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Abstract: The purpose of this paper is to construct confidence intervals
for the regression coefficients in the Fine-Gray model for competing risks
data with random censoring, where the number of covariates can be larger
than the sample size. Despite strong motivation from biomedical applica-
tions, a high-dimensional Fine-Gray model has attracted relatively little
attention among the methodological or theoretical literature. We fill in this
gap by developing confidence intervals based on a one-step bias-correction
for a regularized estimation. We develop a theoretical framework for the
partial likelihood, which does not have independent and identically dis-
tributed entries and therefore presents many technical challenges. We also
study the approximation error from the weighting scheme under random
censoring for competing risks and establish new concentration results for
time-dependent processes. In addition to the theoretical results and algo-
rithms, we present extensive numerical experiments and an application to
a study of non-cancer mortality among prostate cancer patients using the
linked Medicare-SEER data.
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1. Introduction

High-dimensional regression has attracted increasing interest in statistical analy-
sis and has provided a useful tool in modern biomedical, ecological, astrophysical
or economics data pertaining to the setting where the number of parameters is
greater than the number of samples (see Bühlmann and van de Geer (2011) for
an overview). Regularized methods (Tibshirani, 1996; Fan and Li, 2001) pro-
vide straightforward interpretation of resulting estimators while allowing the
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number of covariates to be exponentially larger than the sample size. While
they can be consistent for prediction (i.e. estimating the underlying regression
function), confidence intervals cannot be consistently formulated, as firm guar-
antees of correct variable selection can only be established under a restrictive
set of assumptions, including but not limited to the assumption of the minimal
signal strength of the true parameter (Wasserman and Roeder, 2009; Fan and
Lv, 2010; Meinshausen and Yu, 2009), which cannot be verified in practice. For
practical purposes, it is of interest to develop inferential tools, most commonly
confidence intervals and p-values, that do not depend on such assumptions and
are yet able to provide theoretical guarantees of the quality of estimation and/or
testing; and this is the goal of our work here.

For the purposes of constructing confidence intervals or testing significance
of the effect from certain covariates, relying on a naive regularized estimation
alone is not appropriate; notably, construction of confidence intervals for those
coefficients that have been shrunk to zero is impossible. Zhang and Zhang (2014)
and van de Geer et al. (2014) proposed the one-step bias-correction estimator,
which can be subsequently used to carry out proper statistical inference. Our
work here was motivated by an illustration project of how information contained
in patients’ electronic medical records can be harvested for precision medicine.
The data set linking the Surveillance, Epidemiology and End Results (SEER)
Program database of the National Cancer Institute with the federal health in-
surance program Medicare database contained prostate cancer patients of age
65 or older. A total of 57,011 patients diagnosed between 2004 and 2009 had
information available on 7 relevant clinical variables (age, PSA, Gleason score,
AJCC stage, and AJCC stage T, N, M, respectively), 5 demographical variables
(race, marital status, metro, registry and year of diagnosis), plus 9321 binary
insurance claim codes. Among these patients 1,247 died due to cancer, and
5,221 had deaths unrelated to cancer by December 2013. An important goal of
the project was to evaluate the impact of risk factors (clinical, demographical,
and claim codes) on the non-cancer versus cancer mortality, with appropriate
statistical inference. Cancer and non-cancer versus cancer mortality are known
as competing risks in survival analysis, and cannot be handled using linear or
generalized linear regression models as considered in Zhang and Zhang (2014)
and van de Geer et al. (2014). Instead, we consider the proportional subdistri-
bution hazards regression model, often known as the Fine-Gray model Fine and
Gray (1999). Under classical low-dimensional setting, Fine and Gray derived
the estimation and inference for the model coefficients via the partial likelihood
principle, and handled right censoring by inverse probability censoring weighting
(IPCW).

Considerable research effort has been devoted to developing regularized meth-
ods to handle various regression settings (Ravikumar et al., 2010; Belloni and
Chernozhukov, 2011; Obozinski et al., 2011; Meinshausen and Bühlmann, 2006;
Basu and Michailidis, 2015; Cho and Fryzlewicz, 2015), including those for right-
censored time-to-event data (Sun et al., 2014; Bradic et al., 2011; Gäıffas and
Guilloux, 2012; Johnson, 2008; Lemler, 2016; Bradic and Song, 2015; Huang
et al., 2006, among others). However, regression has been little studied for the
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competing risks setting, with random censoring and high-dimensional covari-
ates. The purpose of this paper has two folds: 1) to study estimators under the
Fine-Gray regression model for competing risks data with many more covariates
than the number of events; 2) to develop statistical inference procedures in this
setting. To our best knowledge, no published work exists on statistical inference
for competing risks data that allows high-dimensional models; univariate test-
ing was studied in Cox proportional hazards model – however, our construction
allows for the testing of general linear hypothesis.

There are at least three significant challenges for addressing high-dimensional
competing risks regression under the Fine-Gray model. The structure of the
score function related to the partial likelihood causes a somewhat subtle issue
with many of the unobserved factors preventing a simple martingale represen-
tation. Additionally, the structure, as well as, size of the sample information
matrix renders both methodology and theoretical analysis based on the Hessian
matrix problematic. Thirdly, random censoring presents non-trivial challenges
in the presence of competing risks and weighting is needed which further com-
plicates the theoretical analysis. Also, although bootstrap has been considered
for inference under the Fine-Gray regression model, this approach is no longer
applicable given the known problems of the bootstrap in high-dimensional set-
tings. Development of high-dimensional inferential methods for competing risks
data and under the Fine-Gray model, in particular, may have been hampered
by these considerations.

In this paper, we propose a natural and sensible formulation of inferential
procedure for this high-dimensional competing risks regression. We first study a
regularized estimator of the high-dimensional parameter of interest and derive
its finite-sample properties where the interplay between the sparsity, ambient
dimension and the sample size can be directly seen. We then propose a bias-
correction procedure by formulating a new pragmatic estimator of the inverse
of a large covariance matrix that allows broad dependence structures within
the Fine-Gray model. We find that the bias-corrected estimator is effective at
capturing strong as well as weak signals, and can be used for statistical inference.
This combination leads to an efficient and simple-to-implement procedure under
the Fine-Gray model with many covariates.

1.1. Model and notation

For subject i = 1, ..., n in a study, let Ti be the event time, with the event type
or cause εi; we use the two words interchangeably in the following. Under the
Fine-Gray model that we consider below, we assume without loss of generality
that the event type of interest is ‘1’, and we code all the other event types as
‘2’ without further specification. In the presence of a potential right-censoring
time Ci, the observed time is Xi = Ti ∧ Ci. We denote the event indicator
as δi = I(Ti ≤ Ci). The type of the event εi is observed, if the event occurs
before the censoring time, i.e., when δi = 1. Let Zi(·) be the vector of covariates
that are possibly time-dependent. We focus on the situation that the dimension
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of Zi(·), p, is larger than the sample size n. Assume that the observed data
{(Xi, δi, δiεi,Zi(·))} are independent and identically distributed (i.i.d.) for i =
1, . . . , n.

Since the cumulative incidence function (CIF) is often the quantity of interest,
Fine and Gray (1999) proposed a proportional subdistribution hazards model
where the CIF

F1(t|Zi(·)) = Pr(Ti ≤ t, εi = 1|Zi(·)) = 1 − exp

(
−
∫ t

0
eβ

o!Zi(u)h1
0(u)du

)
,

(1.1)
the p-dimensional coefficient βo is the unknown parameter of interest, and h1

0(t)
is the baseline subdistribution hazard. Under the model (1.1) corresponding

subdistribution hazard h1(t|Zi(·)) = h1
0(t)e

βo!Zi(t). Throughout the paper, we
assume that there exists a sparsity factor so = |supp(βo)| for some so ≤ n. Note
that if we define an improper random variable T 1

i = TiI(εi = 1) + ∞I(εi > 1),
then the subdistribution hazard can be seen as the conditional hazard of T 1

i

given Zi(·).
We denote the counting process for type 1 event as N1

i (t) = I(T 1
i ≤ t) and

its observed counterpart as No
i (t) = I(δiεi = 1)I(Xi ≤ t). We also denote the

counting process for the censoring time as N c
i (t) = I(Ci ≤ t). Let Yi(t) =

1 − N1
i (t−) (note that this is not the ‘at risk’ indicator like under the classic

Cox model), and ri(t) = I(Ci ≥ Ti∧ t). Note that ri(t)Yi(t) = I(t ≤ Xi)+I(t >
Xi)I(δiεi > 1) is always observable, even though Yi(t) or ri(t) may not. Let
G(t) = Pr(Ci ≥ t) and let Ĝ(·) be the Kaplan-Meier estimator for G(·). Here
we assume that C is independent of T , ε and Z. Following the notation of Fine
and Gray we call the IPW at-risk process:

ωi(t)Yi(t) = ri(t)Yi(t)
Ĝ(t)

Ĝ(t ∧ Xi)
; (1.2)

in other words, the weight for subject i is one if t < Xi, zero after being censored
or failure due to cause 1, and Ĝ(t)/Ĝ(Xi) after failure due to other causes. The
log pseudo likelihood (as recently named in (Bellach et al., 2018)) that gives rise
to the weighted score function in Fine and Gray (1999) for β is

m(β) = n−1
n∑

i=1

∫ t∗

0




β#Zi(t) − log




n∑

j=1

ωj(t)Yj(t)e
β!Zj(t)








 dNo
i (t).

(1.3)
where t∗ < ∞ is the study end time.

In the following, for a vector v, let v⊗0 = 1, v⊗1 = v and v⊗2 = vv#. We
define for l = 0, 1, 2

s(l)(t,β) = E
{

G(t)/G(t ∧ Xi)ri(t)Yi(t)e
β!Zi(t)Zi(t)

⊗l
}

,

µ(t) = s(1)(t,βo)/s(0)(t,βo),



Inference for competing risks 4453

S(l)(t,β) = n−1
n∑

i=1

ωi(t)Yi(t)e
β!Zi(t)Zi(t)

⊗l, Z̄(t,β) = S(1)(t,β)/S(0)(t,β).

(1.4)

We then have the score function, i.e. derivative of the log pseudo likelihood
(1.3),

ṁ(β) = n−1
n∑

i=1

∫ t∗

0
{Zi(t) − Z̄(t,β)}dNo

i (t).

Regarding notation, let us mention that all constants are assumed to be in-
dependent of n, p and so. We use K and ρ with corresponding enumerated
subscripts to denote “big” and “small” constants. We use Q to denote interme-
diate terms used in the statements or the proofs of various results. We label the
subscripts by the corresponding order of their appearance.

1.2. Organization of the paper

This paper is organized as follows. In Section 2, we provide the bias corrected
estimator, Section 2.1, as well as the confidence interval construction, Section
2.2, for the high-dimensional Fine-Gray model. Construction of a new Hessian
estimator, the cornerstone for our bias correction and variance estimation, is
presented in Section 2.3. Section 3 presents properties of the developed estima-
tor. Additional notations for theoretical considerations are presented in Section
3.1. Bounds for the prediction error are presented in Section 3.2; Theorem 1 is
the main result on estimation. Section 3.3 studies the sampling distribution of
a newly develop test statistics while not requiring model selection consistency
or minimal signal strength. Theorem 2 is the main result regarding asymptotic
distribution. There we present a sequence of intermediate results as well. We
examine our regularized estimator and the one-step bias-corrected estimator
through simulation experiments in Section 4, and apply them to the SEER-
Medicare data in Section 5.

2. Estimation and inference for competing risks with more
regressors than events

2.1. One-step corrected estimator

A natural initial estimator to consider under the high dimensional setting is a
l1-regularized estimator, where the particular loss function of interest would be
the log pseudo likelihood as defined in (1.3). We note that our results are easily
generalizable to any sparsity-inducing and convex penalty functions, but due to
the simplicity of presentation we present details only for the l1 regularization.
That is, we consider

β̂(λ) = argmin
β∈Rp

{
−m(β) + λ‖β‖1

}
(2.1)
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for a suitable choice of the tuning parameter λ > 0. Whenever possible, we
suppress λ in the notation above and use β̂ to denote the l1-regularized estima-
tor. In the Section 3.2, we quantify the non-asymptotic oracle risk bound and
show that the estimator above, as a typical regularized estimator with p ' n,
converges at a rate slower than root-n. This implies that for inferential purposes
the bias of the estimator cannot be ignored.

Inspired by the work of Zhang and Zhang (2014) and van de Geer et al.
(2014), we propose the one-step bias-correction estimator

b̂ := β̂ + Θ̂ṁ(β̂), (2.2)

where β̂ is defined in (2.1), Θ̂ is an estimator of the “asymptotic” precision
matrix Θ to be defined later. The above construction of the one-step estimator
is inspired by the first order Taylor expansion of ṁ(·),

ṁ(βo) ≈ ṁ(β̂) − m̈(βo)(β̂ − βo)

≈ m̈(βo)
[
βo − {β̂ + Θ̂ṁ(β̂)}

]
= m̈(βo){βo − b̂}. (2.3)

The notation “≈” in the above indicates that the equivalence is approximate
with the higher order error terms omitted. We aim to find a good candidate
matrix Θ̂, such that −m̈(βo)Θ̂ ≈ Ip, with Ip denoting the p×p identity matrix.
Note that when p ≤ n an inverse of the Hessian matrix above would naturally
be a good candidate for Θ̂, but when p ≥ n such an inverse does not necessarily
exist. We will elucidate the construction of Θ̂ towards the end of this section.

2.2. Confidence Intervals

To construct the confidence intervals for components of βo, we need the asymp-
totic distribution of b̂. We will first establish the asymptotic distribution of the
score ṁ(βo). With p > n, we have to restrict the space in which we want to
establish the asymptotic distribution. The asymptotic distribution for ṁ(βo) is
established in the following sense — for any c ∈ Rp such that ‖c‖1 = 1 we have

√
nc#ṁ(βo)

d→ N(0, c#Vc),

where V is the variance-covariance matrix for
√

nṁ(βo). We construct the fol-
lowing estimator for V :

V̂ = n−1
n∑

i=1

(η̂i + ψ̂i)
⊗2, (2.4)

where η̂i and ψ̂i are defined as follows:

η̂i =

∫ t∗

0
{Zi(t) − Z̄(t, β̂)}ωi(t)dM̂1

i (t), (2.5)
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ψ̂i =

∫ t∗

0

q̂(t)

π̂(t)
dM̂ c

i (t), (2.6)

q̂(t) = n−1
n∑

i=1

I(t > Xi)

∫ t∗

t
{Zi(u) − Z̄(u, β̂)}ωi(u)dM̂1

i (u), (2.7)

π̂(t) = n−1
n∑

i=1

I(Xi ≥ t), (2.8)

dM̂1
i (t) = dNo

i (t) − ωi(t)Yi(t)eβ̂
!
Zi(t)

S(0)(t, β̂)
n−1

n∑

j=1

dNo
j (t), (2.9)

dM̂ c
i (t) = I(Xi ≥ t)dN c

i (t) − I(Xi ≥ t)

π̂(t)
n−1

n∑

j=1

I(Xj ≥ t)dN c
j (t). (2.10)

As illustrated in (2.3), we have
√

nc#(b̂−βo) to be asymptotically equivalent
to √

nc#Θṁ(βo)
d→ N(0, c#ΘVΘ#c).

We may now estimate the variance of
√

nc#(b̂ − βo) using a “sandwich” esti-

mator c#Θ̂V̂Θ̂
#
c. Therefore a (1 − α)100% confidence interval for c#βo is

[
c#b̂ − Z1−α/2

√
c#Θ̂V̂Θ̂

#
c/n, c#b̂ + Z1−α/2

√
c#Θ̂V̂Θ̂

#
c/n

]
(2.11)

with standard normal quantile Z1−α/2.
Our proposed approach addresses various practical questions as special cases.

First, we can construct confidence interval for a chosen coordinate βo
j in βo.

To that end, one needs to consider c = ej , the j-th natural basis for Rp and
apply the result (2.11). Generally, we can construct a confidence interval for any
linear contrasts c#βo, potentially of any dimension. For example, we can have
confidence intervals for the linear predictors Z#βo if the non-time-dependent
covariate Z is also sparse so that we may assume ‖Z‖1 to be bounded. As the
dual problem, we may use the Wald test statistic

Z =
√

n(c#b̂ − θ0)/

√
c#Θ̂V̂Θ̂

#
c (2.12)

to test the hypothesis with H0 : c#βo = θ0.

2.3. Construction of the inverse Hessian matrix

Although the early works under the linear model inspire the construction here,
the specifics, as well as the theoretical analysis, the latter remains a challenge.
We start by writing the negative Hessian of the log pseudolikelihood (1.3):

− m̈(β) = n−1
n∑

i=1

∫ t∗

0

{
S(2)(t,β)

S(0)(t,β)
− Z̄(t,β)⊗2

}
dNo

i (t). (2.13)
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We define

Σ = E

[∫ t∗

0
{Zi(t) − µ(t)}⊗2 dNo

i (t)

]
= E

[∫ t∗

0
{Zi(t) − µ(t)} dNo

i (t)

]⊗2

.

(2.14)
Under the regularity conditions, to be specified later, we have Σ as the “asymp-
totic negative Hessian” in the sense that the element-wise maximal norm ‖Σ+
m̈(βo)‖max converges to zero in probability. Our goal is to estimate its inverse
Θ = Σ−1 = (θ1, . . . ,θp)#, where θj ’s are the rows of Θ.

By definition (2.14), the positive semi-definite matrix Σ is also the second
moment of the random vector

U i =

∫ t∗

0
{Zi(t) − µ(t)} dNo

i (t) (2.15)

with µ(t) defined in (1.4). The expectation of U i is zero,

E(U i) = E

[∫ t∗

0
{Zi(t) − µ(t)} Yi(t)I(Ci ≥ t)eβ

t!Zi(o)h1
0(t)dt

]
= 0.

Hence, to estimate Θ, we may draw inspiration from the early work on inverting
the high-dimensional variance-covariance matrix (Zhou et al., 2011). Consider
the minimizers of the expected loss functions

γ∗
j = argmin

γj∈Rp
E(Uj − U#

−jγj)
2, τ2

j = E(Uj − U#
−jγ

∗
j )

2, (2.16)

where Uj is the jth element of U , and U−j is a p−1 dimensional vector created
by dropping the jth element from U . We show that the quantities γ∗

j and τj

defined in (2.16) can be used to construct the inverse of Σ. This is because τ2
j

can also be alternatively written as

E{(Uj − U#
−jγ

∗
j )Uj} − γ∗#

j E{(Uj − U#
−jγ

∗
j )U−j}. (2.17)

By the convexity of the target function E(Uj − U#
−jγj)

2, γ∗
j must satisfy the

first order Karush-Kuhn-Tucker conditions (KKT)

− γ∗#
j E{(Uj − U#

−jγ
∗
j )U−j} = 0. (2.18)

Applying (2.18) to (2.17), we have

τ2
j = E{(Uj − U#

−jγ
∗
j )Uj}.

