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Abstract
Due to the highly nonlinear nature of the beam-loading, it is currently not possible to
analytically determine the beam parameters needed in a two-bunch plasma wakefield
accelerator for maintaining a low energy spread. Therefore in this paper, by using the
Broyden–Fletcher–Goldfarb–Shanno algorithm for the parameter scanning with the code
QuickPIC and the polynomial regression together with k-fold cross-validation method, we
obtain two fitting formulas for calculating the parameters of tri-Gaussian electron beams when
minimizing the energy spread based on the beam-loading effect in a nonlinear plasma wakefield
accelerator. One formula allows the optimization of the normalized charge per unit length of a
trailing beam to achieve the minimal energy spread, i.e. the optimal beam-loading. The other
one directly gives the transformer ratio when the trailing beam achieves the optimal
beam-loading. A simple scaling law for charges of drive beams and trailing beams is obtained
from the fitting formula, which indicates that the optimal beam-loading is always achieved for a
given charge ratio of the two beams when the length and separation of two beams and the
plasma density are fixed. The formulas can also help obtain the optimal plasma densities for the
maximum accelerated charge and the maximum acceleration efficiency under the optimal
beam-loading respectively. These two fitting formulas will significantly enhance the efficiency
for designing and optimizing a two-bunch plasma wakefield acceleration stage.

Keywords: plasma wakefield acceleration, beam loading, relative energy spread,
particle-in-cell simulation, data-driven method

(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma-based acceleration (PBA) uses an intense laser pulse
[1] or a charged particle beam [2] to excite a plasma wake,
which can be utilized to accelerate electrons and positronswith
high acceleration gradients [3–8]. The acceleration gradients

∗
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inside the plasma wake can easily exceed 10 GeV m−1

[5, 8–11], which are orders of magnitude higher than that of
conventional accelerators. Such high acceleration gradients
can significantly reduce the size and the cost of accelerators.
Thismakes the PBA a promising candidate for the future linear
colliders or light sources. Recently, the particle-beam-driven
plasma wakefield acceleration (PWFA) has attracted a lot of
attention due to tremendous theoretical and experimental pro-
gress [5–7, 12–21]. There have been increasing numbers of
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facilities that are built for conducting PWFA research, such
as Facilities for Accelerator Science and Experimental Test
(FACET) II [22], Advanced Proton Driven Plasma Wakefield
Acceleration Experiment (AWAKE) [23], Future Oriented
Wakefield Accelerator Research and Development at FLASH
(FLASHForward) [24] and EuPRAXIA [25]. In PWFA, when
the highly relativistic drive beam passes through the plasma
and its self-field is intense enough to expel all the plasma
electrons away from the axis, a plasma bubble filled with
plasma ions can be formed and moves along with the drive
beam (which is the so-called blowout regime) [16]. As a
result, the trailing beam will continuously gain energy until
the drive beam exhausts its energy and no longer excites the
plasma bubble.

In the blowout regime, when the trailing beam is loaded into
the plasma wake, the longitudinal electric field of the wake
will be modified. When the trailing beam is properly loaded
(optimal beam-loading [18]), the longitudinal electric field felt
by the trailing beam is locally flattened so that all the con-
tained particles can be accelerated at the same rate resulting
in the smallest increase in the energy spread as required by
most accelerator applications. This beam-loading effect plays
an important role on the beam quality and has been actively
studied [18, 21, 26–30]. Scaling laws for beam-loading are
always useful as the guidance to design the PBA stage effi-
ciently. There were two scaling laws proposed for a laser-
driven stage. The number of particles loaded into a 3D bubble
wake excited by a laser driver was found to scale with the nor-
malized volume of the bubble or the square root of the laser
power [27]. A similar scaling law but with a distinct para-
meter space was also offered by [26]. However, these scaling
laws did not give the exact coefficient and the proper place for
loading the trailing beam. In [18], an analytical theorywas pro-
posed for beam-loading effect in the blowout regime to main-
tain the energy spread of the trailing beam. The charge, the
shape and the placing of the trailing beam can be estimated
for both a laser-driven stage and a beam-driven stage via this
theory. However, when designing a two-bunch PWFA stage,
the theory provided by [18] is still not easy to use because
it lacks the parameters for the drive beam. In addition, this
analytical theory was obtained based on the assumption that
the maximal normalized bubble radius is much larger than 1.
Due to the limitation on the beam peak currents at present
PWFA facilities, most PWFA experiments are conducted at
a smaller maximal bubble radius, and no analytical model
exists to predict their performances. Therefore, we here take a
numerical approach to provide fitting formulas for the optimal
beam-loading in a data-driven way that will help the design of
two-bunch PWFA experiments. The fitting formulas consider
parameters for both drive beam and trailing beam. In section 2,
the method to find the optimal beam-loading in a two-bunch
PWFA stage is discussed. Subsequently, two fitting formulas
are given in section 3. Specifically speaking, their availabil-
ity for trailing beams with a longitudinal flat-top profile or a
longitudinal trapezoidal profile are discussed in section 3.3. In
section 4, the scaling law for charges of drive beams and trail-
ing beams under the optimal beam-loading is derived from the
fitting formulator. In section 5, the optimal plasma densities

for the maximum accelerated charge and maximum accelera-
tion efficiency under the optimal beam-loading are discussed.
In the last section, we summarize the results presented in
this paper.

