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Categories are often structured by the similarities of instances within the category defined across dimensions or
features. Researchers typically assume that there is a direct, linear relationship between the physical input di-
mensions across which category exemplars are defined and the psychological representation of these dimensions.
However, this assumption is not always warranted. Through a set of simulations, we demonstrate that the

psychological representations of input dimensions developed through long-term prior experience can place very
strong constraints on category learning. We compare the model's behavior to auditory, visual, and cross-modal
human category learning and make conclusions regarding the nature of the psychological representations of the
dimensions in those studies. These simulations support the conclusion that the nature of psychological repre-
sentations of input dimensions is a critical aspect to understanding the mechanisms underlying category learning.

1. Introduction

Categorization is thought to be at the heart of many complex pro-
cesses, such as object recognition (Richler & Palmeri, 2014) and speech
perception (Holt & Lotto, 2010), and appears to be dependent on
distributional regularities across exemplars that define a category. For
instance, infants form sound and object categories based on the statis-
tical distributions they experience in the input (Eimas, 1975; Maye,
Werker, & Gerken, 2002; Smith, Jayaraman, Clerkin, & Yu, 2018;
Werker, Yeung, & Yoshida, 2012). Adults are also sensitive to statistical
structure of novel categories (Folstein, Gauthier, & Palmeri, 2010;
Goudbeek, Cutler, & Smits, 2008; Pierrehumbert, 2003). Learners can
approximate category distributions even from complex, non-Gaussian
distributions (Gifford, Cohen, & Stocker, 2014) and are sensitive to
statistical structure both within- and between-categories (Gureckis &
Goldstone, 2008). The statistical structure in the sensory world is re-
flected in psychological and neural representations (Drucker, Kerr, &
Aguirre, 2009; Lewicki, 2002; Schwartz & Simoncelli, 2001; Tijsseling &
Gluck, 2002).

Learners' sensitivity to category-specific regularities has led re-
searchers to investigate the importance of distributional regularities on
category learning (e.g., Ashby, Alfonso-Reese, Turken, & Waldron,

1998; Aslin & Newport, 2014; Carvalho, Chen, & Yu, 2021). One
influential theory of category learning that suggests that the neural and
computational mechanisms supporting category learning are deter-
mined by the distributional regularities of those categories (Ashby et al.,
1998). Specifically, Ashby and colleagues suggest that optimal learning
of rule-based (RB) categories, which requires selective attention to in-
dividual dimensions and can be learned via hypothesis testing, relies on
an explicit categorization system, supported by prefrontal cortex and the
head of the caudate nucleus in the striatum (Ashby & Ell, 2001; Ashby &
Waldron, 2000). In contrast, optimal learning of information-integration
(II) categories, which requires pre-decisional integration across multiple
dimensions learned via procedural learning mechanisms, relies on an
implicit categorization system, supported by the putamen and body and
tail of the caudate nucleus in the striatum (Ashby & Waldron, 1999,
2000). Thus, the relationship of the categories to the component di-
mensions is thought to be fundamental to the mechanisms of category
learning. Consistent with this view, proponents of dual systems theory
have generally demonstrated that RB categories requiring selective
attention to relatively simple visual dimensions (e.g., orientation and
spatial frequency in Gabor patches) are learned better and faster than II
categories requiring integration over the same dimensions (see Ashby &
Maddox, 2011 for a review).
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From a mechanistic point of view, it is the distribution of stimuli
within internal perceptual representations that influences category
learning. Critically, the dimensions of this perceptual space may not
necessarily be aligned with the input dimensions that are explicitly
manipulated by experimenters. Previous investigations of the effect of
category distributions on learning are driven by the — often implicit —
assumption that exemplar distributions defined across input dimensions
are linearly mapped to perceptual dimensions (Ashby & Soto, 2015;
Johannesson, 2001). As such, experimental design and interpretation
rely on the assumption of congruence between input and learners' in-
ternal perceptual dimensions. For some of the most well-studied di-
mensions in the visual domain, such as line length and orientation or
spatial frequency and orientation of lines in a Gabor patch, the
assumption of alignment between input dimensions and perceptual di-
mensions is likely valid, as representations of simple visual input di-
mensions are known to be orthogonal (Everson et al., 1998). However,
for more complex visual objects, representations may reflect more ab-
stract, latent dimensions, rather than veridical representations of the
physical dimensions (Fleming & Storrs, 2019).

Recent applications of the dual systems theory in the auditory
domain make clear that the experimenter assumption of alignment be-
tween input and perceptual dimensions may be problematic (Roark &
Holt, 2019; Scharinger, Henry, & Obleser, 2013). In the auditory
domain, it is likely that the representations of many dimensions are not
independent (Garner, 1974), reflected in interdependent coding of even
basic acoustic dimensions (Wang, 2007). When input dimensions
defining categories are perceptually interdependent, statistically
equivalent category input distributions can lead to very different
learning challenges depending on whether the input distributions align
(or misalign) with perceptual representations (Roark & Holt, 2019).
Further, real-world auditory categories are often defined by many input
dimensions, making the nature of perceptual representations of those
dimensions difficult to determine. For example, there are at least 16
dimensions contributing to consonant voicing distinctions in speech
(Lisker, 1986) and 20 contributing to perception of fricatives (McMurray
& Jongman, 2011).

The nature of dimensions is important to consider because it affects
what learners are able to do with those dimensions. For interdependent,
integral dimensions, processing stimuli in a holistic manner is easy and
selectively attending to individual dimensions is difficult (Foard &
Kemler Nelson, 1984; Garner, 1974, 1976; Kemler Nelson, 1993). These
kinds of constraints on processing can persist even with expertise-level
training—for instance, even color experts are not able to optimally
selectively attend to the integral visual dimensions of brightness and
saturation (Burns & Shepp, 1988).

