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SUMMARY

A fundamental challenge in semi-supervised learning lies in the observed data’s disproportional
size when compared with the size of the data collected with missing outcomes. An implicit
understanding is that the dataset with missing outcomes, being significantly larger, ought to
improve estimation and inference. However, it is unclear to what extent this is correct. We illustrate
one clear benefit: root-n inference of the outcome’s mean is possible while only requiring a
consistent estimation of the outcome, possibly at a rate slower than root n. This is achieved by a
novel k-fold, cross-fitted, double robust estimator. We discuss both linear and nonlinear outcomes.
Such an estimator is particularly suited for models that naturally do not admit root-n consistency,
such as high-dimensional, nonparametric or semiparametric models. We apply our methods to
estimating heterogeneous treatment effects.

Some key words: Coefficient of determination; Double robustness; Missing data; Model-lean inference.

1. INTRODUCTION

We consider a semi-supervised setting with » independent and identically distributed pairs
(Xi, Y))!_, ~ P,y of observations, with covariates X; € RP~! and the outcome ¥; € R.
We presuppose the existence of an additional set of m observations, (X,-);’;ﬁl. With 7 =
lim,, o0 n/(m 4+ n) € [0, 1] denoting the ratio of the fully observed data and data with the
missing outcomes, we are particularly focused on the case of T = 0, i.e., m > n. The semi-
supervised learning setting can be viewed as a particular missing data setting, where the outcome
is missing completely at random. Although the missing data literature, in general, addresses a
more general setting of outcomes missing at random (Scharfstein et al., 1999), semi-supervised
learning has a particular caveat that the missing data’s size is enormous, m >> n. With m > n, typi-
cal missing-at-random approaches (Bang & Robins, 2005) no longer apply. The positivity/overlap
condition (see, e.g., Rotnitzky et al., 2012), is no longer satisfied; with ¢ = 0, the probability of
observing the outcome converges to zero, therefore implying that the semi-supervised setting is
not a simple subset of the missing-at-random setting. Instead, we treat the missingness size, an
impediment from the missing-at-random perspective, as a semi-supervised strength. In the case of
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infinite missingness of the response, we are left with infinite additional information regarding the
covariates’ distribution, Py . Mimicking the known Py setting, we remove the bias in estimating
the outcome model and show that semi-supervised double-robust inference is achievable.

Our main contribution is in constructing new semi-supervised estimates of 6 = E(Y) and in
providing root-n inferential guarantees while allowing for misspecification of the distribution of
Y | X. An impediment to providing optimal inferences about 6 lies in the inability to estimate
E(Y | X) with root-n guarantees. Sparse regularizers, random forests, nonparametric smoothing
estimators or neural networks do not admit root-z consistency. While there is vast literature
on semi-supervised learning, comparatively little is known about making inferences about 6;
see Zhu (2005). Recent results of Wasserman & Lafferty (2008), El Alaoui et al. (2016) and
Mai & Couillet (2018) consider the class of low-dimensional graph-oriented semi-supervised
algorithms. Semi-supervised learning in the context of classification has had a long tradition;
see Grandvalet & Bengio (2005) and Chapelle et al. (2009). A small but growing literature has
considered the development of semi-supervised inferential procedures. The recent work of Zhang
et al. (2019) is a special case of our construction. The authors utilize the least-squares approach
in linear models and assume p = o(n'/?). Our results are based on n~! log(p) = o(1) together
with many possible estimators, e.g., random forests and neural networks. Chakrabortty & Cai
(2018) developed the semi-supervised regression method with improved efficiency when the
linear model is misspecified. Gronsbell & Cai (2018) considered semi-supervised prediction,
while Cai & Guo (2020) proposed semi-supervised explained variance estimates. We, therefore,
view our contribution as complementary to this growing literature.