We can then define a vector θ1 = (1,−γ∗#
1 )#/τ2

1 that satisfies

θ#
1 Σ = E{(U1 − U#

−1γ
∗#
1 )U}/ E{(U1 − U#

−1γ
∗
1)U1} = (1,0p−1) = e1.

Without loss of generality, we may define θj accordingly for j = 2, . . . , p, satis-
fying θ#

j Σ = ej . The matrix Θ = (θ1, . . . ,θp)# satisfies

ΘΣ = (e1, . . . , ep) = Ip,
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therefore Θ is the inverse of Σ. We now utilize the sample form of Σ, (2.14),

Σ̂ = n−1
n∑

i=1

∫ t∗

0
{Zi(t) − Z̄(t, β̂)}⊗2dNo

i (t). (2.19)

In particular we observe that Σ̂ is that it can be written as the sample second

moment Σ̂ = n−1
∑n

i=1 Û
⊗2

i where

Û i =

∫ t∗

0
{Zi(t) − Z̄(t, β̂)}dNo

i (t). (2.20)

This form allows us to define the inverse of Σ as a regression between the vectors
Û i. For that purpose we define the least squares loss function as

Γj(γj , β̂) = n−1
n∑

i=1

(
Ûi,j − Û

#
i,−jγj

)2

, j = 1, . . . , p, (2.21)

where Ûi,j is the jth element of Û i, and Û i,−j is a p − 1 dimensional vector

obtained by dropping the jth element from Û i. We then define the nodewise
LASSO in our context to be

γ̂j = argmin
γj∈Rp−1

{
Γj(γj , β̂) + 2λj‖γj‖1

}
, τ̂2

j = Γj(γ̂j , β̂) + λj‖γ̂j‖1. (2.22)

Accordingly, we use γ̂j and τ̂2
j to construct

Θ̂jk =






−γ̂j,k/(τ̂2
j ), k < j;

1/(τ̂2
j ), k = j;

γ̂j,k−1/(τ̂2
j ), k > j.

(2.23)

By the first order KKT condition, we have (Θ̂Σ̂)j,j = 1 and |(Θ̂Σ̂)j,k| ≤ λj

for j -= k. Choosing λmax = maxj=1,...,p λj = op(1), we achieve that ‖Θ̂Σ̂ −
Ip‖max goes to zero. The one-step estimator proposed in (2.2) with such Θ̂
hence converges to the true coefficient βo approximately at the rate equivalent
to ṁ(βo), as illustrated in (2.3).

Our proposed nodewise LASSO estimator is innovative in several aspects.
Given the difficulty imposed by the model, we cannot make high-dimensional
inference by simply inverting the XX# for a design matrix X like in a linear or
generalized linear model. The log pseudo likelihood (1.3) has dependent entries.
The covariates Zi(t) for i = 1, . . . , n are allowed to be time-dependent. Never-
theless, we identify for our model that the key element for the high-dimensional
inference is each observation’s contribution to the score, the U i’s. Our solution
generalizes high-dimensional matrix inversion in a non-trivial way to complex
models with censoring, non-standard likelihoods and weighting.
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3. Theoretical considerations

In this section, we present the theory for the estimators β̂, b̂ and the confidence
intervals described in the previous section. We will quantify the non-asymptotic
oracle risk bound for the estimator above while allowing p ' n with a minimal
set of assumptions. Theoretical study of this kind is novel, since in the context of
competing risks, the martingale structures typically utilized are unavailable and
new techniques need to be developed. In particular, we show that the inverse
probability weighting has a finite-sample effect that separates this model from
the classical Cox model (see comments after Theorem 1). We will also establish
that a certain tighter bound can be established whenever the hazard rate is
bounded (Theorem 3).

Throughout our work we assume that {(Ti, Ci, εi,Zi(t)) : t ∈ [0,∞)} are
i.i.d. with Ci independent of (Ti, εi,Zi(·)). Moreover, for any t ∈ [0, t∗], G(t) =
I(Ci ≥ t) is differentiable, and its hazard function hc(t) = −G′(t)/G(t) ≤ K1.
We also assume that the baseline CIF F1(t;0) is differentiable. The baseline
subdistribution hazard h1

0(t) = −d log{F1(t;0)}/dt ∈ [ρ1, K2] for all t ∈ (0, t∗)
and some ρ1 > 0 and K2 < ∞.

3.1. Additional notation

In the following, we introduce some additional notations. The counting process
martingales

M1
i (t) = N1

i (t) −
∫ t

0
Yi(u)eβ

o!Zi(u)h1
0(u)du (3.1)

are essentially helpful tools in high-dimensions for establishing theory with de-
pendent partial likelihoods. Unfortunately, the uncensored counting processes
{N1

i (t), i = 1, . . . , n} are not always observable. The observable counterpart
No

i (t) has no known martingale related to it under the observed filtration
Ft = σ{No

i (u), I(Xi ≥ u), ri(u) : u ≤ t, i = 1, . . . , n}. The Doob-Meyer com-
pensator for the submartingale No

i (t) under the observed filtration involves the
nuisance distribution of Ti|εi > 1. To utilize the martingale structure for our
theory, we have to define the “censoring complete” filtration

F∗
t = σ{No

i (u), I(Ci ≥ u),Zi(·) : u ≤ t, i = 1, . . . , n}, (3.2)

on which we have a martingale related to No
i (t),

∫ t

0
I(Ci ≥ t)dM1

i (u) = No
i (t) −

∫ t

0
I(Ci ≥ u)Yi(u)eβ

o!Zi(u)h1
0(u)du. (3.3)

To relate the martingale (3.3) with our log pseudo likelihood m(β), we define
its proxy with F∗

t measurable integrand

m̃(β) = n−1
n∑

i=1

∫ t∗

0
β#Zi(t)−log




n∑

j=1

I(Cj ≥ t)Yj(t)e
β!Zj(t)



 dNo
i (t). (3.4)
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We define processes related to m̃(β) and its derivatives as

S̃(l)(t,β) =n−1
n∑

i=1

I(Ci ≥ t)Yi(t)e
β!Zi(t)Zi(t)

⊗l, (3.5)

Z̃(t,β) =S̃(1)(t,β)/S̃(0)(t,β). (3.6)

They can also be seen as proxies to the processes in (1.4). To see that, observe
that by conditioning,

E
{
S̃(l)(t,β)

}
= E

[
E{I(Ci ≥ t)Yi(t)|Ft}eβ

!Zi(t)Zi(t)
⊗l
]

= E
{
ω̃i(t)Yi(t)e

β!Zi(t)Zi(t)
⊗2

}
,

where
ω̃i(t) = ri(t)G(t)/G(t ∧ Xi) (3.7)

is the weight with the true censoring distribution G(·). We denote their expec-
tations as

s(l)(t,β) = E
{
S̃(l)(t,β)

}
= E

{
ω̃i(t)Yi(t)e

β!Zi(t)Zi(t)
⊗2

}
. (3.8)

Our proxies precisely target those weighted samples, as S̃(l)(t,β) differs from
S(l)(t,β) only at those summands with observed type-2 events.

Note that the Kaplan-Meier estimator for G(t) can be written as

Ĝ(t) =
∏

u≤t

(
1 − dN c

i (u)

I(Xi ≥ u)

)
.

To study the convergence of Ĝ(t) to G(t), we denote a martingale related to
N c

i (t), the counting process of observed censoring, M c
i (t). Let the censoring

hazard be defined as hc(t) = −d log(G(t))/dt. Under the “censoring” filtration

Ft = σ{N c
i (u), Ti, εi,Zi(·) : u ≤ t, i = 1, . . . , n}, (3.9)

we have a martingale

M c
i (t) = N c

i (t) −
∫ t

0
I(Ci ≥ u)hc(u)du. (3.10)

We use the integration-by-parts arguments (Murphy, 1994, the Helly-Bray
argument on page 727) with random martingale measures, e.g. dM1

i (t), in our
proof. The total variation of M1

i (t; w) is defined as

t∗∨

0

M1
i (t; w) = sup

k=1,2,...
sup

0≤t1<···<tk≤t∗

n∑

j=2

|M1
i (tj ; w) − M1

i (tj−1; w)|. (3.11)
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Since M1
i (t; w) can be decomposed into a nondecreasing counting process N1

i (t)

minus another nondecreasing compensator
∫ t
0 Yi(u)eβ

o!Zi(u)h1
0(u)du, we have a

bound for its total variation

t∗∨

0

M1
i (t; w) ≤ N1

i (t∗) +

∫ t∗

0
Yi(u)eβ

o!Zi(u)h1
0(u)du. (3.12)

Similar conclusion also applies to M c
i (t), i.e. we have a bound for its total

variation
t∗∨

0

M c
i (t; w) ≤ N c

i (t∗) +

∫ t∗

0
I(Ci ≥ t)hc(u)du. (3.13)

As a convention, from hereon we suppress the w in the notation to keep it
simple.

3.2. Oracle inequality

We first establish oracle inequality for the initial estimation error ‖β̂ − βo‖1

based on the following set of conditions that are weaker than those in the next
subsection.

(C1) (Design) With probability equal to one, the covariates satisfy

sup
i=1,...,n

sup
t∈[0,t∗]

‖Zi(t)‖∞ ≤ K3/2. (3.14)

The expected at-risk process is bounded away from zero, i.e., for positive
K4 and ρ2

inf
t∈[0,t∗]

E
[
I(Ci ≥ t∗)I(t∗ < T 1

i < ∞) min{K4, e
βo!Zi(t)}

]
> ρ2. (3.15)

(C2) (Covariance) For K4 in (3.15), the smallest eigenvalue of the matrix

Σ(K4) =E

{∫ t∗

0
(Z(t) − µ(t; K4))

⊗2 h1
0(t)dt

}
,

µ(t; K4) =
E
[
Z(t){1 − F1(t;Z)} min{K4, eβ

o!Z(t)}
]

E
[
{1 − F1(t;Z)} min{K4, eβ

o!Z(t)}
]

with is at least ρ3 > 0.
(C3) (Continuity) Zi(t) may have K5,i jumps at ti,1 < ti,2 < · · · < ti,K5,i with

minimal gap between jumps bounded away from zero,

min
i=1,...,n

min
1<k≤K5,i

ti,k − ti,k+1 ≥ ρ4.

Between two consecutive jumps, Zi(t) has at most K6 elements Lipschitz
continuous with Lipschitz constant K7 while the rest of the elements are
considered to be constant.
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Remark 1 . Overall, the conditions above are minimal in the sense that they
appear in results pertaining to the Cox model (Huang et al., 2013, see e.g, (3.9)
on page 1149; (4.5) and Theorem 4.1 on page 1154).

Remark 2 . We consider a finite interval [0, t∗]. Due to missing censoring times
among those with observed type-2 events, we have to make the additional as-
sumptions to control the weighting errors. Although the weighted at-risk pro-
cesses ωi(t)’s are asymptotically unbiased, the approximation errors in the tail
t → ∞ are poor for any finite n. To avoid unnecessary complications, we set
the [0, t∗] such that we always have sufficient at-risk subjects; note that (3.15)
implies that P (C > t∗) > 0.

Remark 3 . We assume a finite maximal norm of Z(t). Condition (3.14) in
(C1) is equivalent to the apparently weaker assumption (see for example Huang
et al. (2013) equation (3.9)):

sup
1≤i<j≤n

sup
t∈[0,t∗]

‖Zi(t) − Zj(t)‖∞ ≤ K3. (3.16)

This can be seen by noting that the Cox type partial likelihood for the propor-
tional hazards model is invariant when subtracting Zi(t) by any deterministic
ζ(t).

Remark 4 . Condition (C1) (3.15) carries two facts. First, the at-risk rate for
type 1 events is bounded away from zero. Second, relative-risks arbitrarily close
to zero is truncated at a finite K4; this is necessary in high-dimensions, in order
to rule out the irregular cases where the non-zero expectation of the relative risk
is dominated by a diminishing proportion of the excessively large relative risks.
The same argument applies for (C2) in which a lower bound of the restricted
eigenvalue of the negative Hessian (Bickel et al., 2009) is defined.

Remark 5 . We assume the smoothness of the time-dependent covariates Z(t).
Subjects with observed type 2 events, remain indefinitely in the risk sets for type
1 events. For time-dependent covariates, continuity is helpful in establishing a
slow growing rate of the maximal relative risks among those subjects; something
that is a fact for time independent covariates. Note that the coordinate wise
continuity in Zi(t) is insufficient as p grows to infinity. We propose (C3) taking
into account likely practical scenarios, where the covariates are either constant,
or change only at finitely many discrete time points.

Under the above assumptions, we are ready to present our estimation error
result. Since the result holds in finite samples, we define a sequence of important
constants first. For a ε > 0 and constants K1, · · · , K7 as well as ρ1, · · · , ρ4

(introduced in the conditions above)

Q1(ε) =eK6K7‖βo‖∞ρ4 log(n/ε)/ρ4ρ1, (3.17)

Q(l)
2 (n, p, ε) =

Q1(ε)Kl
3

2l

{4K2
4 (1 + K1t∗)

ρ2
2

√
4 log(2/ε)

n
+

4K2
4K1t∗

ρ2
2n

+

√
2 log(2npl/ε)

n
+

1

n

}
, (3.18)
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where l = 0, 1, and

Q3(n, p, ε) =
{

2Q(1)
2 (n, p, ε) + K3Q

(0)
2 (n, p, ε)

}
/ρ2 + K3

√
2 log(2p/ε)/n.

(3.19)
In high-dimensional models an additional constant, the so called compatibility
factor, plays an important role. For a positive constant ξ > 1, the compatibility
factor

κ
(
ξ, O;−m̈(βo)

)
= sup

0 *=b∈C(ξ,O)

√
sob#{−m̈(βo)b}

‖bO‖1
(3.20)

where C(ξ, O) denotes the cone set

C(ξ, O) = {b ∈ Rp : ‖bOc‖1 ≤ ξ‖bO‖1},

with O denoting the indices of non-zero elements βo and Oc denoting its com-
pliment.

Theorem 1. For ξ > 1 and a ε > 0, let

λ = Q3(n, p, ε)(ξ − 1)/(ξ + 1)

with Q3(n, p, ε) defined in (3.19). When n > − log(ε/3)/(2ρ2
2) with ρ2 given in

(C1), we have under regularity conditions (C1) and (C3) that

‖β̂ − βo‖1 <
eη(ξ + 1)soλ

2Q2
4

occurs with probability no less than

Pr
(
κ
(
ξ, O;−m̈(βo)

)
> Q4

)
− e−nρ2

2/(2K2
4 ) − ne−n(ρ2−2/n)2/(8K2

4 ) − 5ε,

where Q4 is a positive constant satisfying

2K3(ξ + 1)soλ/(2Q4)
2 ≤ 1/e

and η is the smaller solution of ηe−η = 2K3(ξ + 1)soλ/(2Q4)2.

Our proof of Theorem 1 applies to the result with l2-norm and general lq-
norm for q ≥ 1. Namely, under the same conditions we have that

‖β̂ − βo‖q <
2eηξs1/q

o λ

(ξ + 1)Q4

occurs with probability no less than

Pr
(
Fq(ξ, O) > Q4

)
− e−nρ2

2/(2K2
4 ) − ne−n(ρ2−2/n)2/(8K2

4 ) − 5ε,

with the weak cone invertibility condition defined as

Fq(ξ, O) = sup
0 *=b∈C(ξ,O)

−s1/q
o b#m̈(βo)b

‖bO‖1‖b‖q
.
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A few comments are in order. For a fixed ε, the quantity Q3(n, p, ε) is of
order log(n)

√
log(p)/n. Thus, Theorem 1, together with Lemma 2 (see below),

guarantee that for λ chosen to be of the order log(n)
√

log(p)/n

‖β̂ − βo‖1 = Op

(
so log(n)

√
log(p)/n

)
.

The above estimation error rate to the error rate
√

log(p)/n of the simple Cox
model (Huang et al., 2013; Yu et al., 2019), differing only by a factor of log(n).
This factor is brought in by the error induced by the IPCW weights. Therefore,
under the rate condition so log(n)

√
log(p)/n = o(1), we obtain an asymptoti-

cally l1-consistent regularized estimator β̂.
The quantity Q1(ε) describes the error from IPCW weights through the mea-

surable approximation to processes S(l), S(l)(t,βo)− S̃(l)(t,βo). A näıve bound
for the measurable approximation is proportional to the magnitude of the rel-
ative risks in S(l), naturally of the order e‖β

o‖1K3 . eso , potentially growing
in exponential rate of n if so . na for some a > 0. Such bound grows way
too rapidly to deliver any meaningful result. Observing that the summands in
S(l) and S̃(l) at a particular index i differ from each other only when the i-th
subject has type-2 event we are able to establish a significantly sharper bound.
For that purpose, we develop ε-tail bound of the maximal relative risk among

observed type 2 events (see Appendix Lemma B.3). The quantity Q(l)
2 (n, p, ε),

involving Q1(ε) directly in the definition, gives the bound for the error from the
measurable approximation to S(l) (See in Appendix Lemma B.5).

For the rest of this section, we provide further details on the proof of Theorem
1, as well as the technical challenges involved. We highlight two results, Lemma
1 and 2. The first establishes properties of the score vector while the second one
establishes the properties of the compatibility factor (3.20).

Lemma 1. Let Q3(n, p, ε) be defined as in (3.19). Under Assumptions (C1)
and (C3),

Pr
(
‖ṁ(βo)‖∞ < Q3(n, p, ε)

)
≥ 1 − e−nρ2

2/(2K2
4 ) − ne−n(ρ2−2/n)2/(8K2

4 ) − 5ε.

Lemma 1 establishes that such event {‖ṁ(βo)‖∞ < λ(ξ − 1)/(ξ + 1)} (of
interest in Theorem 1) happens with high probability. This task is not straight-
forward in the presence of both competing risks and censoring. The greatest
challenge is the lack of the martingale property in ṁ(βo). Even if we use its
martingale proxy (an approach useful in low-dimensions) as the gradient of (3.4)

˙̃m(βo) = n−1
n∑

i=1

∫ t∗

0
{Zi(t) − Z̃(t,β)}dNo

i (t) (3.21)

with Z̃(t,β) defined in (3.6), the approximation error between ṁ(βo) and ˙̃m(βo)
is difficult to control because the error is determined by the process {ωi(t) −
I(Ci ≥ t)}eβ

o!Zi(t) with ωi(t) defined in (1.2), which can be significantly ampli-
fied when the relative risks grow with the dimension. To prove Lemma 1, we first
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show that the relative risks among subjects with observed type 2 events has sub-
Gaussian tails. This is achieved through the argument that their CIF cannot be
arbitrarily close to one; otherwise, these subjects would have probability close
to one experiencing type 1 event. As the CIF is monotonically increasing with
the relative risks, it is also unlikely to observe excessively large relative risks
among the subjects with observed type 2 events. We then use Lemma A.3(i) in

the Appendix to establish the concentration of S(l)(t,βo) − S̃(l)(t,βo) around
zero across all observed type 1 event times.