2. Two-bunch PWFA with optimal beam-loading

2.1. Optimization of beam parameters

In a two-bunch PWFA stage, when the blowout occurs,
the beam energy spread is mainly affected by the longit-
udinal wakefield [16]. Thus, having the longitudinal wake-
field within the trailing beam as flat as possible is the most
effective method to preserve beam energy spread. Paramet-
ers including beam charge Q, rms beam length σz, rms beam
spot size σr, beam separation d and plasma density np are
usually considered in a two-bunch PWFA design. For tri-
Gaussian beams, the beam separation is defined as the dis-
tance between the center of the drive beam and that of the
trailing beam. Electron beams with a tri-Gaussian profile have

ρb = nb · exp
(

− x2+y2

2σ2
r

)

exp
(

− ξ2

2σ2
z

)

, where ξ = ct− z is the

co-moving coordinate, x and y are the transverse coordinates,
and the beam peak density is nb =

Nb

(2π)3/2σzσ2
r
where Nb is the

total number of electrons in the beam [31]. In this paper, we
adopt normalized units. The beam density is normalized to the
plasma density np and the charge density is normalized to enp
where e is the electron charge. The length is normalized to the
plasma skin depth k−1

p ≡ c/ωp, where c is the speed of light

and ωp =
√

4πe2np/me is the plasma frequency where me is
the electron mass. The electric field is normalized tomecωp/e.
By using normalized units, we can drop the dependency of
plasma density to simplify the model. Actually, engineering
formulas that take the plasma density into account (described
in section 5) can be easily obtained from our fitting formulas
in normalized units.

In the blowout regime, if the bubble radius Rb is much lar-
ger than the rms beam spot size σr, any variation within the
beam spot size for the same charge per unit length Λ = nbσ2

r
will hardly change the wake [32]. In other words, the accel-
eration structure is determined by Λ as long as Rb ≫ σr and
the beam length is fixed. Therefore, we assume the beam has a
very small spot size like a delta-function, in which case the
dependency of the beam spot size is neglected. The delta-
function-like beam is implemented in the simulation code
QuickPIC [33, 34] by modifying the subroutine to directly
initialize the beam density on the axis, which indicates that
the beam has a spot size equal to the transverse cell size as
shown in figure 1(a). In this simulation, the simulation box
has the size of 8.0× 8.0× 10.0 (x,y, ξ) with 512× 512× 512
cells. The drive beam hasΛd = 0.2 while the trailing beam has
Λt = 0.16. The length of the drive beam and that of the trail-
ing beam are σzd = 1.0 and σzt = 0.25, respectively. The beam
separation is d= 4.0. Figure 1(b) shows the comparison of the
on-axis Ez lineouts from the wake driven by one cell wide
beams and beams with σr = 0.1, and they are almost identical.
Therefore, we can ignore the beam spot size and find Λt for
the optimal beam-loading with given Λd, σzd, σzt and d.
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Figure 1. (a) QuickPIC simulation results of the plasma density and the density of one cell size drive beam and trailing beam. The solid line
is the on-axis Ez of the wakefield. The blue and green dashed lines represent the current (Ib) of the drive and trailing beam, respectively. The
unit of Ib is two-fifths of the normalized unit mec3/4πe≃ 8.5kA. (b) The on-axis Ez from the wakefield driven by one cell wide beams and
beams with σr = 0.1.

The goal of the optimization is to achieve the minimal
energy spread for the trailing beam in the blowout regime,
which requires the trailing beam feels the Ez that is as flat as
possible in the longitudinal direction. We use the following
objective function for the optimization,

F(Λt) =

√

√

√

√

√

´ ξe
ξs
(Ez(ξ))2λbt(ξ)dξ
´ ξe
ξs
λbt(ξ)dξ

−





´ ξe
ξs
Ez(ξ)λbt(ξ)dξ
´ ξe
ξs
λbt(ξ)dξ





2

,

(1)

where ξs (ξe) is the head (tail) location of the trailing beam,
λbt(ξ) =

´

ρbt(x,y, ξ)dxdy is the normalized charge per unit
length of the trailing beam, ρbt is the normalized charge density
of the trailing beam and Λt is the peak value of λbt(ξ). F(Λt)
is the mean square deviation of weighted on-axis Ez, where
the density profile of the trailing beam is used as the weight.
This is a single-objective optimization [35] process because
we aim to find the minimum of F(Λt) while changing Λt. By
doing several tests, we find the optimization is a typical con-
vex optimization [36], in which for any two points Λt1, Λt2

in the domain of Λt and m ∈ (0,1) we have F(mΛt1 +(1−
m)Λt2)⩽ mF(Λt1)+ (1−m)F(Λt2). For a convex optimiza-
tion, the local optimum is the global optimum, and the extreme
value is the optimal solution [36]. Thus, the local optimization
algorithm can be applied.

To achieve high performance, we optimize the F(Λt) with
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
[37], which has been extensively used to solve nonlinear
optimization problems and has been considered to be the most
effective of all quasi-Newton methods [38–42]. We set Λt =
Λd as the initial solution for the optimization process. By
assuming the wakefield does not evolve, the objective func-
tion can be evaluated from one-time-step QuickPIC simulation
result (i.e. the static wakefield).

A typical optimization result is shown in figure 2. In this
example, beam parameters are Λd = 1.0,σzd = 1.0,σzt = 0.25
and the beam separation is d= 4.5. We plot the on-axis Ez
at different Λt. The plasma and beam densities are just for

illustration, and they do not vary. As shown in figure 2, with
the optimal Λt = 1.49 the trailing beam feels a more flat Ez
than that with the initial Λt = 1.0 we used. The Ez at the
optimal beam-loading is a little overloaded compared with
that of Λt = 1.2, in which the ξ derivative of Ez only has one
zero point within the trailing beam. This is because the trail-
ing beam has a Gaussian profile and the optimal beam-loading
case will generate a smaller rms energy spread. To verify the
result obtained from the BFGS algorithm, we manually do a
parameter scanning for Λt from 0.1 to 4.0 with a step size of
0.01. The Λt for the optimal beam-loading agrees very well
with the result from BFGS algorithm. The relative difference
between them is about 0.02%. With the BFGS algorithm and
QuickPIC simulation, the case shown above requires 16 eval-
uations by QuickPIC to find the optimal Λt, and the total com-
puting time is 7 min with 64 cores. We then perform long-
distance accelerations. We find that the energy spread of the
trailing beam is 1.69% at Λt = 1.49 which is smaller than that
with 2.35% at Λt = 1.2 with the same initial energy (10 GeV)
and the same energy gain (about 7.3 GeV). This comparison
result agrees well with our optimization. We note that it used
to be a common sense that the case of red line in figure 2 would
have the smallest rms energy spread. This is not true because
theEz for that case ismonotonically decreasingwhile the black
line in figure 2 is not. As a result, the case of the black line may
let more beam particles have the same energy gain at different
longitudinal locations, and finally have a smaller rms energy
spread than the case of red line.