Yet, how the perceptual representation of information influences
category learning is not well understood. Some researchers have directly
addressed the correspondence between physical and psychological di-
mensions. One approach to ensure that experimenter assumptions are
aligned with psychological reality is to approximate perceptual space
using multidimensional similarity (MDS) models prior to category
learning (Nosofsky, 1992; Shepard, 1980). While this approach avoids
making the explicit assumption about the alignment between input and
psychological representations, it makes the concept of ‘dimensions’
more difficult to define and, as a result, the nature of the psychological
representations is not well understood. Others have more explicitly
addressed the assumption of the alignment between physical and psy-
chological dimensions, either by determining that the assumption is not
problematic if the relationship between the input and perceptual di-
mensions is monotonic (Ashby & Gott, 1988) or by directly estimating
the mapping between input and perceptual dimensions (Crossley &
Ashby, 2015). While these approaches avoid the explicit assumption by
computationally estimating the dimensions, it is not clear that this is
applicable to all combinations of dimensions, as these researchers
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focused on relatively straightforward visual dimensions (e.g., orienta-
tion and width of a bar; line length and orientation).

Here, we test the influence of the alignment between input di-
mensions and psychological dimensions in an abstract dimensional
space that could reflect multiple combinations of dimensions without
the need to approximate the representation beforehand. We specifically
capitalize on a dual systems approach to category learning, using dis-
tinctions between RB and II categories as a testbed for modeling the
influence of perceptual representations on category learning. Because
there is often an implicit assumption that the specific properties of
experimenter-manipulated dimensions align with perceptual represen-
tations, there is the possibility that what are transparently ‘rule-based’
or ‘information integration’ distributions in input space may not be best
described this way in terms of the underlying perceptual space. There-
fore, understanding the nature of the categorization problem requires
understanding perceptual representations.

We emphasize that the alignment between input dimensions and
perceptual dimensions is likely to have a broad influence on category
learning, in no way specific to the theoretical commitments of this dual
systems theory (Ashby et al., 1998) or challenges to it (e.g., Kalish,
Newell, & Dunn, 2017; Lewandowsky, Yang, Newell, & Kalish, 2012;
Newell, Dunn, & Kalish, 2011). Our examination of this issue in the
context of RB and II category learning from the dual systems perspective
is a choice of convenience for the sake of its ease of exposition in our
modeling efforts.

In the current investigation, we present a neural network model that
demonstrates that so-called ‘rule-based’ and ‘information-integration’
categories in input space may not be reflected as such in perceptual
space, and that this has dramatic consequences for category learning.
We gave the model extensive, long-term experience with five kinds of
structured regularities in a theoretical sensory environment, which it
learned to reflect in its stable, ‘adult-like’ internal perceptual repre-
sentations. We then examined how differences in the regularities the
model experienced during this training phase influenced how the model
learned identically structured ‘rule-based’ and ‘information-integration’
categories as defined in the input space. Our results demonstrate that the
underlying perceptual representations developed across long-term
experience place strong constraints on novel category learning. We
also compare the model's behavior to human behavior from prior
perceptual category learning studies across different sensory modalities.

2. Methods

Our approach involved two training phases. First, during the repre-
sentation learning phase, we trained the model on a particular rela-
tionship within a two-dimensional space using an autoencoder. This
training phase is meant to simulate a learners' lifetime of experience
with a pair of sensory dimensions. Second, during the category learning
phase, the model was subjected to a category learning experiment where
this trained dimensional space was mapped to discrete category outputs.
These two stages enable examination of how long-term experience
shapes representations and, subsequently, how those representations
influence category learning.

2.1. Model architecture

There are two components to the model architecture (Fig. 1): the
lower level supports representation learning, in which perceptual rep-
resentations are gradually shaped through extensive pre-experimental,
task-independent experience that models long-term experience in the
sensory world; the higher level supports category learning, in which the
evoked representations of different stimuli are relatively rapidly asso-
ciated with particular behavioral responses within an experimental
context.
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Fig. 1. Model architecture.

2.2. Representation learning

Our core assumption is that perceptual representations are tuned to
capture the statistical structure of the ensemble of long-term perceptual
experience, such that common features and feature combinations are
coded in more detail than less common features and combinations.
Although there are many ways of implementing this type of statistical
learning, we adopted the approach of an autoencoder (Hinton, 1989), in
which a neural network learns to reconstruct its inputs via one or more
smaller, “bottleneck” layers of hidden units, because this allowed the
same computational principles to apply to both representation and
category learning.

Thus, in the model, representation learning over two physical input
dimensions x and y was implemented by an autoencoder that received
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dimension (such that their activations always summed to 1). This
encoding allows for graded input, which reflects population encoding of
information in sensory cortex. Activations in the sensory input layer also
had a small amount of uniform noise (range = 0.1) to reflect a small
amount of noise in the perceptual encoding of a stimulus. The goal of the
network at this stage was to recreate the non-noisy input in the output
layer. This training experience thus formed the perceptual representa-
tions of the network in the hidden layer. The number of input/output
units and units in the hidden layer was determined based on our prior
experience with these kinds of models. This was the only number of units
that we implemented.

We trained the model on five separate training environments,
reflective of different statistical relationships that might exist in the
sensory world (Fig. 2): 1) no correlation or other relationship between
two dimensions (Independent), 2) a positive relationship between two
dimensions (Positive), 3) a negative relationship (Negative), 4) the x-
dimension is represented in more detail than the y-dimension (X-
Dimension), and 5) the y-dimension is represented in more detail than
the x-dimension (Y-Dimension). To ensure that, in each condition, the
model had experience within the entire space, the model also experi-
enced inputs drawn from a uniform distribution (Fig. 2, gray points).
The input of the model during training was biased such that 90% of the
stimuli were drawn from the biased representation distribution (Inde-
pendent, Positive, Negative, X-Dimension, Y-Dimension) and 10% were
drawn from the uniform distribution. Table 1 shows the means, vari-
ance, and covariance of the representation training and uniform
distributions.

These environments are not meant to capture any specific natural

structured sensory input that it learned to recreate over an equal-sized Table 1
output layer via a smaller single hidden layer (Fig. 1). Specifically, a Representation learning distribution information.
20 unit ‘sensory input’ layer was connected to a ten-unit ‘perceptual Distribution Type M (%, y) & (%) Covariance
representation’ hidden layer which was cqnnected to a 20 1}nit Independent 0.5,0.5 0.023, 0.023 0
‘autoencoder output’ layer. Ten of these 20 units reflected the physical Positive 0.5,0.5 0.029, 0.029 0.028
x-dimension value and ten reflected the physical y-dimension value. For Negative 0.5,0.5 0.029, 0.029 —0.028
each dimension, a particular value was represented as a normalized X-Dimension 05,05 0.057, 0.00032 0
Gaussian distribution centered on that value; the activation of the 10 Y'D.lmenswn 05,05 0.00032, 0.057 0
A T K Uniform 0.5, 0.5 0.10, 0.10 0
units sampled this distribution uniformly over the full range of the
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Fig. 2. Stimulus distributions for representation learning.

