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Abstract: The purpose of this paper is to construct confidence intervals
for the regression coefficients in the Fine-Gray model for competing risks
data with random censoring, where the number of covariates can be larger
than the sample size. Despite strong motivation from biomedical applica-
tions, a high-dimensional Fine-Gray model has attracted relatively little
attention among the methodological or theoretical literature. We fill in this
gap by developing confidence intervals based on a one-step bias-correction
for a regularized estimation. We develop a theoretical framework for the
partial likelihood, which does not have independent and identically dis-
tributed entries and therefore presents many technical challenges. We also
study the approximation error from the weighting scheme under random
censoring for competing risks and establish new concentration results for
time-dependent processes. In addition to the theoretical results and algo-
rithms, we present extensive numerical experiments and an application to
a study of non-cancer mortality among prostate cancer patients using the
linked Medicare-SEER data.
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1. Introduction

High-dimensional regression has attracted increasing interest in statistical analy-
sis and has provided a useful tool in modern biomedical, ecological, astrophysical
or economics data pertaining to the setting where the number of parameters is
greater than the number of samples (see Bithlmann and van de Geer (2011) for
an overview). Regularized methods (Tibshirani, 1996; Fan and Li, 2001) pro-
vide straightforward interpretation of resulting estimators while allowing the
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number of covariates to be exponentially larger than the sample size. While
they can be consistent for prediction (i.e. estimating the underlying regression
function), confidence intervals cannot be consistently formulated, as firm guar-
antees of correct variable selection can only be established under a restrictive
set of assumptions, including but not limited to the assumption of the minimal
signal strength of the true parameter (Wasserman and Roeder, 2009; Fan and
Lv, 2010; Meinshausen and Yu, 2009), which cannot be verified in practice. For
practical purposes, it is of interest to develop inferential tools, most commonly
confidence intervals and p-values, that do not depend on such assumptions and
are yet able to provide theoretical guarantees of the quality of estimation and/or
testing; and this is the goal of our work here.

For the purposes of constructing confidence intervals or testing significance
of the effect from certain covariates, relying on a naive regularized estimation
alone is not appropriate; notably, construction of confidence intervals for those
coefficients that have been shrunk to zero is impossible. Zhang and Zhang (2014)
and van de Geer et al. (2014) proposed the one-step bias-correction estimator,
which can be subsequently used to carry out proper statistical inference. Our
work here was motivated by an illustration project of how information contained
in patients’ electronic medical records can be harvested for precision medicine.
The data set linking the Surveillance, Epidemiology and End Results (SEER)
Program database of the National Cancer Institute with the federal health in-
surance program Medicare database contained prostate cancer patients of age
65 or older. A total of 57,011 patients diagnosed between 2004 and 2009 had
information available on 7 relevant clinical variables (age, PSA, Gleason score,
AJCC stage, and AJCC stage T, N, M, respectively), 5 demographical variables
(race, marital status, metro, registry and year of diagnosis), plus 9321 binary
insurance claim codes. Among these patients 1,247 died due to cancer, and
5,221 had deaths unrelated to cancer by December 2013. An important goal of
the project was to evaluate the impact of risk factors (clinical, demographical,
and claim codes) on the non-cancer versus cancer mortality, with appropriate
statistical inference. Cancer and non-cancer versus cancer mortality are known
as competing risks in survival analysis, and cannot be handled using linear or
generalized linear regression models as considered in Zhang and Zhang (2014)
and van de Geer et al. (2014). Instead, we consider the proportional subdistri-
bution hazards regression model, often known as the Fine-Gray model Fine and
Gray (1999). Under classical low-dimensional setting, Fine and Gray derived
the estimation and inference for the model coefficients via the partial likelihood
principle, and handled right censoring by inverse probability censoring weighting
(IPCW).

Considerable research effort has been devoted to developing regularized meth-
ods to handle various regression settings (Ravikumar et al., 2010; Belloni and
Chernozhukov, 2011; Obozinski et al., 2011; Meinshausen and Biithlmann, 2006;
Basu and Michailidis, 2015; Cho and Fryzlewicz, 2015), including those for right-
censored time-to-event data (Sun et al., 2014; Bradic et al., 2011; Gaiffas and
Guilloux, 2012; Johnson, 2008; Lemler, 2016; Bradic and Song, 2015; Huang
et al., 2006, among others). However, regression has been little studied for the
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competing risks setting, with random censoring and high-dimensional covari-
ates. The purpose of this paper has two folds: 1) to study estimators under the
Fine-Gray regression model for competing risks data with many more covariates
than the number of events; 2) to develop statistical inference procedures in this
setting. To our best knowledge, no published work exists on statistical inference
for competing risks data that allows high-dimensional models; univariate test-
ing was studied in Cox proportional hazards model — however, our construction
allows for the testing of general linear hypothesis.

There are at least three significant challenges for addressing high-dimensional
competing risks regression under the Fine-Gray model. The structure of the
score function related to the partial likelihood causes a somewhat subtle issue
with many of the unobserved factors preventing a simple martingale represen-
tation. Additionally, the structure, as well as, size of the sample information
matrix renders both methodology and theoretical analysis based on the Hessian
matrix problematic. Thirdly, random censoring presents non-trivial challenges
in the presence of competing risks and weighting is needed which further com-
plicates the theoretical analysis. Also, although bootstrap has been considered
for inference under the Fine-Gray regression model, this approach is no longer
applicable given the known problems of the bootstrap in high-dimensional set-
tings. Development of high-dimensional inferential methods for competing risks
data and under the Fine-Gray model, in particular, may have been hampered
by these considerations.

In this paper, we propose a natural and sensible formulation of inferential
procedure for this high-dimensional competing risks regression. We first study a
regularized estimator of the high-dimensional parameter of interest and derive
its finite-sample properties where the interplay between the sparsity, ambient
dimension and the sample size can be directly seen. We then propose a bias-
correction procedure by formulating a new pragmatic estimator of the inverse
of a large covariance matrix that allows broad dependence structures within
the Fine-Gray model. We find that the bias-corrected estimator is effective at
capturing strong as well as weak signals, and can be used for statistical inference.
This combination leads to an efficient and simple-to-implement procedure under
the Fine-Gray model with many covariates.

1.1. Model and notation

For subject ¢ = 1,...,n in a study, let T; be the event time, with the event type
or cause ¢;; we use the two words interchangeably in the following. Under the
Fine-Gray model that we consider below, we assume without loss of generality
that the event type of interest is ‘1’, and we code all the other event types as
‘2’ without further specification. In the presence of a potential right-censoring
time C}, the observed time is X; = T; A C;. We denote the event indicator
as 0; = I(T; < C;). The type of the event ¢; is observed, if the event occurs
before the censoring time, i.e., when §; = 1. Let Z;(-) be the vector of covariates
that are possibly time-dependent. We focus on the situation that the dimension
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of Z;(+), p, is larger than the sample size n. Assume that the observed data
{(X;,0i,0:€i,Z;(-))} are independent and identically distributed (i.i.d.) for i =
1,...,n.

Since the cumulative incidence function (CIF) is often the quantity of interest,
Fine and Gray (1999) proposed a proportional subdistribution hazards model
where the CIF

Fy(t1Z:()) = Pr(Ts < 1,6 = 1Z4() = 1 — exp (— / eﬁ“*zi(“)h(%(u)du) ,

’ (1.1)
the p-dimensional coefficient 3 is the unknown parameter of interest, and hj(t)
is the baseline subdistribution hazard. Under the model (1.1) corresponding
subdistribution hazard hy(t|Z;(-)) = h(l)(t)e'BOTZi(t). Throughout the paper, we
assume that there exists a sparsity factor s, = |[supp(3°)| for some s, < n. Note
that if we define an improper random variable T} = T;I(e; = 1) + ool (e; > 1),
then the subdistribution hazard can be seen as the conditional hazard of T}
given Z;(+).

We denote the counting process for type 1 event as N}(t) = I(T} < t) and
its observed counterpart as NP (t) = I(d;e; = 1)I(X; < t). We also denote the
counting process for the censoring time as NF(t) = I(C; < t). Let Y;(t) =
1 — N}(t—) (note that this is not the ‘at risk’ indicator like under the classic
Cox model), and r;(t) = I(C; > T; At). Note that r;(£)Y;(t) = I(t < X;)+1(t >
Xi)I(d;e; > 1) is always observable, even though Y;(t) or r;(t) may not. Let
G(t) = Pr(C; > t) and let G(-) be the Kaplan-Meier estimator for G(-). Here
we assume that C' is independent of T, € and Z. Following the notation of Fine
and Gray we call the IPW at-risk process:

wil)Yi(t) = ri(t)Yi (1) =)

Gt X)) (12)

in other words, the weight for subject i is one if ¢ < X;, zero after being censored
or failure due to cause 1, and G(t)/G(X;) after failure due to other causes. The
log pseudo likelihood (as recently named in (Bellach et al., 2018)) that gives rise
to the weighted score function in Fine and Gray (1999) for 8 is

m(B) =nt 3> [ 38720 ~tox | 3wy (0107 B | 4Nz
- " (1.3)

where t* < 0o is the study end time.
In the following, for a vector v, let v®° = 1, v®! = v and v®? = vv'. We
define for [ =0,1,2

sO(t, 8) = B{G(0)/G(t A Xo)ri(t)Yi(t)e? 2 0Z,(0)' }
() = sV (1,8 /501, 8°),
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SO, B)=n""t zn:wi(t)Yi(t)eﬁTZi(t)Zi(t)®l, Z(t,8) = SW(t,8)/5O(t,8).
- (1.4)

We then have the score function, i.e. derivative of the log pseudo likelihood
(1.3),

(@) =S [ {200~ 2. 8N ).

Regarding notation, let us mention that all constants are assumed to be in-
dependent of n, p and s,. We use K and p with corresponding enumerated
subscripts to denote “big” and “small” constants. We use () to denote interme-
diate terms used in the statements or the proofs of various results. We label the
subscripts by the corresponding order of their appearance.

1.2. Organization of the paper

This paper is organized as follows. In Section 2, we provide the bias corrected
estimator, Section 2.1, as well as the confidence interval construction, Section
2.2, for the high-dimensional Fine-Gray model. Construction of a new Hessian
estimator, the cornerstone for our bias correction and variance estimation, is
presented in Section 2.3. Section 3 presents properties of the developed estima-
tor. Additional notations for theoretical considerations are presented in Section
3.1. Bounds for the prediction error are presented in Section 3.2; Theorem 1 is
the main result on estimation. Section 3.3 studies the sampling distribution of
a newly develop test statistics while not requiring model selection consistency
or minimal signal strength. Theorem 2 is the main result regarding asymptotic
distribution. There we present a sequence of intermediate results as well. We
examine our regularized estimator and the one-step bias-corrected estimator
through simulation experiments in Section 4, and apply them to the SEER-
Medicare data in Section 5.

2. Estimation and inference for competing risks with more
regressors than events

2.1. One-step corrected estimator

A natural initial estimator to consider under the high dimensional setting is a
l1-regularized estimator, where the particular loss function of interest would be
the log pseudo likelihood as defined in (1.3). We note that our results are easily
generalizable to any sparsity-inducing and convex penalty functions, but due to
the simplicity of presentation we present details only for the [; regularization.
That is, we consider

~

B(\) = argmin{—m(8) + A8 } (2.1)

BeRP
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for a suitable choice of the tuning parameter A > 0. Whenever possible, we
suppress A in the notation above and use 3 to denote the [1-regularized estima-
tor. In the Section 3.2, we quantify the non-asymptotic oracle risk bound and
show that the estimator above, as a typical regularized estimator with p > n,
converges at a rate slower than root-n. This implies that for inferential purposes
the bias of the estimator cannot be ignored.

Inspired by the work of Zhang and Zhang (2014) and van de Geer et al.
(2014), we propose the one-step bias-correction estimator

b:= 3+ Om(8), (2.2)

where (3 is defined in (2.1), © is an estimator of the “asymptotic” precision
matrix © to be defined later. The above construction of the one-step estimator
is inspired by the first order Taylor expansion of m(-),

m(3°%)

Q

m(B) — i (5°)(8 — 8%)
m(8°) [8° — {B+Om(B)}| = m(8){# ~b).  (23)

Q

The notation “~” in the above indicates that the equivalence is approximate
with the higher order error terms omitted. We aim to find a good candidate
matrix @, such that —m(8°)@ ~ L, with I, denoting the p x p identity matrix.
Note that when p < n an inverse of the Hessian matrix above would naturally
be a good candidate for ©, but when p > n such an inverse does not necessarily
exist. We will elucidate the construction of ® towards the end of this section.

2.2. Confidence Intervals

To construct the confidence intervals for components of 3°, we need the asymp-
totic distribution of b. We will first establish the asymptotic distribution of the
score m(3°). With p > n, we have to restrict the space in which we want to

establish the asymptotic distribution. The asymptotic distribution for m(3°) is
established in the following sense — for any ¢ € R? such that ||c||; = 1 we have

Ve Tm(B8%) % N(0,¢" Ve),

where V is the variance-covariance matrix for \/nm(3°). We construct the fol-
lowing estimator for V:

V=n"'>"@+1%,)% (2.4)
where 7; and {b\l are defined as follows:

s = / (Zu(t) — Z(t, B)}eor () AV (1), (2.5)
0
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b= / ) y7e(r), 26)

%(t)

>

121 (t > X;) / {Z;(u) — Z(u, B) }w; (w)dM} (u), (2.7)

7(t)=n"" Z I(X; > 1), (2.8)

il 0 Wi(t)y(t)eﬁ Zi( -l o
dM}(t) = dN?(t) — SO B Z dN?( (2.9)
AME(t) = I(X; > t)dN§(t) — I();(Stnl D I(X; > )dNs (). (2.10)

As illustrated in (2.3), we have /nc ' (E— 3°) to be asymptotically equivalent
to

Ve Om(s°) % N(0,cTeve ).
We may now estimate the variance of y/nc’ (b — 8°) using a “sandwich” esti-
T
mator ¢’ @VO c. Therefore a (1 — a)100% confidence interval for ¢ 3° is

|:CTB — Zi_a2V\ cT(:)\/}@Tc/n, c¢'b+ Zi_a2V cT@f)@Tc/n] (2.11)

with standard normal quantile Z;_ /5.

Our proposed approach addresses various practical questions as special cases.
First, we can construct confidence interval for a chosen coordinate 37 in B°.
To that end, one needs to consider ¢ = e;, the j-th natural basis for R” and
apply the result (2.11). Generally, we can construct a confidence interval for any
linear contrasts ¢! 3°, potentially of any dimension. For example, we can have
confidence intervals for the linear predictors Z'3° if the non-time-dependent
covariate Z is also sparse so that we may assume ||Z||; to be bounded. As the
dual problem, we may use the Wald test statistic

~ AT
Z =+n(c'b—0,)/\cTOVO c (2.12)
to test the hypothesis with Hy : ¢ 3° = 6.
2.3. Construction of the inverse Hessian matrix
Although the early works under the linear model inspire the construction here,

the specifics, as well as the theoretical analysis, the latter remains a challenge.
We start by writing the negative Hessian of the log pseudolikelihood (1.3):

(2)( )
- _12/ {2(0) i g Z(t,ﬂ)m}dN;’(t). (2.13)
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We define

»=E l/ {Z:(t) — p(t)YE2 AN? (¢

®2

[ [ @ - woyae )]
(2.14)

Under the regularity conditions, to be specified later, we have 3 as the “asymp-
totic negative Hessian” in the sense that the element-wise maximal norm ||3 +
M(B°)||max converges to zero in probability. Our goal is to estimate its inverse
O=x""1=(,,..., 0,)", where ;s are the rows of ©.