We believe that our new estimating tools will be useful beyond the specific class of environ-
ments studied here. We illustrate this point by applying our findings to heterogeneous treatment
effects. The existing approaches of Chernozhukov et al. (2017, 2018) and Kiinzel et al. (2019)
build learners that can conform to many machine learning methods (Athey et al., 2018; Wager
& Athey, 2018). However, they do not consider the semi-supervised setting with the outcome
and the treatment missing. We discover that the asymptotic variance size is reduced regardless
of whether additional information on the treatment is available. Moreover, treatment assignment
can potentially depend on all covariates with no explicit sparsity requirement. The method also
shares the low-dimensional asymptotic efficiency of Cheng et al. (2020).

2. EFFICIENT ESTIMATION OF THE MEAN
2.1. From debiasing to double robustness

Let * € RP, the population slope, be an I, projection defined as g* =
arg mingere £ (Y —p1—X T,B_l)z. Here, B_; denotes B with the jth coordinate removed. For
e =Y - B —X"B*, and 082 = var(e) with E(¢ | X) F 0 we do not necessarily assume
that the regression model is linear. With i and C, denoting the mean and the covariance of X,
respectively, weuse V; = X; —wand Z; = C~V/2(X; — ). With X; = (1,X,))" and Vi=(, VOt
let 7 = (1, )" and C = cov(X) denote the mean and covariance of X = (1, X")". The mean
of the response, & = E(Y), can be seen as a linear contrast of 8*: 0 = 1" g*.

When p > n, a good candidate estimate of 8* is a regularized estimator, B, e.g., lasso
(Tibshirani, 1997) or square-root lasso (Belloni et al., 2011). However, such estimators suffer from
slower than root-n consistency: when the outcome model is linear, || ,3 — B* ||% = op{slog(p)/n}
with s = |{j : ﬂ;‘ £ 0}|. Hence, a plug-in estimate will not achieve root-x inference regarding
0, even if the outcome model is correct, unless s is a constant. The existing literature provides
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easy solutions with many possible ways to remove the bias of regularization. Each of these
could potentially achieve root-x inference of 6, but would, however, require strong assumptions
on the models: the outcome must be well specified as well as sparse enough. For example, let
Bdb = ﬁ +n! Z:‘l:l @)?I-(Yi —)?iTﬁ) denote the debiased lasso (Van de Geer et al., 2014). Here,
® is a candidate estimate of £ ! , Y = EXXT € RP*P, Root-n inference of @ would then require
outcome sparsity s = o{n'/?/log(p)} as well as |{k =% j (fl_l)j,k F 0} = o{n/log(p)} (Van de
Geer et al., 2014).

However, ,édb does not directly use the additional covariate information available in the
semi-supervised setting. Let us consider a particular case where Py, and with it £~! and f,
are known. In this case we could use an improved debiased semi-supervised estimator 8 =
B+n~1 Y0 STIX(Y; —X;' B), which then leads to AT = A" +n"! S el XY - XiB) =
AR+ nt Yo (Y — )?fﬁ), where e; = (1,0,0,...,0)". Interestingly, by algebraic manipula-
tion it is not difficult to see that the right-hand side of the latter equation becomes ¥ + (it —X)",
where ¥ = n~! YooY and X =n~! Yo X;, therefore matching the low-dimensional estima-
tor of Zhang et al. (2019). There seems to be an intricate connection between the above estimator
and the double-robust, missing-at-random estimators of Bang & Robins (2005). However, there
is an important difference. If 7; = 1 forj = 1,...,n and zero otherwise, i.e., T is the indicator of
the observed data, then missing-at-random estimators treat 7" as a random variable whereas semi-
supervised learning treats T as fixed and nonrandom. Semi-supervised learning can be viewed as
missing-at-random estimation conditional on (T,-);.":Jq" being fixed. Then, the missing-at-random
average treatment effect of the treated matches the above estimator,

n+m

BB+ (4+m Y T — XiB)/pr(Ti =11 X)),

i=1

where pr(7;=1|X;)=pr(T;=1)=n/(n+m). However, missing-at-random double-robust
estimates require pr(7; = 1 | X;) > 0, whereas in the semi-supervised setting we have
pr(7; = 1| X;) — 0 with m > n.