2.2. Large-range parameter scanning for optimal
beam-loading

A Python program is developed to automatically optim-
ize a large number of parameter sets of (Λd,σzd,σzt,d) (see
appendix A for details). In these sets of (Λd,σzd,σzt,d), the Λd

has a range of [0.0144,7.70] and the σz for both beams has a
range of [0.0952,1.90]. These ranges basically cover the para-
meters of FACET [43], FACET II [22], FLASHForward [24]
and other facilities [20] with a plasma density of 1016 cm−3.
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Figure 2. Accelerating wakefield within the trailing beam before
and after an optimization. The blue line represents the initial
situation before the optimization and Ez within the trailing beam is
underloaded obviously. The black line represents the situation at the
end of the optimization and Ez within the trailing beam is flatter
than that initially. But the trailing beam has overloaded the wake as
seen by the reversal of the Ez slope within the trailing beam. The red
line represents the situation that Ez is flat in the middle of the
trailing beam. In these simulations, the simulation box is
16.0× 16.0× 10.0 (x,y, ξ) and contains 1024× 1024× 512 cells.

Table 1. Parameters range obtained from automatic optimizations.

Parameters Range

Λd [0.0885,7.70]
σzd [k

−1
p ] [0.0952,1.90]

d [k−1
p ] [1.60,11.1] (the global range)

σzt [k−1
p ] [0.0952,0.857]

Λt [0.0627,3.14]

When Λd is set, we scan the d in the range of [Rbmax,3Rbmax],
where Rbmax ≃ 2

√
Λd gives a good estimate of the maximum

bubble radius [31], in order to have the trailing beam be
approximately located inside the first plasma bubble. Once
the ranges of Λd,σzd,σzt and d are determined, we evenly
select values within the range of each parameter. In addi-
tion, we also need to ensure that settings for each Quick-
PIC simulation are appropriate (see appendix B for details).
In each optimization process, we dump the Λd,σzd,σzt,d, the
optimal Λt, the maximum decelerating wakefield Wdec inside
the drive beam, the averaged accelerating wakefield felt by the
trailing beam Wacc =

´ ξe
ξs
Ez(ξ)λbt(ξ)dξ/

´ ξe
ξs
λbt(ξ)dξ and the

transformer ratio R= |Wacc/Wdec|.
Data from the automatic optimization will have some bad

parameter sets, i.e. the outliers. For example, some datasets
have the trailing beam too far away from the drive beam
so that it cannot be effectively accelerated even though the
optimization process succeeds. Therefore, we use the boxplot
method [44] and standard normal distribution method [45] to
eliminate these outliers. We finally obtain 8537 sets of data
for the optimal beam-loading database. The average time for
each optimization is only around 7.6 min with 64 cores. The
range of Λd,σzd,σzt,d and Λt is presented in table 1. Note that
table 1 shows the global range for the beam separation. The

actual range of the beam separation varies according to the
beam parameters.

3. The fitting formulas for optimal beam-loading

3.1. A data-driven method

We use the data-driven method to solve the optimal beam-
loading problem in the blowout regime. To obtain explicit
fitting formulas, we use the Python library scikit-learn [46] to
carry out polynomial regression, which can be generalized into
the linear regression [47].

During the process, the data are split into several random
but with general equal-size folds. And we set some of them
as the training dataset and the remaining as the test dataset.
Then constructing polynomial features is demanded because
the degree of polynomial features we choose directly affects
the goodness of fit. Here, we use the coefficient of determin-
ation r2 [46] to measure how well unseen test dataset tends to
be predicted by the model. The closer r2 is to 1, the better the
goodness of fit is. To determine the best choice of degree, we
use the k-fold cross-validation method to evaluate our model
to avoid over-fitting [46]. It divides the training dataset into
k subsets at once and then trains a model k times in total. In
each model training, we use k− 1 subsets to train the model
and use the remaining one to validate the model and obtain the
r2 for each training. The averaged r2 is obtained at the end of
this loop for a particular degree. And the best degree should
have the largest averaged r2 with this k-fold cross-validation
method. As a common choice, we choose k= 10 for our cal-
culation. After determining the best degree, we use the whole
training dataset to train a model (i.e. get the fitting formula)
and use the test dataset to do the final evaluation.