Note. Each biased distribution (colored points) also has the same uniform distribution (gray points).
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signal statistics, but rather reflect clear alternative scenarios to
demonstrate how these simple relationships might be encoded in the
perceptual system and ultimately affect category learning. The repre-
sentation training phase is meant to reflect long-term experience with
statistical regularities in perceptual environments that amount to a
lifetime of experience.

To simulate the gradual encoding of long-term statistical regularities
into adult-like stable representations, we trained the network for 50,000
epochs of batch learning (i.e., all exemplars presented once before the
model updates its weights) across the 624 stimuli within each training
distribution (625 for Independent distribution), using back-propagation
to minimize reconstruction error, with a learning rate of 0.0001, no
momentum, and a bound of 1.0 on the length of the weight change
vector. The hidden and output units in all parts of the network used a
sigmoid activation function. These learning parameters are intentionally
conservative and were chosen solely to ensure that representation
learning was stable and effective.

2.3. Category learning

To simulate short-term training of novel category distinctions in an
experimental context, in the category learning phase, the model weights
from the sensory input layer to the hidden layer were frozen, reflecting a
long-term consistency in experience and the resulting development of
robust psychological representations (e.g., adult-like representations).
To measure the network's categorization decision, a two-unit decision
output layer was connected to the perceptual representation hidden
layer (Fig. 1). The activation within these units reflects the model's
choice between the two categories.

2.3.1. Category distributions

For each of the five representation environments, the model was
separately trained on four category learning problems (Fig. 3A). The
category distributions were created by sampling a bivariate Gaussian
distribution using the mvnorm function in the MASS package in R
(Venables & Ripley, 2002). We sampled for a single category using
normalized coordinates (0-1) and then manipulated and rotated that
distribution to create all other categories. Each of the category learning
problems was identical in terms of statistical structure (category vari-
ance and overlap between categories; Table 2). The key difference is the
rotation of the categories in physical input space, such that the category
distinction requires different reliance on the physical input dimensions.
These category environments were designed to reflect two rule-based
(RB) problems that can be learned using a single input dimension (RB-
X dimension, RB-Y dimension) and two information-integration (II)
problems that require integration across the two dimensions (II-Positive
and II-Negative). The naming scheme of the categories reflects the di-
mensions across which the categories can be distinguished (X-Dimen-
sion, Y-Dimension, Positive axis or Negative axis). For instance, learning
RB-X categories requires learning that the categories can be distin-
guished based on the x-dimension and that the y-dimension is not
informative of category membership. Critically, as a consequence of the
representation learning phase, the input dimensions (i.e., the
experimenter-defined dimensions) do not necessarily align with the
model's internal perceptual representations.

Test stimuli were created using an identical procedure, sampling
only 50 exemplars per category (Fig. 3B, Table 2). Due to the probabi-
listic nature of the sampling, the means and variances vary slightly but
are very similar to the training distributions. The dimensions that are
relevant for category identity are identical in the training and test
environments.

2.3.2. Training procedure

We trained the category learning network with back-propagation
using two distinct training paradigms. The first training paradigm —
batch learning - like the representation learning paradigm, is
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conservative and stable in order to most clearly illustrate effects of
representation on learning. This learning paradigm is meant to be a
more abstracted version of the model's behavior to better understand the
constraints of existing representations on the learnability of categories.
This model is not meant to perfectly reflect human behavior or the way
in which humans update their representations during learning. The
second paradigm — online learning — is a closer approximation to expe-
rience in actual human category learning experiments, as the network
updates its weights after each stimulus presentation. During category
learning, weights in the representation network were held fixed, on the
assumption that most experiments are too brief to substantially affect
underlying perceptual representations. For all four category types (II-
Negative, II-Positive, RB-X, and RB-Y), exemplars were presented
randomly without replacement in training and test. Models were trained
on all 200 stimuli from each category learning environment (100 stimuli
per category) and tested on a separate set of 100 stimuli from each
category environment (50 stimuli per category). We trained and tested
10 simulated subjects on each of the combinations of training paradigm
(batch, online), representation distribution (Independent, Positive,
Negative, X-Dimension, Y-Dimension), and category problem (RB-X, RB-
Y, II-Positive, II-Negative) to get a sense of the variability in the behavior
of the model. For both paradigms, after training, the model was tested on
the 100 test stimuli while keeping the weights fixed (i.e., providing no
feedback to the model). The hidden and output units in all parts of the
network used a sigmoid activation function.

2.3.3. Training paradigm 1: batch learning

We trained the category learning network using a batch learning
paradigm to understand the learnability of the categories with repeated
exposures. All 200 category stimuli were presented to the model and
then the model updated its connection weights using a learning rate of
0.01 and no momentum. For each simulated subject, the model was
tested after each weight update (called an epoch).

2.3.4. Training paradigm 2: online learning

In separate runs, we trained the category learning network using an
online learning paradigm to approximate human behavior during cate-
gory learning, as the network updated its weights after each stimulus
presentation. During online learning, the network was trained using a
learning rate of 0.5 and no momentum. For each simulated subject, the
model was tested after a single sweep through all 200 exemplars.

3. Results
3.1. Categorization accuracy

We present the results from batch and online learning together. We
determined the categorization accuracy of the model by examining the
percent of category exemplars for which each output activation was
within 0.45 of its correct (target) activation of O or 1, assessed after each
epoch of batch learning (Fig. 4A) and after presentation of all exemplars
in online learning (Fig. 5A)." The results were similar across the two
training methods (Table 3). There were specific patterns of accuracy for
the different category problems that largely depended on the nature of
the representation distribution. The data are available through the Open
Science Framework repository at osf.io/w64nu (Roark, Plaut, & Holt,
2020).