In the semi-supervised setting we aim to show that the above estimator’s sample equiv-
alent will suffice for root-n inference on 6. Let 6 = A'8 + n! Yo —)?fﬁ) and
o= (m+m! o 15( Our estimator will use cross-fitting, which plays a crucial role
in establishing the double-robust property of the proposed estimator, i.e., in controlling the
term f#, in the decomposition -0 = 1 +tp + t3, where 11 = 0 — n_1 Zl 1 Yi, b =
'Y X - OT(B— B and 1z = (n~! 7 X; — 1)TB*. The cross-fitting technique helps
in removing the bias arising from #,. With the use of cross-fitting, the influence of B and X;
in fp are separated and tight control of £, is achleved under minimal conditions. Without cross-
fitting, 6 —60| < ||n! > _1X - u||oo||,3 B*I11, where the right-hand side is Op(n~1/?)
as long as s < nl/ 2/log(p). Instead, with the use of cross-fitting, we can guarantee root-n
consistency as long as s < n/ log(p). Cross-fitting can be traced back to the natural ideas of cross-
validation. Historical background is provided by Stone (1974) and Geisser (1975), for example.
More recently, Rinaldo et al. (2019) showed that sample splitting increases the accuracy and
robustness of inference. Chernozhukov et al. (2017) used cross-fitting to define double-robust
missing-at-random estimates.

We start by splitting the labelled observations into K sets, /i, each of size N, and split the
unlabelled observations into sets 7;. Let Jy = I U I, with |J;| = M. Let BEH denote an

estimate of 8* computed on all but the £th labelled observations, ,3(*") = ,3 [{(X}, Y) i€
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{1,2,...,n}\ I}] € RP. Then, we propose

A~ n T a(_ _ ST A(— A~ — v
§o = TR0 Ly 12(1,1,_)(1:/3( k)), A% =y IZXI" (1)

i€l ieJy

Finally, we propose the following semi-supervised estimator, which aggregates the above
estimates:

K
G=K13 W,
k=1
We will show that this estimator becomes an unbiased estimator of 6, even in finite samples.

2.2. From the mean to the coefficient of determination
A crucial statistical problem is the estimation of the proportion of variance explained, PVE =
var(XTg*)/ a%. Estimation of PVE with p >> n is difficult due to the numerous overfitting issues.
In this subsection we propose a semi-supervised coefficient of determination, R?, an estimator
of PVE. The estimation of the explained variance, b = Var(f( T8*) (Cai & Guo, 2020), can be
performed with the cross-fitted residuals

An(k N N N A~ AL " A Al A
P = BRTEWRER poN Tt N B e, =Y —0- YT, @

iely

and b = K~! Z,I{{:l lSz(k), where the estimates of f/l are f/, = 5(1 — ,&(k) and their covariance
ChH = pm=1y . i V;V'T. The motivation behind this careful construction is governed by bias
propagation in the high-dimensional setting; as we will show, the residuals as defined above are,
however, root-x consistent. This, in turn, provides a more stable estimate and enables theoretically
weak conditions. To see that the naive estimate Y; — ,BAT)?, may not guarantee root-» consistency,
we only need to observe that in such a case, ¥; — B Xi=ei+ O —B")— (B— BN — ),
while the term 6 — BT/1 is not necessarily root-n consistent whenever p >> n. Our cross-fitted
construction can be seen as a bias-corrected estimate of the residuals. We propose a new estimator
of the variance of the response, 052, = var(Y),

