefore we include a random intercept in the linear model,
resulting into the following mixed model

Y = Xβ∗ + Wb + ε,

where W contains 1 in the appropriates entries, Y is of length
111 and X is the 111 × 4089 design matrix with its "rst column
containing only ones and its other columns corresponding to
the 4088 standardized covariates. The vector b contains the 28
realizations of the random e!ects. Its components are iid with
mean zero and unknown variance ψ .

Ribo%avin (vitamin B2) is an essential component of the
basic metabolism. The ribo%avin biosynthesis in bacteria was
analyzed from a biological perspective using comparative anal-
ysis of genes, operons, and regulatory elements. However, little
is known about the mechanisms of regulation of the bacterial
ribo%avin genes.

Gene YpaA has been veri"ed experimentally to be a trans-
porter of ribo%avin or related compounds, co-regulated with
other ribo%avin genes (Vitreschak et al. 2002). The RFN ele-
ment (speci"c locus related to RNA folding) was only encoded
upstream of the YpaA gene. Moreover, in B. subtilis, ribo%avin
uptake was increased when YpaA was over-expressed and abol-
ished when YpaA was deleted (Vogl et al. 2007). Hence it makes
sense to test a one sided hypothesis with the null being that the
corresponding β∗ is smaller or equal to zero and alternative that
it is larger than zero. In this context, we have applied our test
above while including all of the 4087 remaining genes in the
study. We have obtained a test statistic value of 1.60. Therefore,
our method is able to identify YpaA gene at a 6% signi"cance
level; we should note that our sample size is extremely small
and deviations from 5% should be expected due to an extremely
small sample size. It is also worth noting, that no previous

Table 5. Probability to reject the null hypothesis for di"erent choices of the tuning parameters and for Model 1 with j = 4 and (h, s) = (0, 40) or (h, s) = (4, 5), compared
with the default choice presented in Section 4.2.

Probability to reject H0 at a 5% level

h = 0 and s = 40 h = 4 and s = 5
1
2 η η 2η 1

2 η η 2η

0.5µ 0.06 0.05 0.05 0.48 0.48 0.53
µ 0.04 0.05 0.05 0.59 0.59 0.59

2µ 0.06 0.05 0.06 0.35 0.34 0.34

Probability to reject H0 at a 5% level

h = 0 and s = 40 h = 4 and s = 5

1
2 η̄ 0.04 0.60
η̄ 0.05 0.59

2η̄ 0.04 0.42

NOTE: Notation η refers to ηγ , ηθ and η′
θ ; µ refers to µγ and µθ ; η̄ refers to η̄γ and η̄θ . If it is not speci!ed, the default choice is used.
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study of this dataset was able to identify YpaA as statistically
signi"cant gene. We also have observed large correlation among
the genes present in this study, which may additionally explain
why previous methods failed; observe that our method is doubly
robust and is able to overcome high correlations in the data.

The best studied system of the ribo%avin biosynthesis in
bacteria is the rib operon of B. subtilis. Our data contain infor-
mation about the B. subtilis and there are a number of genes
(but not all) related to rib operon. We are particularly interested
in the ribB gene which was reported as over-expressed in a
number of chemical and biological studies (Mörtl et al. 1996)
but has not been yet studied from a statistical point of view.
We have performed a single hypothesis test related to the β∗

corresponding to ribB gene; while including all of the remaining
genes. We have found that our test statistic is able to detect
ribB with a 1% nominal value; the observed value of the test
statistics is 2.69. This result con"rms the biological evidence and
recon"rms wide-applicability of the proposed test.

Another part of the rib operon is a ribC gene. The ribC gene
was cloned and sequenced and it was determined that it plays
an essential role in the %avin metabolism of B. subtilis (Mack,
van Loon, and Hohmann 1998). In particular it was observed
that it is over-expressed and that it suppresses the ribo%avin
overproduction. We have performed a one-sided hypothesis test
to observe statistical signi"cance of this gene in the current
dataset. We have observed a test statistic value of 1.01 leading to
a 16% signi"cance level. Although larger than 10%, this study is
one of the "rst statistical studies that was able to detect ribC gene
at any level. For completeness, we also report that an averaged
size of the selected sets in the original and the feature model was
17.90 and 741.10.

5. Further Explorations

The methodology presented in the previous sections is
extremely general and provides easy extensions to a number of
interesting problems and settings.

5.1. Power Improvements

Our test statistic uses a proxy matrix P̃ which has some
in%uence on the power through the deviation term
hσuσ−1

ε
n−1trace(P̃)√

n−1trace(P̃P−1P̃)
in Theorem 4. This deviation term is

smaller than
√

n−1trace(P) and it is expected that the “closer”
P̃ is to P, the bigger this deviation term is and thus the better
the power of the test statistics is. By using a good estimator
P̂ of P, we could expect the deviation term to be close to
hσuσ−1

ε

√
n−1trace(P).