Theorem 1 assumes that Pr
(
κ
(
ξ, O;−m̈(βo)

)
> Q4

)
converges to zero for

a sequence of Q4 bounded away from zero, as sample size n goes to infinity.
In Lemma 2, we show that such event happens with high probability. Using
the connection between the compatibility factor and the restricted eigenvalue
(van de Geer and Bühlmann, 2009), we show that κ

(
ξ, O;−m̈(βo)

)
, the com-

patibility factor in the cone C(ξ, O), is bounded away from zero with probability
tending to one.

Lemma 2. Let Q(l)
2 (n, p, ε) be defined as in (3.18). Denote

Q5(n, p, ε)

=
{

2Q(2)
2 (n, p, ε) + 4K3Q

(1)
2 (n, p, ε) + (5/2)K2

3Q(0)
2 (n, p, ε)

}
/ρ2

+ K2
3

{
(1 + t∗K2)

√
2 log

(
p(p + 1)/ε

)
/n + (2/ρ2)t

∗K2Q6(n, p, ε)2
}

,

where Q6(n, p, ε) is the solution of

p(p + 1) exp{−nQ6(n, p, ε)2/(2 + 2Q6(n, p, ε)/3)} = ε/2.221.

If so

√
log(p)/n = o(1), we have under Assumptions (C1)- (C2) for n sufficiently

large

Pr
(
κ
(
ξ, O;−m̈(βo)

)
≥

√
ρ3 − so(ξ + 1)Q5(n, p, ε)

)
≥ 1 − 6ε.

3.3. Asymptotic normality for one-step estimator and honest
coverage of confidence intervals

Obtaining the asymptotic normality is technically challenging. The log-likelihood
has dependent summands both through the initial lasso estimator as well as the
Kaplan-Meier estimator. We establish the asymptotic normality for the one-step
estimator b̂ and coverage of the confidence intervals without requiring model-
selection consistency of the initial estimator. To remove the small-sample bias
of IPCW, we need slightly stronger conditions than in the previous section. In
this section alone, we use K and ρ without subscript to denote the constants
independent of n, p and so; we have only one constant Kn that is allowed to
grow with the dimension and is therefore denoted differently.
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(D1) (Design) The true linear predictors are uniformly bounded with proba-
bility one

sup
i=1,...,n

sup
t∈[0,t∗]

∣∣∣βo#Zi(t)
∣∣∣ ≤ K. (3.22)

(D2) (Hessian) The smallest eigenvalue λmin(Σ) ≥ ρ > 0, where Σ is defined
in (2.14).

(D3) (Continuity) Each Zi(t) can be represented as

Zi(t) = Zi(0) +

∫ t

0
dz

i (u)du +

∫ t

0
∆z

i (u)dNz
i (u).

for random processes dz
i (t), ∆

z
i (t) and the counting process Nz

i (t) such
that, βo#dz

i (t) is uniformly bounded between ±K and uniformly Lip-

schitz-K. Moreover, Nz
i (t)’s number of jumps Kn = o

(√
n/(log(p) log(n))

)

and an intensity function hN (t) ≤ K.
(D4) (Dimension) The rows of the matrix Σ−1 are ‖θj/Θj,j‖1 ≤ K and

sparse with sparsities s1, . . . , sp ≤ smax. Lastly, so(smax +so) log(p)/
√

n =
o(1).

We next present Theorem 2 that justifies all the proposed inference proce-
dures in Section 2.2. For that purpose we denote the asymptotic variance of
ṁ(βo) with

V = E{ηi + ψi}⊗2, (3.23)

where

ηi =

∫ t∗

0
{Zi(t) − µ(t)}ω̃i(t)dM1

i (t), (3.24)

ψi =

∫ t∗

0

∫ t∗

0

q(t)

π(t)
I(Xi ≥ t)dM c

i (t), (3.25)

q(t) = E

[
I(t > Xi)

∫ t∗

t
{Zi(u) − µ(u)}ω̃i(u)dM1

i (u)

]
, (3.26)

π(t) = Pr(Xi ≥ u), (3.27)

with M1
i (t), M c

i (t) as defined in (3.1) and (3.10).

Theorem 2. Let Θ be defined as in Section 2.3. Let V, b̂, Θ̂ and V̂ be defined
as in (3.23), (2.2), (2.23) and (2.4), respectively. Let c ∈ Rp with ‖c‖1 = 1 and
c#ΘVΘc → ν2 ∈ (0,∞). Then, whenever (C1) and (D1)-(D4) hold,

√
nc#(b̂ − βo)√
c#Θ̂V̂Θ̂

#
c

d→ N(0, 1).
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As a result of the stronger conditions required for Theorem 2, which we will
explain in more details below, we are able to achieve an improved estimation
error for the initial estimator as stated in the next theorem.

Theorem 3. Under (C1) and (D1)-(D4), we can choose λ .
√

log(p)/n and

Q4 =
√
ρ3/2, such that

‖β̂ − βo‖1 = Op

(
so

√
log(p)/n

)
= op(1).

For the rest of this section, we explain the assumptions and theoretical results
needed for Theorem 2 summarized in Lemmas 3-7. Condition (D1) is needed
whenever the model departs significantly from the linear case (van de Geer et al.,
2014; Fang et al., 2017). In our case, the asymptotic normality of

√
nṁ(βo) de-

pends fundamentally on the asymptotic tightness of
√

n ˙̃m(βo). As a necessary
condition, the predictable quadratic variation under filtration F∗

t of the martin-
gale

√
n ˙̃m(βo)

〈
√

n ˙̃m(βo)〉t∗ =

∫ t∗

0
n−1

n∑

i=1

I(Ci ≥ t)Yi(t)e
βo!Zi(t){Zi(t)− Z̃(t,βo)}⊗2h1

0(t)dt,

(3.28)
must have a finite bound independent of the dimension of the covariates. This re-
quires that the magnitude of the summands in (3.28) either be bounded or have

light tails. Hence, we cannot allow the relative risk eβ
o!Zi(t) to grow arbitrarily

large. We next observe that (D2) is a standard assumption for the validity of
the nodewise penalized regressions (2.22). Finally, note that Theorem 2 utilizes
Condition (D3); a condition stronger than (C3) needed for

√
n- approximation

error between ṁ(βo) and ˙̃m(βo).
If we define the population versions of the nodewise components defined in

(2.20)-(2.22),

U =

∫ t∗

0
{Z(t) − µ(t)}dNo(t), Γ̄j(γ) = E{Uj − U#

i,−jγ}2,

γ∗
j = argmin

γ∈Rp−1

Γ̄j(γ), τ2
j = Γ̄j(γ

∗
j ), (3.29)

then the true parameters {γ∗
j , τ

2
j : j = 1, . . . , p} uniquely define the inverse

negative Hessian Θ as described in Section 2.3. We prove this statement in the
following Lemma.

Lemma 3. Under (D2), Θj,j = 1/τ2
j and θj,−jτ2

j = γ∗
j . Moreover, ‖γ∗

j‖1 ≤ K,
τ2
j ≥ ρ and ‖Θ‖1 ≤ K/ρ.

Next, we discuss the properties of estimands γ̂j , τ̂j and Θ̂ – defining compo-
nents of the variance estimate.

Lemma 4. Under (C1) and (D1)-(D4), for λj . so

√
log(p)/n, we obtain

sup
j

‖γ̂j − γ∗
j‖1 = Op

(
sosj

√
log(p)/n

)
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and supj |τ̂2
j − τ2

j | = Op(sosj

√
log(p)/n). As the result, we obtain ‖Θ̂−Θ‖1 =

Op

(
sosmax

√
log(p)/n

)
.

The nodewise LASSO in (2.22), unlike van de Geer and Bühlmann (2009)

that has i.i.d. entries, has dependent Û i’s through the common Z̄(t, β̂); see
(2.20). Thus, our error rate takes the multiplicative form sosmax, instead of the
summation so +smax that may be expected under the generalized linear models.
In general, we consider our rate to be optimal under our model.

Using Lemma 4, we can establish the approximation condition for b̂ proposed
in (2.3).

Lemma 5. Under (C1) and (D1)-(D4), the one-step estimator b̂ satisfies the
approximation condition

√
nc#

{
Θṁ(βo) + βo − b̂

}
= Op

(
so(smax + so) log(p)/

√
n
)

= op(1)

for any c such that ‖c‖1 = 1.

Next, we show the asymptotic normality of ṁ(βo).

Lemma 6. Under conditions (C1) and (D1)-(D4), for directional vector c ∈ Rp

with ‖c‖1 = 1 and c#ΘVΘ#c → ν2 ∈ (0,∞),

√
nc#Θṁ(βo)/

√
c#ΘVΘ#c

d→ N(0, 1).

The proof uses the same approach as the initial low-dimensional result in Fine
and Gray (1999). We approximate ṁ(βo) by the sample average of i.i.d. terms
ηi + ψi plus an op

(
n−1/2

)
term. We note that the same approach involves

nontrivial techniques in order to be valid in high-dimensions. In particular,
we discover and exploit the martingale property of the term {ωi(t) − I(Ci ≥
t)}/G(t).

The last piece of our proof for Theorem 2 is the element-wise convergence of
the “meat” matrix (2.4) in the “sandwich” variance estimator.

Lemma 7. Under conditions (C1) and (D1)-(D4),

sup
i=1,...,n

‖η̂i(β̂) + ψ̂i(β̂) − ηi −ψi‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
= op(1).

Hence, ‖V̂ − V‖max = op(1).

Putting Lemmas 6 and 7 together, we obtain the main result stated in the
Theorem 2.

The details of the proofs are presented in the Appendix. Throughout the
proof, we rely heavily on our concentration results for time-dependent processes,
which we state in Section A.2 and prove in Section B.4.
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4. Numerical experiments

To assess the finite sample properties of our proposed methods, we conduct ex-
tensive simulation experiments with various dimensions and dependence struc-
ture among covariates.

4.1. Setup 1

Our first simulation setup follows closely the one of Fine and Gray (1999) but
considers high-dimensional covariates. In particular, each Zi is a vectors consist-
ing of i.i.d. standard normal random variables. For cause 1, only β1,1 = β1,2 =
0.5 are non-zero. The cumulative incidence function is:

Pr(Ti ≤ t, εi = 1|Zi) = 1 − [1 − p{1 − exp(−t)}]exp(β!
1 Zi).

For cause 2, β2,1 = β2,3 = · · · = β2,p−1 = −0.5 and β2,2 = β2,4 = · · · = β2,p =
0.5, with

Pr(Ti ≤ t|εi = 2,Zi) = 1 − exp
(
teβ

!
2 Zi

)
.

We consider four different combinations: n = 200, p = 300; n = 200, p = 500;
n = 200, p = 1000; and n = 500, p = 1000. Note that this setup considers
sparsity for cause 1 but non-sparsity for cause 2 effects. As the Fine-Gray model
does not require modeling cause 2 to make inference on cause 1, we expect that
the non-sparsity in cause 2 effects should not affect the inference on cause 1.

Table 1
Simulation results with independent covariates

True Mean SD SE(β̂) SE(b̂) Coverage Level/Power

n=200, p=300

β1,1 0.5 0.51 0.16 0.13 0.25 0.94 0.92

β1,2 0.5 0.47 0.15 0.14 0.22 0.94 0.93

β1,10 0 0.03 0.12 0.15 0.18 0.98 0.04

n=200, p=500

β1,1 0.5 0.51 0.16 0.14 0.19 0.93 0.95

β1,2 0.5 0.48 0.15 0.13 0.19 0.93 0.88

β1,10 0 -0.01 0.10 0.14 0.16 1.00 0.01

n=200, p=1000

β1,1 0.5 0.46 0.17 0.13 0.18 0.94 0.86

β1,2 0.5 0.48 0.14 0.13 0.18 0.93 0.92

β1,10 0 -0.00 0.11 0.14 0.17 0.99 0.06

n=500, p=1000

β1,1 0.5 0.51 0.10 0.08 0.14 0.99 1.00

β1,2 0.5 0.50 0.10 0.08 0.15 0.99 0.99

β1,10 0 -0.00 0.07 0.08 0.14 1.00 0.03



Inference for competing risks 4469

The results are presented in Table 1. We focus on inference for the two non-
zero coefficients β1,1 and β1,2, as well as one arbitrarily chosen zero coefficient

β1,10. The mean estimates are the average of the one-step b̂ over the 100 repeti-
tions, reported together with other quantities described below. We can see from
the average estimates column that the one-step b̂ is bias-corrected and that the
presence of many non-zero coefficients for causet 2 does not affect our inference
on cause 1.

In practice the choice of the tuning parameters is particularly challenging;
the optimal value is determined up to a constant. Moreover, the theoretical re-
sults are asymptotic. These together with the finite sample effects of n 1 p,
lead to suboptimal performance of many proposed one-step correction estima-
tors (van de Geer et al., 2014; Fang et al., 2017). Suboptimality is amplified for
survival models, due to the nonlinearity of the loss function and the presence
of censoring – both require more significant sample size (to observe asymptotic
statements in the finite samples). In the following, we propose a finite-sample
correction to the construction of confidence intervals and in particular the esti-
mated standard error (SE).

Let se(̂bj ; β̂) denote the asymptotic standard error as given in Section 2.2. As

a finite-sample correction we propose to consider se(̂bj ; b̂) in place of se(̂bj ; β̂),

where the variance estimation based on the initial LASSO estimate β̂ is replaced
by the one-step b̂. This can be viewed as another iteration of the bias-correction
formula. The resulting SE is therefore a “two-step” SE estimator. We report the
coverage rate of the confidence intervals constructed with this finite-sample cor-
rection in Table 1 and we observe good coverage close to the nominal level of
95%. We note that with 100 simulation runs the margin of error for the sim-
ulated coverage probability is about 2.18%, if the true coverage is 95%; that
is, the observed coverage can range between 95+/−4.36%. We note that the
coverage is good for all three coefficients, where non-zero or zero. In contrast,
results in the existing literature suffer under-coverage of the non-zero coeffi-
cients.

The last column ‘level/power’ in Table 1 refers to the empirical rejection rate
of the null hypothesis that the coefficient is zero, by the two-sided Wald test Z =
(̂bj − β1,j)/se(̂bj ; β̂) at a nominal 0.05 significance level. We see that although

se(̂bj ; β̂) is used, the nominal level is well preserved for the zero coefficient β1,10,
and the power is high for the non-zero coefficients β1,1 and β1,2 for the given
sample sizes and signal strength.

We repeat the above simulations with different values for β1,1 to investigate
the power of the Wald test. The results are illustrated in Figure 1, where we see
that the power increases with n and decreases with p as expected.

4.2. Setup 2

In the second setup we consider the case where the covariates are not all in-
dependent, which is more likely the case in practice for high dimensional data.
We consider the block dependence structure also used in Binder et al. (2009).
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Fig 1. Power curve for testing β1,1 = 0 at nominal level 0.05

We consider n = 500, p = 1000; β1,1∼8 = 0.5, β1,9∼12 = −0.5 and the rest are
all zero. β2,1∼4 = β2,13∼16 = 0.5, β2,5∼8 = −0.5 and the rest of β1 are all zero.
The covariates are grouped into four blocks of size 4, 4, 8 plus the rest, with
the within-block correlations equal to 0.5, 0.35, 0.05 and 0. The four blocks are
separated by the horizontal lines in Table 2.

Table 2
Simulation results with block correlated covariates

True Mean SD SE(β̂) SE(b̂) Coverage Level/Power

n=500, p=1000

β1,1 0.5 0.47 0.10 0.07 0.12 0.97 1.00

β1,2 0.5 0.48 0.10 0.07 0.12 0.94 0.98

β1,3 0.5 0.47 0.10 0.07 0.12 0.98 1.00

β1,4 0.5 0.47 0.10 0.07 0.12 0.94 1.00

β1,5 0.5 0.48 0.10 0.06 0.11 0.93 1.00

β1,6 0.5 0.46 0.10 0.06 0.11 0.94 1.00

β1,7 0.5 0.47 0.09 0.06 0.11 0.95 1.00

β1,8 0.5 0.47 0.08 0.06 0.11 0.98 1.00

β1,9 -0.5 -0.44 0.08 0.06 0.11 0.93 1.00

β1,10 -0.5 -0.42 0.08 0.06 0.11 0.92 1.00

β1,11 -0.5 -0.41 0.08 0.06 0.11 0.91 1.00

β1,12 -0.5 -0.43 0.07 0.05 0.11 0.94 1.00

β1,13 0 -0.01 0.06 0.05 0.11 0.98 0.11

β1,14 0 -0.02 0.05 0.05 0.11 1.00 0.06

β1,15 0 -0.02 0.06 0.06 0.11 0.99 0.08

β1,16 0 -0.02 0.06 0.05 0.11 1.00 0.05

β1,30 0 -0.00 0.05 0.06 0.11 1.00 0.01
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Table 2 shows the inferential results for the non-zero coefficients β1,1 ∼ β1,12,
as well as the zero coefficients β1,13 ∼ β1,16 from the third correlated block
that also contains some of the non-zero coefficients, and plus arbitrarily chosen
zero coefficient β1,30. The initial LASSO estimator tended to select only one of
every four non-zero coefficients of the correlated covariates (data not shown),
as it is known that block dependence structure is particularly challenging for
the Lasso type estimators. On the other hand, the one-step estimator performed
remarkably well, capturing all of the non-zero coefficients.

Compared to the results in the last part of Table 1 with the same n and p,
the block correlated covariates led to slightly more bias in b̂, although the CI
coverage remained high. The power also remained high, although in the third
block with the mixed signal and noise variables the type I error rates appeared
slightly high.

5. SEER-medicare data example

The SEER-Medicare linked database contains clinical information and claims
codes for 57011 patients diagnosed between 2004 and 2009. The clinical and
demographic information were collected at diagnosis, and the insurance claim
data were from the year prior to diagnosis. The clinical information contained
PSA, Gleason Score, AJCC stage and year of diagnosis. Demographic informa-
tion included age, race, and marital status. The same data set was considered in
Hou et al. (2018), where the emphasis was on variable selection and prediction
error. Our focus is on testing and construction of confidence intervals.

In the following, we consider 2000 patients diagnosed during the year of
2004. The only cause for loss to follow-up was the administrative censoring at
the end of the study which was year 2011. Consequently, the year of enroll-
ment was the only factor affecting the censoring distribution. In our sample,
all the subjects share the same year of enrollment 2004, so we may reason-
ably make the independent censoring assumption. Among them 76 died from
the cancer and 337 had deaths unrelated to cancer. The process of identify-
ing of the causes is detailed in Riviere et al. (2019). There were 9326 binary
claims codes in the data. Here we would like to identify the risk factors for
non-cancer mortality using the Fine-Gray model. We kept only the claims codes
with at least 10 and at most 1990 occurrences. The resulting dataset had 1197
covariates. We center and standardize all the covariates before performing the
analysis. To determine the penalty parameters λ and λj we used 10-fold cross-
validation.