3.2. The fitting formulas for Λt and R

By using the method described above, we can obtain the fit-
ting formula for the optimal Λt, which can be written as
Λt = f(Λd,σzd,σzt,d). More specifically, training dataset and
test dataset account for 75% and 25% of the database, respect-
ively. When we use training dataset to perform 10-fold cross-
validation, we obtain the averaged r2 ≃ 0.999 at degree of 3,
which is larger than those at other degree values. Therefore,
we use the whole training dataset to do the polynomial regres-
sion at degree of 3 and obtain r2 ≃ 0.999 when evaluating the
test dataset. This represents high prediction accuracy. The final
result of the polynomial regression, i.e. the fitting formula for
Λt, is

Λt = h0 + h1Λd + h2σzd + h3σzt + h4d+ h5Λ
2
d + h6Λdσzd

+ h7Λdσzt + h8Λdd+ h9σ
2
zd ++h10σzdσzt + h11σzdd

+ h12σ
2
zt + h13σztd+ h14d

2 + h15Λ
3
d + h16Λ

2
dσzd

+ h17Λ
2
dσzt + h18Λ

2
dd+ h19Λdσ

2
zd + h20Λdσzdσzt

+ h21Λdσzdd+ h22Λdσ
2
zt + h23Λdσztd+ h24Λdd

2

+ h25σ
3
zd + h26σ

2
zdσzt + h27σ

2
zdd+ h28σzdσ

2
zt + h29σzdσztd

+ h30σzdd
2 + h31σ

3
zt + h32σ

2
ztd+ h33σztd

2 + h34d
3, (2)
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Table 2. Fitting coefficients for the fitting formula of Λt.

h0 = −5.014×10−1 h1 = 3.658×10−1 h2 = 9.119×10−1 h3 = −1.083 h4 = 3.062×10−1

h5 = −3.754×10−2 h6 = 2.344 h7 = 1.281×10−1 h8 = −5.028×10−2 h9 = −7.136×10−1

h10 = −1.915×10−1 h11 = −1.316×10−1 h12 = −2.167 h13 = 1.034 h14 = −7.607×10−2

h15 = −2.391×10−3 h16 = −7.570×10−2 h17 = 2.641×10−2 h18 = 1.160×10−2 h19 = −8.626×10−1

h20 = −2.424×10−1 h21 = 9.630×10−2 h22 = 3.874×10−1 h23 = −7.137×10−2 h24 = −3.061×10−3

h25 = 1.238×10−1 h26 = 3.752×10−2 h27 = 7.655×10−2 h28 = 5.197×10−1 h29 = −2.585×10−2

h30 = −6.071×10−3 h31 = −2.866 h32 = 1.231 h33 = −2.525×10−1 h34 = 6.674×10−3

Table 3. Fitting coefficients for the fitting formula of R.

p0 = −1.453 p1 = 0.3199 p2 = 0.3178 p3 = 0.3084 p4 = 0.7241 p5 = −0.8454 p6 = 0.02719
p7 = 0.4858 p8 = 0.4140 p9 = −0.1070 p10 = −0.02761 p11 = −0.2779 p12 = −0.4929 p13 = 0.2440
p14 = −0.3681 p15 = 1.632 p16 = −0.6407 p17 = −0.01004 p18 = −0.01716 p19 = 0.01431 p20 = 0.1439

Figure 3. (a) The optimal Λt versus the beam separation d. The blue cross and dot points are the results from the optimization program. The
solid and dashed lines are the results from equation (2). All the solid and dashed lines have the same σzd = 1.0 but different Λd or σzt.
(b) The optimal Λt versus the beam separation d and the transformer ratio R, and the projected lines on the d−R plane. Each line has the
same Λd, σzd and σzt as those in (a).

where the fitting coefficients are given in table 2.
Besides Λt, the transformer ratio R is also an important

parameter we concern in a two-bunch PWFA stage. We con-
sider that R is dependent on Λd,Λt,σzd,σzt and d. Follow-
ing the same procedure, we can get the explicit expression of
R= f(Λd,Λt,σzd,σzt,d). In this case, training dataset and test
dataset comprise 80% and 20% of the whole database, respect-
ively. We finally choose the degree of 2, with which we get the
highest averaged r2 ≃ 0.98 when performing 10-fold cross-
validation. In the final evaluation using the test dataset, we get
r2 ≃ 0.99, which represents high prediction accuracy. The fit-
ting formula for R is

R= p0 + p1Λd + p2σzd + p3σzt + p4d+ p5Λt + p6Λ
2
d

+ p7Λdσzd + p8Λdσzt + p9Λdd+ p10ΛdΛt + p11σ
2
zd

+ p12σzdσzt+ p13σzdd+ p14σzdΛt + p15σ
2
zt + p16σztd

+ p17σztΛt + p18d
2 + p19dΛt + p20Λ

2
t , (3)

where the fitting coefficients are given in table 3.

Through the fitting formulas, we can obtain the optimal Λt

without running the optimization program. For example, for
Λd = 1.0,σzd = 1.0,σzt = 0.2 and d= 4.0, equation (2) gives
the optimal Λt = 1.652, while the optimization program gives
Λt = 1.644. The results agree well with each other. When cal-
culating the transformer ratio R using the fitting formula, we
first need to obtain the optimal Λt through equation (2), and
then substitute the optimal Λt into equation (3) to obtain R.
This gives R= 0.622 in this case, while the optimization pro-
gram gives R= 0.622. They still agree very well with each
other. In figure 3, we compare more results from the optim-
ization program with the results given by the fitting formulas.
The green solid line in figure 3(a) plots the optimalΛt versus d
with Λd = 1.0,σzd = 1.0 and σzt = 0.2 by using the fitting for-
mula equation (2). The blue cross points are the results from
the optimization program and they agree very well with the
fitting results. The pink and black solid lines in figure 3(a)
have different Λd but the same σzd and σzt, and they agree
very well with the results from the optimization program. We
also change σzt and Λd while keeping σzd and still find good
agreements between the fitting results (dashed lines) and the
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optimization results (dot points) as shown in figure 3(a). Fur-
thermore, we calculate the transformer ratio R from the fitting
formula equation (3) and show the results in figure 3(b), which
has another axis of R than figure 3(a). The fitting results also
agree very well with the optimization results. From the results
shown in figure 3, we can also find that for given Λd,σzd and
σzt, the bigger the d is, the smaller theΛt is and the higher theR
is, which agrees with the understanding of beam-loading in the
nonlinear plasma wake [18]. The applicable parameter range
for these two fitting formulas is listed in table 1. In addition,
the beam energy had better to be larger than 100 MeV when
using these fitting formulas.