By definition (2.14), the positive semi-definite matrix 3 is also the second
moment of the random vector

U, = / (Zi(t) — p(t)} AN?(2) (2.15)

with p(t) defined in (1.4). The expectation of U, is zero,

/ {Zi(t) — p()} Yi(OI(C; > )eP 2Ol (t)dt

Hence, to estimate ®, we may draw inspiration from the early work on inverting
the high-dimensional variance-covariance matrix (Zhou et al., 2011). Consider
the minimizers of the expected loss functions

v; —argglRlnE(U UTJ'VJ)Q, T E(U; — UTJ'yj) , (2.16)
v, €ER?

where Uj is the jth element of U, and U_; is a p— 1 dimensional vector created

by dropping the jth element from U. We show that the quantities v} and 7;

defined in (2.16) can be used to construct the inverse of X. This is because ’7'j2

can also be alternatively written as
B{U; - UL} = B{(U; - UL U} (2a7)

By the convexity of the target function E(U; — Ujj'yj)Q7 ~; must satisfy the
first order Karush-Kuhn-Tucker conditions (KKT)

YiTE{U; —UL v U_;} =0. (2.18)
Applying (2.18) to (2.17), we have
77 = E{(U; - UL7)U;}
We can then define a vector 81 = (1, —~; ") /72 that satisfies
0/ = E{(U\ —UL7i U} E{(UL —UL )01} = (1,0,-1) = er.

Without loss of generality, we may define 8; accordingly for j = 2,...,p, satis-
fying 0;2 = e;. The matrix ® = (6y,...,0,)" satisfies

OX = (er,...,ep) =1,
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therefore © is the inverse of X. We now utilize the sample form of X, (2.14),
n! Z / (Z(t) - Z(1, B)}2dN? (1), (2.19)

In particular we observe that 3 is that it can be written as the sample second
~ @2
moment ¥ =n"!>" U, where

U, - /{z Z(t, B) 1N (b). (2.20)

This form allows us to define the inverse of X as a regression between the vectors
U,;. For that purpose we define the least squares loss function as

2
L; (7]3 - nilz( i —]7]) ) ]: ]-7"'7p7 (221)

where T?” is the jth element of ﬁi, and I/J\'Z-,,j is a p — 1 dimensional vector

obtained by dropping the jth element from (A]i. We then define the nodewise
LASSO in our context to be

7, = argmin {T;(v,,8) + 2l b, 72 =T5(5,8) + L[4 (2:22)

v, ERP—L

Accordingly, we use ﬁj and ?].2 to construct

R ikl (T7), k<7;
&, — /G, k=j; (2.23)
Yik-1/(T3), k>3]

By the first order KKT condition, we have (@i)“ =1 and \(@E)JM <A
for j # k. Choosing Amax = max;—1..,A; = 0p(1), we achieve that ||(:)fl —
L, |max goes to zero. The one-step estimator proposed in (2.2) with such 2]
hence converges to the true coefficient 3° approximately at the rate equivalent
to m(B°), as illustrated in (2.3).

Our proposed nodewise LASSO estimator is innovative in several aspects.
Given the difficulty imposed by the model, we cannot make high-dimensional
inference by simply inverting the X X T for a design matrix X like in a linear or
generalized linear model. The log pseudo likelihood (1.3) has dependent entries.
The covariates Z;(t) for ¢ = 1,...,n are allowed to be time-dependent. Never-
theless, we identify for our model that the key element for the high-dimensional
inference is each observation’s contribution to the score, the U;’s. Our solution
generalizes high-dimensional matrix inversion in a non-trivial way to complex
models with censoring, non-standard likelihoods and weighting.
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3. Theoretical considerations

In this section, we present the theory for the estimators B, b and the confidence
intervals described in the previous section. We will quantify the non-asymptotic
oracle risk bound for the estimator above while allowing p > n with a minimal
set of assumptions. Theoretical study of this kind is novel, since in the context of
competing risks, the martingale structures typically utilized are unavailable and
new techniques need to be developed. In particular, we show that the inverse
probability weighting has a finite-sample effect that separates this model from
the classical Cox model (see comments after Theorem 1). We will also establish
that a certain tighter bound can be established whenever the hazard rate is
bounded (Theorem 3).

Throughout our work we assume that {(7;,C;, e, Z;(t)) : t € [0,00)} are
i.i.d. with C; independent of (T, €;, Z;(+)). Moreover, for any t € [0,t*], G(t) =
I(C; > t) is differentiable, and its hazard function h°(t) = —G'(t)/G(t) < K;.
We also assume that the baseline CIF Fj(¢;0) is differentiable. The baseline
subdistribution hazard hi(t) = —dlog{Fi(t;0)}/dt € [p1, K2] for all t € (0,t*)
and some p; > 0 and Ko < oo.

3.1. Additional notation

In the following, we introduce some additional notations. The counting process
martingales

M} (t) = Ni'(t) — /Ot K(U)GBOTZi(u)hé(“)du (3.1)

are essentially helpful tools in high-dimensions for establishing theory with de-
pendent partial likelihoods. Unfortunately, the uncensored counting processes
{NX(t),i = 1,...,n} are not always observable. The observable counterpart
N?(t) has no known martingale related to it under the observed filtration
Fi = o{NP(w), I(X; > w),ri(u) : w < ¢, =1,...,n}. The Doob-Meyer com-
pensator for the submartingale N?(¢) under the observed filtration involves the
nuisance distribution of T;|le; > 1. To utilize the martingale structure for our
theory, we have to define the “censoring complete” filtration

Ff=c{N2(u),I(C; > u),Z;(-) :u<t,i=1,...,n}, (3.2)
on which we have a martingale related to N2 (t),

/ t I(C; > t)dM} (u) = NP (t) — / t I(C; > w)Y;(w)e?  ZWpl(w)du.  (3.3)
0 0

To relate the martingale (3.3) with our log pseudo likelihood m(3), we define
its proxy with F;* measurable integrand

mB)=n"">" /0 t B Zi(t)log | S_I(C; > 1)Y;(t)eP W | aNP(t). (3.4)
i=1 j=1
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We define processes related to m(3) and its derivatives as

SO, B) =n"! zn: 1(C; > )Yi(t)eP ZOZ, (1) (3.5)
Z(t,8) =5 (1.8)/59) (1. ). (3.6)

They can also be seen as proxies to the processes in (1.4). To see that, observe
that by conditioning,

E{SV(1.8)} =B [E{I(C; 2 hYi(t)|Fie? *Oz,(1)°]
= E{@@vie? “ 0z,
where
@i(t) = ri(O)G()/G(t A X;) (3.7)

is the weight with the true censoring distribution G(-). We denote their expec-
tations as

sOt,8) =B{80(1.8)} =E{mvi()e? =0z, (38)

Our proxies precisely target those weighted samples, as g(l)(t, B) differs from
SU(t, B) only at those summands with observed type-2 events.
Note that the Kaplan-Meier estimator for G(t) can be written as

c0=T1(1 gz )

u<t

To study the convergence of G(t) to G(t), we denote a martingale related to
N£(t), the counting process of observed censoring, M¢(t). Let the censoring
hazard be defined as h¢(t) = —dlog(G(t))/d¢t. Under the “censoring” filtration

Fi=0{N{(u),T; e, Z;(-) :u<t,i=1,...,n}, (3.9)

we have a martingale
t
ME(#) = NE(t) — / 1(Cs > w)he (u)du. (3.10)
0

We use the integration-by-parts arguments (Murphy, 1994, the Helly-Bray
argument on page 727) with random martingale measures, e.g. dM}(t), in our
proof. The total variation of M} (t;w) is defined as

t* n

\/ M} (t;w) = sup sup > IM (tw) — M (s w)]. (3.11)
0 k=1,2,... 0<t1 <--- <t <t* =2
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Since M} (t;w) can be decomposed into a nondecreasing counting process N} (t)

minus another nondecreasing compensator [ Yi(u)eB” 2 pl (u)du, we have a
bound for its total variation

t* t*
Vor ) < N+ [ Ve B e (312
0 0

Similar conclusion also applies to M¢£(t), i.e. we have a bound for its total

variation
.

VM) < New) + [ "G opun (3.13)
0 0

As a convention, from hereon we suppress the w in the notation to keep it
simple.

3.2. Oracle inequality

We first establish oracle inequality for the initial estimation error ||,B - B°lh
based on the following set of conditions that are weaker than those in the next
subsection.

(C1) (Design) With probability equal to one, the covariates satisfy
sup  sup |[|Z;(t)]eo < K3/2. (3.14)
]

i=1,...,n t€[0,t*

The expected at-risk process is bounded away from zero, i.e., for positive
K, and po

inf | F [I(Ci > It < T < oo)mm{m,eﬁ”zz'(ﬂ}] > pa. (3.15)
te[o,t*

(C2) (Covariance) For K4 in (3.15), the smallest eigenvalue of the matrix

3(Ky) =E {/Ot (Z(1) - plt; Kq))®? hé(t)dt} ;

E [Z(t){l — Fi(t; Z)} min{ K4, eﬁ"TZ(t)}}
E [{1 - F\(t; Z)} min{K,, 8" 2(0}]

w(t; Ky) =

with is at least ps > 0.
(C3) (Continuity) Z;(t) may have K5 ; jumps at t;1 <t;2 < --- <1; x,, with
minimal gap between jumps bounded away from zero,
i i tik — i > 0g4.
(Jmin omin -t = ke 2 s
Between two consecutive jumps, Z;(t) has at most Kg elements Lipschitz

continuous with Lipschitz constant K7 while the rest of the elements are
considered to be constant.
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Remark 1. Overall, the conditions above are minimal in the sense that they
appear in results pertaining to the Cox model (Huang et al., 2013, see e.g, (3.9)
on page 1149; (4.5) and Theorem 4.1 on page 1154).

Remark 2. We consider a finite interval [0, ¢*]. Due to missing censoring times
among those with observed type-2 events, we have to make the additional as-
sumptions to control the weighting errors. Although the weighted at-risk pro-
cesses w;(t)’s are asymptotically unbiased, the approximation errors in the tail
t — oo are poor for any finite n. To avoid unnecessary complications, we set
the [0,¢*] such that we always have sufficient at-risk subjects; note that (3.15)
implies that P(C' > t*) > 0.

Remark 3. We assume a finite maximal norm of Z(t). Condition (3.14) in
(C1) is equivalent to the apparently weaker assumption (see for example Huang
et al. (2013) equation (3.9)):

sup  sup ||Z;(t) — Z;(t)]o < K. (3.16)
1<i<j<n t€[0,t*]

This can be seen by noting that the Cox type partial likelihood for the propor-
tional hazards model is invariant when subtracting Z;(¢t) by any deterministic
¢(t).

Remark 4. Condition (C1) (3.15) carries two facts. First, the at-risk rate for
type 1 events is bounded away from zero. Second, relative-risks arbitrarily close
to zero is truncated at a finite K4; this is necessary in high-dimensions, in order
to rule out the irregular cases where the non-zero expectation of the relative risk
is dominated by a diminishing proportion of the excessively large relative risks.
The same argument applies for (C2) in which a lower bound of the restricted
eigenvalue of the negative Hessian (Bickel et al., 2009) is defined.

Remark 5. We assume the smoothness of the time-dependent covariates Z(t).
Subjects with observed type 2 events, remain indefinitely in the risk sets for type
1 events. For time-dependent covariates, continuity is helpful in establishing a
slow growing rate of the maximal relative risks among those subjects; something
that is a fact for time independent covariates. Note that the coordinate wise
continuity in Z;(t) is insufficient as p grows to infinity. We propose (C3) taking
into account likely practical scenarios, where the covariates are either constant,
or change only at finitely many discrete time points.

Under the above assumptions, we are ready to present our estimation error
result. Since the result holds in finite samples, we define a sequence of important
constants first. For a ¢ > 0 and constants K;,---, K7 as well as p1,---,ps
(introduced in the conditions above)

Q1(e) =K IBIra10g(n /e) [ papy, (3.17)
. Q)KL (AK2(1+ Fyt*) [dlog(2/e) | AKZEK,t*
Qy’(n,p,e) = ol { P% n + pgn
2 log(2np! 1
Hog(2np'/e) | —}, (3.18)
n n
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where [ = 0,1, and

Qs(n.p,2) = {203 (n,p,€) + K3Q (n,p.2) } /o + K\/2Tog(2p/e) /.
(3.19)
In high-dimensional models an additional constant, the so called compatibility
factor, plays an important role. For a positive constant £ > 1, the compatibility

factor
o sobT{—m(B°)b
K(EOimia(37) = sup  Yeb L(E)
0#b€eC(£,0) || (9“1
where C(€, O) denotes the cone set

(3.20)

C(§,0) = {b e R”: |bo, [l <&|bolh},

with O denoting the indices of non-zero elements 3° and O, denoting its com-
pliment.

Theorem 1. For{ > 1 and ae >0, let

A=Qs(n,p,e)(§—1)/(+1)

with Q3(n, p,e) defined in (3.19). When n > —log(e/3)/(2p2) with pa given in
(C1), we have under regularity conditions (C1) and (C3) that

€€+ 1)soA

18- 6l < <o

occurs with probability no less than
Pr (k(&,0; —1n(8°)) > Q4) — e~nP3/ (KD _ pe—nlp2=2/m)*/ (8K _ 5.
where Q4 1s a positive constant satisfying
2K3(E + 1)5,0/(2Qq)* < 1/e

and 1 is the smaller solution of ne™ = 2K3(& + 1)s,M/(2Q4)?.

Our proof of Theorem 1 applies to the result with lo-norm and general [,-
norm for ¢ > 1. Namely, under the same conditions we have that

267755})/(1)\

1B—-8 Hq<m

occurs with probability no less than
Pr (Fq(f, 0) > Q4) _ 3/ (2K3) _ o —n(p2—2/n)*/(8K]) _ 5e,

with the weak cone invertibility condition defined as

1/43. T - /o
—s5''b"'m(B°%)b
F,(£,0)=  sup
«(&.0) o#becc,0)  |[Pollilbllg
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A few comments are in order. For a fixed e, the quantity Qs(n,p,¢e) is of
order log(n)+/log(p)/n. Thus, Theorem 1, together with Lemma 2 (see below),
guarantee that for A chosen to be of the order log(n)+/log(p)/n

18— 8l = Oy (s0l0g(n)/Iog(p) /)

The above estimation error rate to the error rate y/log(p)/n of the simple Cox
model (Huang et al., 2013; Yu et al., 2019), differing only by a factor of log(n).
This factor is brought in by the error induced by the IPCW weights. Therefore,
under the rate condition s, log(n)+/log(p)/n = o(1), we obtain an asymptoti-

o~

cally [{-consistent regularized estimator 3.