! We used an activation criterion of 0.45 (rather than 0.5) to minimize
spurious responding caused when activations are very close to 0.5. This pro-
vides a more conservative estimation of the model's category knowledge as
accuracy would be near zero if the model was guessing. In general, performance
below 50% indicates that the model failed to reliably learn the categories and
performance can be reliably below 50% if activations of both category units for
some stimuli fall within the range 0.45-0.55.
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Fig. 3. Category input distributions.
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Table 2
Category distribution information.
M (x,y) o (x, y) Covariance
Training
1I-Negative: Category A (0.57, 0.45) (0.0059, 0.0053) 0.0030
1I-Negative: Category B (0.45, 0.57) (0.0053, 0.0059) 0.0030
II-Positive: Category A (0.55, 0.57) (0.0053, 0.0059) —0.0030
1I-Positive: Category B (0.43, 0.45) (0.0059, 0.0053) —0.0030
RB-X: Category A (0.58, 0.51) (0.0026, 0.0086) 0.00028
RB-X: Category B (0.42, 0.51) (0.0026, 0.0086) —0.00028
RB-Y: Category A (0.49, 0.58) (0.0086, 0.0026) —0.00028
RB-Y: Category B (0.49, 0.42) (0.0086, 0.0026) 0.00028
Test

II-Negative: Category A (0.59, 0.44) (0.0046, 0.0047) 0.0020
1I-Negative: Category B (0.44, 0.59) (0.0047, 0.0046) 0.0020
II-Positive: Category A (0.56, 0.59) (0.0047, 0.0046) —0.0020
II-Positive: Category B (0.41, 0.44) (0.0046, 0.0047) —0.0020
RB-X: Category A (0.62, 0.52) (0.0026, 0.0066) 0
RB-X: Category B (0.39, 0.52) (0.0026, 0.0066) 0
RB-Y: Category A (0.48, 0.61) (0.0066, 0.0026) 0
RB-Y: Category B (0.48, 0.39) (0.0066, 0.0026) 0

For the Independent distribution, all four category types were
learned quickly to a high degree of accuracy. During batch learning, the
model demonstrated slightly higher accuracy for the RB categories than
the II categories. In the final epoch of batch learning, accuracies were
the following: II-Negative 82.3%, II-Positive 81.9%, RB-X 91.9%, and
RB-Y 86.8%. The results were very similar after online learning with
highest accuracy for the two RB categories (RB-X 94.5%, RB-Y 92.4%)
and slightly lower accuracy for the two II categories (II-Negative 83.8%,
II-Positive 88.7%).

For Positive and Negative distributions, the model learned one of the
II categories very well and failed to learn the other. When the model was
trained to represent a Negative relationship across the input dimensions,
the II-Negative categories were learned very well (83.1% batch, 83.8%
online), the RB-X and RB-Y categories were learned at an intermediate
level (RB-X: 58.9% batch, 74.6% online; RB-Y: 58.2% batch, 72.6%
online), and the II-Positive categories were learned very poorly (0%
batch, 49.5% online). When the model was trained to represent a Posi-
tive relationship across the input dimensions, this pattern was reversed;
the II-Positive categories were learned very well (83.1% batch, 92.7%
online), the RB-X and RB-Y categories were learned at an intermediate
level (RB-X: 61.3% batch, 70.7% online; RB-Y: 58.1% batch, 70.7%
online), and the II-Negative categories were learned very poorly (0%

batch, 41.6% online).

When the model was trained to represent the x-dimension or y-
dimension in more detail, the patterns were similar. For X-Dimension
representations, the RB-X categories were learned the best (88.3%
batch, 90.9% online), the two II categories had intermediate accuracies
(II-Negative: 61.1% batch, 62.3% online; II-Positive: 57.8% batch,
69.0% online), and the RB-Y categories were learned the worst (0%
batch, 43.8% online). The pattern was reversed for the Y-Dimension
representations. For the Y-Dimension representations, the RB-Y cate-
gories were learned the best (87.5% batch, 91.2% online), the two II
categories had intermediate accuracies (II-Negative: 55.9% batch,
72.5% online; II-Positive: 60.6% batch, 67.2% online), and the RB-X
categories were learned the worst (0% batch, 49.0% online).

In summary, for all distribution types, the category that was aligned
with the long-term regularity experienced in the representation training
phase was learned the best, the category that was misaligned with the
long-term regularity was learned the worst, and the two other category
types were learned at intermediate levels.

3.2. Real-valued error (Loss)

When examining the patterns of real-valued error produced by the
model - sometimes termed loss — for different representation types and
categories, the error patterns mirror the accuracy patterns, with higher
accuracy reflected as low error (Figs. 4B, 5B). Overall, the model had
lower error with more training.

For both batch and online training of the Independent distribution,
the error was lower for the RB categories than the II categories. For
Negative distribution, the II-Positive categories are difficult for the
model and have the highest error, whereas the II-Negative categories
have the lowest error. For the Positive distribution, the II-Negative
categories are difficult for the model and have the highest error,
whereas the II-Positive categories have the lowest error. For X-Dimen-
sion, RB-Y categories have the highest error rate and RB-X categories
have the lowest. For Y-Dimension, RB-X categories have the highest
error rate and RB-Y categories have the lowest.

3.3. Analysis of representations

To understand why the model was successful or failed at learning, it
is useful to probe further into its behavior. We assessed the model's
representations by examining the pattern of error in the uniform dis-
tribution from the representation learning phase and the categorization
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Fig. 4. Batch learning model accuracy and error (loss).
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response behavior for different stimuli.

3.3.1. Representation learning

First, it is useful to confirm that the model learned the distributions
over its long-term experience (e.g., 50,000 epochs) during the repre-
sentation learning phase. We tested the model on all training stimuli and
plotted the pattern of reconstruction error for all stimuli from the uni-
form distribution that accompanied each of the representation distri-
butions (Fig. 6). These patterns demonstrate that the network clearly
learned the distribution with which it had most experience, having the
lowest error in areas that it had the most experience and higher error
elsewhere. Critically, the error patterns are specific to the nature of the
bias in the representation distribution.

3.3.2. Category learning

Next, we asked more specifically about what the model learned
about the stimulus space during category learning. As specified in the
methods section, we tested the model after all 200 stimuli were pre-
sented in online learning. Here, we examine the stimulus-specific
response patterns for each different representation distribution (Inde-
pendent, Positive, Negative, X-Dimension, Y-Dimension) and category
type (II-Positive, II-Negative, RB-X, RB-Y).