In Table 3, we present the result for 21 coefficients. Here, we focused on
potential risk factors for non-cancer mortality, such as heart disease and colon
cancer (different than prostate cancer); the coefficients to be tested were chosen
ahead of time following recommendations from the doctors. We also include the
clinical markers associated with the prostate cancer in comparison. A descrip-
tions of the variables is given in Table 4. For each coefficient, we report the
initial estimate β̂, one-step estimate b̂, corrected SE, the 95% CI constructed
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with the corrected SE and the Wald test p-value (2-sided) calculated using the
uncorrected SE.

Table 3
Inference for the SEER-Medicare linked data on non-cancer mortality among prostate

cancer patients

Variables LASSO One-step estimate and Inference

β̂ b̂ se(̂b) 95% CI p-value

Age 0.075 0.096 0.009 [ 0.078, 0.114] 2e-24∗

Marital 0 0.218 0.147 [-0.071, 0.507] 0.042

Race.OvW 0 -0.213 0.224 [-0.652, 0.225] 0.317

Race.BvW 0.244 0.528 0.122 [ 0.288, 0.767] 1e-04∗

PSA 0 0.005 0.003 [-0.000, 0.010] 0.041

GleasonScore 0 0.084 0.050 [-0.014, 0.182] 0.085

AJCC-T2 0 -0.130 0.146 [-0.418, 0.157] 0.218

ICD-9 51881 0.866 1.357 0.361 [ 0.650, 2.064] 4e-07∗

ICD-9 4280 0.404 0.697 0.062 [ 0.576, 0.818] 2e-06∗

CPT 93015 -0.061 -1.042 0.327 [-1.683, -0.401] 4e-05∗

ICD-9 42731 0.135 0.459 0.191 [ 0.086, 0.833] 0.001∗

CPT 72050 0 3.718 0.208 [ 3.310, 4.125] 4e-05∗

ICD-9 6001 0 -2.454 0.577 [-3.585, -1.322] 0.000∗

CPT 74170 0 -1.689 0.288 [-2.255, -1.124] 0.001∗

ICD-9 2948 0.539 0.746 0.205 [ 0.343, 1.148] 0.009

ICD-9 49121 0.150 0.476 0.215 [ 0.055, 0.896] 0.015

ICD-9 2989 0.079 0.450 0.135 [ 0.184, 0.715] 0.062

ICD-9 79093 -0.056 -0.348 0.176 [-0.693, -0.002] 0.088

ICD-9 41189 0 1.332 0.434 [ 0.480, 2.184] 0.003∗∗

CPT 45380 0 -2.250 0.544 [-3.318, -1.182] 0.003∗∗

ICD-9 3320 0 0.378 0.373 [-0.353, 1.110] 0.327

∗ denotes 5% significance after Bonferroni correction for these 21 variables, whereas
∗∗ denotes 10% significance after Bonferroni correction for these 21 variables

In Table 3, we see that the claims codes ICD-9 4280, CPT 93015, ICD-9 42731
are all related to the heart disease, and are all significant at 5% level Bonferroni
correction for the 21 variables included in the table. However, a heart attack
indicator variable, ICD-9 41189, shows up significant at 10% level although the
naive regularized estimator was not able to select this variable as important;
this indicates that our inference procedure is much more delicate (stable) at
discovering significant variables. In support of that, an indicator of a possible
cancer in the abdomen, CPT 74170, is reported as significant at 5% although the
initial Lasso regularized method failed to include such variable. Similar result is
seen for the indicator of a fall (CPT 72050) which for an elderly person can be
fatal. An indicator of a colon cancer (CPT 45380) turns out to be significant at
10% although the Lasso method set it to zero initially. Therefore, our one-step
method is able to recover important risk factors that would have been missed
by the initial regularized estimator.
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Table 4
Description of the variables in Table 3

Code Description

Age Age at diagnosis
Marital marSt1: married vs other
Race.OvW Race: Other vs White
Race.BvW Race: Black with White
PSA PSA
GleasonScore Gleason Score
AJCC-T2 AJCC stage-T: T2 vs T1
ICD-9 51881 Acute respiratory failure (Acute respiratory failure)
ICD-9 4280 Congestive heart failure; nonhypertensive [108.]
CPT 93015 Global Cardiovascular Stress Test
ICD-9 42731 Cardiac dysrhythmias [106.]
CPT 72050 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Spine

and Pelvis
ICD-9 6001 Nodular prostate
CPT 74170 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Ab-

domen
ICD-9 2948 Delirium dementia and amnestic and other cognitive disorders [653]
ICD-9 49121 Obstructive chronic bronchitis
ICD-9 2989 Unspecified psychosis
ICD-9 41189 acute and subacute forms of ischemic heart disease, other
CPT 45380 Under Endoscopy Procedures on the Rectum
ICD-9 3320 Parkinsons disease [79.]

In contrast, non-life-threatening diseases, were not selected as significant pre-
dictors for the non-cancer mortality. These include Parkinson’s (ICD-9 3320),
Psychosis (ICD-9 2989), Bronchitis (ICD-9 49121) and Dementia (ICD-9 2948)
in the table. It is worth noting that some of these were selected by the initial
estimate but were then corrected by our test. We also note that the prostate
cancer related variables, PSA, Gleason Score and AJCC all have large p-values
for non-cancer mortality. This is consistent with the results in Hou et al. (2018),
where under the competing risk models the predictors for a second cause only
has secondary importance in predicting the events due to the first cause.

6. Discussion

This article focuses on estimation and inference under the Fine-Gray model
with many more covariates than the number of events, which is well-known
to be the effective sample size for survival data. The article studies the rate of
convergence of a Lasso estimator and develops a new one-step estimator that can
be utilized for asymptotically optimal inference: confidence intervals and testing.
These results can be generalized to any sparsity-inducing and convex penalty
functions including but not limited to one-step SCAD, adaptive LASSO, elastic
net, to name a few. Moreover, it is worth noting that the variance estimation is
novel in that it regresses a re-weighted score vector onto the score vector; in this
way, the usual difficulty with asymptotic Hessian is avoided; it is worth pointing
that the sandwich estimator or bootstrap carry biases in high-dimensions.



4474 J.Hou et al.

An often overlooked restriction on the time-dependent covariates Zi(t), i =
1, . . . , n, under the Fine-Gray model is that Zi(t) must be observable even after
the i-th subject experiences a type 2 event. In practice, Zi(t) should be either
time independent or external (Kalbfleisch and Prentice, 2002). In our case the
continuity conditions (C3) and (D3) are easily satisfied if the majority of the
elements in Zi(t) are time independent, which is most likely to be the case in
practice. Our theory does not apply in studies involving longitudinal variables
that are supposed to be truly measured continuously over time.

We have illustrated that the method based on regularization only (without
bias correction) might have severe disadvantages in many complex data situa-
tions – for example, it may potentially fail to identify relevant variables that
are associated with the response. From the analysis of the SEER-medicare data,
we see that variables like CPT 72050 (related to fall) or, CPT 74170 (related
to diagnostic imaging of the abdomen, often for suspected malignancies) would
not have been discovered as important risk factors for non-cancer mortality by
regularization alone. In reality, both can be life-threatening events for an el-
derly patient. The one-step estimate, on the other hand, was able to detect
these, therefore providing a valuable tool for practical applications. The one-
step estimator is applicable as long as the model is sparse, and no minimum
signal strength is required; this is another important aspect which makes the
estimator more desirable for practical use than the LASSO type estimators.

Appendix

In the appendix, we denote global quantities as Q and event sets as Ω with
subscripts labelled by their order of appearance. Other quantities are all local,
i.e. only defined for the current Lemma. We denote the ordered observed type-1
event times as T 1

(1), . . . , T
1
(KT ).

Appendix A: Concentration inequalities

Here we give the statements of the inequalities frequently used in our proofs.
The notations in this section are all generic.

A.1. Classical concentration inequalities

Lemma A.1. Hoeffding’s Inequality (Theorem 2 of Hoeffding (1963) p.4)
If X1, . . . , Xn are independent and ai ≤ Xi ≤ bi (i = 1, 2, . . . , n), then for t > 0

Pr(X̄ − µ ≥ t) ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
.

Lemma A.2. A version of Azuma’s Inequality (Theorem 1 and Remark 7
of Sason (2013) p.3 and p.5) Let {Xk, Fk}k = 0∞ be a discrete-parameter real-
valued martingale sequence such that for every k, the condition |Xk−Xk−1| ≤ ak



Inference for competing risks 4475

holds almost surely for some non-negative constants {ak}∞k=1. Then

Pr

(
max

k∈1,...,n
|Xk − X0| ≥ t

)
≤ 2 exp

(
− t2

2
∑n

k=1 a2
k

)

A.2. Concentration inequalities for time-dependent processes

Lemma A.3. Let {(Si(t), Ni(t)) ∈ Rq × N : i = 1, . . . , n, t ∈ [0, t∗]} be i.i.d.
pairs of random processes. Each Ni(t) is a counting process bounded by KN .
Denote its jumps as 0 ≤ ti1 < · · · < tiKi ≤ t∗. Let S̄(t) = n−1

∑n
i=1 Si(t) and

E{Si(t)} = s(t). Suppose sup1≤i<j≤n supt∈[0,t∗] ‖Si(t)−Sj(t)‖max ≤ KS almost
surely. Then,

(i) The empirical S̄(tij) concentrates around the s(tij) with large probabil-
ity, Pr

(
supi=1,...,n supj=1,...,Ki

∥∥S̄(tij) − s(tij)
∥∥

max
> KSx + (KS)/n

)
<

2nKNqe−nx2/2.
(ii) Assume in addition that each Si(t) is càglàd generated by

Si(t) = Si(0) +

∫ t

0
ds(u)du +

∫ t

0
Js(u)dNi(u)

for some ds(t) and Js(t) satisfying ‖ds(t)‖max < LS and ‖Js(u)‖max <

KS, and E{Ni(t)} =
∫ t
0 hN

i (u)du for some hN
i (t) ≤ K. We have

sup
i=1,...,n

sup
t∈[0,t∗]

∥∥S̄(t) − s(t)
∥∥

max
= Op(

√
log(nKNq)/n).

Lemma A.4. Let {Mi(t) : t ∈ [0, t∗], i = 1, . . . , n} be a Ft-adapted counting

process martingales Mi(t) = Ni(t) −
∫ t
0 Yi(t)hi(u)du with bounded intensities

supi=1,...,n supt∈[0,t∗] hi(t) ≤ Kh. Let {Φi(t) : t ∈ [0, t∗], i = 1, . . . , n} be the q
dimensional Ft−-measurable processes such that

sup
i=1,...,n

sup
t∈[0,t∗]

‖Φi(t)‖max ≤ KΦ.

For MΦ(t) = n−1
∑n

i=1

∫ t
0 Φi(u)dMi(u), we have

(i) Pr
(
supt∈[0,t∗] ‖MΦ(t)‖max ≥ KΦ(1 + Kht∗)x+ KΦKht∗/n

)
≤ 2qe−nx2/4.

(ii) Assume in addition supi=1,...,n supt∈[0,t∗] ‖Φi(t)‖max =Op(an) and Kht∗ .
O(1). Then, supt∈[0,t∗] ‖MΦ(t)‖max = Op(an

√
log(q)/n).

Appendix B: Proofs of main results

We shall present our proofs in the following order. First, we give the proofs to
our theorems using the main Lemmas stated in Section 3. Second, we present the
auxiliary lemmas necessary for the proofs of main Lemmas. Third, we present
the proofs to the main Lemmas. Lastly, we present the proofs to the our con-
centration inequalities and auxiliary lemmas.



4476 J.Hou et al.

B.1. Proofs of theorems

Proof of Theorem 1. Observe that the same techniques as those of Huang et al.
(2013) apply (see for example Lemmas 3.1 and 3.2 therein). The structure of
the partial likelihood is the same as that of the Cox model modular the IPW
weight functions wj(t). Following the same line of proof we can easily obtain
on the event {‖ṁ(βo)‖∞ < λ(ξ − 1)/(ξ + 1)}, the estimation error of LASSO

estimator β̂ defined in (2.1) has the bound

‖β̂ − βo‖1 ≤ eς(ξ + 1)soλ

2κ
(
ξ, O;−m̈(βo)

)2 , (B.1)

where ς is the smaller solution to

ςe−ς = K3(ξ + 1)soλ/{2κ
(
ξ, O;−m̈(βo)

)2}.

‖β̂ − βo‖1 ≤ eς(ξ + 1)soλ

2κ
(
ξ, O;−m̈(βo)

)2 (B.2)

with ςb = supt∈[0,t∗] sup1≤i<j≤n |b#{Zi(t) − Zj(t)}| in the event ‖ṁ(βo)‖1 ≤
λ(ξ − 1)/(ξ + 1). The proof is then completed by applying the conclusion of
Lemma 1.

Proof of Theorem 2. Be Lemmas 5 and 6, we have

√
n
c#(b̂ − βo)

c#ΘVΘ#c
=

√
n

Θṁ(βo)

c#ΘVΘ#c
+ op(1)

d→ N(0, 1).

In Lemma 7, we have shown that ‖V‖max is bounded by K2(1+KeKt∗)2{1+
2(1 + K)eK/ρ2}2 with probability tending to one. In Lemma 3, we have shown
that ‖Θ‖1 is bounded by K/ρ. Then, we can apply Lemmas 4 and 7 to get

|c#ΘVΘ#c − c#Θ̂V̂Θ̂
#
c| ≤ ‖c‖1‖Θ− Θ̂‖1‖V‖max‖Θ‖1‖c‖1

+ ‖c‖1{‖Θ‖1 + ‖Θ̂−Θ‖1}‖V − V̂‖max‖Θ‖1‖c‖1

+ ‖c‖1{‖Θ‖1 + ‖Θ̂−Θ‖1}{‖V̂ − V‖max + ‖V‖max}‖Θ− Θ̂‖1‖c‖1

= 2Op(‖Θ− Θ̂‖1) + Op(‖V − V̂‖max) = op(1).

Note that we use the following fact

‖c#Θ‖1 =
p∑

j=1

|
p∑

i=1

ciΘi,j | ≤
p∑

i=1

|ci|
p∑

j=1

|Θi,j | ≤ ‖c‖1‖Θ‖1.

Proof of Theorem 3. Since we assume (D1) now, the relative risks are bounded

almost surely from above and below by constants 0 < e−K ≤ eβ
o!Zi(t) ≤

eK < ∞. We may set K4 = eK to directly obtain (C2) from (D2). We can also
improve the rate of estimation error in Theorem 1 by log(n) because we need
not let Q1(ε) in Lemma B.5 to grow with n.
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B.2. Auxiliary lemmas

Lemma B.1. Let {ai(t) : t ∈ [0, t∗], i = 1, . . . , n} be a set of nonnegative
processes. Under (3.14), where K3 is defined,

∥∥∥∥

∑n
i=1 ai(t)Zi(t)⊗l

∑n
i=1 ai(t)

∥∥∥∥
max

≤ (K3/2)l, and

∥∥∥∥
E{ai(t)Zi(t)⊗l}

E{ai(t)}

∥∥∥∥
max

≤ (K3/2)l.

As a result, the maximal norms of S(l)(t,β)/S(0)(t,β) and S̃(l)(t,β)/S̃(0)(t,β)
and s(l)(t,β)/s(0)(t,β), defined in (1.4) and (3.6), are all uniformly bounded by
(K3/2)l.

Lemma B.2. Let K4 and ρ2 be defined as in (3.15). Define

S̃(0)(t; K4) = n−1
n∑

i=1

I(Ci ≥ t∗)Yi(t
∗) min{K4, e

βo!Zi(t)}. (B.3)

Let T 1
(1), . . . , T

1
(KT ) be the observed type-1 events. Under (C1), the event

Ω1 =

{
n−1

∑

i=1

I(Xi ≥ t∗) ≥ ρ2/(2K4), sup
k∈1...KT

S̃(0)
(
T 1

(k); K4

)
≥ ρ2/2

}

(B.4)

occurs with probability at least 1 − e−nρ2
2/(2K2

4 ) − ne−n(ρ2−2/n)2/(8K2
4 ).

On Ω1, we have supk∈1...KT
S̃(0)(T 1

(k)) ≥ ρ2/2.

Lemma B.3. Let Q1(ε) = eK6K7‖βo‖∞ρ4 log(n/ε)/(ρ4ρ1) be defined as in (3.17).
Under (C3), the event

Ω2(ε) =

{
sup

i=1,...,n
sup

t∈[0,t∗]
I(δiεi > 1)eβ

o!Zi(t) < Q1(ε)

}
(B.5)

occurs with probability at least 1 − ε.

Lemma B.4. Define the IPW weights with true G(t), ω̃i(t) = ri(t)G(t)/G(Xi∧
t), as in (3.7) and

Q7(n, p, ε) = 4(K4/ρ2)
2
{

(1 + K1t
∗)
√

4 log(2/ε)/n + K1t
∗/n

}
. (B.6)

Under (C1),

Ω3(ε) =

{
sup

t∈[0,t∗]
sup

t∈[0,t∗]
|ωi(t) − ω̃i(t)| ≤ Q7(n, p, ε)

}
(B.7)

occurs on event Ω1 with probability at least Pr(Ω1) − ε.
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Lemma B.5. Define

∆(l)(t) = S(l)(t,βo) − S̃(l)(t,βo),

with S(l) and S̃(l) defined in (1.4) and (3.6). Let T 1
(1), . . . , T

1
(KT ) be the observed

type-1 events for some KT ≤ n. Denote Q1(ε) = eK6K7‖βo‖∞ρ4 log(n/ε)/(ρ4ρ1)
and

Q(l)
2 (n, p, ε) =

Q1(ε)Kl
3

2l

{4K2
4 (1 + K1t∗)

ρ2
2

√
4 log(2/ε)

n
+

4K2
4K1t∗

ρ2
2n

+

√
2 log(2npl/ε)

n
+

1

n

}

as in (3.17) and (3.18). Under (C1) and (C3),

Ω4(ε) =

{
max

l=0,1,2
sup

k∈1...KT

∥∥∥∆(l)
(
T 1

(k)

)∥∥∥
max

≤ Q(l)
2 (n, p, ε)

}

∩ Ω1 ∩ Ω2(ε) ∩ Ω3(ε), (B.8)

with Ω1, Ω2(ε) and Ω3(ε) defined in Lemmas B.2, B.3 and B.4, occurs with

probability at least 1 − e−nρ2
2/(2K2

4 ) − ne−n(ρ2−2/n)2/(8K2
4 ) − 5ε.

On Ω4(ε), we have for l = 1, 2,

sup
k∈1...KT

∥∥∥∥∥∥

S(l)
(
T 1

(k),β
o
)

S(0)
(
T 1

(k),β
o
) −

S̃(l)
(
T 1

(k),β
o
)

S̃(0)
(
T 1

(k),β
o
)

∥∥∥∥∥∥
max

≤2{Q(l)
2 (n, p, ε) + (K3/2)lQ(0)

2 (n, p, ε)}/ρ2.