The quantity Q1 (g) describes the error from IPCW weights through the mea-
surable approximation to processes S(!), S() (¢, 3°) — g(l)(t, 3°). A naive bound
for the measurable approximation is proportional to the magnitude of the rel-
ative risks in SO, naturally of the order el®”I5s = g% potentially growing
in exponential rate of n if s, < n® for some a > 0. Such bound grows way
too rapidly to deliver any meaningful result. Observing that the summands in
S® and S® at a particular index i differ from each other only when the i-th
subject has type-2 event we are able to establish a significantly sharper bound.
For that purpose, we develop e-tail bound of the maximal relative risk among
observed type 2 events (see Appendix Lemma B.3). The quantity Qél)(n, D, €),
involving @1 (&) directly in the definition, gives the bound for the error from the
measurable approximation to S(*) (See in Appendix Lemma B.5).

For the rest of this section, we provide further details on the proof of Theorem
1, as well as the technical challenges involved. We highlight two results, Lemma
1 and 2. The first establishes properties of the score vector while the second one
establishes the properties of the compatibility factor (3.20).

Lemma 1. Let Q3(n,p,e) be defined as in (3.19). Under Assumptions (C1)
and (C3),

Pr([[0(8%) o0 < Qa(n.p.2))> 1 — e MA/EKD _pemnler2/ /KD 5

Lemma 1 establishes that such event {||m(8°)|lcc < M€ —1)/(€+ 1)} (of
interest in Theorem 1) happens with high probability. This task is not straight-
forward in the presence of both competing risks and censoring. The greatest
challenge is the lack of the martingale property in m(3°). Even if we use its
martingale proxy (an approach useful in low-dimensions) as the gradient of (3.4)

() =n Y [ (20 - 2N (321)

with Z(t, 3) defined in (3.6), the approximation error between r(3°) and m(3°)
is difficult to control because the error is determined by the process {w;(t) —

I(C; > t)}eﬁﬂzi(t) with w;(t) defined in (1.2), which can be significantly ampli-
fied when the relative risks grow with the dimension. To prove Lemma 1, we first
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show that the relative risks among subjects with observed type 2 events has sub-
Gaussian tails. This is achieved through the argument that their CIF cannot be
arbitrarily close to one; otherwise, these subjects would have probability close
to one experiencing type 1 event. As the CIF is monotonically increasing with
the relative risks, it is also unlikely to observe excessively large relative risks
among the subjects with observed type 2 events. We then use Lemma A.3(i) in
the Appendix to establish the concentration of S()(t,3°) — g(l)(t,ﬂo) around
zero across all observed type 1 event times.

Theorem 1 assumes that Pr (5(57 O; —r'r'l(ﬂo)) > Q4) converges to zero for
a sequence of @4 bounded away from zero, as sample size n goes to infinity.
In Lemma 2, we show that such event happens with high probability. Using
the connection between the compatibility factor and the restricted eigenvalue
(van de Geer and Biithlmann, 2009), we show that /1(57 O; —rh(,Bo)), the com-
patibility factor in the cone C(&, ©), is bounded away from zero with probability
tending to one.

Lemma 2. Let Qg)(n,p, €) be defined as in (3.18). Denote

QE’) (TL, 'z 5)
= {208 (1. p,2) + 1K3Q8" (n, p,2) + (5/2) K3 (n.p.2) } /2

+ K3 {(1 + t*Kg)\/2 log (p(p+1)/e)/n+ (2/p2)t*K2Q6(n,p,5)2} ,
where Qg(n, p,€) is the solution of
p(p +1) exp{~nQs(n,p,€)?/(2 + 2Qs(n, p,€)/3)} = /2.221.

If so+/log(p)/n = o(1), we have under Assumptions (C1)- (C2) for n sufficiently
large

Pr (6,03 —1a(8°)) = Vs — 5(€ + DQs(m,p,2)) = 1 - 6e.

3.3. Asymptotic normality for one-step estimator and honest
coverage of confidence intervals

Obtaining the asymptotic normality is technically challenging. The log-likelihood
has dependent summands both through the initial lasso estimator as well as the
Kaplan-Meier estimator. We establish the asymptotic normality for the one-step
estimator b and coverage of the confidence intervals without requiring model-
selection consistency of the initial estimator. To remove the small-sample bias
of IPCW, we need slightly stronger conditions than in the previous section. In
this section alone, we use K and p without subscript to denote the constants
independent of n, p and s,; we have only one constant K,, that is allowed to
grow with the dimension and is therefore denoted differently.
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(D1) (Design) The true linear predictors are uniformly bounded with proba-
bility one

sup  sup BOTzi(t)ISK. (3.22)

i=1,...,n t€[0,t*]
(D2) (Hessian) The smallest eigenvalue Apin () > p > 0, where X is defined
in (2.14).
(D3) (Continuity) Each Z;(t) can be represented as

Zi(t) = Z;(0) + /O A2 (u)du + /O AZ(u)dN? (w).

for random processes d(t), A7 (t) and the counting process N7(t) such
that, ﬁOTdf (t) is uniformly bounded between +K and uniformly Lip-
schitz-K . Moreover, N7 (t)’s number of jumps K,, = o (\/n/(log(p) log(n))>
and an intensity function AV (¢) < K.

(D4) (Dimension) The rows of the matrix X' are [|8;/0,,[: < K and
sparse with sparsities s1,...,Sp < Smax. Lastly, so(Smax + o) log(p)/v/n =

o(1).

We next present Theorem 2 that justifies all the proposed inference proce-
dures in Section 2.2. For that purpose we denote the asymptotic variance of
m(G°) with

V =E{n, +¢,}*? (3.23)
where
m- | " (24(0) - ()5 W) (3.24)
b, = /Ot* /Ot* %I(Xi > $)dME(t), (3.25)
alt) = E |I(t > X,) /t " Z) - p B )| (326)
7(t) = Pr(X: > u), (3.27)

with M} (), M£(t) as defined in (3.1) and (3.10).

Theorem 2. Let O be defined as in Section 2.3. Let 'V, B, © and V be defined
as in (3.23), (2.2), (2.23) and (2.4), respectively. Let ¢ € RP with ||c||y =1 and
c'®VOc — 12 € (0,00). Then, whenever (C1) and (D1)-(D4) hold,

4)

V CT@\A)(:)TC

\/ﬁCT(B —B°) 4 N0, 1).
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As a result of the stronger conditions required for Theorem 2, which we will
explain in more details below, we are able to achieve an improved estimation
error for the initial estimator as stated in the next theorem.

Theorem 3. Under (C1) and (D1)-(D4), we can choose A < +/log(p)/n and
Q41 =/p3/2, such that

1B =Bl = 0, (50106 (p)/1) = 0,(1).

For the rest of this section, we explain the assumptions and theoretical results
needed for Theorem 2 summarized in Lemmas 3-7. Condition (D1) is needed
whenever the model departs significantly from the linear case (van de Geer et al.,
2014; Fang et al., 2017). In our case, the asymptotic normality of \/nm(3°) de-
pends fundamentally on the asymptotic tightness of \/ﬁﬁl(ﬁo) As a necessary
condition, the predictable quadratic variation under filtration F;* of the martin-

gale /nm(3°)

(Vnm(B°))p = / YOG 2 Vi) PO Zi() - Z(t 5°)) Db (1),

(3.28)
must have a finite bound independent of the dimension of the covariates. This re-
quires that the magnitude of the summands in (3.28) either be bounded or have
light tails. Hence, we cannot allow the relative risk B Zi() ¢ grow arbitrarily
large. We next observe that (D2) is a standard assumption for the validity of
the nodewise penalized regressions (2.22). Finally, note that Theorem 2 utilizes
Condition (D3); a condition stronger than (C3) needed for y/n- approximation
error between m(3°) and m(8°).

If we define the population versions of the nodewise components defined in
(2.20)-(2.22),

U= / (Z(t) — p(t)}dN°(t), T;(v) = B{U, — UT_~)?,

v} = argmin L;(v), 7']2 =T; (¥;)s (3.29)
YERP—!
then the true parameters {')/;'T,TJZ :j = 1,...,p} uniquely define the inverse

negative Hessian © as described in Section 2.3. We prove this statement in the
following Lemma.

Lzemma 8. Under (D2), ©;; = 1/77 and 0; ;77 = ~7. Moreover, ||v}[1 < K,
7 2 pand O]y < K/p.
Next, we discuss the properties of estimands '7]., 7; and e - defining compo-

nents of the variance estimate.

Lemma 4. Under (C1) and (D1)-(D4), for A\j < so+/log(p)/n, we obtain

sup [7; = ;111 = Oy (s05;1/10g(p) /)
J
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and sup; |77 — 77| = Op(s08;/10g(p)/n). As the result, we obtain 1© -0 =

O, (sosmax v/ log(p)/n) .

The nodewise LASSO in (2.22), unlike van de Geer and Biihlmann (2009)
that has i.i.d. entries, has dependent ﬁi’s through the common Z(LB); see
(2.20). Thus, our error rate takes the multiplicative form s,Smax, instead of the
summation s, + Smax that may be expected under the generalized linear models.
In general, we consider our rate to be optimal under our model.

Using Lemma 4, we can establish the approximation condition for b proposed
in (2.3).

Lemma 5. Under (C1) and (D1)-(D4), the one-step estimator b satisfies the
approximation condition

NG {@m(go) +8° - B} = Op (So(8max + 50) log(p)/v/n) = 0,(1)

for any c such that ||c||; = 1.
Next, we show the asymptotic normality of m(3°).

Lemma 6. Under conditions (C1) and (D1)-(D4), for directional vector ¢ € RP
with ||cfy =1 and cTOVO "¢ — 12 € (0,00),

Ve Om(B%)/VeTOve Tc-S N(0,1).

The proof uses the same approach as the initial low-dimensional result in Fine
and Gray (1999). We approximate m(3°) by the sample average of i.i.d. terms
n; + 1, plus an o, (nfl/ 2) term. We note that the same approach involves
nontrivial techniques in order to be valid in high-dimensions. In particular,
we discover and exploit the martingale property of the term {w;(t) — I(C; >
1)}/G(t).

The last piece of our proof for Theorem 2 is the element-wise convergence of
the “meat” matrix (2.4) in the “sandwich” variance estimator.

Lemma 7. Under conditions (C1) and (D1)-(D4),

sup[7;(B) + $:(B) = 1 = $illoe = Oy (1B = Bl + VIog(p)/n) = 0,(1).

i=1,...,n

Hence, H\A) — V||max = 0p(1).

Putting Lemmas 6 and 7 together, we obtain the main result stated in the
Theorem 2.

The details of the proofs are presented in the Appendix. Throughout the
proof, we rely heavily on our concentration results for time-dependent processes,
which we state in Section A.2 and prove in Section B.4.
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4. Numerical experiments

To assess the finite sample properties of our proposed methods, we conduct ex-
tensive simulation experiments with various dimensions and dependence struc-
ture among covariates.

4.1. Setup 1

Our first simulation setup follows closely the one of Fine and Gray (1999) but
considers high-dimensional covariates. In particular, each Z; is a vectors consist-
ing of i.i.d. standard normal random variables. For cause 1, only 811 = f12 =
0.5 are non-zero. The cumulative incidence function is:

Pr(T; < t6 = 1|2Z) = 1~ [L = p{1 — exp(~1)}] P13 2.

For cause 2, o1 = 23 =+ = fap-1 = —05and Bao =024 == Ba) =
0.5, with

Pr(T} < tle; = 2,24) = 1 — exp (e %)

We consider four different combinations: n = 200, p = 300; n = 200, p = 500;
n = 200, p = 1000; and n = 500, p = 1000. Note that this setup considers
sparsity for cause 1 but non-sparsity for cause 2 effects. As the Fine-Gray model
does not require modeling cause 2 to make inference on cause 1, we expect that
the non-sparsity in cause 2 effects should not affect the inference on cause 1.

TABLE 1
Simulation results with independent covariates

True Mean SD  SE(B) SE(B) Coverage Level/Power

n=200, p=300

B11 0.5 0.51 0.16 0.13 0.25 0.94 0.92

B1,2 0.5 0.47 0.15 0.14 0.22 0.94 0.93

B1,10 0 0.03 0.12 0.15 0.18 0.98 0.04
1=200, p=500

B1,1 0.5 0.51 0.16 0.14 0.19 0.93 0.95

B1,2 0.5 0.48 0.15 0.13 0.19 0.93 0.88

B1,10 0 -0.01 0.10 0.14 0.16 1.00 0.01
1=200, p=1000

B11 0.5 0.46 0.17 0.13 0.18 0.94 0.86

B1,2 0.5 0.48 0.14 0.13 0.18 0.93 0.92

B1,10 0 -0.00 0.11 0.14 0.17 0.99 0.06
1n=500, p—1000

B1,1 0.5 0.51 0.10 0.08 0.14 0.99 1.00

B1,2 0.5 0.50 0.10 0.08 0.15 0.99 0.99

B1,10 0 -0.00 0.07 0.08 0.14 1.00 0.03
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The results are presented in Table 1. We focus on inference for the two non-
zero coefficients 81,1 and 32, as well as one arbitrarily chosen zero coefficient
B1,10- The mean estimates are the average of the one-step b over the 100 repeti-
tions, reported together with other quantities described below. We can see from
the average estimates column that the one-step b is bias-corrected and that the
presence of many non-zero coeflicients for causet 2 does not affect our inference
on cause 1.

In practice the choice of the tuning parameters is particularly challenging;
the optimal value is determined up to a constant. Moreover, the theoretical re-
sults are asymptotic. These together with the finite sample effects of n < p,
lead to suboptimal performance of many proposed one-step correction estima-
tors (van de Geer et al., 2014; Fang et al., 2017). Suboptimality is amplified for
survival models, due to the nonlinearity of the loss function and the presence
of censoring — both require more significant sample size (to observe asymptotic
statements in the finite samples). In the following, we propose a finite-sample
correction to the construction of confidence intervals and in particular the esti-
mated standard error (SE).

Let se(bj ; ﬁ) denote the asymptotic standard error as glven in Section 2.2. As
a finite-sample correction we propose to consider se(bj7 b) in place of se(b], ﬁ),
where the variance estimation based on the initial LASSO estimate B is replaced
by the one-step b. This can be viewed as another iteration of the bias-correction
formula. The resulting SE is therefore a “two-step” SE estimator. We report the
coverage rate of the confidence intervals constructed with this finite-sample cor-
rection in Table 1 and we observe good coverage close to the nominal level of
95%. We note that with 100 simulation runs the margin of error for the sim-
ulated coverage probability is about 2.18%, if the true coverage is 95%; that
is, the observed coverage can range between 95+/—4.36%. We note that the
coverage is good for all three coefficients, where non-zero or zero. In contrast,
results in the existing literature suffer under-coverage of the non-zero coefhi-
cients.