This leads to the following scheme:

Step 1: Compute an estimator γ̂ by solving (10) with the proxy
matrix P̃. We know by Lemma B.6 (see the supplemen-
tary materials) that ‖γ − γ ∗‖1 is small.

Step 2: Obtain a better estimator P̂ of P by solving (17) .
Step 3: Compute a new estimator of γ ∗ obtained by solving (10)

with P̂ instead of P̃ and construct a Tn statistic based on
this new estimator and on P̂.

As maximum likelihood estimators are o#en biased for the
estimation of the variance components, we utilized the marginal
log-likelihood and propose to consider the following restricted
maximum likelihood estimator

P̂ = arg min
P≥0

{1
2
(V − Xγ̂ )"P(V − Xγ̂ ) + 1

2
log(det(P−1))

+ 1
2

log(det(X"PX))

}
. (17)

Theorems 3 and 4 are expected to hold with this new Tn
statistic. Implementation of this approach is nontrivial and is out
of the scope of the current work; some solutions can be found
in Tan et al. (2018).

With this approach, not only do we obtain a better test
statistic (more e$cient) but we are able to estimate the error
variance of the initial model by a new estimator which can be
de"ned as σ̂ 2

ε = nσ̂ 2/trace(P̂).

5.2. Multivariate Testing

For testing general multivariate hypotheses of the kind H0 :
β∗ = β0 versus H1 : β∗ (= β0 where β∗ ∈ Rd and d → ∞
(p → ∞) we can easily adapt the procedure of Section 2.

With a little abuse of notation let V = Y − Zβ0 denote
the pseudo-response vector (similar to previous sections) where
now a univariate parameter β0 is replaced with a d-dimensional
counterpart β0 . We denote by Z(j) the jth column of Z, j =
1, . . . , d, by P̃k the kth row of P̃, and with a slight abuse in
notation, we denote with Zk,(j), the kth element of the vector
Z(j), k = 1, . . . , n. Then with γ̂ as de"ned before, we consider
d estimators θ̂ (1), θ̂ (2), . . . , θ̂ (d) de"ned as follows

θ̂ (j) ∈ arg min
θ (j)∈Rp−d

||θ (j)||1

such that ||n−1X"(Z(j) − Xθ (j))||∞ ≤ ηθ ,j
n−1Z"

(j)(Z(j) − Xθ (j)) ≥ η̄θ ,j
||Z(j) − Xθ (j)||∞ ≤ µθ ,j

||n−1X"P̃(Z(j) − Xθ (j))||∞ ≤ ηθ ,j .

(18)

Then, we consider to reject the null hypothesis whenever
Tn = maxj Tn,j is larger than the bootstrap quantile q1−α to
be de"ned below. The test statistics Tn,j are de"ned in the same
spirit of the previous section and take the form of

Tn,j = n−1/2
n∑

k=1
Tkj, Tkj = (Zk,(j) − Xkθ̂ (j))P̃k

(
V − Xγ̂

)

σ̂u,jσ̂ε
,

where σ̂ 2
ε = n−1||P̃

(
V − Xγ̂ )

)
||22, σ̂ 2

u,j = n−1||Z(j) − Xθ̂ (j)||22.
Note that the test statistics have mean zero under the null
hypothesis.

The quantile q1−α is de"ned as a 1 − α quantile of the
distribution of a bootstrapped test statistic T̃n = maxj T̃n,j with

T̃n,j = n−1/2
n∑

k=1
ξk(Tkj − n−1/2Tn,j)

for a class of multipliers {ξk}n
k=1 that are drawn from a standard

Gaussian distribution, independently from the data.
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For a more general hypothesis H0,j : β∗
j = β0,j for

j ∈ J , J ⊂ {1, 2, . . . , p} we can consider the maximum as
the test statistic and denote by Tn(β0,j) the test statistic as in
(13) where one element of β∗ is hold-out and the remaining
ones are stacked in the vector γ ∗. Then, we use GJ (c) =
P

[
maxj∈J (|T̃n,j|) ≤ c

]
, Then, the p-value for H0,J : β∗ =

β0, against the alternative being the complement, is de"ned as
PJ = 1 − GJ (maxj∈J |Tn(β0,j)|).

5.3. Generalized Linear Mixed Models

We note that inference in generalized linear models is an
extremely di$cult problem, even in low-dimensional setting.
Typical approaches are hindered by a di$cult numerical inte-
gration and an o#en nonanalytic expression of a likelihood or
pro"le likelihood function. In this subsection, we illustrate how
the methodology introduced in Section 2 can be easily extended
for this di$cult setting. Robustness of our approach provides
%exibility regarding specifying the likelihood exactly.