Lemma B.6. Denote ∆(l)(t) = S(l)(t,βo)− S̃(l)(t,βo) as in Lemma B.5, with

S(l)(t,βo) and S̃(l)(t,βo) defined in (1.4) and (3.6), respectively. Under (C1),
(D1) - (D3) and (D4),

(i) supt∈[0,t∗] ‖∆(0)(t)‖max = Op

(√
log(n)/n

)
;

supl=1,2 supt∈[0,t∗] ‖∆(l)(t)‖max, supt∈[0,t∗] ‖Z̄(t,βo) − Z̃(t,βo)‖∞,

supt∈[0,t∗] ‖Z̃(t,βo) − µ(t)‖∞ and supt∈[0,t∗] ‖Z̄(t,βo) − µ(t)‖∞ are all

Op

(√
log(p)/n

)
;

(ii) Define
∆i(t) = {ωi(t) − I(Ci > t)}Yi(t). (B.9)

Let φ(Z) be a differentiable operator Rp 4→ Rq uniformly bounded by Kφ .
1 with ‖∇φ(Z)‖1 < Lh . 1, and g(t) be a F∗

t− adapted process in Rq′
with

bound supt∈[0,t∗] ‖g(t)‖max ≤ Kg . 1. Whenever qq′ = p, we have
∥∥∥∥∥∥
n−1/2

n∑

i=1

∫ t∗

0
n−1

n∑

j=1

∆j(t)φ(Zj(t))g(t)#I(Ci ≥ t)dM1
i (t)

∥∥∥∥∥∥
max

= op(1);

(B.10)
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(iii) for any β̃ ∈ Rp, supt∈[0,t∗] ‖Z̄(t,βo) − Z̄(t, β̃)‖∞ = Op(‖β̃ − βo‖1); if

‖β̃ − βo‖1 = op(1),

sup
i=1,...,n

sup
t∈[0,t∗]

∣∣∣∣∣
eβ

o!Zi(t)

S(0)(t,βo)
− eβ̃

!
Zi(t)

S(0)(t, β̃)

∣∣∣∣∣ = Op(‖β̃ − βo‖1).

Lemma B.7. Let S(0) and S̃(0) be defined as in (1.4) and (3.6), respectively.
Under (C1) and (D1), supt∈[0,t∗]|n/{

∑n
i=1 I(Xi ≥ t∗)}|, supt∈[0,t∗]|S(0)(t,βo)−1|

and supt∈[0,t∗] |S̃(0)(t,βo)−1| are all Op(1).

Lemma B.8. Let Γj , β̂ and γ∗
j be defined as in (2.21), (2.1) and (2.16), re-

spectively. On the event

Ω5(λ, ξj) :=
{∥∥∥∇γΓj

(
γ∗

j , β̂
)∥∥∥

∞
≤ (ξj − 1)λj/(ξj + 1), ∀j = 1, . . . , p

}
, (B.11)

we have under (D2)

(i) the estimation error γ̃j := γ̂j − γ∗
j belongs to the cone

Cj(ξj , Oj) := {v ∈ Rp−1 : ‖vOc
j
‖1 ≤ ξj‖vOj‖1} (B.12)

(ii) and ‖γ̂j −γ∗
j‖1 ≤ {sjλj(ξj +1)}/{2κj(ξj , Oj)2}, with compatibility factor

κj(ξj , Oj) = sup
0 *=g∈Cj(ξj ,Oj)

√
sjg#∇2

γΓ(γ∗, β̂)g

‖gOj‖1
(B.13)

for all j = 1, . . . , p.

Lemma B.9. Let Γj , β̂ and γ∗
j be defined as in (2.21), (2.1) and (2.16), re-

spectively. Under (C1) and (D1)-(D4),

max
j=1,...,p

∥∥∥∇γΓj

(
γ∗

j , β̂
)∥∥∥

∞
= Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

Lemma B.10. Let Σ̂, Σ, m̈ be defined as in (2.19), (2.14) and (2.13), respec-
tively. Under (C1) and (D1)-(D4),

(i)
∥∥∥Σ̂−Σ

∥∥∥
max

= Op

(
so

√
log(p)/n

)
;

(ii) for any β̃ such that ‖β̃ − βo‖1 = op(1),
∥∥∥−m̈(β̃) −Σ

∥∥∥
max

= Op

(
‖β̃ − βo‖1 +

√
log(p)/n

)
.

Lemma B.11. Let κj(ξj , Oj) be define as in Lemma B.8 (B.12). Under (C1)
and (D1)-(D4), setting ξmax = maxj=1,...,p ξj . 1, we have

Pr

(
inf
j
κj(ξj , Oj)

2 ≥ ρ/2

)
→ 1.
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B.3. Proof of main lemmas

Proof of Lemma 1. Let T 1
(1), . . . , T

1
(KT ) be the observed type-1 events. We may

decompose the score ṁ(βo) as its martingale proxy plus an approximation error,

ṁ(βo) = ˙̃m(βo) + n−1
∑

k=1,...,KT

{
Z̃
(
T 1

(k),β
o
)
− Z̄

(
T 1

(k),β
o
)}

,

with Z̃ and Z̄ defined in (1.4) and (3.6), respectively.
Recall that the counting process for observed type-1 event can be written

as No
i (t) =

∫ t
0 I(Ci ≥ u)dN1

i (t). Moreover, ˙̃m(βo) takes the form of the Cox
model score with counting process {No

i (t)} and at-risk process {I(Ci ≥ t)Yi(t)}.
The “censoring complete” filtration F∗

t can also be equivalently generated by
{No

i (t), I(Ci ≥ t)Yi(t),Zi(t)}. Thus, we may apply Lemma 3.3 in Huang et al.
(2013) under (3.14) from (C1),

Pr(‖ ˙̃m(βo)‖∞ > K3x) ≤ 2pe−nx2/2.

Notice that the inequality is sharper than that in Lemma A.4(i) because the
compensator part of ˙̃m(βo) is zero.

The concentration result for approximation error

Z̃
(
T 1

(k),β
o
)
− Z̄

(
T 1

(k),β
o
)

=
S(1)

(
T 1

(k),β
o
)

S(0)
(
T 1

(k),β
o
) −

S̃(1)
(
T 1

(k),β
o
)

S̃(0)
(
T 1

(k),β
o
)

is established in Lemma B.5 on Ω4(ε). We obtain the concentration inequality
for ṁ(βo) by adding the bounds and tail probabilities together.

Proof of Lemma 2. Our strategy here is the same as that for Lemma 1. We
first show that κ

(
ξ, O;−m̈(βo)

)
is lower bounded by κ(ξ, O;− ¨̃m(βo)) plus a

diminishing error. Since ¨̃m(βo) takes the form of a Cox model Hessian, we then
may apply the results from Huang et al. (2013).

By Lemma 4.1 in Huang et al. (2013) (for a similar result, see van de Geer
and Bühlmann (2009) Corollary 10.1),

κ2(ξ, O;−m̈(βo)) ≥ κ2(ξ, O;− ¨̃m(βo)) − so(ξ + 1)2‖m̈(βo) − ¨̃m(βo)‖max.

Let T 1
(1), . . . , T

1
(KT ) be the observed type-1 events. We can write m̈(βo)− ¨̃m(βo)

as

−n−1
KT∑

k=1

[
S(2)

(
T 1

(k),β
o
)

S(0)
(
T 1

(k),β
o
) −

S̃(2)
(
T 1

(k),β
o
)

S̃(0)
(
T 1

(k),β
o
)

− Z̄
(
T 1

(k),β
o
)⊗2

+ Z̃
(
T 1

(k),β
o
)⊗2

]
,
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with S(l), S̃(l), Z̃ and Z̄ defined in (1.4) and (3.6). By Lemma B.1, we have that

supt∈[0,t∗] ‖Z̄(t,βo)‖∞ and supt∈[0,t∗] ‖Z̃(t,βo)‖∞ are both bounded by K3/2.
On the Ω4(ε) as defined in Lemma B.5, we apply Lemma B.5 once with l = 2
and twice with l = 1 to get

‖m̈(βo) − ¨̃m(βo)‖max

≤
{

2Q(2)
2 (n, p, ε) + 4K3Q

(1)
2 (n, p, ε) + (5/2)K2

3Q(0)
2 (n, p, ε)

}
/ρ2,

with Q(l)
2 (n, p, ε) defined in (3.18).

Our (C1) and (C2) contains all the condition for Theorem 4.1 in Huang et al.
(2013). Hence, we may apply their result

κ2(ξ, O;− ¨̃m(βo))

≥κ2(ξ, O;Σ(K4)) − so(ξ + 1)2K2
3

×
{

(1 + t∗K2)
√

2 log
(
p(p + 1)/ε

)
/n + (2/ρ2)t

∗K2Q6(n, p, ε)2
}

with probability at least Pr(Ω4(ε))−3ε. We have bounded S̃(0)(t; K4) away from

zero at all observed type-1 events in Ω4(ε), so the e−nρ2
2/(8K2

4 ) term is absorbed
into Pr(Ω4(ε)).

Proof of Lemma 3. The notations in the proof are defined in Section 2.3. Denote

U =

∫ t∗

0
{Z(t) − µ(t)}dNo(t).

Without loss of generality, we set j = 1. Since we define γ∗
1 = argminγ Γ̄(γ) as

the minimizer of a convex function, it must satisfy the first order condition

∇γΓ̄(γ∗
1) = E

{
(U1 − U#

−1γ
∗
1)U−1

}
= 0p−1.

Recall that τ2
1 = Γ̄(γ∗

1). Applying the first order condition, we get

τ2
1 = E{U1 − U#

−1γ
∗
1}2 = E{(U1 − U#

−1γ
∗
1)U1}.

We construct a vector θ1 = (1,−γ∗#
1 )#/τ2

1 ∈ Rp. Then, θ1 satisfies

θ#
1 Σ = (1,−γ∗#

1 ) E{UU#}/τ2
1 = (1,0#

p−1).

Hence, we have
(θ1, . . . ,θp)

# = Σ−1 = Θ.

We can directly bound

‖γ∗
j‖1 = ‖θj/Θj,j‖1 − 1 ≤ K − 1 < K.
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By (D2), the minimal eigenvalue of Σ is at least ρ. We obtain through a
spectral decomposition that the maximal eigenvalue of Θ = Σ−1 is at most
ρ−1. Hence, we have

τ2
j =

(
e#j Θej

)−1 ≥ ρ

and
‖Θ‖1 ≤ max

j=1,...,p
‖θj/Θj, j‖ max

j=1,...,p
|Θj,j | ≤ K/ρ.

Proof of Lemma 4. By Lemma B.9, we may choose ξ1 = · · · = ξp = 2 and
λ1 = · · · = λp = λε . Op(so

√
log(p)/n) such that Ω5(λ, ξj) defined in Lemma

B.8 occurs with probability 1 − ε. Then, we establish the oracle inequality by
Lemma B.8,

Pr

(
max

j=1,...,p
‖γ̂j − γ∗

j‖1/sj ≤ 2λε

ρ

)
≥ Pr

(
min

j=1,...,p
κj(ξj , Oj)

2 ≥ ρ/2

)
− ε.

We have shown that Pr
(
minj=1,...,p κj(ξj , Oj)2 ≥ ρ/2

)
tends to one in Lemma

B.11. Hence, maxj=1,...,p ‖γ̂j − γ∗
j‖1 = Op

(
sosmax

√
log(p)/n

)
.

Define according to (3.29) U i =
∫ t∗

0 {Zi(t) − µ(t)}dNo
i (t). By Lemma B.1,

supi=1,...,n ‖U i‖∞ ≤ K. We introduce

Γ̃j(γ) =n−1
n∑

i=1

{Uj − U#
i,−jγ

∗
j}

=n−1
n∑

i=1

∫ t∗

0
{Zij(t) − µj(t) − γ#Zi,−j(t) + γ#µ−j(t)}2dNo

i (t)

and decompose

τ̂2
j − τ2

j = Γj(γ̂j , β̂) − Γ̃j(γ
∗
j ) + Γ̃j(γ

∗
j ) − Γ̄j(γ

∗
j ).

Γj(γ̂j , β̂) − Γ̃j(γ∗
j ) = Op

(
sosj

√
log(p)/n

)
by the results from Theorem 3,

Lemma B.6 and first part of this Lemma. Apparently, Γ̃j(γ∗
j ) is the average

of i.i.d. terms. The expectation of the summands in Γ̃j(γ∗
j ) is defined as Γ̄j(γ∗

j )
in (3.29). Hence, we finish the proof by applying Lemma A.1.

Along with Lemma 3, we can prove with the previous results in this Lemma,

‖Θ̂−Θ‖1 = Op

(
sosmax

√
log(p)/n

)
.

Proof of Lemma 5. We decompose

√
nc#

{
Θṁ(βo) + βo − b̂

}
(B.14)

=
√

nc#{Θ− Θ̂}ṁ(β̂) +
√

nc#Θ{ṁ(βo) − ṁ(β̂)} +
√

nc#(βo − β̂). (B.15)

By Lemma 4, ‖Θ−Θ̂‖1 = Op(sosmax

√
log(p)/n). Each summand in ṁ(β̂) is

the integral of Zi(t) minus a weighted average Z̄(t, β̂) over a counting measure
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dNo
i (t). By the KKT condition and Theorem 3, ‖ṁ(β̂)‖∞ . λ . O(

√
log(p)/n).

Putting these together, we obtain

√
n|c#{Θ− Θ̂}ṁ(β̂)| ≤

√
n‖c‖1‖Θ− Θ̂‖1‖ṁ(β̂)‖∞ (B.16)

= Op

(
sosmax log(p)/

√
n
)

= op(1). (B.17)

By the KKT condition and Theorem 1, ‖ṁ(β̂)‖ ≤ λ . n−(1/2−d). Hence, the
first term in (B.14) is op(1). Like in the proof of Lemma 6, we have ‖c#Θ‖1 ≤
‖c‖1‖Θ‖1 ≤ KeK/ρ2 from Lemma 3.

Define βr = βo + r(β̂ − βo). Applying mean value theorem to h(r) =
c#Θṁ(βr), we get

c#Θṁ(βo) − c#Θṁ(β̂) = −h′(r̃) = −c#Θm̈(βr̃)(β̂ − βo)

for some r̃ ∈ [0, 1]. By Theorem 3, we have

‖βr̃ − βo‖1 = r̃‖β̂ − βo‖1 = Op

(
so

√
log(p)/n

)
.

By Lemma B.10(ii), ‖ − m̈(βr̃) − Σ‖max = Op

(
so

√
log(p)/n

)
. Along with

Theorem 3 and Lemma 3, we have

√
n|c#Θ{ṁ(βo) − ṁ(β̂)} + c#(βo − β̂)|

=
√

n|c#Θ{Σ + m̈(βr̃)}(βo − β̂)|

≤
√

n‖c‖1‖Θ‖1‖ − m̈(βr̃) −Σ‖max‖β̂ − βo‖1

=Op

(
s2

o log(p)/
√

n
)
.

Proof of Lemma 6. Since ωi(t)Yi(t) -= I(Ci ≥ t)Yi(t) implies εi > 1 thus
N1

i (t∗) = 0, we have the equivalence dNo
i (t) = ωi(t)dN1

i (t) = I(Ci ≥ t)dN1
i (t).

Recall for the following calculation that

S(l)(t,βo) = n−1
n∑

i=1

ωi(t)Yi(t)e
βo!Zi(t)Zi(t)

⊗l,

S̃(l)(t,βo) = n−1
n∑

i=1

I(Ci ≥ t)Yi(t)e
βo!Zi(t)Zi(t)

⊗l,

∆(l)(t) = S(l)(t,βo) − S̃(l)(t,βo),

E{S(l)(t,βo)} = E{S̃(l)(t,βo)} = s(l)(t,βo)

Z̄(t,βo) = S(1)(t,βo)/S(0)(t,βo), Z̃(t,βo) = S̃(1)(t,βo)/S̃(0)(t,βo),

µ(t) = s(1)(t,βo)/s(0)(t,βo), Yi(t) = 1 − N1
i (t−)

and M1
i (t) = N1

i (t) −
∫ t

0
Yi(t)e

βo!Zi(u)h1
0(u)du.
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We decompose

√
nṁ(βo) =n−1/2

n∑

i=1

∫ t∗

0

{
Zi(t) − Z̄(t,βo)

}
dNo

i (t)

=n−1/2
n∑

i=1

∫ t∗

0

{
Zi(t) − Z̄(t,βo)

}
ωi(t)dM1

i (t)

=n−1/2
n∑

i=1

∫ t∗

0

{
µ(t) − Z̃(t,βo)

}
I(Ci ≥ t)dM1

i (t)

+ n−1/2
n∑

i=1

∫ t∗

0

{
Z̃(t,βo) − Z̄(t,βo)

}
I(Ci ≥ t)dM1

i (t)

+ n−1/2
n∑

i=1

∫ t∗

0

{
Z̄(t,βo) − µ(t)

}
∆(0)(t)h1

0(t)dt

+ n−1/2
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)}ωi(t)dM1

i (t)

!I1 + I2 + I3 + I4.

Notice that I1 is a F∗
t martingale. We obtain from Lemma B.6(i) ‖µ(t) −

Z̃(t,βo)‖∞ = Op(
√

log(p)/n). Hence, we can apply Lemma A.4(ii) to obtain

‖I1‖∞ =
√

nOp(
√

log(p)/n
2
) = op(1).

We further decompose I2 into 3 terms

− n−1/2
n∑

i=1

∫ t∗

0

∆(1)(t)

S̃(0)(t,βo)
I(Ci ≥ t)dM1

i (t)

− n−1/2
n∑

i=1

∫ t∗

0

∆(0)(t)

S̃(0)(t,βo)
µ(t)I(Ci ≥ t)dM1

i (t)

+ n−1/2
n∑

i=1

∫ t∗

0

∆(0)(t)

S̃(0)(t,βo)
{µ(t) − Z̄(t,βo)}I(Ci ≥ t)dM1

i (t)

!I ′2 + I ′′2 + I ′′′2 .

By (D1) and (D3), each M1
i (t) has one jump at observed event time and

eKK−Lipschitz elsewhere. Since the {Ci, T 1
i : i = 1, . . . , n} is a set of inde-

pendent continuous random variables, there is no tie among them with prob-
ability one. Hence, we may modify the integrand in I ′2 and I ′′2 at observed
censoring times without changing the integral. Replacing the process ∆(l)(t) by

n−1
∑n

j=1 ∆i(t)eβ
o!Zi(t)Zi(t)⊗l, we can apply Lemma B.6(ii) to get that ‖I ′2‖∞

and ‖I ′′2 ‖∞ are both op(1).
The total variation of M1

i (t) is at most max{1, eKKt∗} . 1. By Lemma
B.6(i), ‖∆(0)(t){µ(t) − Z̄(t,βo)}‖∞ = Op(

√
log(n) log(p)/n). Hence, we ob-

tain ‖I ′′′2 ‖∞ = Op(
√

log(n) log(p)/n) = op(1). Similarly, we obtain ‖I3‖∞ =

Op(
√

log(n) log(p)/n) = op(1).
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Besides the one in Lemma B.4, ωi(t) − ω̃i(t) has another martingale repre-
sentation. Denote the Nelson-Aalen estimator

Ĥc(t) =
n∑

i=1

∫ t

0

I(Xi ≥ u)∑n
j=1 I(Xj ≥ u)

dN c
i (u).