The last column ‘level/power’ in Table 1 refers to the empirical rejection rate
of the null hypothesis that the coefficient is zero, by the two-sided Wald test Z =
(b - ,81 ])/se(bj7 ,8) at a nominal 0.05 significance level. We see that although
se(bj, ,8) is used, the nominal level is well preserved for the zero coefficient 3 19,
and the power is high for the non-zero coefficients 31, and ;2 for the given
sample sizes and signal strength.

We repeat the above simulations with different values for f; ; to investigate
the power of the Wald test. The results are illustrated in Figure 1, where we see
that the power increases with n and decreases with p as expected.

4.2. Setup 2

In the second setup we consider the case where the covariates are not all in-
dependent, which is more likely the case in practice for high dimensional data.
We consider the block dependence structure also used in Binder et al. (2009).
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Fic 1. Power curve for testing 81,1 = 0 at nominal level 0.05

We consider n = 500, p = 1000; 31,18 = 0.5, B1,9~12 = —0.5 and the rest are
all zero. f2,1~4 = B2,13~16 = 0.5, B2 5.8 = —0.5 and the rest of 3, are all zero.
The covariates are grouped into four blocks of size 4, 4, 8 plus the rest, with
the within-block correlations equal to 0.5, 0.35, 0.05 and 0. The four blocks are
separated by the horizontal lines in Table 2.

TABLE 2
Simulation results with block correlated covariates

True Mean SD SE(8) SE(b) Coverage Level/Power

n=500, p=1000

B1,1 0.5 0.47 0.10 0.07 0.12 0.97 1.00
B1,2 0.5 0.48 0.10 0.07 0.12 0.94 0.98
B1,3 0.5 0.47 0.10 0.07 0.12 0.98 1.00
B1,4 0.5 0.47 0.10 0.07 0.12 0.94 1.00
B1,5 0.5 0.48 0.10 0.06 0.11 0.93 1.00
B1,6 0.5 0.46 0.10 0.06 0.11 0.94 1.00
B1,7 0.5 0.47 0.09 0.06 0.11 0.95 1.00
B1,8 0.5 0.47 0.08 0.06 0.11 0.98 1.00
B1,9 -0.5 -0.44  0.08 0.06 0.11 0.93 1.00
B1,10 -0.5 -0.42  0.08 0.06 0.11 0.92 1.00
B1,11 -0.5 -0.41  0.08 0.06 0.11 0.91 1.00
B1,12 -0.5 -0.43  0.07 0.05 0.11 0.94 1.00
B1,13 0 -0.01  0.06 0.05 0.11 0.98 0.11
B1,14 0 -0.02  0.05 0.05 0.11 1.00 0.06
B1,15 0 -0.02  0.06 0.06 0.11 0.99 0.08
B1,16 0 -0.02  0.06 0.05 0.11 1.00 0.05
51,30 0 -0.00 0.05 0.06 0.11 1.00 0.01
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Table 2 shows the inferential results for the non-zero coefficients 511 ~ 81,12,
as well as the zero coefficients 3113 ~ (1,16 from the third correlated block
that also contains some of the non-zero coefficients, and plus arbitrarily chosen
zero coefficient B; 39. The initial LASSO estimator tended to select only one of
every four non-zero coefficients of the correlated covariates (data not shown),
as it is known that block dependence structure is particularly challenging for
the Lasso type estimators. On the other hand, the one-step estimator performed
remarkably well, capturing all of the non-zero coefficients.

Compared to the results in the last part of Table 1 with the same n and p,
the block correlated covariates led to slightly more bias in b, although the CI
coverage remained high. The power also remained high, although in the third
block with the mixed signal and noise variables the type I error rates appeared
slightly high.

5. SEER-medicare data example

The SEER-Medicare linked database contains clinical information and claims
codes for 57011 patients diagnosed between 2004 and 2009. The clinical and
demographic information were collected at diagnosis, and the insurance claim
data were from the year prior to diagnosis. The clinical information contained
PSA, Gleason Score, AJCC stage and year of diagnosis. Demographic informa-
tion included age, race, and marital status. The same data set was considered in
Hou et al. (2018), where the emphasis was on variable selection and prediction
error. Our focus is on testing and construction of confidence intervals.

In the following, we consider 2000 patients diagnosed during the year of
2004. The only cause for loss to follow-up was the administrative censoring at
the end of the study which was year 2011. Consequently, the year of enroll-
ment was the only factor affecting the censoring distribution. In our sample,
all the subjects share the same year of enrollment 2004, so we may reason-
ably make the independent censoring assumption. Among them 76 died from
the cancer and 337 had deaths unrelated to cancer. The process of identify-
ing of the causes is detailed in Riviere et al. (2019). There were 9326 binary
claims codes in the data. Here we would like to identify the risk factors for
non-cancer mortality using the Fine-Gray model. We kept only the claims codes
with at least 10 and at most 1990 occurrences. The resulting dataset had 1197
covariates. We center and standardize all the covariates before performing the
analysis. To determine the penalty parameters A and A; we used 10-fold cross-
validation.

In Table 3, we present the result for 21 coefficients. Here, we focused on
potential risk factors for non-cancer mortality, such as heart disease and colon
cancer (different than prostate cancer); the coefficients to be tested were chosen
ahead of time following recommendations from the doctors. We also include the
clinical markers associated with the prostate cancer in comparison. A descrip-
tions of the variables is given in Table 4. For each coefficient, we report the
initial estimate 3, one-step estimate b, corrected SE, the 95% CI constructed
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with the corrected SE and the Wald test p-value (2-sided) calculated using the
uncorrected SE.

TABLE 3
Inference for the SEER-Medicare linked data on mon-cancer mortality among prostate
cancer patients

Variables LASSO One-step estimate and Inference

B b se@) 95% CI p-value
Age 0.075 0.096 0.009 [0.078, 0.114] 2e-24*
Marital 0 0.218 0.147  [-0.071, 0.507] 0.042
Race.OvW 0 -0.213  0.224  [-0.652, 0.225] 0.317
Race.BvW 0.244 0.528 0.122 [ 0.288, 0.767] le-04*
PSA 0 0.005  0.003  [-0.000, 0.010] 0.041
GleasonScore 0 0.084 0.050 [-0.014, 0.182] 0.085
AJCC-T2 0 -0.130  0.146  [-0.418, 0.157] 0.218
ICD-9 51881 0.866 1.357  0.361 [ 0.650, 2.064] 4e-07*
ICD-9 4280 0.404 0.697 0.062 [ 0.576, 0.818] 2e-06*
CPT 93015 -0.061 -1.042 0.327 [-1.683, -0.401] 4e-05*
ICD-9 42731 0.135 0.459 0.191 [ 0.086, 0.833] 0.001*
CPT 72050 0 3.718 0.208 [ 3.310, 4.125] 4e-05*
ICD-9 6001 0 -2.454  0.577  [-3.585, -1.322] 0.000*
CPT 74170 0 -1.689  0.288  [-2.255, -1.124] 0.001*
ICD-9 2948 0.539 0.746  0.205 [ 0.343, 1.148] 0.009
ICD-9 49121 0.150 0.476 0.215 [ 0.055, 0.896] 0.015
ICD-9 2989 0.079 0.450 0.135 [ 0.184, 0.715] 0.062
ICD-9 79093 -0.056 -0.348 0.176  [-0.693, -0.002] 0.088
ICD-9 41189 0 1.332  0.434 [ 0.480, 2.184] 0.003**
CPT 45380 0 -2.250 0.544  [-3.318, -1.182] 0.003**
ICD-9 3320 0 0.378 0.373  [-0.353, 1.110] 0.327

x denotes 5% significance after Bonferroni correction for these 21 variables, whereas
x+ denotes 10% significance after Bonferroni correction for these 21 variables

In Table 3, we see that the claims codes ICD-9 4280, CPT 93015, ICD-9 42731
are all related to the heart disease, and are all significant at 5% level Bonferroni
correction for the 21 variables included in the table. However, a heart attack
indicator variable, ICD-9 41189, shows up significant at 10% level although the
naive regularized estimator was not able to select this variable as important;
this indicates that our inference procedure is much more delicate (stable) at
discovering significant variables. In support of that, an indicator of a possible
cancer in the abdomen, CPT 74170, is reported as significant at 5% although the
initial Lasso regularized method failed to include such variable. Similar result is
seen for the indicator of a fall (CPT 72050) which for an elderly person can be
fatal. An indicator of a colon cancer (CPT 45380) turns out to be significant at
10% although the Lasso method set it to zero initially. Therefore, our one-step
method is able to recover important risk factors that would have been missed
by the initial regularized estimator.
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TABLE 4
Description of the variables in Table 3
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Code Description

Age Age at diagnosis

Marital marStl: married vs other

Race.OvW Race: Other vs White

Race.BvW Race: Black with White

PSA PSA

GleasonScore  Gleason Score

AJCC-T2 AJCC stage-T: T2 vs T1

ICD-9 51881  Acute respiratory failure (Acute respiratory failure)

ICD-9 4280 Congestive heart failure; nonhypertensive [108.]

CPT 93015 Global Cardiovascular Stress Test

ICD-9 42731  Cardiac dysrhythmias [106.]

CPT 72050 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Spine
and Pelvis

ICD-9 6001 Nodular prostate

CPT 74170 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Ab-
domen

ICD-9 2948 Delirium dementia and amnestic and other cognitive disorders [653]

ICD-9 49121 Obstructive chronic bronchitis

ICD-9 2989 Unspecified psychosis

ICD-9 41189 acute and subacute forms of ischemic heart disease, other

CPT 45380 Under Endoscopy Procedures on the Rectum

1CD-9 3320 Parkinsons disease [79.]

In contrast, non-life-threatening diseases, were not selected as significant pre-
dictors for the non-cancer mortality. These include Parkinson’s (ICD-9 3320),
Psychosis (ICD-9 2989), Bronchitis (ICD-9 49121) and Dementia (ICD-9 2948)
in the table. It is worth noting that some of these were selected by the initial
estimate but were then corrected by our test. We also note that the prostate
cancer related variables, PSA, Gleason Score and AJCC all have large p-values
for non-cancer mortality. This is consistent with the results in Hou et al. (2018),
where under the competing risk models the predictors for a second cause only
has secondary importance in predicting the events due to the first cause.

6. Discussion

This article focuses on estimation and inference under the Fine-Gray model
with many more covariates than the number of events, which is well-known
to be the effective sample size for survival data. The article studies the rate of
convergence of a Lasso estimator and develops a new one-step estimator that can
be utilized for asymptotically optimal inference: confidence intervals and testing.
These results can be generalized to any sparsity-inducing and convex penalty
functions including but not limited to one-step SCAD, adaptive LASSO, elastic
net, to name a few. Moreover, it is worth noting that the variance estimation is
novel in that it regresses a re-weighted score vector onto the score vector; in this
way, the usual difficulty with asymptotic Hessian is avoided; it is worth pointing
that the sandwich estimator or bootstrap carry biases in high-dimensions.
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An often overlooked restriction on the time-dependent covariates Z;(t), i =
1,...,n, under the Fine-Gray model is that Z;(¢) must be observable even after
the i-th subject experiences a type 2 event. In practice, Z;(t) should be either
time independent or external (Kalbfleisch and Prentice, 2002). In our case the
continuity conditions (C3) and (D3) are easily satisfied if the majority of the
elements in Z;(t) are time independent, which is most likely to be the case in
practice. Our theory does not apply in studies involving longitudinal variables
that are supposed to be truly measured continuously over time.

We have illustrated that the method based on regularization only (without
bias correction) might have severe disadvantages in many complex data situa-
tions — for example, it may potentially fail to identify relevant variables that
are associated with the response. From the analysis of the SEER-medicare data,
we see that variables like CPT 72050 (related to fall) or, CPT 74170 (related
to diagnostic imaging of the abdomen, often for suspected malignancies) would
not have been discovered as important risk factors for non-cancer mortality by
regularization alone. In reality, both can be life-threatening events for an el-
derly patient. The one-step estimate, on the other hand, was able to detect
these, therefore providing a valuable tool for practical applications. The one-
step estimator is applicable as long as the model is sparse, and no minimum
signal strength is required; this is another important aspect which makes the
estimator more desirable for practical use than the LASSO type estimators.

Appendix

In the appendix, we denote global quantities as ) and event sets as ) with
subscripts labelled by their order of appearance. Other quantities are all local,
i.e. only defined for the current Lemma. We denote the ordered observed type-1
event times as T(ll)7 . ,T(IKT).

Appendix A: Concentration inequalities

Here we give the statements of the inequalities frequently used in our proofs.
The notations in this section are all generic.

A.1. Classical concentration inequalities

Lemma A.l. Hoeffding’s Inequality (Theorem 2 of Hoeffding (1963) p.4)
If X1,..., X, are independent and a; < X; <b; (i=1,2,...,n), then fort >0

B 2n2t?
Pr(X —pu>t) <exp (—m) .
i=1\"1 v

Lemma A.2. A version of Azuma’s Inequality (Theorem 1 and Remark 7
of Sason (2013) p.3 and p.5) Let { Xy, Fi}r, = 0°° be a discrete-parameter real-
valued martingale sequence such that for every k, the condition | X —Xi—1| < ak
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holds almost surely for some non-negative constants {ay}3>,. Then

t2
p X — Xol >t) <2 e
(s, e =00 2 ) <200 (s )

A.2. Concentration inequalities for time-dependent processes

Lemma A.3. Let {(S;(t),N;(t)) e RT x N:i=1,...,n,t € [0,t*]} be i.i.d.
pairs of random processes. Fach N;(t) is a counting process bounded by K.
Denote its jumps as 0 < t;; < - < tix, < t*. Let S(t) = n~! Z?Zl Si(t) and
E{S;(t)} = s(t). Suppose sup; <, j<,, SuPieo,¢+] Si(t) = S;(t)[Imax < Ks almost
surely. Then,

(i) The empirical S(t;;) concentrates around the s(t;;) with large probabil-
ity, Pr (supi:L_“’n SUp,;_1 K, S(tij) — S(tij)Hmax > Kgx + (KS)/n) <
2nKqu*’“”2/2.

(i) Assume in addition that each S;(t) is caglad generated by

Si(t) :Si(0)+/0 ds(u)du—l—/o Js(uw)dN;(u)

for some ds(t) and Js(t) satisfying ||ds(t)||lmax < Ls and ||Ts(w)||max <
Kg, and E{N;(t)} = fot RN (u)du for some hl¥ (t) < K. We have

sup  sup |[S(t) —s(t)||,.. = Op(\/log(nKnq)/n).

i=1,...,n t€[0,t*]

Lemma A.4. Let {M;(t) : t € [0,t*], i = 1,...,n} be a Fi-adapted counting
process martingales M;(t) = N;(t) — fOtY,-(t)hi(u)du with bounded intensities
,,,, 5 SUDgeqo,4) hi(t) < K. Let {®(t) : t € [0,¢7], i = 1,...,n} be the q
dimensional F;_-measurable processes such that

sup sup ||¢i(t)Hmax < K‘P'
i=1,...,n t€[0,t*]

For Mg (t) =n"t>" | fot P, (u)dM;(u), we have

Mg (t)[lmax > Ka (1 + Knt*)z + K<I>Kht*/n) < 2(]6_7”2/4,

(i) Pr (SUPte[o,t*]
(ii) Assume in addition sup;_y ., SuPseio +] [[Pi(t) | max = Op(an) and Kpt* =<

O(1). Then, sup,c(o,i+) [|[Ma(t)[|max = Op(an/log(q)/n).