3.3. Flat-top and trapezoidal trailing beams

We also test the availability of the fitting formulas for trail-
ing beams with a longitudinal flat-top profile or a longit-
udinal trapezoidal profile. We pick up three tri-Gaussian
cases with the same drive beam parameters and the same
σzt = 0.190 but different d. We plot the on-axis Ez of the
plasma wake in figure 4(a). In these simulations, the drive
beam has Λd = 0.918 and σzd = 0.952, and its beam cen-
ter is located at ξd = 3.33. For each simulation as shown in
figure 4(a), a tri-Gaussian trailing beam is loaded at three
distinct locations, ξ1 = ξd + 4.538, ξ2 = ξd + 4.942 and ξ3 =
ξd + 5.345. According to equation (2), three optimal Λt are
Λt1 = 1.345 at d= 4.538, Λt2 = 1.229 at d= 4.942 and Λt3 =
1.104 at d= 5.345. As shown in figure 4(a), all these three
cases have reached the optimal beam-loading. When switch-
ing them to the longitudinal flat-top profile, we keep Λt and
the total particle number the same as those of tri-Gaussian
trailing beams. Therefore, the flat-top beam length should be
lzF =

√
2πσzt. We load these flat-top beams with their heads

at a distance
√
2σzt in front of ξ1,2,3 in order to maintain

the transformer ratio (as suggested in [18]). As shown in
figure 4(b), the beam-loading effect of flat-top trailing beams
mimics that of tri-Gaussian trailing beams. In [18], it is shown
that the trapezoidal trailing beams can perfectly flatten the
Ez. For trapezoidal trailing beams, we still keep the total
particle number and maximal Λt the same as those of tri-
Gaussian trailing beams. The trapezoidal beam also has a
sharp edge as the flat-top beam. Thus, we load trapezoidal
beams at ξ̃1,2,3 = ξ1,2,3 −

√
2σzt. The slope of the trapezoidal

profile a equals to Ez where the beam-loading starts [18],
which roughly equals to the averaged accelerating wake-
field of the tri-Gaussian beam. For three trapezoidal trailing
beams plotted in figure 4(c), we have a1 =−0.539, beam
length lz1 = 0.562 at ξ̃1, a2 =−0.709, lz2 = 0.609 at ξ̃2 and
a3 =−0.932, lz3 = 0.716 at ξ̃3, where the beam length is
derived from the total charge of the beam. As shown in
figure 4(c), Ez is almost flattened and the transformer ratio is
well maintained. Therefore, through proper beam parameter
transformations, the fitting formulas of tri-Gaussian beams
can still give a good estimation for flat-top or trapezoidal
trailing beams.

Figure 4. The lineout of longitudinal wakefield Ez for
(a) tri-Gaussian beams, (b) flat-top beams and (c) trapezoidal beams
at three distinct locations.

4. A scaling law for charges of two beams under
the optimal beam-loading

Not only can the fitting formulas be used to find particular
beam parameters for the optimal beam-loading, they can also
unveil many physics features under the optimal beam-loading.
One of the features is the relation between the charge of the
drive beam and that of the trailing beam under the optimal
beam-loading. The beam charge is proportional toΛσz. There-
fore, by multiplying σzt on both sides of equation (2) and
rearranging the right hand side of the equation, we can find
the relation between Λtσzt and Λdσzd as

Λtσzt = A · (Λdσzd)
3 +B · (Λdσzd)

2 +D · (Λdσzd)+G, (4)

6
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Figure 5. (a) The relation between Λtσzt and Λdσzd under the optimal beam-loading. (b) The transformer ratio R versus Λtσzt and Λdσzd,
and the projected lines on the Λdσzd −R plane. Each line has the same σzd,σzt and d as those in (a).

where A= h15(σzt/σ
3
zd),B= (h5 + h16σzd + h17σzt + h18d)

(σzt/σ
2
zd), D = (h1 + h6σzd + h7σzt + h8d+ h19σ2

zd + h20σzd

σzt + h21σzdd + h22σ2
zt + h23σztd + h24d2)(σzt/σzd),G=

(h2σzd + h3σzt + h4d + h9σ2
zd + h10σzdσzt + h11σzdd+

h12σ2
zt + h13σztd + h14d2 + h25σ3

zd + h26σ2
zdσzt + h27σ2

zdd+
h28σzdσ

2
zt + h29σzdσztd + h30σzdd2 + h31σ3

zt + h32σ2
ztd +

h33σztd2 + h34d3 + h0)σzt.
According to equation (4), with σzd = 1.0,σzt =

0.2 and d= 4.0 as an example, we can get Λtσzt =
−0.0004781(Λdσzd)

3 −0.01231(Λdσzd)
2 + 0.3835(Λdσzd)−

0.04041, which is plotted as the blue line in figure 5(a). From
the plot, we can find that Λtσzt almost increases linearly with
Λdσzd. This is because the high order terms are much less than
the Λdσzd term in this example. Therefore, equation (4) can be
reduced to Λtσzt = D(Λdσzd)+G. This means that once the
optimal beam-loading is reached, it is always satisfied when
increasing charges of both beams with the same ratio D. In
figure 5(a), we plot three other lines with different d or σzt. And
they all obey the simple scaling law Λtσzt = D(Λdσzd)+G,
where D and G depend on σzd,σzt and d. If G is much less
than DΛdσzd, we can further neglect G and Λtσzt will become
proportional to Λdσzd. This means that we can change charges
of both beams at the same rate without breaking the optimal
beam-loading condition. In addition, with equation (3) we
can also calculate the transformer ratio R for the lines in
figure 5(a), which is shown in figure 5(b). This will bring
much convenience for designing a two-bunch PWFA stage.