Let Y be the observed data vector and, conditional on the
random e!ects, b, assume that the elements of Y are indepen-
dent and drawn from a distribution in the exponential family
(which, for simplicity of exposition, we take with the canonical
link). To complete the speci"cation, assume a distribution for b
to be dependent on variance parameters, D

fyi|b(y|b, γ ∗, β∗, φ) = exp
{yηi − c(ηi)

a(φ)
+ d(y, φ)

}
, (19)

where ηi = Xiγ ∗ + Ziβ
∗ + Wibi. With g denoting the link

function, we have b′ = g−1

E[yi|b] = b′(Xiγ
∗ + Ziβ

∗ + Wibi).
We propose the following test statistic for use in generalized
linear mixed models

Tn,j = n−1/2(Z(j) − Xθ̂ (j))"P̃
(
Y − b′(Xγ̂ + Zβ0)

)

σ̂u,jσ̂ε

with σ̂ 2
ε = n−1||P̃

(
Y − b′(Xγ̂ + Zβ0)

)
||22, σ̂ 2

u,j = n−1b′′(Xγ̂ +
Zβ0)||Z(j) − Xθ̂ (j)||22.

For the procedure to be adaptive to generalized linear mod-
els, the estimators of γ ∗ and θ∗

(j) need to be carefully developed.
Regarding the estimation of γ ∗ we adapt the estimator of Sec-
tion 2.2 and propose the following estimator

γ̂ ∈ arg min
γ∈Rp−d

||γ ||1

such that ||n−1X"P̃
(

Y − b′(Xγ + Zβ0)
)
||∞ ≤ ηγ

n−1Y"P̃
(

Y − b′(Xγ + Zβ0)
)
≥ η̄γ

||P̃(Y − b′(Xγ + Zβ0))||∞ ≤ µγ

(20)

for suitable choices of tuning parameters ηγ 0√
n−1 log(p), 0 < η̄γ < σ 2

ε and µγ 0
√

log(n). The estimator
for θ∗

(j) can now be de"ned with

θ̂ (j) ∈ arg min
θ (j)∈Rp−d

||θ (j)||1

such that ||n−1b′′(Xγ̂ + Zβ0)X"(Z(j) − Xθ (j))||∞ ≤ ηθ ,j
||n−1b′′(Xγ̂ + Zβ0)X"P̃(Z(j) − Xθ (j))||∞ ≤ η̄θ ,j

n−1b′′(Xγ̂ + Zβ0)Z"
(j)(Z(j) − Xθ (j)) ≥ η̄θ ,j

||Z(j) − Xθ (j)||∞ ≤ µθ ,j,

(21)

for suitable choices of tuning parameters ηθ ,j 0
√

n−1 log(p),
0 < η̄θ ,j < σ 2

u,j, and µθ ,j 0
√

log(n). Here, Z(j) =
(z1,(j), . . . , zn,(j))" ∈ Rn. Observe that di!erently from the
linear mixed models, in the case of the generalized linear mixed
models, the two estimators γ̂ and θ̂ (j) are dependent. The above
procedure can be solved using iterations of linear programs,
much in the spirit of weighted least squares methods. The "nal
test statistic is now de"ned in a similar manner as before with
Tn = maxj Tn,j where the multiplier bootstrap of the previous
subsection can be successfully applied.

6. Discussion

This article proposed a class of test statistics for performing
inference on "xed e!ects that allow for high-dimensional and
misspeci"ed linear mixed models all while maintaining the
bene"ts of classical methods, that is, an asymptotically normal
and unbiased test statistic with valid and honest con"dence
intervals. Our test statistic can be thought of as a doubly robust
approach; it adapts to the sparsity of the nuisance parameters
("xed) as well as the unknown structure of the random e!ects
(both variance and distributions). Such adaptivity seems essen-
tial for modern large-scale applications with many features, var-
ious sparsity assumptions as well as distributional assumptions
that cannot be checked.

In general, the challenge in using adaptive methods as the
basis for valid statistical inference is that selection bias can be
di$cult to quantify. In this article, pairing the initial model
with a complementary feature model enabled us to accomplish
this goal in a simple yet principled way. In our simulation
experiments, our method provides better error control while
achieving nominal coverage rates in moderate sample sizes.

A number of important extensions and re"nements are le#
open. Our current results only provide point-wise con"dence
intervals; extending our theory to the setting of multivariate
testing or the setting of a generalized linear mixed models, seems
like a promising avenue for further work. Another challenge is
the selection of the proxy matrix M toward better e$ciency and
power. A systematic approach to design optimization and theory
for such setting, would improve the "nite sample performance.
In general, work can be done to identify methods that further-
more allow for inference on the variance components and tests
of heterogeneity even in more challenging circumstances, for
example, with small samples or a large number of covariates
are likely to be bring impactful work to a broader scienti"c
audience.

Supplementary Materials

The supplemental material contains details to the technical results of the
main document. In particular it provides detailed proofs of Theorems 1-4
and establishes a sequence of useful Lemmas with proofs.
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