~ 9 (k) _ A _ A_INT [~ A A Al
A =N =6 NI BEIT(EW - i) P, (3)

iely iely

and with it 62 = K~! Zszl 8}2,(k). Our results also hold for the truncated version 6)2,’mmc =
max(&%, 0). A classical estimate, the simple sample variance, S2 = n~! Yo (Yi— Y)2, does not
utilize any additional knowledge of the covariates. Alternatively, one may consider n~! Yo (Yi—
6)2. However, both of these estimates can be improved. Our theoretical results demonstrate a
persistent variance magnification, n=! Y7 (¥; — 0)2 = o2 +n" Y (BT VT - C)B*) +
T+O0p(n="), where E(T) =0and T = n~! Z;’:l Qp*T Viei+ 81-2 — 082); details are presented in
the Supplementary Material. Hence, our estimator adds a correction term so that the contribution
of the middle term disappears. Therefore, R? can be obtained by plugging in the estimators of 52,
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(2), and the variance of the response a%, 3),
K k k
R =x"Y 5" /8". (4)
k=1

2.3. Root-n consistency

We establish the root-# consistency of the proposed semi-supervised estimators. The constants
in what follows, possibly changing from line to line, are independent of the sample size.

Condition 1. Let the covariance matrix C be such that Ap,in (C) > 0, Anax(C) < ¢ and
SUP|ig,=1 E|d"Z)*t¢ < ¢1, as well as E|Y |*1¢ < ¢, for positive constants ¢, c; > 0.

Condition 2. The responses are such that E|Y|*¢ < ¢, whereas the covariance matrix C
satisfies Apin(C) > 0, Amax(C) < ¢; and sup”a||2:1E|aTZ|4+c < ¢ for positive constants
c,c1 > 0.

Condition 3. Let B be an estimator for g* that satisfies || — B*|l» = Op(1) as n,p — 0.

Conditions 1 or 2, used one at a time, provide a well-defined linear approximation model 8*.
A bounded variance of Y simplifies exposition; all of the results still hold even if this condition is
removed. However, the results would be less interpretable. Condition 3 allows for a wide variety
of estimates of S*: lasso, Dantzig, square-root lasso, elastic-net (Zou & Hastie, 2005) or slope
(Bogdan et al., 2015) are plausible. Similarly, different structural forms of f* are permissible;
a considerably weaker form of sparsity, /. sparsity with » € (0, 1), would be effective as long
as ||B*||I" = o[{n/log(p)}' ~"/?] (Ye & Zhang, 2010), for example. As per Conditions 1 and 2,
bounded 2 + ¢ and 4 + ¢ moments allow heavy-tailed distributions for the covariates as well as
the noise; see, e.g., the Huber estimate of Sun et al. (2020).

THEOREM 1. Let Conditions 1 and 3 hold. Then, as m,n,p — o0, 0—0 = Op(n=172),
Moreover, if Condition 2 holds as well, 8}2, — 0% = OP(n_l/z).

Regarding 0, Condition 1 can be relaxed to bounded 1 + ¢ moments. Importantly, we do not
rely on a strong signal-to-noise ratio to achieve root-z consistency. If s = p, one can show that the
lasso estimate equals zero with high probability, in which case the proposed estimate will be the
same as the naive Y. Hence, there is no loss in efficiency, and it seems that the semi-supervised
mean estimate is advantageous in almost all cases. We discuss some aspects of the variance in
the Supplementary Material.

2.4. Asymptotic normality

In this section we proceed to prove that semi-supervised estimates are asymptotically normal
and that they improve the efficiency of estimation by borrowing strength from the additional
dataset.

Condition 4. Let ,3 be an estimator of 8* that satisfies IIB — B*l2 = op(l) as n,p — oc.

THEOREM 2. Let Conditions 1 and 4 hold. Then, as m,n,p — 00,

n'2@ - 0) — N (0,07 + tb?) (5)
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in distribution, provided that 082 + tb* > ¢ for some constant ¢ > 0.

Compared with requirements for inference in high-dimensional linear models, Condi-
tions 1 and 4 are milder. Where we require only moderately sparse regimes s = o(n/ logp),
high-dimensional and even doubly-robust methods require more strict settings; see, e.g.,
Bradic et al. (2019), Smucler et al. (2019) and Tan (2020a, 2020b). In particular, we do not
require any sparsity structure on X!, a condition that has been typically assumed throughout
the literature, if the variance is unknown. Lastly, we do not require homogeneity of the errors, ¢.