5. Optimal plasma densities for maximum
accelerated charge and maximum acceleration
efficiency

So far, we are using the normalized units for each para-
meter. This means the physics features we obtained in the
last section is only available for a fixed plasma density.
However, we are also interested in how the beam parameter

varies as the plasma density changes under the optimal
beam-loading. This can be obtained by switching the nor-
malized units in the equation back to the original ones. We
have the charge of the drive (trailing) beam Qd (Qt)[nC] =
(2π)

3
2 enpk−3

p Λd(t)σzd(t) = 3.79/
√

np[1016 cm−3]Λd(t)σzd(t),
the rms length of the drive (trailing) beam Ld (Lt)[µm] =
σzd(t)k−1

p = 53.14/
√

np[1016 cm−3]σzd(t) and the beam sep-

aration l[µm] = d · k−1
p = 53.14/

√

np[1016 cm−3]d. There-
fore, equations (2) and (3) can be converted to equations
that have the plasma density as an additional variable (see
appendix C and equation (6) for details). Here we will focus
on how the plasma density will affect equation (4). We convert
equation (4) into an engineering formula

Qt[nC] = H · n
3
2
p [1016 cm−3] +M · np[1016 cm−3]

+P · n
1
2
p [1016 cm−3] + S, (5)

where H= (w25L3d +w26L2dLt +w27L2dl+w28LdL2t +w29

LdLtl+w30Ldl2 +w31L3t +w32L2t l+w33Ltl2 +w34l3)Lt,
M= (w9L2d +w10LdLt+w11Ldl+w12L2t +w13Ltl+w14l2)Lt +
(w19L2d +w20LdLt +w21Ldl+w22L2t +w23Ltl+w24l2)LtQd/Ld,
P= (w2Ld +w3Lt +w4l)Lt +(w6Ld +w7Lt +w8l)LtQd/Ld +
(w16Ld +w17Lt +w18l)LtQ2

d/L
2
d and S= w1LtQd/Ld +

w5LtQ2
d/L

2
d +w15LtQ3

d/L
3
d +w0Lt. The coefficients in

equation (5) are listed in table 4.
The equation (5) shows the relation between the charge

of the trailing beam and the plasma density under the
optimal beam-loading. For example, whenQd = 1.5 nC, Ld =
60 µm, Lt = 12 µm and l= 300 µm, we can obtain

Qt[nC] = 0.1875 n
3
2
p [1016 cm−3]− 2.7919 np[1016 cm−3] +

2.8656 n
1
2
p [1016 cm−3]− 0.3230, which is plotted as the blue

line in figure 6(a).
The plot shows an interesting feature that the charge of

the trailing beam has a maximal value when the plasma dens-
ity varies under the optimal beam-loading. For this case, the

7
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Table 4. Coefficients in equation (5).

w0 = −3.573×10−2 w1 = 3.658×10−1 w2 = 1.223×10−3 w3 = −1.452×10−3 w4 = 4.107×10−4

w5 = −5.268×10−1 w6 = 4.411×10−2 w7 = 2.410×10−3 w8 = −9.462×10−4 w9 = −1.801×10−5

w10 = −4.832×10−6 w11 = −3.321×10−6 w12 = −5.468×10−5 w13 = 2.610×10−5 w14 = −1.919×10−6

w15 = −4.708×10−1 w16 = −1.999×10−2 w17 = 6.975×10−3 w18 = 3.062×10−3 w19 = −3.055×10−4

w20 = −8.582×10−5 w21 = 3.410×10−5 w22 = 1.372×10−4 w23 = −2.527×10−5 w24 = −1.084×10−6

w25 = 5.880×10−8 w26 = 1.781×10−8 w27 = 3.635×10−8 w28 = 2.468×10−7 w29 = −1.227×10−8

w30 = −2.883×10−9 w31 = −1.361×10−6 w32 = 5.844×10−7 w33 = −1.199×10−7 w34 = 3.169×10−9

Figure 6. (a) Qt[nC] versus plasma density np[1016 cm−3] under the optimal beam-loading. We have Ld = 60 µm and l= 300 µm for these
four cases. The dashed lines show the location of the optimal plasma densities for the maximum accelerated charge. (b) QuickPIC results of
the plasma, beam density and the on-axis Ez at the optimal densities for the maximal Qt in four different cases shown in (a). (c) η versus
plasma density np[1016 cm−3] under the optimal beam-loading. All lines have the same Qd,Ld,Lt and l as those shown in (a). The dot-dashed
lines show the location of the optimal plasma densities for the maximal η. (d) QuickPIC results of the plasma, beam density and the on-axis
Ez at the optimal densities for the maximal η in four different cases shown in (c). QuickPIC results (1)–(4) in (b) and (d) correspond
to the blue one, the orange one, the green one and the brown one in (a) and (c), respectively. In each simulation, we have the rms spot size of
the drive beam σrd[µm] = 5.314/

√

np[1016 cm−3] and that of the trailing beam σrt = σrd/2. The simulation box has the size of
12.0× 12.0 ×9.0 (x,y, ξ) and contains 1024× 1024× 512 cells.

trailing beam reaches its maximal charge Qtmax = 0.440 nC at
an optimal plasma density npQ = 2.946× 1015 cm−3, which
is marked as the blue dashed line in figure 6(a). We plot
the plasma wake and the on-axis Ez for the same case in
figure 6(b)(1), andwe can see that the trailing beam reaches the
optimal beam-loading. In figure 6(a), we also plot equation (5)
as three other lines with differentQd or Lt. Parameters for each
case are listed in table 5. They all show that there is an optimal
plasma density npQ (marked as the dashed lines) for obtaining
the maximum accelerated charge Qtmax. The values of npQ and

Qtmax for each case are also listed in table 5. For each case, we
plot the plasma wake and the on-axis Ez at the optimal plasma
density in figure 6(b).