The patterns of responses across stimuli after online learning
demonstrate that the long-term experience of the model influenced the
way that it learned the categorization tasks (Fig. 7). For the Independent
distribution, the model learned to separate the categories quite well,
especially when the stimuli were far from the boundary between

RBX — RBY

categories. The model was especially confused for these boundary
stimuli for the II-Negative and II-Positive categories (responding with
proportion of category A responses near 0.5, indicating that the model
made an equal number A and B responses).

For the rest of the distributions, as discussed in the category learning
results section, there was a clear benefit for the category distinction that
aligns with the representation distribution (Negative + II-Negative,
Positive + II-Positive, X-Dimension + RB-X, Y-Dimension + RB-Y).
The categories that were extremely difficult for the model to learn
were orthogonal to the representation distribution (Negative + II-
Positive, Positive + II-Negative, X-Dimension + RB-Y, Y-Dimension +
RB-X).

Interestingly, the bias created by a specific representation training
distribution was also evident in the response pattern in the categories
that were neither aligned nor orthogonal to that distribution. Take the X-
Dimension distribution, for instance. The model separated the RB-X
categories along the x-dimension, as would be expected if the model
was responding optimally. The model also demonstrated this same x-
dimension bias in responding for the II-Negative and II-Positive cate-
gories. That is, even though these categories require separation along
both dimensions (minor or major axes), the model responded with an x-
dimension bias. This led to intermediate accuracy for these categories
because this strategy, while suboptimal, sometimes aligns with feedback
leading to an intermediate level of category learning. In direct contrast,
the orthogonal category (RB-Y) is learned very poorly because the prior
experience results in perceptual representations that largely collapse
this dimension, and thus, it cannot be used to separate the categories.
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Fig. 5. Online learning model accuracy and error (loss).
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Table 3
Accuracy results across training methods
Representation distribution II-Negative II-Positive RB-X RB-Y

Independent 82.3 [81.3, 83.3]
Negative 83.1 [81.8, 84.5]
Positive 0 [n/a, n/a]

X-Dimension 61.1 [59.2, 63.0]
Y-Dimension 55.9 [54.7, 57.1]
Independent 83.8 [78.0, 89.6]
Negative 80.4 [70.9, 90.0]
Positive 41.6 [29.1, 54.1]
X-Dimension 62.3 [53.4, 71.2]
Y-Dimension 72.5 [63.0, 82.0]

Batch Learning
81.9 [80.3, 83.5]
0 [n/a, n/a]
83.1 [81.0, 85.2]
57.8 [56.0, 59.6]
60.6 [58.3, 62.9]

Online Learning
88.7 [84.4, 93.0]
49.5 [48.6, 50.4]
92.7 [90.6, 94.8]
69.0 [59.8, 78.2]
67.2 [59.2, 75.2]

91.9 [90.9, 92.9]

58.9 [57.5, 60.3]

61.3 [59.5, 63.1]

88.3 [87.0, 89.6]
0 [n/a, n/a]

94.5 [91.9, 97.1]
74.6 [68.1, 81.0]
70.7 [60.9, 80.5]
90.9 [84.0, 97.8]
49.0 [46.7, 51.3]

86.8 [85.5, 88.1]
58.2 [56.5, 59.9]
58.1 [56.7, 59.5]
0 [n/a, n/a]
87.5 [86.0, 89.0]

92.4 [89.2, 95.6]
72.6 [66.7, 78.5]
70.7 [62.8, 78.6]
43.8 [34.6, 53.0]
91.2 [84.2, 98.2]

Note. Mean accuracy with 95% confidence intervals across ten simulated subjects for batch learning (after final epoch) and online learning.

There are several relevant patterns in these results. First, categories
that are orthogonal with the distributional representations show at-
chance performance (Fig. 7, values near 0.50 shown in white). Sec-
ond, when trained on the II categories with X-Dimension or Y-Dimension
representations, the model separates the categories based on a single
dimension, instead of two. For example, the II-Negative/X-Dimension
panel demonstrates that the categories are separated based on the x-
dimension. Similarly, when trained on the RB categories with Positive or
Negative representations, the model separates the categories based on

two dimensions, instead of one. For example, the RB-X/Negative panel
demonstrates that the categories are separated based on both x and y
dimensions across the negative axis. These results demonstrate that the
model does not struggle to learn in the same way across different types of
categories. Instead, the reason that the model struggles is directly
related to how the representation distribution relates to the categories
being learned. The model is struggling because it is applying its repre-
sentational bias during category learning and this bias cannot be over-
come based on the feedback received during category learning.
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Fig. 7. Model category responses in test after online learning.

Note. The values reflect the proportion of category A responses for each stimulus. The Optimal row reflects the ground-truth category identities for reference.

3.4. Summary and interpretation of results

We investigated the impact of long-term experience with different
statistical regularities that result in different perceptual representations
on category learning. We observed specific patterns of results depending
on the type of category being learned and the nature of learned
perceptual representations.

These results support a theoretical framework (Fig. 8) that demon-
strates that perceptual representations and category distribution struc-
ture interact to affect learning outcomes. Specifically, long-term
experience with some statistical regularity (e.g., a negative or positive

correlation, Fig. 8A) results in enhanced representation along the axis of
high variability in experience and reduced representation along the
orthogonal axis (Fig. 8B). As a result of this experience, categories that
are statistically identical in input space (Fig. 8C) are not identical in
perceptual space (Fig. 8D). Categories that align with perceptual repre-
sentations (here, negative correlation, Fig. 8 top) are easier to learn than
categories that conflict with perceptual representations (here, positive
correlation, Fig. 8 bottom).

Our results support this framework. When two input dimensions
were Independent, the model learned to accurately represent the value
on each dimension regardless of the value on the other - that is,
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Fig. 8. Theoretical framework.

Note. A. The theoretical framework is demonstrated
with the example of long-term experience with a
negative (top) or positive (bottom) correlation be-
tween two dimensions. B. This experience stretches
perceptual representations along the axis of experi-
ence and shrinks representation along the orthogonal
axis. C-D. As a result, categories that are statistically
identical in input space are no longer identical in

D. Categories in
Perceptual Space

perceptual space. When the category distinction is
aligned with experience (negative axis, top), cate-
gories are easily distinguishable. When the distinction
conflicts with experience (positive axis, bottom),
categories are more difficult to distinguish.

independently — potentially by devoting separate hidden units to each
dimension. As a result, we found that the model demonstrated a bias for
learning RB over II categories because, for the former, category learning
can easily learn the relevant weights from only the relevant subset of
hidden units, analogous to “selective attention” to that dimension. By
contrast, II category learning requires sensitivity the precise relationship
between the two dimensions, which was more difficult to learn. This
pattern is consistent with previous findings that generally demonstrate
an advantage for RB over II categories for simple visual dimensions
(Ashby & Maddox, 2011).