Regarding efficiency, observe that var(n'/2Y) = 02 = 62 +b? > 02 +tb?, where 62 +7b% is
the asymptotic variance of 6 as in (5). Hence, the semi-supervised estimator 6 is asymptotically
at least as accurate as ¥ and is often more accurate. Namely, the additional unlabelled data reduce
the asymptotic variance by (1 — 7)b%. The more unlabelled data we observe, the more accurate
the proposed estimator 6 becomes. When t = 0, the asymptotic variance is equivalent to the case
of known Py.

Throughout the paper, we mainly focus on the case of the signal-to-noise ratio, SNR = b2 /a2,
being bounded away from 0 and co. However, observe that the two extremes are not particularly
informative. Namely, the case of sSNR = 0 illustrates that no estimator can improve the naive
Y. Conversely, the case of SNR = oo and 7 = 0 illustrates that the semi-supervised estimator
can potentially lead to a better than n!/? convergence rate. Set pj = Corr(Z;,Y) for each j €

{1,2,...,p — 1}. Then, »* = g* ,"CB* | = (CT'E(VY)}'CCTE(VY) = 0} Zj.’;f ,sz. Ift <1
and 012, Zj.:ll ,oj2 > cforsome ¢ > 0,1i.e., when at least one of the covariates has positive marginal

correlation with the response, 6 is asymptotically more accurate than Y.

Our estimator is also optimal in the following sense. The asymptotic variance in Theorem 2
is the same as that of Zhang et al. (2019), proved under a low-dimensional setting; see their
Theorem 2.4. Moreover, it also achieves the oracle lower bound presented in their Proposition 3.1.
The following result presents theoretically valid root-n confidence intervals of 6, while only
requiring consistency of p at an arbitrarily slow rate.

THEOREM 3. Let Conditions | and 4 hold. With &; defined in (2), we define 62 = n™! Yy ??12
Then, whenever m,n,p — o0, 352 = ‘752 +op(1), b? = b? +op(1) and a valid confidence interval
about 0, at significance level «, is defined as

CIO) = [0 — 2102162 /n + B2/ +m)'/2, 6 + 2102182 /n + B/ (m + m)} /2],
with z1 g2 being the (1 — a/2)-quantile of a standard normal distribution.

A few comments are in order. If we are willing to assume Condition 2, we show that P21 =
0p(||,[§ — ,3*||§ + n_l/z). In contrast, a naive plug-in estimate of bz, B(_k)Té‘ﬁ(_k), would only
guarantee Op(|| ,3 — B*|l2). Therefore, our result on b? can be seen as complementary to Cai &
Guo (2020). We provide the same convergence rate whenever b* > ¢, ¢ > 0, but with weaker
assumptions: we allow heavy-tailed X and ¢ and a misspecified linear model. An asymptotically
normal result holds once || ,3 — B*|l2 = op(n~1/*); the details of the asymptotic theory regarding
b are contained in Theorem S2 of the Supplementary Material under a more general setting.

Next, we discuss the high-dimensional R? semi-supervised estimate. We begin by highlighting
the asymptotic results on the variance estimate, followed by a simple corollary regarding the
asymptotics of R2.
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THEOREM 4. Let Conditions 2 and 4 hold. Then, as m,n,p — oo,
n2(62 — o) — N{o, var(e? +28*Ve) + fvar(,B*Tf/)Z} (6)

in distribution, provided that var (e + 28 TVe) + rvalr(,B*Tf/)2 > c for some constant ¢ > 0.
Moreover, for 6% and 8%_2 defined in the Supplementary Material, we have

81)2 + n(m + n)_lc}gz = var(e? + 28" V&) + tvar(B*V)? + op(1).