Although the trailing beam reaches its maximum charge,
the transformer ratio in each case is low (less than 1) as
shown in figure 6(b). In other words, the acceleration effi-
ciency is low for these cases. Actually, it is easy to find how
the acceleration efficiency varies with regard to the plasma
density. The acceleration efficiency can be calculated through
η = (Qt[nC]/Qd[nC]) ·R. By switching the units back to the

8
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Table 5. Optimal np, maximal Qt and maximal η for cases plotted in figure 6.

Case Qd [nC] Lt [µm] npQ[1015 cm−3] Qtmax[nC] npη[1015 cm−3] ηmax [%] Qt [nC] at ηmax

1 1.5 12 2.946 0.440 5.829 34 0.321
2 1.5 24 2.843 0.867 5.323 49 0.629
3 2 12 3.302 0.584 6.926 38 0.418
4 2 24 3.119 1.149 6.180 53 0.814

Table 6. Fitting coefficients in equation (6).

m0 = −1.453 m1 = 4.489 m2 = 5.980×10−3 m3 = 5.804×10−3 m4 = 1.363×10−2

m5 = −1.186×101 m6 = 5.355 m7 = 1.283×10−1 m8 = 1.093×10−1 m9 = −2.825×10−2

m10 = −5.438 m11 = −9.840×10−5 m12 = −1.745×10−4 m13 = 8.639×10−5 m14 = −9.720×10−2

m15 = 5.777×10−4 m16 = −2.269×10−4 m17 = −2.650×10−3 m18 = −6.076×10−6 m19 = 3.778×10−3

m20 = 2.834×101

original ones in equation (3) and substituting equation (5) into
it, we can have an engineering formula of R that depends on
Qd,Ld,Lt, l and np,

R= O · n3p[1016 cm−3] + Y · n
5
2
p [1016 cm−3] + Z · n2p[1016 cm−3]

+C · n
3
2
p [1016 cm−3] +K · np[1016 cm−3]

+W · n
1
2
p [1016 cm−3] + T, (6)

where O= m20H2/L2t ,Y= m20(2HM)/L2t ,Z= m14HLd/Lt +
m17H + m19Hl/Lt + m20(2HP+M2)/L2t ,C= m5H/Lt +
m10HQd/(LdLt) + m14MLd/Lt + m17M + m19Ml/Lt +
m20(2HS+ 2MP)/L2t ,K= m11L2d + m12LdLt + m13Ldl +
m15L2t + m16Ltl + m18l2 +m5M/Lt +m10MQd/(LdLt) +
m14PLd/Lt +m17P + m19Pl/Lt +m20(2MS+P2)/L2t ,W=
m2Ld +m3Lt +m4l + m7Qd + m8QdLt/Ld + m9Qdl/Ld +
m14SLd/Lt +m17S+m19Sl/Lt +m5P/Lt +m10PQd/(LdLt)+
m20(2SP)/L2t and T= m1Qd/Ld +m5S/Lt +m6Q2

d/L
2
d +

m10SQd/(LdLt)+m20S2/L2t +m0. The coefficients are given
in table 6.

Then by substituting equation (5) together with equation (6)
into the equation of η, we can have

η =
Qt[nC]
Qd[nC]

·R

=
1

Qd[nC]
·
(

X1 · n
9
2
p [1016 cm−3] +X2 · n4p[1016 cm−3]

+X3 · n
7
2
p [1016 cm−3] +X4 · n3p[1016 cm−3]

+X5 · n
5
2
p [1016 cm−3] +X6 · n2p[1016 cm−3]

+X7 · n
3
2
p [1016 cm−3] +X8 · np[1016 cm−3]

+X9 · n
1
2
p [1016 cm−3] +X10

)

, (7)

where X1 = OH,X2 = (OM+ YH),X3 = (OP+ YM+ ZH),
X4 = (OS+ YP+ ZM+CH),X5 = (YS+ ZP+CM+KH),
X6 = (ZS+CP+KM+WH),X7 = (CS+KP+WM+ TH),
X8 = (KS+WP+ TM),X9 = (WS+ TP) and X10 = TS.

In figure 6(c), we plot η versus np with four sets ofQd,Ld,Lt
and l, which are the same as those in figure 6(a). There is also
an optimal plasma density (marked as the dot-dashed lines)
for obtaining the maximum η under the optimal beam-loading.
Note that η becomes negative at lower np because the beam
separation is so small that the trailing beam is located in the
decelerating phase in the plasma wake. Table 5 also lists the
optimal plasma density npη for the maximum acceleration effi-
ciency ηmax andQt at ηmax. Figure 6(d) shows the plasma wake
and the on-axis Ez at the optimal np for the maximum accel-
eration efficiency for each case in figure 6(c). We can see that
trailing beams are all located at the back of the bubble, which
ensures that the transformer ratio is close to or larger than 1.
By comparing figures 6(a) and (c), we can see that the optimal
plasma densities for maximum accelerated charge and max-
imum acceleration efficiency are usually different. This means
that for given Qd,Ld,Lt and l, we have to make a comprom-
ise between having the maximum accelerated charge and hav-
ing the maximum acceleration efficiency when choosing the
plasma density. In order to do that, for example, we can choose
the value in the middle of two optimal plasma densities. In
addition, the curves shown in figure 6(a) also indicate that the
optimal beam-loading condition cannot hold for fixed beam
parameters at different plasma densities. Therefore, additional
energy spread will be induced in the region where the plasma
density varies (e.g. the plasma density ramps).