When the two sensory dimensions are interdependent (Positive or
Negative distributions), the learnability of categories depended on the
alignment with the representations. Categories were easier to learn
when they required a distinction along the axis that was more strongly
reflected in learned representations (i.e., the axis of high variance). For
example, because the model experienced high variability along the
Negative axis for the Negative training distribution, the model was
better at learning categories that can be distinguished along this axis,
leading to better performance for II-Negative categories than II-Positive
categories. We found the reverse pattern for the Positive representation
distribution. In both cases, the RB categories were learned at interme-
diate levels.

Finally, when the representation training distributions reflected
enhanced encoding of one dimension relative to the other (X-Dimension
and Y-Dimension distributions), we found differences in how well the RB
categories were learned. As with the other training environments, we
found that when the model has experience with higher variance along
one dimension, it more faithfully represented this dimension in the
perceptual representation hidden layer. As a result, we found that after
training with high variability on the X-Dimension, RB-X categories were
easier for the model to learn than RB-Y categories, with performance for
the II categories at intermediate levels. We observed the opposite
pattern for the Y-Dimension representations.

Further, examining the pattern of responses to the category stimuli
revealed that the reason the model succeeded or struggled to learn was
because it applied its representational bias during category learning. For
example, when the model was trained on the X-Dimension distribution,
the pattern of responses for the RB-X category and the two II categories
demonstrated that the model was using the x-dimension to separate the
categories. The model failed to learn the categories that were completely
orthogonal to their representation (e.g., RB-Y categories for the X-
Dimension distribution).

In sum, these results demonstrate the potential for existing percep-
tual representations to impact category learning, especially when the
physical dimensions or experimenter-defined dimensions do not align
with the dimensions of representations. In general, having extensive
experience with variation along a dimension makes it easier to distin-
guish categories that vary along that dimension and more difficult to

distinguish categories orthogonal to that dimension.

4. Comparison with human behavior

While the model's behavior can be explained by the theoretical
framework, it is not yet clear how this relates to human behavior. In this
section, we compare the model's behavior and human behavior across
prior studies of category learning in multiple sensory modalities. When
we can observe the pattern of accuracy in humans across several cate-
gory learning types in the same sensory space, we are able to draw
conclusions about the nature of human perceptual representations
across particular dimension pairs. This kind of comparison is especially
useful in cases in which the underlying cognitive or neural representa-
tions of dimensions are not well understood, as with complex auditory
dimensions.

We searched the literature for category learning experiments that
examine these four kinds of category distributions — unidimensional RB
along both dimensions and II distributions with categories distinguished
along the positive axis and the negative axis. Very few studies make a
complete comparison of these four category types. It is more typical for
experimenters to choose one RB distribution and one II distribution to
compare. However, several studies have trained participants on all four
types — one experiment with auditory dimensions (Roark & Holt, 2019),
one experiment with visual dimensions (Ell, Ashby, & Hutchinson,
2012), and two experiments using cross-modal stimuli with auditory and
visual dimensions (Smith et al., 2014). We will compare the model's
behavior to the human behavior in each of these experiments. We should
note at the outset, though, that quantitative aspects of the input distri-
butions to which the model was exposed were designed to illustrate the
impact of these distributions and are unlikely to match the relationships
among actual real-world dimensions precisely.

4.1. Roark and Holt (2019): Auditory dimensions

In Roark and Holt (2019), participants learned categories based on
the auditory dimensions of center frequency (CF) and modulation fre-
quency (MF) of nonspeech tones. As in the simulations, they trained
participants on four category problems — RB-CF, RB-MF, II-Positive, or
II-Negative with feedback (four blocks of 96 trials each).”

2 The terminology of II-Positive and II-Negative in the current manuscript
reflects the axis that is important for distinguishing the categories. Terminology
of the previous studies discussed here (Ell et al., 2012; Roark & Holt, 2019;
Smith et al., 2014) are all based on the axis of an optimal decision boundary
that separates the categories. As such, we have relabeled the II-Positive and II-
Negative categories when discussing these three studies to match the termi-
nology of the current manuscript.
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Fig. 9. Comparison of human and model behavior.

X

Note. A. Human categorization performance in the generalization test in Roark and Holt (2019) compared with model performance after extensive training with the
Negative distribution. Individual points reflect individual subjects or simulation runs with the means in black. Error bars reflect SEM. B. Heat map of proportion of
category A responses for each category distribution from Roark and Holt (2019) participants (top) and the corresponding test distributions for the model after

training with the Negative distribution (bottom).

Roark and Holt (2019) found that the category problems with the
highest accuracy were the II-Negative and RB-MF, with RB-CF learned at
more moderate levels, and II-Positive learned at the lowest levels
(Fig. 9A). This overall pattern most closely aligns with the model's
behavior for the Negative distribution, indicating that these acoustic
dimensions may have a representation that reflects a long-term negative
relationship between CF and MF. Further, the model's response behavior
for the Negative distribution is similar to human performance (Fig. 9B).
The model and human participants excel at separating the II-Negative
categories, fail to separate the II-Positive categories reliably, and
demonstrate a bias to separate the RB-X and RB-Y categories in a way
that reflects usage of both dimensions, rather than just one. This pattern
of human learning was not predicted by an existing literature that has
focused more on whether categories require one or multiple dimensions
and could be classified as ‘RB’ or ‘I’ categories. The pattern of human
categorization accuracy is consistent with the model's behavior and il-
lustrates that the nature of perceptual representations influences
learning outcomes.

4.2. Ell et al. (2012): Visual dimensions

In Ell et al. (2012) Experiment 2, participants learned categories
based on the visual dimensions of saturation and brightness, two of the
defining features of color perception. As in our simulations, they trained
participants on four category problems — RB-Saturation, RB-Brightness,
II-Positive, or II-Negative with feedback (nine blocks of 80 trials each).