A sufficient condition regarding Theorem 4 includes var (e2+28*TVe) > 0: whenever 082
and corr (g2, B*"Ve) > —1 + c; for some cy,c; > 0, the asymptotic variance in (6) is positive.
Now we are ready to state the asymptotic normality of R? as a simple corollary of a more general

result; see Theorem S2 in the Supplementary Material.

> (]

COROLLARY 1. Let Conditions 1 and 4 hold. Then, for R* defined in (4), we have R*> =
PVE+op(1) whenever m,n,p — 0o. Moreover, if Condition 2 holds with ||;§ —B*l2 = op(n~ /%),
then, as m,n,p — oo, n\/2V=12(R?)(R* — pvE) — N(0, 1) in distribution provided V (R?) > 0,
where V (R?) = var[o*Y_“bzs2 + 0;4082{28,8“17 + (B2} + tay_go*g‘var{(ﬁ“f/)z}.

3. BEYOND LINEAR OUTCOME MODELS

Recall that our estimation towards the mean depends on the linear projection of g¥(x) =
E(Y | X = x). A question arises naturally: can we use general machine learning algorithms
to estimate g”(x) and design nonlinear projection for optimal estimation of 82 Are we able to
construct confidence intervals, and will the asymptotic variances of the estimators be improved?
We provide positive answers to both questions.

A natural extension of § can be defined as

K
Ogen =K' Y 08, where 6 =M~ g M) + N {vi-g"Pan} )
k=1

ieJy iely

and g9 is the estimate of g° computed on all but the kth labelled observations. We suppose the
existence of some g* = g% : R” — R such that ,uz,X{Q(*k) x)—g*(X)} =op(1)asn — oo and
possibly p,g — o0, and where () = E{f — E(f)}" is the rth central moment and p, x (f) =
Ex{f — Ex(f)}, with Ex denoting the conditional expectation on the marginal distribution
Pyx. Here, d denotes the degree of freedom of the working model. Note that g*(x) = g0 (x) is
unnecessary. Here, g* = g7 can be chosen as the projection of the underlying curve g toa
functional class G, i.e.,

g% = arg min E{g*(X) — g(X)}%. (8)
g€Gy

With a small abuse of notation, let ¢ = ¥ — g*(X) denote the unexplained error of the model.
To better interpret our results, we assume that £(¢) = 0 and E{eg*(X)} = 0, which is satisijed
once b +ag € Gy for all a,b € R and g € G;. We demonstrate in Theorem 5 that gep

of (7) is asymptotically normal with asymptotic variance Veen(0) = oigen + tbéen, where
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béen = Var{g (X)} denotes the explained variance of the model g, and o2 oen = E{Y —g* (X W=

var(Y) — gen denotes the unexplained variance. When g* is defined as in (8), bé and o*,3 gen AIC

the largest explained variance and smallest unexplained variance among the functional class G,
respectively. The unexplained variance can be estimated using a cross-fitting scheme,

Aszgen =n""! Z Z - é\gen - l:l(_k) (X;)}Z’

k=1 iel}

with A(—F) X)) =8Py — M1 Zie]k 8P (X;). As for the explained variance, (2) can be
generalized through a bias-corrected cross-fitting estimator

bgen = (m+n)~ IZZW k)(X)}Z—I-Zn_lZZh( B XY — Ogen — HTP (X)),

k=1ieJy k=1 i€l
Now, Vgen 0) = 8 gen T nbgen /(m + n), and an a-level confidence interval can be constructed
as
12 # 1/2
gen(G) |: gen — Z1— a/Z{Vgen(Q)/n} egen + 2z a/Z{ gen(e)/n} ] ©)

Due to space constraints, we relegate the asymptotic normality of nonlinear R* to the
Supplementary Material.

THEOREM 5. Suppose that E|Y |**¢ < C and E|g*(X)|**¢ < C for some C < 0. Then, as
long as uz,x{g(_k)(x) —g"(X)} = op(1) for each k, as n,p — o0 or n,p,d — o0, Ogey satisfies
12V gen!*(0) Bgen — 6) = N (0, 1), Vgen(6) = Vien(8) + 0p(1) provided that Veen(6) > 0.