6. Conclusion

By using the BFGS optimization method and the quasi-static
code QuickPIC, we obtain a large amount of optimal beam-
loading cases of two-bunch PWFA in a wide parameter range.
Then we derive two fitting formulas from these data by
using the polynomial regression with 10-fold cross-validation
method. One fitting formula can find the optimal Λt under the
optimal beam-loading condition with given Λd,σzd, σzt and
d. The other one can find the transformer ratio with given
Λd,σzd,Λt,σzt and d under the optimal beam-loading condi-
tion. We use the normalized units in these two fitting formu-
las that makes them not have the dependency of the plasma
density. One can easily transform the fitting formula into an

9
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engineering equation that has the plasma density as a variable
(shown as equation (C1) and equation (6)). The fitting formu-
las agree with the simulation results very well. It is a very effi-
cient tool for obtaining the optimal beam-loading parameters
when designing a PWFA stage using two tri-Gaussian electron
beams in the blowout regime. We also test the fitting formulas
with trailing beam that has a flat-top or trapezoidal longitud-
inal profile. The fitting formulas can still give a good estima-
tion after the simple parameter transformation between differ-
ent longitudinal profiles.

We explore new physics features of the optimal beam-
loading based on the fitting formulas. One feature is that once
the optimal beam-loading is reached, it is always satisfied
when we increase the charges of drive beam and trailing beam
at the same ratio. This ratio is dependent on the length of drive
and trailing beams and the beam separation. Another phys-
ics feature is that under the optimal beam-loading condition
there are two optimal plasma densities for the maximum accel-
erated charge and the maximum acceleration efficiency with
given parameters of the drive beam, the length of the trailing
beam and the beam separation. These two features provide an
important guidance for the two-bunch PWFA design.
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Appendix A. The main loop of automatic
optimizations

Step 1. Initialize Ns parameter sets (Λd,σzd,σzt,d) and j= 1.
Step 2. Terminate if j> Ns.
Step 3. Get the jth set of parameter (Λdj,σzdj,σztj,ddtj) and set

up the input parameters for QuickPIC simulation.
Step 4. If the trailing beam (±3σzt) locates in the accelerat-

ing phase, call the BFGS subroutine to calculate the
optimal Λtj, which requires to call QuickPIC to calcu-
late the value of the objective function equation (1).
Otherwise, go to Step 6.

Step 5. Dump the results.
Step 6. Set j= j+ 1 and go to Step 2.

Appendix B. Simulation settings for automatic
optimizations

In the process of automatic optimizations, we set the center of
the drive beam Cd as

Cd =











round (3.5σzd,2), σzd ⩾ 0.3 and 4σzt < 3.5σzd+ d,

ceil (4σzt− d), 4σzt ⩾ 1+ d or 4σzt ⩾ 3.5σzd+ d,

1, σzd < 0.3 and 4σzt < 1+ d,

where function round (x,m) is to round x to a specific precision
m in decimal digits and function ceil (x) is to return the ceiling
of x as an integral. Subsequently, the center of the trailing beam
Ct is set to

Ct = Cd + d.

Following this, the length of box in the longitudinal direction
boxz can be set to

boxz = max {4,round (max (Ct + 5σzt,Cd + 3.5σzd),2)},

and the cell number in the longitudinal direction is

Nz =

{

512, boxz ⩽ 15,

1024, boxz > 15.

In addition, the length of box in the transverse direction boxx/y
can be set to

boxx/y =

{

4, Λd ⩽ 0.05,

8Rbmax, Λd > 0.05.

In order to well resolve the maximal bubble radius, the cell
number in the transverse direction is set to

Nx/y =

{

512, Λd ⩽ 0.2,

1024, Λd > 0.2.

Appendix C. The engineering equation for Λt with
the plasma density as a variable

We can convert equation (2) into an equation that has the
plasma density as an additional variable,

Λt = I · n
3
2
p [1016 cm−3] + J · np[1016 cm−3]

+U · n
1
2
p [1016 cm−3] +V, (C1)

where I= s25L3d + s26L2dLt+ s27L2dl+ s28LdL2t + s29LdLtl+
s30Ldl2 + s31L3t + s32L2t l+ s33Ltl2 + s34l3,J= s9L2d +
s10LdLt + s11Ldl+ s12L2t + s13Ltl+ h14l2 + s19ΛdL2d +
s20ΛdLdLt + s21ΛdLdl+ s22ΛdL2t + s23ΛdLtl+ s24Λdl2,U=
s2Ld + s3Lt + s4l+ s6ΛdLd + s7ΛdLt + s8Λdl+ s16Λ2

dLd +
s17Λ2

dLt + s18Λ2
dl,V= s1Λd + s5Λ2

d + s15Λ3
d + s0 and Ld,Lt and

l are in the unit of µm. The coefficients are given in table 7.
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Table 7. Fitting coefficients in equation (C1).

s0 = −5.014×10−1 s1 = 3.658×10−1 s2 = 1.716×10−2 s3 = −2.038×10−2 s4 = 5.763×10−3

s5 = −3.754×10−2 s6 = 4.411×10−2 s7 = 2.410×10−3 s8 = −9.462×10−4 s9 = −2.527×10−4

s10 = −6.781×10−5 s11 = −4.661×10−5 s12 = −7.673×10−4 s13 = 3.663×10−4 s14 = −2.694×10−5

s15 = −2.391×10−3 s16 = −1.425×10−3 s17 = 4.970×10−4 s18 = 2.182×10−4 s19 = −3.055×10−4

s20 = −8.582×10−5 s21 = 3.410×10−5 s22 = 1.372×10−4 s23 = −2.527×10−5 s24 = −1.084×10−6

s25 = 8.251×10−7 s26 = 2.500×10−7 s27 = 5.101×10−7 s28 = 3.463×10−6 s29 = −1.723×10−7

s30 = −4.045×10−8 s31 = −1.910×10−5 s32 = 8.201×10−6 s33 = −1.682×10−6 s34 = 4.448×10−8
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