Appendix B: Proofs of main results

We shall present our proofs in the following order. First, we give the proofs to
our theorems using the main Lemmas stated in Section 3. Second, we present the
auxiliary lemmas necessary for the proofs of main Lemmas. Third, we present
the proofs to the main Lemmas. Lastly, we present the proofs to the our con-
centration inequalities and auxiliary lemmas.
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B.1. Proofs of theorems

Proof of Theorem 1. Observe that the same techniques as those of Huang et al.
(2013) apply (see for example Lemmas 3.1 and 3.2 therein). The structure of
the partial likelihood is the same as that of the Cox model modular the IPW
weight functions wj;(¢). Following the same line of proof we can easily obtain
on the event {|[m(8°)|lcc < A(§ —1)/(€ 4+ 1)}, the estimation error of LASSO
estimator 8 defined in (2.1) has the bound

eS(E+ 1)soA

38— 3°l, < ; B.1
BBl < e (B.1)
where ¢ is the smaller solution to
se™5 = K3 (€ +1)s0M/ {26 (€, O; —1ia(8%))°}.
~ S A
13— o < — S €T s (B.2)

2k(¢,0; —(B7))

with ¢ = SUDP¢e(0,4+] SUP1<i<j<n [b™{Z;(t) — Z;(t)}| in the event ||m(8°)|: <
A& —1)/(£ + 1). The proof is then completed by applying the conclusion of
Lemma 1. O

Proof of Theorem 2. Be Lemmas 5 and 6, we have
c'(b-p°) ©rin(8°)

n———>=y/n————~—

\/_CTG)V@TC \/—CT@VGTC

In Lemma 7, we have shown that ||V||max is bounded by K2(1+ Keft*)2{1+
2(1+ K)eX /py}? with probability tending to one. In Lemma 3, we have shown
that ||®]|; is bounded by K/p. Then, we can apply Lemmas 4 and 7 to get

+0,(1) % N(0,1).

cTOVOTc—cOVO c| < [lc1© — Olli[Vmaxll®l]icl
+ el {lI®ll + 8 = O}V = V]maxl®ll1 ]Il
+ el {©] + 8 = O [V = Vmax + [Vllmax}|© = ©]l1c]lx
=20,(]© = 8]11) + Op(|V = Vlmax) = 0p(1).

Note that we use the following fact

p p P P
le"®l = 1> a0l <D el Y 10i41 < llel1[©]s. O
i=1 j=1

j=1 i=1

Proof of Theorem 3. Since we assume (D1) now, the relative risks are bounded
almost surely from above and below by constants 0 < e % < B Zi(t) <
e < 0o, We may set Ky = e to directly obtain (C2) from (D2). We can also
improve the rate of estimation error in Theorem 1 by log(n) because we need
not let Q1(¢) in Lemma B.5 to grow with n. (]
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B.2. Auziliary lemmas

Lemma B.1. Let {a;(t) : t € [0,t*],4 = 1,...,n} be a set of nonnegative
processes. Under (3.14), where K3 is defined,

Hzl 1 it )Zi(t)*!

z 1 a’l(t)

E{a;(t)Zi(t)*'}
E{ai(t)}

As a result, the mazimal norms of SO (¢, 8)/SO(t,8) and SV (t,8)/SO (¢, B)
and sV (t,8)/sO)(t, B), defined in (1.4) and (3.6), are all uniformly bounded by
(K3/2)".

Lemma B.2. Let K4 and py be defined as in (3.15). Define

< (K3/2)".

max

< (K3/2)!, and H

max

SOt Ky) ="' Y I(C; > ¢)Yi(t") min{ Ky, P 20}, (B.3)
i=1

Let T(ll)7 e ,T(lKT) be the observed type-1 events. Under (C1), the event

0 = {nlzI(Xi > 1) > pa/(2Ky), sup S (T(lk);K4) > p2/2}

P kel..
(B.4)
occurs with probability at least 1 — e~mP3/(2K3) _ pe—nlp2=2/n)*/(BKY),
On Q, we have supge; g, 5(0)(T(1k)) > pa/2.

Lemma B.3. Let Q:(c) = ee&7lI8%lwralog(n/c)/(pap1) be defined as in (3.17).
Under (C3), the event

Dy(e) = { sup sup I(d;€; > l)e'eﬂz"(t) < Ql(é)} (B.5)

i=1,...,nte[0,t*]

occurs with probability at least 1 — ¢.

Lemma B.4. Define the IPW weights with true G(t), w;(t) = r;(t)G(t)/G(X; A
t), as in (3.7) and

Qr(n,p, ) = 4(K4/p2)? {(1 + Ky t*)\/Alog(2/e) /n + Klt*/n} . (BS6)

Under (C1),

Q3(e) = { sup sup |w;(t) —w;(t)| < Qr(n,p, 5)} (B.7)

te[0,t*] te[0,t*]

occurs on event 1 with probability at least Pr(Qq) —
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Lemma B.5. Define
AV (1) =8Y(t,8°) - SO(t,8%),

with SO and SU defined in (1.4) and (3.6). Let T(ll), . ,T(lKT) be the observed

type-1 events for some Ky < n. Denote Q1(g) = eXeK7lIB%l<ra10g(n /c)/(pap1)
and

e)KL (AK3(1+ Kqt*) [4log(2/e) 4KiKqt*
le)(n,p,s) :Ql( l) 3{ i 2 1) g(2/¢) I 42 1
2 05 n P5M

2log(2npt /e) n l}
n n

as in (3.17) and (3.18). Under (C1) and (C3),

Q4(e) = { max  sup HAU) (T(lk)>‘ < QY (n,p,e)
l=0,172k61_“KT

n Ql N QQ(S) n Qg(&), (B8)

with 1, Qa(e) and Q3(e) defined in Lemmas B.2, B.3 and B.4, occurs with
probability at least 1 — e~mp3/(2K3) _ pe—nlp2=2/n)*/(8K3) _ 5.
On Q4(e), we have forl=1,2,

SO (T,87) S (7, 5)
sup - =
kel..Kr || (0) (T(lk), 5°> 500 (T(lk), ﬁO)
<2{QY (n,p,¢) + (K3/2)'QY (n,p,)}/pa.-

Lemma B.6. Denote A(l)(t) =SW(t,8%) — g(l)(t,,@") as i Lemma B.5, with
SO (t,B°) and SW(t, 3°) defined in (1.4) and (3.6), respectively. Under (C1),
(D1) - (D3) and (DJ),
(i) $ubefo ooy 1A () o = Op (v/Iog(n) /)
SUP;—1,2 SUP¢elo0,t*] A(l)(t)Hmax; SUPte(o,t+] Z(t,_,@o) —Z(t,8°) |
SUP¢e(o,t%] Z(t,B°) — u(t)|lw and SUP¢e[0,t+] Z(t,8°) — p(t)|lo are all
Op (\/ log(p)/ n) ;

(i) Define

max

max

A;(t) = {wi(t) — I(C; > t)}Yi(). (B.9)
Let ¢(Z) be a differentiable operator RP — R uniformly bounded by K, <
1 with |V$(Z)||1 < Ly, =< 1, and g(t) be a F_ adapted process in RY with
bound SUP;c(o,¢+) g(t)||max < Ky =< 1. Whenever q¢' = p, we have

Y | o = 8,092,001 = 00| = oyl
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(iii) for any B € R, supycio ) |1Z(t,8°) = Z(t, B)lloe = Op(IB = B°Il1); if

18 =B = 0p(1),
SO PO | s g
sup  sup o = = - :
i=1,..mtefo,r] | SO(t,8%) SO)(t,B) 3 1

Lemma B.7. Let S© and SO be defined as in (1.4) and (3.6), respectively.
Under (C1) andN(DJ), SUP¢e(0,t%] n/{Z?:1 I(X; > 1)}, SUP¢e[0,t*] |S(O)(ta B~
SOV, B°)71| are all O,(1).

and SupPy¢o 4+]

Lemma B.8. Let T';, B and v; be defined as in (2.21), (2.1) and (2.16), re-
spectively. On the event

(0 &) = {| VI (35.B) | < (& DA/ + 0.V =1pf L (B)

we have under (D2)

(i) the estimation error 7, :=4; — v} belongs to the cone
Ci(&,05) == {v e R "t |voc |1 < §llvo, i} (B.12)

(ii) and ||[5; — vl < {s;\; (& + 1)}/{2k(&;,0;)?}, with compatibility factor

TY72 x 2
sjg' ViT'(v*, B)g
K (&5, 05) = sup \/ il
0#£g€C;(£;.05) lgo, [Ix

(B.13)

forallj=1,...,p.

Lemma B.9. Let I';, B and v; be defined as in (2.21), (2.1) and (2.16), re-
spectively. Under (C1) and (D1)-(D4),

VoL (v;:B) | = 0y (1B = 87l + v/log(p) /) -

Lemma B.10. Let &, X, ma be defined as in (2.19), (2.14) and (2.13), respec-
tively. Under (C1) and (D1)-(D4),

0[5 -5, -0, (i)
(ii) for any B such that |8 — B°|1 = op(1),
=0, (IB=8l + Viog®)/n) .

Lemma B.11. Let k;(&;,0;) be define as in Lemma B.8 (B.12). Under (C1)
and (D1)-(D4), setting {max = maxj=1,. ,&; < 1, we have

“max
j=1,....,p

|-ia(B) - =

Pr (inf Kki(€5,0)* > p/2> — L
J
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B.3. Proof of main lemmas

Proof of Lemma 1. Let T(1)v e ,T(lKT) be the observed type-1 events. We may
decompose the score m(3°) as its martingale proxy plus an approximation error,

m(8”) = m(d) +n Y {Z(14,.8°) -2 (1}).8) }.
k=1,...Kr
with Z and Z defined in (1.4) and (3.6), respectively.

Recall that the counting process for observed type-1 event can be written
as N?(t fo (C; > u)dN}(t). Moreover, m(8°) takes the form of the Cox
model score with counting process { N?(¢)} and at-risk process {I(C; > t)Y;(¢)}.
The “censoring complete” filtration F;° can also be equivalently generated by
{N2(t), I(C; > t)Y;(¢t),Z;(t)}. Thus, we may apply Lemma 3.3 in Huang et al.
(2013) under (3.14) from (C1),

Pr(|m(8°)]s > Ksz) < 2pe "% /2.

Notice that the inequality is sharper than that in Lemma A.4(i) because the
compensator part of m(3°) is zero.
The concentration result for approximation error

S0 (74y,8°) 8 (74 8°)
S© (T(k)aﬁo) SO ( (k) ,30)

is established in Lemma B.5 on 4(¢). We obtain the concentration inequality
for m(3°) by adding the bounds and tail probabilities together. O

z (T(lk)750> ~-Z (T(lk)»ﬁo) =

Proof of Lemma 2. Our strategy here is the same as that for Lemma 1. We
first show that (¢, O; —1m(B°)) is lower bounded by (¢, 0; —m(3°)) plus a
diminishing error. Since r'Nr'l(Bo) takes the form of a Cox model Hessian, we then
may apply the results from Huang et al. (2013).

By Lemma 4.1 in Huang et al. (2013) (for a similar result, see van de Geer
and Bithlmann (2009) Corollary 10.1),

K2 (6, 0; —1(B8°)) = K(§, 0; —m(B°)) — 50(€ + 1)*[102(8%) — M(B°) | max-

Let T(ll), .. ,T(lKT) be the observed type-1 events. We can write m(3°) — r?l(ﬁo)
as

Lty [8(2) (Tl 57) 8% (1. 5")

5(0) (T(1k)750) 3(0) (T(1k)750)

-7 (T(lk),ﬁo) > + Z (T(lk)v /60>®2‘| )
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with S®, SO, Z and Z defined in (1.4) and (3.6). By Lemma B.1, we have that
suPeio,i+] 1Z(t, B°)|loo and sup,ejg 4+ 1Z(2, B°)[loc are both bounded by K3/2.
On the Q4(e) as defined in Lemma B.5, we apply Lemma B.5 once with | = 2
and twice with [ = 1 to get

[0(8%) — 12(B°) e
< {208 (n.p.9) + 4K:Q8" (1. ,2) + (5/2)KFQY (n.p.2) | /o,

with Qg)(mp, ¢) defined in (3.18).
Our (C1) and (C2) contains all the condition for Theorem 4.1 in Huang et al.
(2013). Hence, we may apply their result

K*(¢,0; —m(B°))
>k2(€,0;5(K4)) — so(6 +1)°K3

{7 2108 (ol + 1)/2) /4 2t Kol

with probability at least Pr(€24(c)) —3¢. We have bounded S© (¢; K,) away from

zero at all observed type-1 events in 4(g), so the e~ 3/ (BK3) term is absorbed
into Pr(24(e)). O

Proof of Lemma 3. The notations in the proof are defined in Section 2.3. Denote

U= [ {20 - u(®)an().
0

Without loss of generality, we set j = 1. Since we define ] = argmin,, I(y) as
the minimizer of a convex function, it must satisfy the first order condition

V,P(v) = B{(U: — UL 7])U 1} = 0,01
Recall that 72 = ['(v}). Applying the first order condition, we get
™ =E{Uy ~ UL 4{}’ =E{(U, UL 4})U1}.
We construct a vector 8, = (1, —; )" /7 € RP. Then, 0, satisfies
03 = (1, —7i ) E{UU "}/rf = (1,0,_,).

Hence, we have
0y,...,0,) =21 =0.

We can directly bound

[7ille =165/, —1< K -1<K.
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By (D2), the minimal eigenvalue of X is at least p. We obtain through a
spectral decomposition that the maximal eigenvalue of ® = 71 is at most
p~ 1. Hence, we have

71'2 = (e;-'—@ej)A Zp

and
O]l < max [|6;/6],j] max |0;;] < K/p. O
Jj=1,...,p j=1,...,p
Proof of Lemma 4. By Lemma B.9, we may choose {& = .-+ = £, = 2 and
Al == Xp = A X Op(so4/log(p)/n) such that Q5(\,&;) defined in Lemma

B.8 occurs with probability 1 — e. Then, we establish the oracle inequality by
Lemma B.8,

~ « 2\ .
Pr (jirllaxp’yj —7jll/s5 < pe) > Pr ( min  k;(&;,0;)? > p/2) — €.

Jj=1,...,p

We have shown that Pr (minj:1 ,,,,, » K5 (&5, (’)j)2 > p/2) tends to one in Lemma

B.A1. Hence, max;—1,.. |5, — ¥l = Op (Sosmaxy/108(0)/7 ).