The asymptotic variance above depends on the explained variance b2 : the larger the explained
variance, the more efficient the estimation of 6. In particular, a worst case of bgen = 0 corresponds

to the sample mean estimator. When g* (x) = g°(x), the asymptotic variance is optimal; it matches
the oracle lower bound of Proposition 3.1 in Zhang et al. (2019), and one can see a clear efficiency

gain through gen(g ) < bgen(go)'

4. HETEROGENEOUS TREATMENT EFFECTS

Suppose that in addition to the previous settings we have access to a treatment indicator
D; € {0,1},i = 1,...,m + n. Following the potential outcomes framework (Rubin, 1974;
Holland, 1988; Splawa-Neyman et al., 1990) we then hypothesize the presence of potential
outcomes Y;(0) and Y;(1) corresponding to, respectively, the response the ith subject would have
experienced with and without the treatment. We then observe that the average treatment effect
S=E{EY |X,D=1)—EXY |X,D=0)}=1 — 0.

Similarly to § 2, we hypothesize the existence of the /> slopes f;;, = mingerr E{(Y — XTB)2 |
D = w}, defined at the population level for w € {0, 1}. A standard way of constructing the average
treatment effects estimates is to posit a model on the treatment assignment and then adjust for
possible confounding. Treatments are assigned to subjects according to an underlying scheme that
depends on the subjects’ features. Their dependence can be captured by D; = e(X;) + &;, where
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e(X;) is an unknown propensity score function (Rosenbaum & Rubin, 1983). In the following,
we assume two primitive conditions: a widely regarded overlap condition regarding the treatment
missingness, and an identifiability condition.

Condition 5. Let pr{c < e(X) < 1 —c¢} = 1 and pr{c <~é(X) < 1 —c¢} =1 for some
constant ¢ € (0,1). For &; = Y;(D;) — {Diff + (1 — D)Bs}' Xi, let E(¢ | X) = 0, as well as
pr{E(e? | X) < C} = 1 with some constant C > 0.

Let ,31, /30 and e denote estimators for B, B; and e, respectively, satisfying EpX{(/B( B _
Bi)' X} = Op(dl ), Ep, (6P (X) — e(X))? = Op(b2,,,) and EHE(Y | X) — B;'X)? |
D =w] = Op(cf]). Here, ay,p, bynyn,p and c, are nonnegative sequences of numbers, with
¢p describing how close the linear model is to the true underlying curve. The semi-supervised
estimator (1) needs to be adjusted for the confounding effects. To that end, we introduce

~ ~ ()T 5(— - —k ST A(— ~
Ta()k): M(k) IB(E) k)+N IZWZ( )(w)(Yl_)(lTlB(g) k)), (k) _ IZX

iely iey

In the above, the weights wf_k) (w) correspond to the ratio of the observed treatment proportion;
then, the framework from § 2.1 will still lead to root-n consistent estimates. We denote these

weights as w' ™ () = wDi/eP X)) + (1 — w)(1 — Dy)/{1 — 879 (X;)}. Then, the estimate
of the average treatment effect can be defined as the difference of §® = fl(k) — fék) and § =
K-y K 50,

An asymptotic (1 — «)-level confidence interval for the average treatment effect could then be
defined as

? 172 ? /2
(8 — 2102V Pn™V2, 8 4 21 oV P07 1), (10)

The estimator of Vs = V1 + t V3, (12), is defined as V5 K~ Zk 1 {V(k) +n(m+n)~ 7 (k)}
Observe that V7 = var{r(¥Y — ,BTT)? )—p(Y — ﬂa‘Tf( )}. Then, a natural plug-in estimator can be
£ (k - —k AT 5 —k A(—T
defined as P\ = N=1' Y, v, where vs; =i (¥ — BT X)) — o P (v = BTV X -
{6 — (,Bffk) — ﬁ(()fk))T;l(k)} recall that 1® is defined in (1). The second component, V, =
5 . k _ A=k A(—RONT, S A
E{(Bf =BT (X — )}, isestimatedas /3" = N7 3", &2, forgs; = (B — By~ )T(Xi— ).
The next theorem is the main result of th1s section.