We have a Ft martingale

M c(t) = Ĥc(t) −
∫ t

0
hc(u)du =

n∑

i=1

∫ t

0

I(Xi ≥ u)∑n
j=1 I(Xj ≥ u)

dM c
i (u).

By Lemma A.4(i), supt∈[0,t∗] |M c(t)| = Op

(
n−1/2

)
For t > Xi and δiεi > 1,

ωi(t) − ω̃i(t) = −ω̃i(t)

∫ t

0
I(u > Xi)dM c(u) + Ri(t)

with an error

Ri(t) =
Ĝ(t)

Ĝ(Xi)
− exp

{
Ĥc(Xi) − Ĥc(t)

}

+
G(t)

G(Xi)

[
e−

∫ t
0 I(u>Xi)dMc(u) +

∫ t

0
I(u > Xi)dM c(u)

]
.

It is the discrepancy between the Kaplan-Meier and the Nelson-Aalen plus a
second order Tailer expansion remainder. We shall show that it is Op(1/n).
Since ∣∣∣∣

∫ t

0
I(u > Xi)dM c(u)

∣∣∣∣ ≤ 2 sup
t∈[0,t∗]

|M c(t)| = Op

(
n−1/2

)
,

the second order remainder
∣∣∣∣e

−
∫ t
0 I(u>Xi)dMc(u) +

∫ t

0
I(u > Xi)dM c(u)

∣∣∣∣ = Op(1/n).

Under (C1), {
∑n

i=1 I(Xi ≥ t)}−1 ≤ {
∑n

i=1 I(Xi ≥ t∗)}−1 = Op(1/n). Let ck

be an observed censoring time. The increment in − log(Ĝ(t))− Ĥc(t) at ck is a
second order remainder

log

(
1 − 1∑n

i=1 I(Xi ≥ ck)

)
− 1∑n

i=1 I(Xi ≥ ck)
= Op

(
n−2

)
.

Hence, supt∈[0,t∗] | − log(Ĝ(t)) − Ĥc(t)| = Op(1/n). Applying the Mean Value

Theorem, we obtain supt∈[0,t∗] |Ĝ(t) − exp{−Ĥc(t)}| = Op(1/n). Under (C1),
G(t) ≥ G(t∗) is bounded away from zero, and − log(G(t)) ≤ − log(G(t∗)) is
bounded from above. We have shown that both Ĝ(t) and Ĥc(t) are uniformly√

n consistent. We obtain that Ĝ(Xi) is bounded away from zero and Ĥc(t) is
bounded with probability tending to one. Putting these together, we obtain

sup
i=1,...,n

sup
t∈[0,t∗]

|Ri(t)| = Op(1/n).
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Define

q̃(t) = n−1
n∑

i=1

I(t ≥ Xi)

∫ t∗

t
{Zi(u) − µ(u)} ω̃i(u)dM1

i (u),

π̂(t) = n−1
∑n

i=1 I(Xi ≥ t) and q(t) = E{q̃(t)}, π(t) = E{π̂(t)}. We write I4 as
i.i.d. sum plus error through integration by parts,

n−1/2
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)} ω̃i(t)dM1

i (t)

+ n−1/2
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)} {ωi(t) − ω̃i(t)}dM1

i (t)

=n−1/2
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)} ω̃i(t)dM1

i (t)

+ n−1/2
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)} Ri(t)dM1

i (t)

− n−1/2
n∑

k=1

∫ t∗

0

q(t)

π(t)
I(Xk ≥ u)dM c

k(t)

+ n−1/2
n∑

k=1

∫ t∗

0

q(t)

π̂(t)π(t)
{π̂(t) − π(t)}I(Xk ≥ u)dM c

k(t)

+ n−1/2{q(0) − q̃(0)}
n∑

k=1

∫ t∗

0

1

π̂(t)
I(Xk ≥ u)dM c

k(t)

− n−1/2
n∑

k=1

∫ t∗

0

{q(0) − q(t) − q̃(0) + q̃(t)}
π̂(t)

I(Xk ≥ u)dM c
k(t)

!I(1)
4 + I(2)

4 + I(3)
4 + I(4)

4 + I(5)
4 + I(6)

4 .

I(1)
4 + I(3)

4 is already a sum of i.i.d.. We have shown that supt∈[0,t∗] |Ri(t)| =

Op(1/n). Hence, we have ‖I(2)
4 ‖∞ = Op

(
n−1/2

)
= op(1). The process I(t ≥

Xi)
∫ t∗

t {Zi(u) − µ(u)} ω̃i(u)dM1
i (u) is uniformly bounded by K(Kt∗+1). It has

at most one jump and is KK−Lipschitz elsewhere. Hence, we can apply Lemma
A.3(ii) to get supt∈[0,t∗] ‖q(t)− q̃(t)‖∞ = Op(

√
log(p)/n) and supt∈[0,t∗] |π(t)−

π̂(t)| = Op(
√

log(n)/n). Notice that I(4)
4 , I(6)

4 and n−1
∑n

k=1

∫ t∗

0 π̂(t)−1I(Xk ≥
u)dM c

k(t) in I(5)
4 are all Ft martingales. We may apply Lemmas A.4(i) and

A.4(ii) to obtain I(4)
4 = Op(

√
log(n) log p/n) = op(1), I(5)

4 = Op(
√

log p/n) =

op(1) and I(6)
4 = Op(log p/

√
n) = op(1).

By Lemma 3, we can bound the l1 norm of c#Θ by

‖c#Θ‖1 =
p∑

i=1

p∑

j=1

|ci||Θij | ≤
p∑

i=1

|ci|K/ρ = K/ρ.
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Finally, we write c#Θṁ(βo) as i.i.d. sum

n−1/2
n∑

i=1

c#Θ

[ ∫ t∗

0
{Zi(t) − µ(t)} ω̃i(t)dM1

i (t)

−
∫ t∗

0

q(t)

π(t)
I(Xi ≥ u)dM c

i (t)

]
+ op(1)

!n−1/2
n∑

i=1

c#Θ{ηi −ψi} + op(1).

We have E{c#Θηi} = 0 because of its martingale structure. We show
E{c#Θψi} = 0 again by introducing its martingale proxy

E{c#Θψi}

= E

[∫ t∗

0
c#Θ {Zi(t) − µ(t)} I(Ci ≥ t)dM1

i (t)

]

+ E

[∫ t∗

0
c#Θ {Zi(t) − µ(t)} E{ω̃i(t) − I(Ci ≥ t)|Ti,Zi(·)}dM1

i (t)

]
.

The first term above is zero because of the martingale structure. The second
term is zero because the IPW weights satisfy E{ω̃i(t)− I(Ci ≥ t)|Ti,Zi(·)} = 0.
Each c#Θ{ψi −ηi} is mean zero and bounded by K/ρK(1+Kt∗)+K/ρK(1+
Kt∗)(1+Kt∗)2eK/ρ2 with probability equaling one. The variance c#ΘVΘc has
a bounded and non-degenerating limit ν2. Hence, {c#Θ(ψi −ηi) : i = 1, . . . , n}
satisfies the Lindeberg condition.

By Lindeberg-Feller CLT,

√
n

c#Θṁ(βo)√
c#ΘVΘc

=
c#Θ

∑n
i=1{ηi −ψi}√

nc#ΘVΘc
+ op(1)

d→ N(0, 1).

We conclude the proof of the Lemma.

Proof of Lemma 7. We define

η̃i =

∫ t∗

0
{Zi(u) − µ(u)}ω̃i(u)dM̃1

i (u),

with

M̃1
i (t) = No

i (t) − n−1
n∑

j=1

∫ t

0

Yi(u)eβ
o!Zi(u)

S̃(0)(u,βo)
dNo

j (u).

Under (D1) and (C1), the total variation of M̃1
i (t) is at most 1 + 2e2K/ρ2 with

probability tending to one by Lemma B.7. The difference between η̃i and η̂i
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is

η̂i − η̃i

=n−1
n∑

j=1

∫ t∗

0
{Zi(u) − Z̄(u, β̂)}ωi(u)Yi(u)

{
eβ

o!Zi(u)

S̃(0)(u,βo)
− eβ̂

!
Zi(u)

S(0)(u, β̂)

}
dNo

j (u)

+

∫ t∗

0
{µ(u)ω̃i(u) − Z̄(u, β̂)ωi(u)}dM̃1

i (u).

By Lemmas B.4, B.6(i) and B.6(iii), we obtain

sup
i=1,...,n

‖η̂i − η̃i‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

Then, we study

ηi − η̃i = n−1
n∑

j=1

∫ t∗

0
{Zi(u) − µ(u)}ω̃i(u)I(Cj ≥ u)dM1

j (u).

We have the bound ‖Zi(u) − µ(u)‖∞ ≤ K from Lemma B.1. ω̃i(u) is not F∗
t

measurable, but we can define a new filtration F∗
i,t = σ{Xi, δi, εi,Zi(·), I(Cj ≥

u), N1
j (u),Zj(·) : u ≤ t, j -= i} for each i, such that

n−1
∑

j *=i

∫ t∗

0
{Zi(u) − µ(u)}ω̃i(u)I(Cj ≥ u)dM1

j (u) = ηi − η̃i + Op(1/n)

is a F∗
i,t martingale. Hence, we can apply Lemma A.4(i) to get

Pr

(
‖ηi − η̃i‖∞ ≥ K(1 + eKKt∗)

√
4 log(2np/ε)

n
+

K(1 + 2eKKt∗)

n

)
≤ ε/n.

Taking union bound, we get ‖ηi − η̃i‖∞ = Op(
√

log(p)/n). Hence,

sup
i=1,...,n

‖η̂i − ηi‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

Recall that q̂(t) and q(t) also take a similar form. We can likewise de-
fine

q̃(t) = n−1
n∑

i=1

I(t > Xi)

∫ t∗

t
{Zi(u) − µ(u)}ω̃i(u)dM̃1

i (u)

and

q̃∗(t) = n−1
n∑

i=1

I(t > Xi)

∫ t∗

t
{Zi(u) − µ(u)}ω̃i(u)dM1

i (u).

By Lemmas B.4, B.6(i) and B.6(iii), we have

sup
i=1,...,n

sup
t∈[0,t∗]

‖q̃(t) − q̂(t)‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.
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By Lemma A.3(ii), supt∈[0,t∗] ‖q̃∗(t) − q(t)‖ = Op

(√
log(p)/n

)
. We only need

to find the rate for

q̃∗(t) − q̃(t)

=n−1
n∑

i=1

I(t > Xi)n
−1

n∑

j=1

∫ t∗

t
n−1

n∑

i=1

{Zi(u) − µ(u)}ω̃i(u)I(Cj ≥ u)dM1
j (u).

We repeat the trick for ηi − η̃i. Applying Lemma A.4(ii) to the F∗
i,t martin-

gale

Mq
i (t) = n−1

∑

j *=i

∫ t

0
n−1

n∑

i=1

{Zi(u) − µ(u)}ω̃i(u)I(Cj ≥ u)dM1
j (u)

and obtain supi=1,...,n supt∈[0,t∗] ‖M
q
i (t)‖∞ = Op(

√
log(p)/n). Hence,

sup
t∈[0,t∗]

‖q̃∗(t)−q̃(t)‖∞ ≤ 2 sup
i=1,...,n

sup
t∈[0,t∗]

‖Mq
i (t)‖∞+Op(1/n) = Op(

√
log(p)/n).

Putting the rates together, we have

sup
t∈[0,t∗]

‖q̂(t) − q(t)‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

We can directly obtain supt∈[0,t∗] |π̂(t)−π(t)| = Op

(√
log(n)/n

)
from Lemma

A.3(ii). Define

ψ̃i =

∫ t∗

0

q(t)

π(t)
dM̂ c

i (t)

The total variation of M̂ c
i (t) is at most 1 + 2eK/ρ2 with probability tending to

one by Lemma B.7. Using the results so far, we have

sup
i=1,...,n

‖ψ̂i − ψ̃i‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

The remainder

ψi − ψ̃i = n−1
n∑

j=1

∫ t∗

0

q(t)

π(t)
I(Ci ≥ t)I(Xj ≥ t)dM c

j (t)

is a Ft martingale. We can put the n martingales in Rp into a Rnp vector and
apply Lemma A.4(i),

sup
i=1,...,n

‖ψi − ψ̃i‖∞ = Op

(√
log(np)/n

)
= Op

(√
log(p)/n

)
.

Therefore, we get supi=1,...,n ‖ψi − ψ̂i‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.



4490 J.Hou et al.

Finally, we decompose

‖V̂ − V‖max ≤n−1
n∑

i=1

‖η̂i + ψ̂i‖∞‖η̂i + ψ̂i − ηi −ψi‖∞

+ n−1
n∑

i=1

‖η̂i + ψ̂i − ηi −ψi‖∞‖ηi + ψi‖∞

+

∥∥∥∥∥n−1
n∑

i=1

(ηi + ψi)(ηi + ψi)
# − V

∥∥∥∥∥
max

.

We have shown that supi=1,...,n ‖η̂i + ψ̂i − ηi − ψi‖∞ = op(1). Moreover,

supi=1,...,n ‖η̂i +ψ̂i‖∞ is Op(1) by Lemmas B.1 and B.7. In addition, we observe

that n−1
∑n

i=1(ηi + ψi)(ηi + ψi)
# is an average of i.i.d. terms whose expecta-

tion is defined as V . By Lemmas B.1 and B.7, we have the uniform maximal
bound

sup
i=1,...,n

‖(ηi + ψi)(ηi + ψi)
#‖max = sup

i=1,...,n
‖(ηi + ψi)‖2

∞

is also Op(1). We finish the proof by applying Lemma A.1 to the last term in
the decomposition above,

∥∥n−1
∑n

i=1(ηi + ψi)(ηi + ψi)
# − V

∥∥
max

.

B.4. Proofs of auxiliary lemmas

Proof of Lemma A.3.

(i) Without loss of generality, let t11 be the first jump time of N1(t). By the
i.i.d. assumption, t11 is independent of all Si(t) with i ≥ 2. Thus, the
sequence

Ll = n−1
l∑

i=2

{Si(t11) − s(t11)}

is a martingale with respect to filtration
{
σ
(
Si(t), i ≤ l

)
, l = 2, . . . , n

}
.

The increment is bounded as

n−1 {Si(t11) − s(t11)} = n−1ESj {Si(t11) − Sj(t11)} ≤ n−1KS .

Applying Lemma A.2 to Ln, we get Pr (‖Ln‖max > KSx) < 2qe−nx2/2.
Since the dropped first term is also bounded by KS/n, we get

Pr
(∥∥S̄(t11) − s(t11)

∥∥
max

> KSx + KS/n
)

< 2qe−nx2/2.

We use simple union bound to extend the result to all tij ’s whose number
is at most nKN .

(ii) Define a deterministic set Tn = {kt∗/n : k = 1, . . . , n} ∪ Tz. By the union
bound of Hoeffding’s inequality Hoeffding (1963), we have

Pr

(
sup
t∈Tn

∥∥S̄(t) − s(t)
∥∥

max
> KSx

)
< 2(n + |Tz|)qe−nx2/2.
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Combining the result from Lemma A.3(i), we obtain

∥∥S̄(t) − s(t)
∥∥

max
= Op(

√
log(npq)/n)

over a grid containing Tn and jumps of Ni(t). We only need to show that
the variation of S̄(t) − s(t) is sufficiently small inside each bin created by
the grid.
Let t′ and t′′ be consecutive elements by order in Tn. By our construction,
there is no jump of any of the counting processes Ni(t) in the interval
(t′, t′′). Otherwise, the jump time is another element in Tn between t′

and t′′ so that t′ and t′′ are not consecutive elements by order. Under
the assumption of the lemma, elements of all Si(t)’s are LS−Lipschitz in
(t′, t′′). Moreover, |t′′ − t′| ≤ t∗/n because of the deterministic {kt∗/n :
k = 1, . . . , n} ⊂ Tn. Along with the càglàd property, we obtain a bound of
variation of S̄(t) in (t′, t′′)

sup
t∈(t′,t′′)

‖S̄(t) − S̄(t′′)‖max ≤ sup
i=1,...,n

sup
t∈(t′,t′′)

‖Si(t) − Si(t
′′)‖max

≤LS |t′′ − t′| ≤ LSt∗/n.

For any t ∈ (t′, t′′), we bound the variation of s(t) by

‖s(t) − s(t′′)‖max ≤
∫ t′′

t
E ‖ds(u)‖maxdu +

∫ t′′

t
E{‖Js(u)‖maxh

N
i (u)}du

≤(LS + KSK)t∗/n.

For arbitrary t ∈ [0, t∗], we find the corresponding bin (t′, t′′] contains t.
Putting the results together, we have

‖S̄(t) − s(t)‖max

≤ ‖S̄(t) − S̄(t′′)‖max + ‖s(t) − s(t′′)‖max + ‖S̄(t′′) − s(t′′)‖max

≤ Op(
√

log(npq)/n) + O(1/n).

Proof of Lemma A.4.

(i) The summands in MΦ(t) are the integrals of Ft−-measurable processes
over Ft-adapted martingales, so MΦ(t) is a Ft-adapted martingale (see
Kalbfleisch and Prentice, 2002, p.165).
Suppose {Ti : i = 1, . . . , n} are the jump times of {Ni(t)}. We artificially
set Ti = t∗ if Ni(t) has no jump in [0, t∗]. Define 0 ≤ R1 ≤ · · · ≤ R2n be
the order statistics of {Ti : i = 1, . . . , n} ∪ {kt∗/n : k = 1, . . . , n}. Hence,
{Rk : k = 1, . . . , 2n} is a set of ordered Ft stopping times. Applying
optional stopping theorem, we get a discrete time martingale MΦ(Rk)
adapted to FRk .
The increment of MΦ(Rk) comes from either the counting part or the
compensator part, which we can bound separately. By our construction
of Rk’s, each left-open right-closed bin (Rk, Rk+1] satisfies two conditions.
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There is at most one jump from
∑n

i=1 Ni(t) in the bin at Rk+1. The length
of the bin is at most t∗/n. The increment of the martingale MΦ(t) over
(Rk, Rk+1] is decomposed into two coordinate-wise integrals, a jump minus
a compensator,

MΦ(t) = n−1
n∑

i=1

∫ Rk+1

Rk

Φi(u)dNi(u) − n−1
n∑

i=1

∫ Rk+1

Rk

Φi(u)hi(u)du.