Define according to (3.29) U, = fot* {Z;(t) — p(t)}dN?(t). By Lemma B.1,
sup;—1,. » IUillc < K. We introduce

L) =n' > AU; — U7}
i=1

=n"" Z;/o {Z5(t) — p(t) — ’YTZL_J»(t) + ’)’TH_j(t)}Qde(t)

and decompose

7T =T8) — () + () = T ())-

Fj(ﬁj,,@) - fj('yj) =0, (sosj 10g(p)/n> by the results from Theorem 3,

Lemma B.6 and first part of this Lemma. Apparently, I'; (’yj) is the average

of i.i.d. terms. The expectation of the summands in fj (7;) is defined as L, (v;)
in (3.29). Hence, we finish the proof by applying Lemma A.1.
Along with Lemma 3, we can prove with the previous results in this Lemma,

||é - ®H1 = Op (Sosmax IOg(p)/ ) O
Proof of Lemma 5. We decompose
JaeT {em(ﬁ") +3° - B} (B.14)
= ne'{® — O} (B) + vne' ©{m(B°) —m(B)} + vne' (8° — B). (B.15)

By Lemma 4, |© — 8|, = Op(86Smax/10g(p)/n). Each summand in m(,@) is

o~

the integral of Z;(t) minus a weighted average Z(t,3) over a counting measure



Inference for competing risks 4483

dN?(t). By the KKT condition and Theorem 3, || (8)]| < A =< O(+/log(p)/n).
Putting these together, we obtain

Vile™{© — ©}(B)| < Ve[ 1]|© — O] xir(B) (B.16)

= Oy (805max log(p)/v/n) = 0p(1). (B.17)

By the KKT condition and Theorem 1, [|m(8)| < A < n=(/2=9)_ Hence, the

first term in (B.14) is 0,(1). Like in the proof of Lemma 6, we have |[c' ©||; <
lell1]®]l1 £ KeX/py from Lemma 3.

Define 8, = B° + r(,@ — 3°). Applying mean value theorem to h(r) =
c'Om(p,), we get
c'®m(g°) — ' Om(B) = —1'(7) = —' Om(5;)(8 - 5°)

for some 7 € [0,1]. By Theorem 3, we have
18: = 8%l = 7B — Bl = Oy (s0/log(®)/n) -

By Lemma B.10(ii), || — (8;) — X|lmax = Op (so log(p)/n). Along with
Theorem 3 and Lemma 3, we have

Vile ©{m(8%) ~m(B)} +c" (87 - B)
—V/nlcTO{ +1m(8;)}(8° - B)|
<Vlelr©l] = 1(B5) = Sllmaxl|B = 81
=0, (57 log(p)/Vn) . O
Proof of Lemma 6. Since w;(t)Y;(t) # I(C; > t)Y;
) =

N(t*) = 0, we have the equivalence dN? (¢ «

;(t) implies ¢; > 1 thus
[0V (t) Nl
Recall for the following calculation that

(t) = I(C; = t)dN}(t).

s® (t, 8°) 1Zw ﬁOTZ (t)zl(t)®l’

SO, 8% *121 (C; > 1)Y;(t)eP 27, (1)®!

A(l)( ) = S(l)<t7/8 ) - S(l)(tw@ )7
(s (1,8} = B{8" (1,8} = s (¢, 5°)
2(t,8°) =8 (t,87)/8O (.87, Z(t.8°) =8N (1,8)/5"(¢,8°),
u(t) =56, 8°)/5 (1, 8°), Yilt) =1- Ni(t-)
and M} (t) = N} (t) — /t Yi()eP” 2l () du.
0
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We decompose
Jr(8%) =n~" ; / " (20 - 287} ane)
=n/Z/ (Zut) - 21,8} wr(1)AM (1)
—n*l/zz/ (t, 8° )}I(Ci > 1)dM (%)
b2 ; /0 [20.°) - 2(0.8°)} 1(C, > ad} 1
e i -/ {20 8) - ) A0 (b0

+n-1/2Z / {Za(t) — ()} wr()AM (1)

£h +12+13+I4-
Notice that I; is a F; martingale. We obtain from Lemma B.6(i) ||p(t) —
Z(t,8°)||cc = Op(+/log(p )/n) Hence, we can apply Lemma A.4(ii) to obtain

|11l = VO, (\/log(p)/n) = 0,(1).

We further decompose I into 3 terms

NCT
,1/22 ?) tﬁ))[(c )dMl()

172 Z / N(O)iop,(t)l(cg > t)dM; (t)

_1/2 AO(t - ) 1
o Z/ 50)(¢, 8%) t@ {p(t) = Z(t, B°)H(C; = t)dM; (1)

S0+ 1)+ 1Y)

By (D1) and (D3), each M/ (t) has one jump at observed event time and
e K —Lipschitz elsewhere. Since the {C;,T}} : i = 1,...,n} is a set of inde-
pendent continuous random variables, there is no tie among them with prob-
ability one. Hence, we may modify the integrand in I} and I} at observed
censoring times without changing the integral. Replacing the process A(l)(t) by
n iy Ai(t)eB’ 2 Z,(1)®!, we can apply Lemma B.6(ii) to get that || I}]|s
and [|13 ||oc are both op(1).

The total variation of M} (t) is at most max{l,eKKt*} = 1. By Lemma

B.6(1), |AP () {n(t) - Z(t B e = Op( vlog n)log(p)/n). Hence, we ob-
taln ||I§”||oo = Op(y/log(n log )/n) = op(1). Similarly, we obtain ||I3]jcc =

»(v/1og(n)log(p)/n) = op(1



Inference for competing risks 4485

Besides the one in Lemma B.4, w;(t) — @;(t) has another martingale repre-
sentation. Denote the Nelson-Aalen estimator

I(X; >u ¢
Z/ ST iu)dNi(u).

We have a F; martingale

() = /hc du—Z/ s X;uiu)de(u).

Me(t)| = Op (n=Y/2) For t > X; and &;¢; > 1,

By Lemma A.4(i), sup,e(g -]

with an error

Ri(t) _ G0 _ exp { H(X) — H(1) |

G(X,)
N % {e_ JEI(u>X;)dMe (u) + /Ot I(u > Xi)dW(“)] .

It is the discrepancy between the Kaplan-Meier and the Nelson-Aalen plus a
second order Tailer expansion remainder. We shall show that it is O,(1/n).
Since

[ 1 x0T <2 sup [0 =0, (n72)
0

te[0,t*]

the second order remainder

"t TC t .
e Jo 1(u>Xa)dMe (w) +/ I(u > X;)dMe(u)| = O,(1/n).
0

Under (C1), {30 I(X; > 6)}F < {30 I(X; > %)} Op(1/n). Let cx
be an observed censoring time. The increment in — log(G (¢ )) He(t) at ¢ is a
second order remainder

- 1 - 1 O (-2
10g <1 Zl 1I(X >Ck)> Zl lI(X >Ck) 70;0( )

Hence, sup;cjo ] | — log(G(t)) — He(t)| = O,(1/n). Applying the Mean Value

Theorem, we obtain sup,cg -] |G(t) — exp{—H(t)}| = O,(1/n). Under (C1),

G(t) > G(t*) is bounded away from zero, and —log(G(t)) < —log(G(t*)) is

bounded from above. We have shown that both G(t) and H¢(t) are uniformly

\/n consistent. We obtain that G(X;) is bounded away from zero and H¢(t) is

bounded with probability tending to one. Putting these together, we obtain
sup sup [R;(t)] = O,(1/n).

i=1,...,n t€[0,t*]
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Define
a ‘1ZIt>X / (Z:(w) — ()} @i (w)dM (),

() =n"tY"  I(X; >t) and q(t) = E{q(t)}, n(t) = E{7(t)}. We write I, as
i.i.d. sum plus error through integration by parts,

71/22/ {Zi(t) — p(t)} @;(t)dM; (t)
+n*”§3 " {200) — 0} (1)~ )M

—n-“2§j/"{z ult)} @i () dMA(t)

+n4ﬂ§j/){z (o)} Ba() M2 ()
n1/2§/0 2221()(,6 > u)dMg(t)

n-1/2 ; : ﬂ T(t) — 7 U c
! é/o =m0~ TOH (e = w)dM(?)

n

—-1/2 1 c
+ 0 1/2{q(0) - }klé (X0 = M)

e /{q qH)U U 1 (x, > wpanmig(r

21 If) + I8+ 1+ 1Y + 10

Iil) + LEB) is already a sum of i.i.d.. We have shown that sup;c s

Ri(t)] =
0,(1/n). Hence, we have HLEZ)HOO = O, (n"1/%) = 0,(1). The process I(t >
X) ftt* {Zi(u) — p(u)} @;(u)dM} (u) is uniformly bounded by K (Kt*+1). It has
at most one jump and is K K —Lipschitz elsewhere. Hence, we can apply Lemma
A.3(1i) to get supye(o ¢+ [a(t) —a(t)[lec = Op(y/log(p)/n) and supte[o e I (8) =
#(t)] = Op(y/log(n)/n). Notice that IV, I and n=' 0, [7 7(6) ' I(Xy >

w)dMg(t) in If) are all F; martingales. We may apply Lemmas A.4() and
A 4(ii) to obtain I£4) = O,(y/log(n)logp/n) = o0,(1), If’) = 0,(\/logp/n) =

op(1) and 1% = O, (logp/v/n) = 0p(1).
By Lemma 3, we can bound the /; norm of ¢'® by

p p p
le™®llr =Y leill®ul < Y lalk/p = K/p.

i=1 j=1 i=1
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Finally, we write ¢ @m(3°) as i.i.d. sum

WZJ@[/ (Z4(t) — ()} @(DAM ()

|81 > wan <t>}+ J()

S0~y eTO{n; — i} + 0,(1).
i=1

We have E{c'®mn,} = 0 because of its martingale structure. We show
E{c"®,} = 0 again by introducing its martingale proxy

E{CT®¢i}
=E /ﬁa%nzﬂnu@}uaganﬂ@
0
+E/0 'O {Zi(t) — p(t)} E{&i(t) — I(Ci > 0)|T;, Zy() }dM; (1)

The first term above is zero because of the martingale structure. The second
term is zero because the IPW weights satisfy E{w;(¢t) — I(C; > t)|T;,Z;(-)} = 0.
Each ¢"©{%, —n,} is mean zero and bounded by K/pK (1+ Kt*)+ K/pK (1 +
Kt*)(1+ Kt*)2eX / py with probability equaling one. The variance ¢ ' ©V@Oc has
a bounded and non-degenerating limit v2. Hence, {c'©(¢, —m;) :i =1,...,n}
satisfies the Lindeberg condition.

By Lindeberg-Feller CLT,

- c'Om(8°%) _ crOy {n — v}
vVeTO®V0Oc VnecT®VY0Oc

We conclude the proof of the Lemma. O

+o0,(1) % N(0,1).

Proof of Lemma 7. We define

/ (Zi(u) — ()} (w)dNE (u),

with

— )BT 2w
M NO(t) —nt Yiwe” T o).
1o = }j/ S0, )

Under (D1) and (C1), the total variation of ]\Zl(t) is at most 1 + 2e2X /py with
probability tending to one by Lemma B.7. The difference between 7, and 7,
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is
ﬁ, _ 'ﬁ

n! /{z Zum}wl()z(){

dN7 (u)

BT Zi(w) B Zi(w)
SO (u,8%) SO (u,B)

. / {1a(0)3(w) — 2, Bes(u) M ),
By Lemmas B.4, B.6(i) and B.6(iii), we obtain

sup [7; = iilloe = O (I1B = B°ll1 + VVIog(p) /)

i=1,...,n

Then, we study
= n 12 / [Zi(u) — ()} () [(C; = w)dM} (u).

We have the bound ||Z;(u) — pt(u)]|ec < K from Lemma B.1. @;(u) is not Fy
measurable, but we can define a new filtration 7', = o{X;, 0, €;,Z;(:), [(Cj >
u), Nj(u), Z;(-) : w <t,j # i} for each 4, such that

n1 Z/ {Zi(u (u)}@i (w)I(C; > u)dM;] (u) =n; — 7, + Op(1/n)

J#i

is a F; martingale. Hence, we can apply Lemma A4(Q) to get

~ 4log(2 K(1+ 25Kt
Pr(llm—mlloozK(lJreKKt*) celnple) | KU+ 2 >> <e/n.

Taking union bound, we get ||17; — 7,00 = Op(1/log(p)/n). Hence,
sup 7 =il = Oy (I1B — B°I1 + Viog(p)/n)

Recall that q(¢) and q(t) also take a similar form. We can likewise de-
fine

a( -121t>X / {Zu(u) — pa(u) () A1} ()
and
g (t) = I(t > X)) / (Z(0s) — pu(u0) )4 () D} ().

By Lemmas B.4, B.6(1) and B.6(iii), we have

swpsup (1)~ @M)lloe = Oy (1B~ Bl + vlog(p)/n)

i=1,...,n t€[0,t*]
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By Lemma A.3(ii),
to find the rate for

—q(t)|| = 0, ( log(p)/n). We only need

a’(t) —a(t)

—1zn>x —12 / ‘12{2 WIEWI(C; 2 wdM] (w).

We repeat the trick for n; — 7,. Applying Lemma A.4(ii) to the F;, martin-
gale

*Z/ ”Z{z w)}@i (u)1(C; = u)dM} (u)

J#i

and obtain sup;_;  , Sup;c(g ]

IM?(t) |0 = Op(+/log(p)/n). Hence,

sup [|q"(1)=q(t)[lec <2 sup  sup [[M(t)[lc+Op(1/n) = Op(v/log(p)/n).

tel0,t*] i=1,...,n t€[0,t*]

Putting the rates together, we have

sup [[G(t) = a(t) o« = Oy (118 = B[l + V1og(p)/n) -

te[0,t*]

We can directly obtain sup,¢ g+ [T(t) =7 (t)| = Op ( log(n)/n) from Lemma
A.3(ii). Define
o
~ a(t) ==
b = / — < dM(t
o i) Y

The total variation of ]\Z-C(t) is at most 1+ 2eX /py with probability tending to
one by Lemma B.7. Using the results so far, we have

sup [[%; — Wil = O, (1B = Bl + vIog(p)/n)

i=1,...,n

The remainder
- [ q(t)
— 1/)7, = n_l E / WI(CZ > t)I(X] 2 t)dMJc(t)
=170 T

is a F; martingale. We can put the n martingales in R? into a R™ vector and
apply Lemma A.4(i),

sup [[4; — Wil = 0, (VIog(np)/n) = O, (Viog(p)/n) -

i=1,....,n

Therefore, we get sup,_;___, |[#; — ;oo = Op (1B — 8%l + /Iog(p)/n).
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Finally, we decompose

n
[V = Vlmax <n”! Z 17 + Yilloc s + ¥ — 5 — Vil

=1

n
+nt Z 17 + v — 1 — P;lloolIm; + ¥illo
i1

+ |t Z(’?z +) i+ ) -V

=1

max

We have shown that sup;_y __, [7; + $; = n; — Pillo = 0,(1). Moreover,
SUP;_1,. 17; + 9| oo is 0,(1) by Lemmas B.1 and B.7. In addition, we observe

that n=1 Y7 (0, +9,;)(m; + ;) is an average of i.i.d. terms whose expecta-
tion is defined as V. By Lemmas B.1 and B.7, we have the uniform maximal
bound

sup [|(m; + ;) (0; + %) T lmax = _sup l(m; +)lI%

i=1,...,n i=1,...,n

is also O,(1). We finish the proof by applying Lemma A.1 to the last term in
the decomposition above, ||n=' Y7 (n; + ) (m; + ;)" = V|| O

B.J. Proofs of auxiliary lemmas

Proof of Lemma A.3.