By the end of training, participants performed similarly on all four
category learning problems. However, there were differences in early
learning which may give clues about which category distinctions are
better in alignment with the way humans represent the visual di-
mensions. In the first block, RB-Brightness had higher accuracy than RB-
Saturation and II-Positive but was not significantly different from II-
Negative. None of the other comparisons were statistically different,
but there were few subjects in each condition, and this was not the main
comparison of interest to these authors. However, the general pattern in
which one RB category is learned better than another aligns with the
model's behavior for the X-Dimension or Y-Dimension distributions.
Therefore, this may reflect a situation where brightness may have a
more veridical or detailed representation relative to saturation.
Although examination of the visualization of the data from Ell et al.
(2012) indicates that there may be some differences among the four
category problems, the statistical analyses do not indicate a difference. It
would be necessary to examine this same kind of category learning with
a larger sample to truly understand the nature of the representation of
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these dimensions.

Additionally, whereas in the current set of simulations, the perfor-
mance for the worst-performing category problem is around chance
levels, participants in Ell et al. (2012) were able to learn all four category
problems to a similar extent by the end of 720 trials. As mentioned, the
current model simulations used fairly extreme training distributions to
demonstrate a first-pass confirmation that the nature of the represen-
tations can have a strong impact on learning outcomes. However, it is
likely the case that to match human behavior and representations more
closely, the training distributions would need to be less extreme.

4.3. Smith et al. (2014): Cross-modal dimensions

In Smith et al. (2014) Experiments 1 and 2, participants learned
categories with one visual and one auditory dimension. The dimensions
varied across the two experiments, but the results are very similar, so we
discuss them together. The auditory dimension was duration of three
100 Hz tones in Experiment 1 and frequency of a pure tone in Experi-
ment 2. The visual dimension was pixel density in both experiments.

Because the purpose of these experiments was not to compare ac-
curacy of the two RB and two II tasks, Smith et al. (2014) did not
compare accuracy across the four tasks. Instead, their goal was to
contrast RB and II category learning and so they compared the average
accuracies for the two RB tasks to the average accuracies for the two II
tasks. This comparison stems from their investigation into the differ-
ences between RB and II category learning but distorts our ability to
compare the statistical outcomes to the current set of model simulations.

However, we can observe the pattern in the reported means from
their experiments to assess the descriptive pattern of results within the
four category learning problems. These descriptive results indicate that
for Experiment 1, the two RB problems are learned better than the two II
problems (RB-Auditory: 91.1%, RB-Visual: 94.5%, II-Negative: 74.6%,
II-Positive: 74.3%), which aligns with the model's behavior with the
Independent distribution, reflecting a situation where the two sensory
dimensions are encoded independently. This pattern may be expected
because it is likely that cross-modal dimensions are encoded in distinct
and separate sensory representations.

In contrast, in Experiment 2, there was slightly higher accuracy for
the RB-Auditory problem compared to the RB-Visual problem (88.5%
accuracy compared to 77.8%). However, performance on each was
better than for the two II problems (II-Negative: 68.2%, II-Positive:
70.0%). This exact pattern is not represented directly in the model's
behavior. However, it is still mostly aligned with a version of Indepen-
dent representations in which one dimension might be represented
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slightly more faithfully than the other dimension or perhaps a hybrid
between Independent and X- or Y-Dimension representations. Though
there are some limitations in our ability to compare the effects to the
model behavior directly, it seems reasonable that one of these di-
mensions may be more salient than the other, which may have influ-
enced learning outcomes.

5. Discussion

The current set of simulations demonstrates that the nature of long-
term experience in a sensory environment can shape the representations
of input dimensions in a way that, in turn, drastically impacts category
learning behavior. Depending on the nature of the representations that
are shaped by experience, some category learning problems are easily
learnable, whereas others are more difficult. The simulation results
demonstrate that it is critical to consider the constraints that the
perceptual system and existing representations place on learning to
understand the mechanisms of perceptual category learning. The nature
of the learning problem may differ substantially depending on the
perceptual representations across the very same input dimensions.

As with all models, the current model incorporates specific as-
sumptions. We address our assumptions about the input training space
and training paradigm and discuss potential implications for the inter-
pretation of the results. First, our model used relatively simple and
somewhat extreme training spaces that are clearly highly abstract
relative to the way sensory information is distributed in the real world.
While there was a small amount of noise in the input to the model to
reflect modest perceptual noise in the encoding process, there was no
noise in the actual distributions. Future elaboration of this model should
include a simulation of the kind of variability and noise that exists in
real-world sensory environments. Additionally, the model was applied
to a two-dimensional input space. The world beyond simple experiments
has many more dimensions, some of which are relevant whereas others
are irrelevant for category distinctions. A future version of this model
should seek to understand how multiple dimensions may be represented
independently and, in conjunction, what the effects on higher-level
cognition might be.

Our approach also involved freezing the hidden layer weights during
category learning such that no changes could be made to the weights due
to category learning. This design reflects a situation where the repre-
sentations of sensory dimensions are not changed with additional short-
term experience during category learning. It is possible that represen-
tations could continue to change as a result of category learning. Prior
work has demonstrated that categorization training can affect repre-
sentations in many ways, including by creating new dimensions (Gold-
stone, Lippa, & Shiffrin, 2001), increasing discriminability across
category-relevant dimensions (Feldman, 2021; Schyns, Goldstone, &
Thibaut, 1998), decreasing discriminability of within-category distinc-
tions (Goldstone, 1998), and affecting neural representations of di-
mensions at early levels of processing (Ester, Sprague, & Serences,
2019). Other work suggests that in the presence of long-term perceptual
biases, like those created in the representation learning phase, short-
term experience may not substantially affect existing representations
(Roark & Holt, 2020). It is important to acknowledge that experience is a
continuous cycle and that a lifetime or a single experiment may influ-
ence our representations of the sensory world. Future work should focus
on the interaction of long-term and short-term regularities and clarify
how and when representations change with experience.

Finally, the current model used an autoencoder and trained repre-
sentations to reflect sensory regularities based on the distributional
statistics alone (i.e., without feedback). Such an approach does not fully
reflect the complexities of human learning or sensory experience. Future
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work might expand the model to compare representation training
methods. We suspect that representation training with feedback may
impact subsequent category learning behavior even more strongly than
with the self-supervised autoencoder paradigm used here.