With the assumed a.s. upper bound for supt∈[0,t∗] ‖Φi(t)‖max ≤ KΦ, we
have almost surely the jump of MΦ(t) in the bin be bounded by

∥∥∥∥∥n−1
n∑

i=1

∫ Rk+1

Rk

Φi(u)dNi(u)

∥∥∥∥∥
max

≤ KΦ/n.

Additionally with the assumed upper bound supi=1,...,n supt∈[0,t∗] hi(t) ≤
Kh, we have the compensator of MΦ(t) increases over the bin by at most
∥∥∥∥∥

∫ Rk+1

Rk

n−1
n∑

i=1

Φi(u)hi(u)du

∥∥∥∥∥
max

≤ KΦKh(Rk+1 − Rk) ≤ KΦKht∗/n.

We obtain a uniform concentration inequality for MΦ(Rk) by Lemma A.2

Pr

(
sup

k=1,...,2n
‖MΦ(Rk)‖max ≥ KΦ(1 + Kht∗)x

)
≤ 2qe−nx2/4.

Remark that the uniform version of Lemma A.2 is the application of
Doob’s maximal inequality (Durrett, 2010, Theorem 5.4.2, page 213). For
t ∈ (Rk, Rk+1), we use the bounded increment derived above

‖MΦ(t) − MΦ(Rk)‖max ≤

∥∥∥∥∥

∫ Rk+1+

Rk+
n−1

n∑

i=1

Φi(u)hi(u)du

∥∥∥∥∥
max

≤KΦKht∗/n.

(ii) Under the additional assumption supi=1,...,n supt∈[0,t∗] ‖Φi(t)‖max =
Op(an), we can find KΦ,ε for every ε > 0 such that

Pr

(
sup

i=1,...,n
sup

t∈[0,t∗]
‖Φi(t)‖max ≤ KΦ,εan

)
≥ 1 − ε/2

for any n. We apply Lemma A.4(i) to obtain that event
{

sup
t∈[0,t∗]

‖MΦ(t)‖max ≤ KΦ,εan{(1 + Kht∗)
√

2 log(4q)/n + Kht∗/n},

sup
i=1,...,n

sup
t∈[0,t∗]

‖Φi(t)‖max ≤ KΦ,εan

}

occurs with probability no less than 1 − ε.
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Proof of Lemma B.1. Notice all ai(t)’s are nonnegative. Hence,
∑n

i=1 |ai(t)| =∑n
i=1 ai(t). We apply Hölder’s inequality for each coordinate

∣∣∣∣∣

{∑n
i=1 ai(t)Zi(t)⊗l

∑n
i=1 ai(t)

}

j

∣∣∣∣∣ =

∣∣∣∣∣

n∑

i=1

ai(t)∑n
i=1 ai(t)

{
Zi(t)

⊗l
}

j

∣∣∣∣∣

≤
∑n

i=1 |ai(t)|
|
∑n

i=1 ai(t)|
sup

i=1,...,n

∣∣∣
{
Zi(t)

⊗l
}

j

∣∣∣ .

Hence, the maximal norm of
∑n

i=1 ai(t)Zi(t)⊗l is bounded by (K3/2)l under
(3.14). Similar result can be achieved with the sum replaced by the expectation.

To apply the result above to S(l)(t,β)/S(0)(t,β), S̃(l)(t,β)/S̃(0)(t,β) and

s(l)(t,β)/s(0)(t,β), we set ai(t) as ωi(t)Yi(t)eβ
!Zi(t) and I(Ci ≥ t)Yi(t)eβ

!Zi(t).

Proof of Lemma B.2. Since {I(Xi ≥ t∗), i = 1, . . . , n} are i.i.d. Bernoulli ran-
dom variable, we may apply Lemma A.1 for lower tail,

Pr

(
n−1

n∑

i=1

I(Xi ≥ t∗) < Pr(Xi ≥ t∗) − x

)
≤ exp(−2nx2).

By (3.15), we can find lower bounds for the probability

Pr(Xi ≥ t∗) ≥Pr(Ci ≥ t∗,∞ > T 1
i ≥ t∗)

=G(t∗) E{F1(∞;Zi) − F1(t
∗;Zi)}

≥ρ2/K4.

We may relax the inequality at x = ρ2/(2K4) to

Pr

(
n−1

n∑

i=1

I(Xi ≥ t∗) < ρ2/(2K4)

)
≤ e−nρ2

2/(2K2
4 ).

Because I(Ci ≥ t) ≥ I(Ci ≥ t∗) and Yi(t) ≥ Yi(t∗), S̃(0)(t; K4) is a lower
bound for S̃(0)(t). The summands in S̃(0)(t; K4) are i.i.d. uniformly bounded by
K4. Thus, we may apply Lemma A.3(i) with one-sided version,

Pr

(
sup

k∈1...KT

S̃(0)(t; K4) < E{S̃(0)(t; K4)} − K4x − K4/n

)
< ne−nx2/2.

By (C3), the expectation has a lower bound

E{S̃(0)(t; K4)} = G(t∗) E
[
{1 − F1(t;Zi)} min{K4, e

βo!Zi(t)}
]

> ρ2.

We relax the inequality at x = (ρ2/2 − 1/n)/K4,

Pr

(
sup

k∈1...KT

S̃(0)(t; K4) < ρ2

)
< ne−n(ρ2−2/n)2/(8K2

4 ).
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Proof of Lemma B.3. Since εi > 1 implies T 1
i = ∞, the probability of observing

a type-2 event conditioning on Zi(·) has an upper bound

Pr
(
εi > 1|Zi(·)

)
= exp

{
−
∫ ∞

0
eβ

o!Zi(u)h1
0(u)du

}

≤ exp

{
−Kex

∫ ∞

0
I
(
eβ

o!Zi(u) ≥ Kex
)

h1
0(u)du

}
.

Hence, we may derive a bound for

Pr

(
δiεi > 1, sup

t∈[0,t∗]
eβ

o!Zi(t) > Ke

)
≤ Pr

(
εi > 1

∣∣∣ sup
t∈[0,t∗]

eβ
o!Zi(t) > Ke

)

if we can bound
∫∞
0 I

(
eβ

o!Zi(u) ≥ Kex
)

h1
0(u)du away from zero with a certain

x whenever eβ
o!Zi(t

′) > Ke for some t′ ∈ [0, t∗].
Under (C3), there is an interval I ′ containing t′ of length ρ4 in which Zi(·)

has no jumps. The variation of linear predictor is bounded

sup
t∈I′

∣∣∣βo#Zi(t) − βoZi(t
′)
∣∣∣ ≤ K6K7‖βo‖∞ρ4.

So, the relative risk eβ
o!Zi(t) is greater than Ke exp{−K6K7‖βo‖∞ρ4} over I ′.

Hence, we get a lower bound for
∫ ∞

0
I
(
eβ

o!Zi(u) ≥ Ke exp{−K6K7‖βo‖∞ρ4}
)

h1
0(u)du ≥ ρ4ρ1.

We finish the proof by taking a union bound over i = 1, . . . , n.

Proof of Lemma B.4. Recall that M c
i (t) = I(Ci ≤ t) −

∫ t
0 I(Ci ≥ u)hc(u)du

is a counting process martingale adapted to complete data filtration Ft. The
Kaplan-Meier estimator Ĝ(t) has the martingale representation (Kalbfleisch and
Prentice, 2002, p.170 (5.45)),

MG(t) =
Ĝ(t)

G(t)
− 1 = n−1

n∑

i=1

∫ t

0

Ĝ(u−)I(Xi ≥ u)

G(u)n−1
∑n

j=1 I(Xj ≥ u)
dM c

i (u).

For δiεi > 1 and t > Xi,

ωi(t) − ω̃i(t) = − Ĝ(t)

Ĝ(Xi)
MG(Xi) +

G(t)

G(Xi)
MG(t),

so we will be able to establish a concentration result for the error from Kaplan-
Meier

∥∥∥∥∥n−1
n∑

i=1

{ωi(t) − ω̃i(t)}Yi(t)e
βo!Zi(t)Zi(t)

⊗l

∥∥∥∥∥
max
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≤2Q1(ε)(K3/2)l sup
t∈[0,t∗]

|MG(t)|

if we first obtain a concentration result for supt∈[0,t∗] |MG(t)|. On the event

n−1
∑n

j=1 I(Xj ≥ u) ≥ ρ2/(2K4), the integrated functions are Ft−-adapted

with uniform bound 2(K/
4ρ2)2. The hazard hc(t) ≤ K1 by (C1). Hence, we may

apply Lemma A.4(i) with x =
√

4 log(2/ε)/n to obtain

Pr

(
sup

t∈[0,t∗]
|MG(t)| < 2(K4/ρ2)

2
{

(1 + K1t
∗)
√

4 log(2/ε)/n + K1t
∗/n

})

≤ Pr(Ω1 ∩ Ω2(ε)) − ε.

Proof of Lemma B.5. A sharper inequality is available if Zi’s are not time-
dependent. We may exploit the martingale structure of ∆(l)(t)/G(t). With gen-
eral time-dependent covariates, we would decompose the approximation error
∆(l)(t) into two parts, the error from Kaplan-Meier estimate Ĝ(t) and the error
from missingness in Ci’s among the type-2 events.

Define the indicator υi(t) = I(t > Xi)I(δiεi > 1). Since {ωi(t) − I(Ci ≥
t)}Yi(t) is non-zero only when υ(t) = 1, we may alternatively write

∆(l)(t) = n−1
n∑

i=1

{ωi(t) − I(Ci ≥ t)}υi(t)e
βo!Zi(t)Zi(t)

⊗l.

We may use the upper bound supi=1,...,n supt∈[0,t∗]

∣∣∣υi(t)eβ
o!Zi(t)

∣∣∣ ≤ Q1(ε) on

Ω2(ε). By Lemma B.4,
∥∥∥∥∥n−1

n∑

i=1

{ωi(t) − ω̃i(t)}υi(t)e
βo!Zi(t)Zi(t)

⊗l

∥∥∥∥∥
max

≤ Q1(ε)(K3/2)lQ7(n, p, ε)

on Ω2(ε) ∩ Ω3(ε).
Define the error from missingness in Ci’s among the type-2 events as

∆̃
(l)

(t) = n−1
n∑

i=1

{ω̃i(t) − I(Ci ≥ t)}υi(t)e
βo!Zi(t)Zi(t)

⊗l.

Since E{ri(t)|Ti} = G(t ∧ Ti), Fine and Gray (1999) has shown that

E{ω̃i(t)|Ti} = E{I(Ci ≥ t)|Ti} = G(t).

Applying tower property, we have E

{
∆̃

(l)
(t)

}
= 0. Hence, we can apply Lemma

A.3(i) with x =
√

2 log(2npl/ε)/n

Pr

(
sup

k∈1...KT

∥∥∥∥∆̃
(l)

(
T 1

(k)

)∥∥∥∥
max

≤ Q1(ε)(K3/2)l

{√
2 log(2npl/ε)/n + 1/n

})



4496 J.Hou et al.

≥Pr(Ω1 ∩ Ω2(ε)) − ε.

This finishes the proof of the first result.
We prove the other result by decomposing the differences into terms with

∆(l)(t),

S(l)(t,βo)

S(0)(t,βo)
− S̃(l)(t,βo)

S̃(0)(t,βo)
=

1

S̃(0)(t,βo)
∆(l)(t) − S(l)(t,βo)

S(0)(t,βo)S̃(0)(t,βo)
∆(0)(t).

S(l)(t,βo)/S(0)(t,βo) is the weighted average of Zi(t)⊗l, so its maximal norm is
bounded by (K3/2)l. On the event Ω1,

∥∥∥∥∥
S(l)(t,βo)

S(0)(t,βo)
− S̃(l)(t,βo)

S̃(0)(t,βo)

∥∥∥∥∥
∞

≤ 2

ρ2
‖∆(l)(t)‖∞ +

Kl
3

2l−1ρ2
|∆(0)(t)|.

We can simply plug in the bounds and tail probabilities for ∆(0)
(
T 1

(k)

)
and

∆(1)
(
T 1

(k)

)
in (B.8).

Proof of Lemma B.6.

(i) By (C1) and (D1), we have
∥∥∥eβ

o!Zi(t)Zi(t)⊗l
∥∥∥

max
≤ (K3/2)leK . 1. Thus,

all terms involved are bounded. Moreover, eβ
o!Zi(t)Zi(t)⊗l jumps only

at the jumps of Nz
i (t) by (D3). Define the outer product of arrays u ∈

Rp1×···×pd and v ∈ Rq1×···×qd′ as

u⊗v ∈ Rp1×···×pd×q1×···×qd′ , (u⊗v)i1,...,id+d′ = ui1,...,id ×vid+1,...,id+d′ .

Between two consecutive jumps of Nz
i (t),

∥∥∥∥
d

dt
eβ

o!Zi(t)Zi(t)
⊗l

∥∥∥∥
max

=
∥∥∥eβ

o!Zi(t)Zi(t)
⊗lβo#dz

i (t) + I(l > 0)eβ
o!Zi(t)lZi(t)

⊗l−1 ⊗ dz
i (t)

∥∥∥
max

≤eK{(K3/2)lK + I(l > 1)(K3/2)l−1K} . 1.

Hence, eβ
o!Zi(t)Zi(t)⊗l satisfies the continuity condition for Lemma A.3(ii).

Like in Lemma B.5, we first replace ωi(t) by ω̃i(t) = ri(t)G(t)/G(Xi ∧ t).

Denote ∆̃
(l)

(t) = n−1
∑n

i=1{ω̃i(t) − I(Ci ≥ t)}Yi(t)eβ
o!Zi(t)Zi(t)⊗l. By

Lemma B.4, supt∈[0,t∗] ‖∆(l)(t) − ∆̃
(l)

(t)‖max = Op

(
n−1/2

)
. Then, we

apply Lemma A.3(ii) to the i.i.d. mean zero process ∆̃
(l)

(t),

sup
t∈[0,t∗]

‖∆̃
(l)

(t)‖max = Op

(√
log(nplKn)/n

)
.
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Similarly,

sup
t∈[0,t∗]

‖S̃(l)(t,βo) − s(l)(t,βo)‖max = Op

(√
log(nplKn)/n

)
.

Finally, we extend to results to the quotients by decomposition

S(1)(t,βo)

S(0)(t,βo)
− S̃(1)(t,βo)

S̃(0)(t,βo)
=

1

S̃(0)(t,βo)
∆(l)(t)

− S(l)(t,βo)

S(0)(t,βo)S̃(0)(t,βo)
∆(0)(t).

The denominators are bounded away from zero by Lemma B.7 by choosing
K4 = eK .

(ii) First, we show that ∆i(t) is related to the martingales M c
i (t) = N c

i (t) −∫ t
0{1 − N c

i (u−)}hc(u)du. ∆i(t) is non-zero only after an observed type-2
event. To simplify notation, we define the indicator for non-zero ∆i(t),
υi(t) = ri(t)Yi(t)I(t > Xi) = I(δiεi > 1)I(t > Xi).
Denote the Nelson-Aalen type estimator for censoring cumulative hazard
as

Ĥc(t) =
n∑

i=1

∫ t

0

{ n∑

j=1

I(Xj ≥ u)
}−1

I(Xi ≥ u)dN c
i (u).

Define Ri(t) = Ĝ(t)/Ĝ(Xi) − 1 +
∫ t

Xi
Ĝ(u−)dĤc(u)/Ĝ(Xi). Let ck and

ck+1 be two consecutive observed censoring times greater than Xi. The
increment Ri(ck+1) − Ri(ck) is in fact

Ĝ(ck)

Ĝ(Xi)

{∑n
j=1 I(Xj ≥ ck+1) − 1
∑n

j=1 I(Xj ≥ ck+1)
− 1 +

1∑n
j=1 I(Xj ≥ ck+1)

}
= 0.

For t > Xi, we have Ri(t) = 0. Thus,

∆i(t) ={Ĝ(t)/Ĝ(Xi) − 1 + N c
i (t) − N c

i (Xi) − Ri(t)}υi(t)

=

∫ t

Xi

υi(u)dM c
i (u) −

∫ t

Xi

ωi(u−)υi(u)

∑n
j=1 I(Xj ≥ u)dM c

j (u)
∑n

j=1 I(Xj ≥ u)
+

+

∫ t

Xi

{I(Ci ≥ u) − ωi(u−)}υi(u)hc(u)du. (B.18)

Notice υi(t) does not change beyond Xi if Ci > Xi, i.e. an event is ob-
served. Since hc(u) ≤ K < ∞, we may modify the integrand at countable
many points without changing the integral

∫ t

Xi

{I(Ci ≥ u) − ωi(u−)}υi(u)hc(u)du = −
∫ t

Xi

∆i(u)hc(u)du.
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Hence, (B.18) gives an first order linear integral equation for ∆i(u). The
general solution to the related homogeneous problem

∆i(t) = −
∫ t

Xi

∆i(u)hc(u)du, ∆i(Xi) = 0

has only one unique solution ∆i(t) = 0. Thus, we only need to find one spe-

cific solution to (B.18). Define an integral operator I◦f =
∫ t

Xi
f(u)hc(u)du.

Then, the solution to f(t) = g(t) − I ◦ f(t) can be written as

f(t) = (1 − I + I2 − I3 + . . . ) ◦ g(t) ! e−I ◦ g(t).

By inductively using integration by parts, we are able to calculate

In ◦ g(t) =
1

n!

n∑

k=1

(
n

k

)
(−1)kHc(t)n−k

∫ t

Xi

Hc(u)kdg(t).

Hence, the solution can be calculated as the series

f(t) =
∞∑

n=1

(−1)nIn ◦ g(t) =
∞∑

n=1

n∑

k=1

{−Hc(t)}n−k

(n − k)!

∫ t

Xi

Hc(u)k

k!
dg(u)

=
∞∑

k=1

∫ t

Xi

Hc(u)k

k!
dg(u)

∞∑

n=k

{−Hc(t)}n−k

(n − k)!
= G(t)

∫ t

Xi

G(u)−1dg(u).

Applying to (B.18), we get

∆i(t) = G(t)

∫ t

Xi

G(u)−1dM∆
i (u),

with a Ft− martingale

M∆
i (t) =

∫ t

0
I(Ci ≥ u)υi(u)dM c

i (u)

−
∫ t

0
ωi(u−)υi(u)

∑n
j=1 I(Xj ≥ u)dM c

j (u)
∑n

j=1 I(Xj ≥ u)
.

Now, we use the martingale structure to prove the Lemma. Denote the
F∗

t martingale

Mg(t) = n−1
n∑

i=1

∫ t

0
G(u)eβ

o!Zj(u)g(u)I(Ci ≥ u)dM1
i (u).