(i) Without loss of generality, let ¢11 be the first jump time of N;(t). By the
i.i.d. assumption, t1; is independent of all S;(¢) with ¢ > 2. Thus, the

sequence
l

L =n"" Z {Si(t11) —s(ti1)}

i=2
is a martingale with respect to filtration {o(S;(t),i <1),1=2,...,n}.
The increment is bounded as

’flil {Sz’(tll) — S(tll)} = nilEsj {Si(tu) — Sj(tll)} < nile.

Applying Lemma A.2 to Ly, we get Pr(||Ly|,... > Ksz) < 2ge~ """ /2,
Since the dropped first term is also bounded by Kg/n, we get

PI‘ (Hg(tll) — S(tll)”

We use simple union bound to extend the result to all ¢;;’s whose number
is at most nK .

(ii) Define a deterministic set 7, = {kt*/n:k=1,...,n} UT,. By the union
bound of Hoeffding’s inequality Hoeffding (1963), we have

> Kgx + Ks/n) < Qqe_”zQ/Q.

max

Pr (Sup [S(t) = s(1)]] o > Kgx) < 2(n+|T:|)ge =" /2.
teTnh
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Combining the result from Lemma A.3(i), we obtain

[S(®) = 8(t) [ a = Op(V/10g(1np0) /1)

over a grid containing 7, and jumps of N;(t). We only need to show that
the variation of S(t) — s(¢) is sufficiently small inside each bin created by
the grid.

Let ¢’ and t” be consecutive elements by order in 7,,. By our construction,
there is no jump of any of the counting processes N;(¢) in the interval
(t',t"). Otherwise, the jump time is another element in 7, between ¢/
and t" so that ¢ and t” are not consecutive elements by order. Under
the assumption of the lemma, elements of all S;(¢)’s are Lg—Lipschitz in
(t',t"). Moreover, |t —t'| < t*/n because of the deterministic {kt*/n :
k=1,...,n} CT,. Along with the caglad property, we obtain a bound of
variation of S(t) in (¢/,¢")

sup [[S(t) = S(t")llmax < sup  sup [[Si(t) — Si(t")|lmax
te(t’ t") i=1,...,nte(t/ t"")

<Lg|t" —t'| < Lst*/n.
For any t € (t,t"), we bound the variation of s(t) by

t

Is(£) = (")l max S/t EHds(U)Hmaxdqu/t E{|13 5 (1) maxhi (u) }du

<(Ls + KsK)t*/n.

For arbitrary t € [0,¢*], we find the corresponding bin (¢',¢”] contains t.
Putting the results together, we have

||S(t)_— 8(t) lmax )
<IS(t) = St max + Is(t) = st ) lmax + [ISE") = s(t") [l max

< Op(Vlog(npq)/n) + O(1/n). O
Proof of Lemma A.4.

(i) The summands in Mg (t) are the integrals of F;_-measurable processes
over Fi-adapted martingales, so Mg (¢) is a Fi-adapted martingale (see
Kalbfleisch and Prentice, 2002, p.165).

Suppose {T; : i = 1,...,n} are the jump times of {N;(¢)}. We artificially
set T; = t* if N;(¢) has no jump in [0,¢*]. Define 0 < R; < --- < Ry, be
the order statistics of {T; : i =1,...,n} U{kt*/n: k= 1,...,n}. Hence,
{Rr : k = 1,...,2n} is a set of ordered F; stopping times. Applying
optional stopping theorem, we get a discrete time martingale Mg (Rg)
adapted to Fg, .

The increment of Mg (Ry) comes from either the counting part or the
compensator part, which we can bound separately. By our construction
of Ry’s, each left-open right-closed bin (Ry, Ri+1] satisfies two conditions.
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(i)
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There is at most one jump from >, N;(¢) in the bin at Rj41. The length
of the bin is at most ¢*/n. The increment of the martingale Mg () over
(R, Ri+1] is decomposed into two coordinate-wise integrals, a jump minus
a compensator,

Rpq1
D, (u)h;(u)du.
Ry

&, (u)dN;(u) —n? Z/

With the assumed a.s. upper bound for sup,cg 4+ |P; ()] max < Ko, we

have almost surely the jump of Mg (¢) in the bin be bounded by

S Kq;./n

max

Additionally with the assumed upper bound sup;_; , Sup;cjo,+] hi(t) <
K}, we have the compensator of Mg (t) increases over the bin by at most

We obtain a uniform concentration inequality for Mg (Ry) by Lemma A.2

n

Rii1
/ S @, (w)hi(u)du

Ry, i=1

S K@Kh(Rk_;,_l - Rk) S K@Kht*/n.

max

Pr ( sup  ||Ma (Rp)|lmax > Ka(1+ Kht*)x> < 2ge "4,
k=1,..., 2n

Remark that the uniform version of Lemma A.2 is the application of
Doob’s maximal inequality (Durrett, 2010, Theorem 5.4.2, page 213). For
t € (Rg, Rk+1), we use the bounded increment derived above

R+ n
/ nt Z ®;(u)h;(u)du

R+ i=1

||M<I>(t) - M@(Rk)Hmax S

max

SK@Kht*/’n.

Under the additional assumption sup;_; ., Sup;cqo,i] | ®i(t)|lmax

Op(ay), we can find K¢ . for every ¢ > 0 such that

Pr| sup sup [|®i(t)||max < Kpean | >1—¢/2
i=1,...,n t€[0,t*]

for any n. We apply Lemma A.4(i) to obtain that event

{ sup ||[Mo (t)||max < Koean{(1l+ Kpt*)v/2log(4q)/n + Kipt*/n},

te[0,t*]

sup sup Hq)i(t)Hmax S K@,Ean}
i=1,...,n t€[0,t*]

occurs with probability no less than 1 —¢. U
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Proof of Lemma B.1. Notice all a;(t)’s are nonnegative. Hence, >, |a;(t)| =
S, ai(t). We apply Holder’s inequality for each coordinate

(i)

2 fo:(Z(t) {Z0;

Xy lau(t)

S m /5 Sup

> g ai(t)] i=1,...n

Hence, the maximal norm of >i"  a;(¢)Z;(t)®" is bounded by (K3/2)! under

(3.14). Similar result can be achieved with the sum replaiced by the expectation.

To apply the result above to S (t,3)/S©(t,3), SV (¢,B8)/S(t,8) and

sO(t, B)/sO(t, B), we set a;(t) as w;(t)Yi(t)eB Zi1) and I(C; > t)Y;(t)eB 20,

|

Proof of Lemma B.2. Since {I(X; > t*),i = 1,...,n} are i.i.d. Bernoulli ran-
dom variable, we may apply Lemma A.1 for lower tail,

{Zi(t)@}j‘ .

Pr (nl ZI(Xi > ") < Pr(X; >t%) — 3:) < exp(—2na?).

i=1
By (3.15), we can find lower bounds for the probability
Pr(X; > t*) >Pr(C; > t*,00 > T} > t*)
>pa/Ka.

We may relax the inequality at @ = pa/(2K4) to
Pr (nl ZI(Xi >t*) < pg/(2K4)> < e~mP5/(2KD)
i=1

Because I(C; > t) > I(C; > t*) and Y;(t) > Y;(t*), SO (t; Ky) is a lower
bound for S(9(¢). The summands in S (¢; K,) are i.i.d. uniformly bounded by
K4. Thus, we may apply Lemma A.3(i) with one-sided version,

Pr ( sup S© (t; Ka) < E{g(o)(té Ky)} — Kyx — K4/n> < n€7"x2/2.
kel..Kr

By (C3), the expectation has a lower bound
E{SO(t; K4)} = G(t")E [{1 — Fy(t: Z;)} min{ Ky, eﬁ”zi“)}} > pa.
We relax the inequality at z = (p2/2 — 1/n)/ Ky,

Pr ( sup SO (t; Ky) < p2) < ne—"(p2—2/n)?/(8KY) 0
k€l..Kr
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Proof of Lemma B.3. Since ¢; > 1 implies T}' = oo, the probability of observing
a type-2 event conditioning on Z;(-) has an upper bound

Pr(e; > 11Z;(-)) =exp {—/ eﬁOTZi(“)hé(u)du}
0
o0 oT
<exp {—Kex/ I (eﬁ Zi(w) > Kex) h(l)(u)du}
0

Hence, we may derive a bound for

Pr( d;e; > 1, sup eﬁOTzi(t) > K, | <Pr|e> 1‘ sup e Tz > K,
te[0,¢%] te[0,¢%]
if we can bound [;° I (eﬁOTZi(“) > Kex) h} (u)du away from zero with a certain

@ whenever e8” %) > K_ for some t' € [0,¢*].
Under (C3), there is an interval I’ containing ¢’ of length p4 in which Z;(+)
has no jumps. The variation of linear predictor is bounded

B°TZi(t) — B°Z(t')

sup < K6 K7||8° || oo pa-

tel’

So, the relative risk ¢8” Zi(®) is greater than K, exp{—KgK7||3°||sops} over I'.
Hence, we get a lower bound for

oo
/ 1(eP720 > K, exp{~ KoKl 8]l ops} ) h(u)du > papy.
0

We finish the proof by taking a union bound over i =1, . O

Proof of Lemma B.4. Recall that M¢(t) = I(C, fo (C; > u)h(u)du
is a counting process martingale adapted to complete data filtration F;. The
Kaplan-Meier estimator G(t) has the martingale representation (Kalbfleisch and
Prentice, 2002, p.170 (5.45)),

G(t) e Y Gu)I(X > w) )
MG(t):W—lzn ;/ G Ty, (iju)dMi(u).

For d;¢; > 1 and t > X,

i GO ey, G e
wi(t) i(t) @(Xz)M <XZ)+G(X¢)M (t),

so we will be able to establish a concentration result for the error from Kaplan-
Meier

‘12{% — G} B0, (1))

max
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<2Q1(e)(K3/2)" sup [ME(t)|
te[0,t*]

if we first obtain a concentration result for sup,cg 4+ [M &(t)|. On the event
n=! 30 I(X; > u) > p2/(2K4), the integrated functions are F;_-adapted

with uniform bound 2(K4{p2)2. The hazard h¢(t) < K; by (C1). Hence, we may
apply Lemma A.4(i) with « = y/4log(2/¢)/n to obtain

te[0,t*]

Pr ( sup | MY ()| < 2(K4/p2)? {(1 + Kit*)y/4log(2/e)/n + Kﬁ*/n})
< Pr(21 NQa(e)) —e. O

Proof of Lemma B.5. A sharper inequality is available if Z;’s are not time-
dependent. We may exploit the martingale structure of A" (t)/G(t). With gen-
eral time-dependent covariates, we would decompose the approximation error
AW (t) into two parts, the error from Kaplan-Meier estimate G(t (t) and the error
from missingness in C;’s among the type-2 events.

Define the indicator v;(t) = I(t > X;)I(d;¢; > 1). Since {w;(t) — I(C; >
t)}Y;(t) is non-zero only when v(t) = 1, we may alternatively write

‘12{% 1(C; > H)}oi(t)e” 207, (1)

We may use the upper bound sup;_; _, Sup;c(o,+] vi(t)eP” %) < Qi(e) on

O3(e). By Lemma B.4,

n! Z{wz — @)Yt B0z, (1) < Q1()(K3/2)'Qr(n,p,e)

max

on Q(g) N Q3(e).
Define the error from missingness in C;’s among the type-2 events as

AT () =n"" Z{wz 1(Cs = o) Oz, (1)

Since E{r;(t)|T;} = G(t AT;), Fine and Gray (1999) has shown that

B{@: (1)|T,} = B{I(C, = DIT} = G(O).

~(
Applying tower property, we have E {A( )(t)} = 0. Hence, we can apply Lemma
A3(1) with z = y/2log(2np!/e) /n

2 (1) = uermaiz {rronza e+ 10} )

Pr ( sup
kel...Kr

max
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> PI‘(Ql n QQ(&‘)) —E&.

This finishes the proof of the first result.

We prove the other result by decomposing the differences into terms with
A @),

s,8°) SO B%) 1

B _ Oy s, B%) A©
SO, B%)  SO(,B%) SO, B°) () SO(¢, B8°)SO)(t, B°) )

S (t,3°)/SO(t,3°) is the weighted average of Z;(t)®!, so its maximal norm is
bounded by (K3/2)!. On the event Qy,

sOt,B8°)  SO(t,B°)

SOt B°) SO, B%)

2 Kl
< LAY @) |oo + =—2—|AO(1)].
< p2|| @ QHPQ‘ @)l

o0

We can simply plug in the bounds and tail probabilities for A(®) (T(lk)> and

AW (T4} in (B.5). 0

Proof of Lemma B.6.

(i) By (C1) and (D1), we have HeﬂoTZi(t)Zi(t)@’l‘ < (K3/2)'eX =< 1. Thus,

max

all terms involved are bounded. Moreover, eBaTZi(t)Zi(t)@’l jumps only
at the jumps of N7(¢) by (D3). Define the outer product of arrays u €
RP1XXPd and v € R X %44’ a5

P1 X XPgXqr X Xqq ) . — 0 . . .
u®ve R ) (u®v)l1,~-ﬂd+d' = Wiy, ig X v1d+17-~71d+dl'

Between two consecutive jumps of N7 (t),

d goT
2B Zit)g, (1)

max

—[|e” = Oz ()BT dz (1) + 10 > 0)eP D1z, () @ a5 (1)

max

<eM{(K3/2)'K +1(1 > 1)(K3/2) 'K} < 1.
Hence, e'GOTZi(t)Zi(t)®Z satisfies the continuity condition for Lemma A.3(ii).
Like in Lemma B.5, we first replace w;(t) by w;(t) = r;(¢t)G(t)/G(X; A t).
Denote A (1) = n=' S {@i(t) — 1(C; > )}Yi(t)eB” 07, ()%, By
Lemma B.4, sup;cp i+ 1A (t) — A(Z)(t)HmaX = 0, (n=Y/?). Then, we
apply Lemma A.3(ii) to the i.i.d. mean zero process A(Z)(t),

sup |7 () lax = O, (. flog(np' ) /n) .

te[0,t*]
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Similarly,

sup ||§(l)(t,ﬂo) — s(l)(zf,,@0)||max =0, ( 10g(nlen)/n> )

te[0,t*]

Finally, we extend to results to the quotients by decomposition

Y (ta /BO) _ §(1)(ta 50) — 1 A(l) (t)
SO@B%)  50(,8°) SO, 8°)
SO (¢, B°
— (¢, 5°) A ().
SO(t,8%)SO(t, B°)

The denominators are bounded away from zero by Lemma B.7 by choosing
K4 = eK.