Indeed, the relative importance of unsupervised versus supervised
learning in human category learning is an area of active debate. Some
have suggested that sensory regularities experienced across the long-
term may be learned via unsupervised learning mechanisms, as
modeled in the representation learning phase (Frost, Armstrong, &
Christiansen, 2019; Saffran & Kirkham, 2018), and that speech
perception and speech category learning can be modeled with similar
unsupervised approaches as those used here (i.e., autoencoder; Elman &
Zipser, 1988; Nixon & Tomaschek, 2021; Getz, Nordeen, Vrabic, &
Toscano, 2017; Toscano & McMurray, 2010). However, others have
suggested that learning complex categories (e.g., speech categories) may
necessarily involve feedback of some sort and may not be possible with
passive exposure to statistical distributions alone (Feldman, Griffiths,
Goldwater, & Morgan, 2013; Lim, Fiez, & Holt, 2019; Nixon, 2020).
Recent work has also examined how individuals learn about category
structures through a combination of unsupervised and supervised
training within the same experimental session (Broker, Love, & Dayan,
2021). The results of these combination studies support our current
framework and demonstrate that understanding the challenge presented
to the learner (whether unsupervised or supervised) requires under-
standing of the alignment of underlying representations and the task
defined by the experimenter.

Here, the extensive representation training (50,000 epochs) was
designed to approximate a lifetime of human experience that may or
may not align with the requirements of a short-term environment. The
influence of existing representations on learning is a major focus of the
speech and language learning fields (Best, 1995; Iverson & Kuhl, 1995;
Scharinger et al., 2013). Specifically, theories demonstrate that the
extent of conflict between one's native language categories and novel
second language categories determine how difficult those categories are
to learn (Best, 1995). When there is little or no conflict (e.g., Zulu click
categories for native English listeners), learning proceeds quickly and
effortlessly (Best, McRoberts, & Sithole, 1988). When there is high
conflict (e.g., English /r/—/1/ categories for native Japanese listeners),
learning is difficult (Lotto, Sato, & Diehl, 2004). The current framework
provides insight about why this difference exists — long-term experience
with a native language enhances representation of dimensions that are
relevant to that experience and diminishes representation of dimensions
that are irrelevant. The resulting effect is that input categories that align
with learners' existing representations, maximizing distinctions that
need to be made, are readily learned and input categories that are
orthogonal to those representations are difficult to learn.

The influence of the psychological representations of dimensions on
perception and learning was also a focus of earlier work (Garner, 1974;
Kemler Nelson, 1993; Kemler & Smith, 1979; Melara & Marks, 1990).
While some dimensions are represented independently leading to
enhanced selective attention to those dimensions (i.e., separable di-
mensions), others have interdependent representations making selective
attention more difficult (i.e., integral dimensions). Because of these
underlying differences, learning categories that require selective atten-
tion to the underlying dimensions proceeds easily with separable di-
mensions and is more difficult with integral dimensions, whereas
learning categories that require integration across dimensions proceeds
easily with integral, but not separable dimensions (Ell et al., 2012;
Garner, 1976; Maddox & Dodd, 2003; Roark & Holt, 2019). This prior
work demonstrates the utility of the current framework in understand-
ing how long-term sensory experience may support specific psycholog-
ical representations that reflect that experience and subsequently
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influence category learning based on the physical input dimensions.

Despite its limitations, the current investigation provides valuable
insight into the influence of learned perceptual representations on
category learning and provides proof-of-concept evidence that the
category structure in input space (i.e., rule-based or information-
integration) may not be the key determiner in understanding categori-
zation. Instead, these results demonstrate that it is imperative to un-
derstand the nature of the perceptual representations of the dimensions
involved to understand the problem for the learner. While much of the
research on human perceptual category learning has used simple, ver-
balizable dimensions that are likely represented independently both
neurally and in cognitive representations, it is a much more difficult
problem to understand what happens when perception is not so
straightforward.

Our framework challenges a typical assumption made by experi-
menters testing theories of category learning - that experimenter-
defined dimensions are aligned with participants' psychological repre-
sentations. If there is a misalignment between these concepts of di-
mensions, then what may appear to the experimenter to be a ‘rule-based’
problem may not actually be ‘rule-based’ for the perceptual system. Our
intention is not to explain or differentiate rule-based and information-
integration learning problems or to directly contribute to the vast
literature that attempts to explain how categories with different struc-
tures may be learned by a single system or separate systems (e.g., Ashby
& Maddox, 2011; Newell et al., 2011). Instead, we argue that defining
the categorization problem based on experimenter-defined dimensions
does not capture the true complexity of the problem for the human
perceptual system. As such, this framework has implications for un-
derstanding category learning more generally, beyond the distinction
between rule-based and information-integration categories. The nature
of psychological representations of dimensions developed across long-
term experience has implications for a wide variety of theories of cate-
gory learning. Understanding the nature of psychological dimensions
has implications for interpreting which dimensions are attentionally
weighted in exemplar models of categorization (e.g., Francis & Nus-
baum, 2002; Nosofsky, 1986) or interpreting similarity in representa-
tions in clustering models of learning (e.g., Love, Medin, & Gureckis,
2004). It is important to note that other models like SUSTAIN (Love
et al., 2004) capture the statistical structure of the input through other
methods of recoding (e.g., cluster representations compared to contin-
uous representations in the current model).

In general, the perceptual component of perceptual category
learning has drifted out of focus of current theories of learning. The
current set of simulations demonstrates that psychological representa-
tions of the sensory world, shaped by long-term experience, can strongly
influence the nature of the problem for the learner.
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Appendix B. Supplementary data

The data are available through the Open Science Framework re-
pository at https://osf.io/w64nu/ (Roark et al., 2020). This archive in-
cludes the raw data (error and accuracy) for both batch and online
learning for all distribution types (Independent, Negative, Positive, X-
Dimension, Y-Dimension) and categories (II-Negative, II-Positive, RB-X,
RB-Y). The archive also contains the error data for the uniform repre-
sentation training distribution (Fig. 6) and the proportion category A
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response data for category learning (Fig. 7). Supplementary data to this
article can be found online at [https://doi.org/10.1016/j.cognition.20
21.104997].
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