Mg(t) satisfies the condition for Lemma A.4(i). Hence, we have the bound

supt∈[0,t∗] ‖Mg(t)‖max = Op

(√
log(q′)/n

)
. Also define

∆̃i(t) = {ω̃i(t) − I(Ci > t)}Yi(t).
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By Lemma B.4, supi=1,...,n supt∈[0,t∗] |∆i(t) − ∆̃i(t)| = Op

(
n−1/2

)
. The

total variation of each ∆i(t) is at most 2. Hence, we can apply integration
by parts to (B.10),

G−1(t∗)Mg(t∗−) ⊗ n−1/2
n∑

j=1

∆j(t
∗−)φ(Zj(t

∗−))

− n−1/2
n∑

j=1

∫ t∗

0
Mg(t) ⊗ φ(Zj(t))dM∆

j (t)

− n1/2

∫ t∗

0
Mg(t) ⊗ G−1(t)n−1

n∑

j=1

∆j(t)dφ(Zj(t))

!I1 − I2 − I3.

We have shown that |Mg(t∗−)| = Op

(√
log(q′)/n

)
and supj=1,...,n |∆j(t∗−)

−∆̃j(t∗−)| = Op

(
n−1/2

)
. By assumption, ‖φ(Zj(t∗−))‖max ≤ Kφ . 1. As

a result, we may replace the ∆i(t) in I1 by ∆̃i(t) with an Op

(√
log(q′)/n

)

error. Since ∆̃j(t∗−)φ(Zj(t∗−))’s are i.i.d. mean zero random variables,

‖n−1
n∑

j=1

∆̃j(t
∗−)φ(Zj(t

∗−))‖max = Op

(√
log(q)/n

)

by Lemma A.1. Multiplying the rates together, we get the bound ‖I1‖max =

Op

(√
log(q) log(q′)/n

)
= op(1).

I2 can be expanded as

n−1/2
n∑

j=1

∫ t∗

0
G(t)−1Mg(t)

{
I(Cj ≥ t)υj(t)h(Zj(t))

−
∑n

k=1 ωk(t−)υk(t)h(Zk(t))∑n
k=1 I(Xk ≥ t)

I(Xj ≥ t)

}
dM c

j (t)

By Lemma B.7, n {
∑n

k=1 I(Xk ≥ t)}−1
= Op(1). The integrand in I2 is

the product of Mg(t) and a Op(1) term. Hence, we can apply Lemma

A.4(ii) to get ‖I2‖max = Op

(√
log(q′) log(qq′)/n

)
= op(1).

By (D3), we may further expand I3 into

n1/2

∫ t∗

0
Mg(t) ⊗ G−1(t)n−1

n∑

j=1

∆j(t)∇φ(Zj(t))
#dz

j (t)dt

+ n1/2

∫ t∗

0
Mg(t) ⊗ G−1(t)n−1

n∑

j=1

∆j(t);φ(Zj(t))dNz
j (t)

!I ′3 + I ′′3 ,
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where ;φ(Zj(t)) = φ(Zj(t)) − φ(Zj(t−)). By assumption on h(Z) and
(D3), |∇φ(Zj(t))#dz

j (t)| and ;φ(Zj(t)) are bounded by LhK and LhK,

respectively. With supt∈[0,t∗] |Mg(t)| = Op

(√
log(q′)/n

)
and Nz

j (t∗) <

Kn = o(
√

n/(log(p) log(n))), we may replace the ∆j(t)’s by ∆̃j(t)’s with

an op(1) error. Each ∆̃j(t)∇φ(Zj(t))#dz
j (t) has mean zero and at most

Kn + 1 jumps, and it is (LhK + KφK)-Lipschitz between two consecutive
jumps under (D3) and conditions on φ(z). By applying Lemma A.3(ii),
we get

sup
t∈[0,t∗]

∥∥∥∥∥∥
n−1

n∑

j=1

∆̃j(t)∇φ(Zj(t))
#dz

j (t)

∥∥∥∥∥∥
max

= Op(
√

log(nq)/n).

Hence, ‖I ′3‖max = Op(
√

log(q′) log(nq)/n) + op(1) = op(1). By applying
Lemma A.3(i) to

{∆̃j(t);h(Zj(t)), N
z
j (t) : j = 1, . . . , n},

we get at the jumps of Nz
i (t)’s, at the tik, satisfy

sup
i=1,...,n

sup
k∈1...KT

∣∣∣∣∣∣
n−1

n∑

j=1

∆j(tik);φ(Zj(tik))

∣∣∣∣∣∣

= Op(
√

log(nKnq)/n) = Op(
√

log(nq)/n).

Hence, ‖I ′′3 ‖max = Op

(
Kn

√
log(nq) log(q′)/n

)
= op(1). This completes

the proof.
(iii) Define βr = βo + r{β̃ − βo} and hj(r; t) = Z̄j(t,βr). The subscript j

means the j-th element of corespondent vector. By mean-value theorem,
we have some r ∈ (0, 1) such that

hj(1; t) − hj(0; t)

=

(
{β̃ − βo}#S(2)(t,βr)S

(0)(t,βr) − S(1)(t,βr)
⊗2

S(0)(t,βr)
2

)

j

=

(
{β̃ − βo}#

n∑

i=1

ωi(t)Yi(t)eβ
!
r Zi(t)

nS(0)(t,βr)
{Zi(t) − Z̄j(t,βr)}⊗2

)

j

Since each
∥∥{Zi(t) − Z̄j(t,βr)}⊗2

∥∥
max

≤ K2
3 under (C1), their weighted

average
∥∥∥∥∥

n∑

i=1

ωi(t)Yi(t)eβ
!
r Zi(t)

nS(0)(t,βr)
{Zi(t) − Z̄j(t,βr)}⊗2

∥∥∥∥∥
max

≤ K2
3 .

Hence, we have shown that

sup
t∈[0,t∗]

‖Z̄(t,βo) − Z̄(t, β̃)‖∞ ≤ ‖β̃ − βo‖1K
2
3 = Op(‖β̃ − βo‖1).
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By a similar argument, we can show for some r ∈ (0, 1)

eβ
o!Zi(t)

S(0)(t,βo)
− eβ̃

!
Zi(t)

S(0)(t, β̃)

=
eβ

!
r Zi(t)(β̃ − βo)#

S(0)(t,βr)

n∑

j=1

ωj(t)Yj(t)eβ
!
r Zj(t)

nS(0)(t,βr)
{Zi(t) − Zj(t)}.

On event {‖β̃ − βo‖1 ≤ K, n−1
∑n

i=1 I(Xi ≥ t∗) ≥ e−Kρ2/2}, we have

inf
t∈[0,t∗]

S(0)(t, β̃) > r∗/2 ∗ e2K , inf
t∈[0,t∗]

S(0)(t,βo) > r∗/2 ∗ eK .

Hence,
∣∣∣∣∣

eβ
o!Zi(t)

S(0)(t,βo)
− eβ̃

!
Zi(t)

S(0)(t, β̃)

∣∣∣∣∣ ≤ ‖β̃ − βo‖12K3e
4KeK/ρ2 = Op

(
‖β̃ − βo‖1

)
.

The event occurs with probability tending to one because we have‖β̃ −
βo‖1 = op(1) from Theorem 3 and supt∈[0,t∗] |S(0)(t,βo)−1| = Op(1) from
Lemma B.7.

Proof of Lemma B.7. Consider the event

Ω∗
1 =

{
n−1

n∑

i=1

I(Xi ≥ t∗)I(εi = 1) ≥ e−Kρ2/2

}
.

Each I(Xi ≥ t∗)I(εi = 1) is i.i.d. with expectation G(t∗) E[{F1(∞;Z) − F1(t∗;
Z)}]. Applying Lemma A.1 under (3.15) and (3.22) from (C1) and (D1), we get

that Ω1 occurs with probability 1 − e−ne−2Kρ2
2 .

Apparently, we have I(Xi ≥ t∗) ≥ I(Xi ≥ t∗)I(εi = 1). Moreover, S(0)(t,βo)
and S̃(0)(t,βo) are both lower bounded by n−1

∑n
i=1 I(Xi ≥ t∗)e−K .

On Ω1, supt∈[0,t∗] |n/{
∑n

i=1 I(Xi ≥ t∗)}| ≤ 2eK/ρ2 and

max

{
sup

t∈[0,t∗]
|S(0)(t,βo)−1|, sup

t∈[0,t∗]
|S̃(0)(t,βo)−1|

}
≤ 2eKeK/ρ2.

Proof of Lemma B.8. To simplify notation, wherever possible we will use
Γ̂j(γ) = Γj(γ, β̂).

(i) We want to prove that for all j = 1, . . . , p, the differences γ̃j := γ̂j − γ∗
j

belong to a certain convex cone.
It follows from the KKT conditions that, for l = 1, . . . , p − 1,






∂Γ̂j(γ̂j)

∂γj,l
+ λjsgn(γ̂j,l) = 0 if γ̂j,l -= 0;∣∣∣∣

∂Γ̂j(γ̂j)

∂γj,l

∣∣∣∣ ≤ λj if γ̂j,l = 0.
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Denote Oj :=
{
l ∈ {1, . . . , p−1} : γ∗

j,l -= 0
}

and Oc
j := {1, . . . , p−1}\Oj .

For ξj > 1, it follows from the KKT conditions above that on the event

Ω0 := {‖∇γΓ̂j(γ
∗
j )‖∞ ≤ (ξj − 1)λj/(ξj + 1)},

with γ̄j = αγ̂j + (1 − α)γ∗
j , α ∈ (0, 1)

0 ≤2γ̃#
j ∇2

γΓ̂j(γ̄j)γ̃j

=γ̃#
j

{
∇γΓ̂j(γ̂j) −∇γΓ̂j(γ

∗
j )
}

=
∑

l∈Oc
j

γ̃j,l

∂Γ̂j(γ̂j)

∂γj,l
+

∑

l∈Oj

γ̃j,l

∂Γ̂j(γ̂j)

∂γj,l
− γ̃#

j ∇γΓ̂j(γ
∗
j )

≤− λj

∑

l∈Oc
j

γ̂j,lsgn(γ̂j,l) + λj

∑

l∈Oj

|γ̃j,l| +
(ξj − 1)λj

ξj + 1

∥∥γ̃j,Oj

∥∥
1

+
(ξj − 1)λj

ξj + 1

∥∥γ̃j,Oc
j

∥∥
1

= − 2λj

ξj + 1

∥∥γ̃j,Oc
j

∥∥
1

+
2ξjλj

ξj + 1

∥∥γ̃j,Oj

∥∥
1
.

(ii) Let v = γ̃/‖γ̃‖1 be the l1-standardized direction for γ̃ = γ̂ − γ∗. By part
(i) and convexity of Γj in γj , any x ∈ (0, ‖γ̃‖1] satisfies

v#
{
∇γΓ̂j(γ

∗ + xv) −∇γΓ̂j(γ
∗)
}
≤ − 2λj

ξj + 1
‖vOc

j
‖1 +

2ξjλj

ξj + 1

∥∥vOj‖1.

We relax the inequality about x above to establish an upper bound for
‖γ̃‖1. By the definition of κj , the left hand side can be bounded by

v#
{
∇γΓ̂j(γ

∗ + xv) −∇γΓ̂j(γ
∗)
}

=xv#∇2
γΓ̂j(γ

∗)v

≥
x‖vOj‖2

1κj(ξj , Oj)

sj
.

The right hand side can be bounded using the complete square {‖vOj‖1−
2/(ξj + 1)}2,

− 2λj

ξj + 1
‖vOc

j
‖1+

2ξjλj

ξj + 1

∥∥vOj‖1 = 2λj‖vOj‖1−
2λj

ξj + 1
≤ λj(ξj +1)‖vOj‖2

1.

Combining the bounds for both sides in the inequality, we get an upper
bound for ‖γ̃‖1.

Proof of Lemma B.9. We define

Γ̃j(γ) = n−1
n∑

i=1

∫ t∗

0
{Zij(t) − µj(t) − γ#Zi,−j(t) + γ#µ−j(t)}2dNo

i (t).
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By Lemmas B.6 and 3,

max
j=1,...,p

‖∇γΓ̂j(γ
∗
j , β̂) −∇γΓ̃j(γ

∗
j )‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

∇γΓ̃j(γ∗
j ) is the average of i.i.d. vectors with mean ∇γΓ̄j(γ∗

j ) = 0 and maximal

bound K2(1+K). We can apply Lemma A.1 to (∇γΓ̃1(γ∗
1), . . . ,∇γΓ̃p(γ∗

p)) and
get

max
j=1,...,p

‖∇γΓ̃j(γ
∗
j )‖∞ = ‖(∇γΓ̃1(γ

∗
1), . . . ,∇γΓ̃p(γ

∗
p))‖max

= Op(
√

log(p2)/n) = Op(
√

log(p)/n).

Proof of Lemma B.10.

(i) We define

Σ̃ = n−1
n∑

i=1

∫ t∗

0
{Zi(t) − µ(t)}⊗2dNo

i (t).

The total variation of each No
i (t) is at most 1. By Lemma B.6, we have

sup
t∈[0,t∗]

‖Z̄(t, β̂) − µ‖∞ = Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

Hence,

‖Σ̂− Σ̃‖max ≤2KOp

(
‖β̂ − βo‖1 +

√
log(p)/n

)

=Op

(
‖β̂ − βo‖1 +

√
log(p)/n

)
.

Now, Σ̃ is average of i.i.d. with mean Σ and bounded maximal norm K2.
We apply Lemma A.1 with union bound,

Pr
(
‖Σ̃−Σ‖max ≥ K2x

)
≤ 2p2e2nx2

.

Choosing x =
√

log(2p2/ε)/(2n), we have ‖Σ̃−Σ‖max = Op(
√

log(p)/n).
(ii) We alternatively use the following form

m̈(β)

=n−1
n∑

i=1

∫ t∗

0




n−1
n∑

j=1

ωj(t)Yj(t)eβ
!Zj(t)

S(0)(t,β)
Zi(t)

⊗2 − Z̄(t,β)⊗2




 dNo
i (t).

By Lemma B.6(iii), we have

‖m̈(β̃) − m̈(βo)‖max = Op(‖β̃ − βo‖1).
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We also have a similar form for

¨̃m(β) = n−1
n∑

i=1

∫ t∗

0

{
n−1

n∑

j=1

I(Cj ≥ t)Yj(t)eβ
!Zj(t)

S̃(0)(t,β)
Zi(t)

⊗2

− Z̃(t,β)⊗2

}
dNo

i (t).

By Lemma B.6(i), we have

‖m̈(βo) − ¨̃m(βo)‖max = Op

(√
log(p)/n

)
.

Finally, we use the martingale property of

¨̃m(βo) − Σ̃ = n−1
n∑

i=1

∫ t∗

0

{
S̃(2)(t,βo)

S̃(0)(t,βo)
− Z̃(t,βo)⊗2

}
I(Ci ≥ t)dM1

i (t)

− n−1
n∑

i=1

∫ t∗

0
{Zi(t) − Z̃(t,βo)}⊗2I(Ci ≥ t)dM1

i (t)

+ n−1
n∑

i=1

∫ t∗

0

[
{Zi(t) − Z̃(t,βo)}⊗2 − {Zi(t) − µ(t)}⊗2

]

× I(Ci ≥ t)dNo
i (t)

under filtration F∗
t . The integrands in the first two martingale terms are

bounded by K2. Hence, we can apply Lemma A.4(ii) to obtain that their

maximal norms are both Op

(√
log(p)/n

)
. We apply Lemma B.6(i) to the

integrand of the third term, equivalently expressed as

{µ(t) − Z̃(t,βo)}{Zi(t) − Z̃(t,βo)}# + {Zi(t) − µ(t)}{µ(t) − Z̃(t,βo)}#.

Therefore, we obtain ‖ ¨̃m(βo) − Σ̃‖max = Op

(√
log(p)/n

)
.

We put the rates together by the triangle inequality.

Proof of Lemma B.11. The proof is similar to that of Lemma 2. Define the
compatibility factor for Cj(ξj , Oj) and symmetric matrix Φ as

κj(ξj , Oj ;Φ) = sup
0 *=g∈Cj(ξj ,Oj)

√
sjg#Φg

‖gOj‖1
.

Apparently, κj(ξj , Oj) = κj

(
ξj , Oj ;∇2

γΓ(γ∗, β̂)
)
. Notice that

∇2
γΓ(γ∗, β̂) = n−1

n∑

i=1

∫ t∗

0
{Zi,−j(t) − Z̄−j(t, β̂)}⊗2dNo

i (t) = Σ̂−j,−j ,
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where Σ̂−j,−j is a Σ̂ dropping its jth row and column. By Lemma 4.1 in Huang
et al. (2013) (for a similar result, see van de Geer and Bühlmann (2009) Corol-
lary 10.1),

κj(ξj , Oj)
2 =κ2

j

(
ξj , Oj ; Σ̂−j,−j

)

≥κ2
j (ξj , Oj ;Σ−j,−j) − sj(ξj + 1)2‖Σ−j,−j − Σ̂−j,−j‖max.

For any non-zero g ∈ Rp−1, let g∗ be its embedding into Rp defined as

g∗k =






gk k < j
0 k = j

gk−1 k > j

Then, we may establish a lower bound for the smallest eigenvalue of Σ−j,−j by
(D2)

inf
0 *=g∈Rp−1

g#Σ−j,−jg = inf
0 *=g∈Rp−1

g∗#Σg∗ ≥ ρ‖g‖2
2.

Hence, infj=1,...,p κ2
j (ξj , Oj ;Σ−j,−j) ≥ ρ. Using the result in Lemma B.10(i)

under (D4), we have

inf
j=1,...,p

κj(ξj , Oj)
2 ≥ ρ− ‖Σ− Σ̂‖maxsmax max

j=1,...,p
(ξj + 1)2 = ρ− op(1).

Therefor, if ξmax . 1, we must have that
{
infj κj(ξj , Oj)2 ≥ ρ/2

}
occurs with

probability tending to one.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and vari-
able selection with the lasso. The Annals of Statistics, pages 1436–1462.

Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representa-



Inference for competing risks 4507

tions for high-dimensional data. The Annals of Statistics, pages 246–270.
Murphy, S. A. (1994). Consistency in a proportional hazards model incorporat-

ing a random effect. The Annals of Statistics, 22(2):712–731.
Obozinski, G., Wainwright, M. J., and Jordan, M. I. (2011). Support union

recovery in high-dimensional multivariate regression. The Annals of Statistics,
39(1):1–47.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. D. (2010). High-dimensional
ising model selection using l1-regularized logistic regression. The Annals of
Statistics, 38(3):1287–1319.

Riviere, P., Tokeshi, C., Hou, J., Nalawade, V., Sarkar, R., Paravati, A. J.,
Schiaffino, M., Rose, B., Xu, R., and Murphy, J. D. (2019). Claims-based
approach to predict cause-specific survival in men with prostate cancer. JCO
Clinical Cancer Informatics, (3):1–7.

Sason, I. (2013). On refined versions of the Azuma-Hoeffding inequality with
applications in information theory. ArXiv e-prints:1704.07989.

Sun, H., Lin, W., Feng, R., and Li, H. (2014). Network-regularized high-
dimensional Cox regression for analysis of genomic data. Statistica Sinica,
24(3):1433–1459.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 58(1):267–
288.
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