First, we show that A;(¢) is related to the martingales M¢(t) = NfF(t) —
fot{l — Nf(u—)}he(u)du. A;(t) is non-zero only after an observed type-2
event. To simplify notation, we define the indicator for non-zero A;(¢),
Ui(t) = Ti(t)}/i(t)l(t > Xl) = 1(5161 > 1)I(t > Xi).

Denote the Nelson-Aalen type estimator for censoring cumulative hazard

_ i/ot ! i[(xj > u)}_ll(Xi > u)dNE(w).

Define R;(t) = G(t)/G(X;) — 1 + f;( G(u—)dH®(u)/G(X;). Let ¢ and
cp+1 be two consecutive observed censoring times greater than X;. The
increment R;(cr+1) — Ri(ck) is in fact

Gler) [ 2= I(X; >cpp) =1 1 .
@(Xl) Zj 11X > erg) Z] 11X = erg) S

For t > X;, we have R;(t) = 0. Thus,

Ai(t) ={G(t)/G(X;) — 1 + NE(t) — NE(X;) — Ri(t)}ui(t)

A ey twlu—vvuzy I(X; > u)dM; (u)
—/Xiuzw)dMi(u) /X ) = e

+ /X,{I(Ci > u) — w;i(u—) v (w)h(u)du. (B.18)

Notice v;(t) does not change beyond X; if C; > X;, i.e. an event is ob-
served. Since h¢(u) < K < oo, we may modify the integrand at countable
many points without changing the integral

/ 0> 1)~ aluput /A Vi (o
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Hence, (B.18) gives an first order linear integral equation for A;(u). The
general solution to the related homogeneous problem

Ailt) = — /X A (), A(X) =0

has only one unique solution A;(t) = 0. Thus, we only need to ﬁnd one spe-
cific solution to (B.18). Define an integral operator Jof = fX w)he(u)du.
Then, the solution to f(t) = g(t) — I o f(t) can be written as

FO)=(Q I+~ +...)og(t) £ e og(t).

By inductively using integration by parts, we are able to calculate

mZ() DR HE(t) ”k/ He () dg(1).

Hence, the solution can be calculated as the series

e}

o] 2 __17¢cC n—k t Cuk
£ =3 (-1 " o (1) ZZ{Z?;}! i datw)

n=1

700 HC“ {H }nk ! w)-Yda(u
Z/X k! Z = G) [ 6 gt

k3

Applying to (B.18), we get

Adlt) = (1) / G(u) " M (1),

with a F;— martingale

MA®H) = / I(Cy > v (u)dME(w)
0
S (X > u)dMS(u)
Zj (X > )

Now, we use the martingale structure to prove the Lemma. Denote the
Fi martingale

- /Ot wi(u—)vi(u)

=n! Z/o Glu)e?” 2 Mg (u)I(C; = u)dM} (u).

MY (t) satisfies the condition for Lemma A.4(i). Hence, we have the bound
SUPye0,4+] |MY9(t) || max = Op ( log(q’)/n). Also define

Ault) = {@i(t) - I(C > DIVi(1).
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By Lemma B.4, sup,_; , Supycpo+] |[Ai(t) — Ai(t)] = 0, (n=%/2). The
total variation of each A;(t) is at most 2. Hence, we can apply integration
by parts to (B.10),

G (M (1 ®n71/2ZA =)
n_1/2z/ MY (t) @ ¢p(Z;(t))dM>(t)

1/2/ MY(t) @ G ‘1ZA (t))

21 — I, — Is.

.....

_Zj(t*_” = O, (n'/2). By assumption, ||¢( ;(t —))||max g K, =1.As
a result, we may replace the A;(¢) in I by ﬁl(t) with an O, ( 10g(q’)/n>

error. Since Ej (t*—)¢(Z;(t*—))’s are i.i.d. mean zero random variables,

j{:zx ")) lmas = O (V08(a) /)

by Lemma A.1. Multiplying the rates together, we get the bound || I1 || max =

0, ((V1og(@) Tog(d)/n) = 0,(1).

I> can be expanded as
*WZ/ MO 10 2 0y (0125 (0)
S et OR(Z) | ¢
Sz t)}dMJ g

By Lemma B.7, n{>"}_, (X} > t)}_1 = O,(1). The integrand in I is
the product of M9(¢) and a Op(1) term. Hence, we can apply Lemma
A.4(i1) to get || Iz]lmax = O, <\/log )log(qq’ )/n) = 0,(1).

By (D3), we may further expand I3 into

1/2/ Mg ®G —1ZA ))sz( )d

+n1/2/ MI(t) @ G~1 ‘1ZA i (£)dNF ()

S
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where AP(Z;(t)) = ¢(Z;(t)) — ¢(Z;(t—)). By assumption on h(Z) and
(D3), \V(]ﬁ(Zj(t))de(t)\ and A¢(Z;(t)) are bounded by L, K and L, K,
() = 0, (Viog(¢)/n) and N (t*) <
K, = o(y/n/(log(p)log(n))), we may replace the A;(t)’s by Aj (t)’s with
an o,(1) error. Each A;(t)V@(Z;(t))"d3(t) has mean zero and at most
K, +1 jumps, and it is (L, K + K, K )-Lipschitz between two consecutive
jumps under (D3) and conditions on ¢(z). By applying Lemma A.3(ii),
we get

respectively.

B 1ZA i) i) = 0p(Viog(ng)/n).

Hence, [|I}]lmax = Op(y/log(q")log(ng)/n) + 0,(1) = 0,(1). By applying
Lemma A.3(i) to
{B;(OAMZ;0), N7 (1) -5 =1, ,n},

we get at the jumps of N7(t)’s, at the ¢;;, satisty

sup sup |nt Z Aj(tin) AG(Zj(tir))
=1

i=1,...,n ke€l..Kr
= Op(Vlog(nKng)/n) = Op(v/10g(ng)/n).

Hence, ||I{||max = Op (Kn\/log(nq) 10g(q’)/n> = 0p(1). This completes
the proof. _ B

Define 8, = B° + r{B — B°} and h;(r;t) = Z,(t,8,). The subscript j
means the j-th element of corespondent vector. By mean-value theorem,
we have some r € (0,1) such that

hi(1;t) — hy(0;t)
— 2 o\ T S(z)(tw@'r')S(O) (ta 187’) — S(l) (t7167”)®2
- <{5 —F SO, 8, )2 >j

. "W (H)e ~Zi(t) _
= <{5 2 ¥ (E)e” {Zi(t) - Zj(taﬂr)}®2>

i=1 nS(O)(tVﬁT)

Since each ||{Z;(t) — Z;(t, 3,)}*?||
average

< K3 under (C1), their weighted

max

" ws - e,ﬁjzz(t) =
3 i(D)Yi(t) {Zi(t) — Z(t, B,)}**

< K2,
nSO(t,8,) -0

max

1=

Hence, we have shown that

sup || Z(t,8°) = Z(t,B) |l < 1B = B°1 15 = O,(1|B — B°I1r).

te[0,t*]
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By a similar argument, we can show for some r € (0,1)
AT B Zit)
SO(t,B8°) SO, B)

eBr 2 (B — BT &N w; ()Y (t)eBr Zi®
- SOt 8,) Z ! nS(jO) (6.8 Z;(t)—Z;(t)}.

On event {[|8 — 8°1 < K, n ' 37 I(X; > t*) > e K py/2}, we have

inf SO(t,8) >r /2« inf SOt B°) > r /2% ek,
tel[%l,t*] (t,B) > r*/2xe*", tel[g,t*] (t,8°) >r*/2xe

Hence,

<118 - B°lh2Ks5e* e fpy = O, (1B~ B°II1) -

SO, B°) 501t B)

° ~T
‘ B Zi(t) B Zi(t)

The event occurs with probability tending to one because we haveHB —
B°|l1 = 0p(1) from Theorem 3 and sup;c(g ;- 15O (, 8°) 7| = O, (1) from
Lemma B.7. |

Proof of Lemma B.7. Consider the event

2 = {w S I = (6 = 1) > erz/2} -
i=1

Each I(X; > t*)I(e; = 1) is i.i.d. with expectation G(t*) E[{Fi(occ; Z) — Fy(t*;
Z)}]. Applying Lemma A.1 under (3.15) and (3.22) from (C1) and (D1), we get
that Q; occurs with probability 1 — e~m¢ " r3,

Apparently, we have I(X; > t*) > I(X; > t*)I(e; = 1). Moreover, S (¢, 3°)
and S (¢, 3°) are both lower bounded by n S I(X > e KL

On Qy, sup,ep 4+ In/{D 01, T(Xi > t*)}| < 25 /py and

max< sup |S(O)(t,ﬁo)_1|, sup |§(0)(t,ﬁo)_l| < 2eKef ) py. O
te[0,t*] te[0,t*]

Proof of Lemma B.8. To simplify notation, wherever possible we will use
L(v) =T, 8).
(i) We want to prove that for all j = 1,...,p, the differences v, :=v; —7j
belong to a certain convex cone.
It follows from the KKT conditions that, for [ =1,...,p—1,
ar;(3,) ~ N
o+ Ajsen(3,,) =0 if 5, #0;
or;(%;)
3‘)’_7’,1
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Denote O; := {l € {1,...,p—1} : v}, #0} and OF := {1,...,p—1}\ O;.
For &; > 1, it follows from the KKT conditions above that on the event

Q0 = {IV,T;(7)llee < (& = DA/(& + D)},

with ; = a7, + (1 — a)v}, a € (0,1)

0 <2’73 VZF ( Nt
_ afm = A o a
ZZ’YM%"' Yl aj _J —’YJ‘TVWFJ‘(’YJ‘)
1e0s gt l€0; REX
<y - FusenF0) + 4 Y Wl + S o |
< J 75,0580 51 j Vil € +1 V5,051
1€08 1€0;
& DN
+ = é‘ +1 H’Y]ao ||1
2), 2\

— - 25 ol + 2 o, s

(ii) Let v =~/]|9|1 be the {;-standardized direction for 4 =4 — v*. By part
(i) and convexity of I'; in v, any x € (0, [|[¥||1] satisfies

2657,
& +1

vI{VLE (7 +av) - VT } < -

HVOyHl'

5+1

We relax the inequality about x above to establish an upper bound for
|7]l1- By the definition of «;, the left hand side can be bounded by

~

vI{VE (o av) = Vo T5(r) | =av VTS (v)v

zllvo, 1155 (&5, O;)
Sj ’

>

The right hand side can be bounded using the complete square {||vo, /1 —

2/(& + 1)},

2N o 25
&+1 i &+1

2);
£+1_

[vo, Il = 2Xjllvo, |l (& +1)llvo, IIE.

Combining the bounds for both sides in the inequality, we get an upper
bound for ||5||;- O

Proof of Lemma B.9. We define

B =0 Y [ 200 = 150 = 2y 0+ 9T, (010N,
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By Lemmas B.6 and 3,

mas [V,85(v5.8) = VoL (9] le = O, (1B = 811 + Viogp)/n)

=1,

V,yf‘j (77) is the average of i.i.d. vectors with mean A (7;7) = 0 and maximal

bound K?(1+ K). We can apply Lemma A.1 to (va‘l(’y’{), ce va‘p('y;)) and
get

“max
Jj=1,...,

VAT (o = (VT2 Vo Ty (75 e

= Op(V/log(p?)/n) = Op(v/log(p)/n). 0
Proof of Lemma B.10.
(i) We define

n t*
E=nty [ {20 - w(0)ang o).
i=170
The total variation of each N?(t) is at most 1. By Lemma B.6, we have

sup [1Z(t,3) — oo = O, (1B~ Bl + v/log(p)/n)

te[0,t*]

Hence,

|2 = Blmax <2KO, (||B -8 + \/1og(p)/n)
=0, (I3 ~ 87l + v/iog(w)/n) .

Now, > is average of i.i.d. with mean ¥ and bounded maximal norm K?2.
We apply Lemma A.1 with union bound,

Pr <||§] — X|lmax > K2x> < 2p262"x2.

Choosing = = /log(2p?/2)/(2n), we have || — 2| max = Op(+y/log(p)/n).
(ii) We alternatively use the following form
m(3)

n_opt” LIRS } TZ;(t)
=) /0 Ty “2?0536;2 2 24(0)° - 2,9 § ANZ(0)
i=1 j=1 ’

By Lemma B.6(iii), we have

I(B) — 12(8%) limax = O (1B = BII1)-
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We also have a similar form for

k3 _ =~ t n C > t (t)e:@TZj (t)
m(3) = 1 § : 7. ®2
(B)=n Z“/o { = S50)(t, B) e

— Z(t, 5)®2}dzv;(t).

By Lemma B.6(i), we have

152(8%) = #2(8°) [max = Op (v/10g(0) /1) -

Finally, we use the martingale property of
2 a0 S — - v §(2) (taﬁo) 7 o
m(3°) - X =n"" Z/ {W - Z(t,8 )®2} I(C; > t)dM; (1)
nt Z/ {Zi(t) — Z(t, B°)}221(C; > t)dM}(t)

12 / Z(t,07))°% ~ {Z(0) - (t)}*]
<10, > 0ae)

under filtration F;. The integrands in the first two martingale terms are
bounded by K?2. Hence, we can apply Lemma A.4(ii) to obtain that their

maximal norms are both O,, (\/log(p)/n). We apply Lemma B.6(i) to the
integrand of the third term, equivalently expressed as

{n(t) = Z(t, B°)HZi(t) = Z(t.B°)} " +{Zi(t) — n(t) Hp(t) = Z(2,8°)} .

Therefore, we obtain [|m(8°) — | max = O, («/1og(p)/n).
We put the rates together by the triangle inequality. O

Proof of Lemma B.11. The proof is similar to that of Lemma 2. Define the
compatibility factor for C;(&;, O;) and symmetric matrix ® as

&) = Vsig g

sup
ozgec;(€;,0,) 11801l

K (&5, 0

Apparently, x;(§;,0;) = K; (fj, 0j; V%I‘(v*,,@)). Notice that

n t*
VIT(y',B) =n"" Z/O {Zi—(t) = Z(t,B)}*2AN; (t) = B,
1=1



Inference for competing risks 4505

where f]_j7_j isa dropping its jth row and column. By Lemma 4.1 in Huang
et al. (2013) (for a similar result, see van de Geer and Biithlmann (2009) Corol-
lary 10.1),

ki (&5, 0;)% =K (&, 058 )
>r3(65,052 5 5) = 55(& + 21255 — B jllmax-

For any non-zero g € RP~!, let g* be its embedding into RP defined as

g k<j
g = 0 k=3
gk—1 k>

Then, we may establish a lower bound for the smallest eigenvalue of 3_; _; by
(D2)
inf g'¥_; ;g= inf g*'¥g*> 3.
ozt 8 Bojyg= i gt Ng" > rligll2
Hence, inf;_; ., %5(&;,05%_5,_;) > p. Using the result in Lemma B.10(i)
under (D4), we have

_inf K5 (& Oj)2 > p = [|2 = 3 maxSmax  max (& + 1)2 =p—op(1).
Jj=1,...,p j=1,...,p

Therefor, if {max < 1, we must have that {inf; x;(&;,0;)? > p/2} occurs with

probability tending to one. O
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