THEOREM 6. Let Conditions 1 and 5 hold. Then, under the setting of this section, §—58 =
Op(n~'? + a, pbmtnp + bm+n pCp) Whenever a, , = O(1). Therefore, whenever ay pbyin,p =
o(1) and bm+,, pcp = 0(1), S is consistent. If, however, ap pbyn,p = O(n™ 172y and by, pCp =
O(n=12), § is an n'/*-consistent estimate of &. Additionally, the asymptotic normality follows

n'2(§ — §) — N(0, Vs) (11)

in diStributiOn, Whenever an’p = 0(1), bm+n,p = 0(1), an7pbm+n,p = 0(7’1_1/2) and bm—i—}’l,pcp =
o(n=1/2), with an asymptotic variance

Vs = var (¢ /[e(X){1 — e(X)}]) + T(BF — BH'CBF — B, (12)

provided that Vs > c for some ¢ > 0, and t = lim,, o n/(m+n). Moreover, 17,3 = Vs+op(1).
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Suppose the sparsity of the outcome and the treatment model are sy and sp, respectively.
For illustration purposes suppose that both models are parametric and linear. Then, ¢, = 0 and
the rates ay, , and b’””’f’ for a lasso estimate become a,, , = Op[{sy log(p)/n}l/z], bmyn,p =
Opl{sp log(p)/(m+n)}1/2]. Therefore, sy = o{n/log(p)}, sp = o{(m+n)/log(p)} and sysp =
o[ (m+n)/{log(p)}?] are required to achieve asymptotic normality. Then, when m is large enough,
inthatspnlog p/m — 0, werequire sy = o{n/log(p)}, which is extremely mild, i.e., consistency
in estimation of the propensity model at any arbitrary rate. If both D and Y were unavailable
in the unlabelled data, the estimation error on the propensity score would depend on # rather
than m + n with the same sparsity assumptions as in Chernozhukov et al. (2017), Smucler et al.
(2019) and others. At the same time, we achieve a more efficient estimator regardless of whether
D is available in the unlabelled data or not, i.e., reducing the size of the asymptotic variance.
When the outcome model is misspecified, even if ¢, = O(1), such that the linear model does
not reach the underlying curve as p grows, we can still obtain the asymptotic normality (11)
provided m is large enough that b1, , = o(n~'/?). Supervised settings have more stringent
conditions; see, e.g., Smucler et al. (2019) and Tan (2020b). If one is only interested in obtaining
root-n consistency, the outcome model can be completely misspecified, including completely
dense high-dimensional models. They can be estimated using machine learning methods, such as
random forests, Bayesian classification, regression tree or deep neural networks; one just needs
to replace the linear projection )N(iT ph by any 9 (w, X)),

K
gen = m+m ' 33" {e P 1x) — 2P 0,30}

k=1ieJy
K A(— A(—
Y DifY; — g0 (LX)} (= DY — g7 0.X)
k=1 iel; e=h X)) 1 —e=h X)) ’

where §0 (w, X;) is an estimate of E(Y | X,D = w) trained on (D;, Yi, XDieq12,.. 1, for
w € {0, 1}. Moreover, an asymptotic confidence interval can be extended from (10) by replacing
the linear outcome model with a general nonlinear model.

5. FINITE-SAMPLE EXPERIMENTS
5.1. Numerical experiments

In this section we illustrate the finite-sample properties of 6. The estimation of the variance can
be found in the Supplementary Material. We consider semi-supervised estimators based on ordi-
nary least squares (SSL-OLS), the 10-fold cross-validated lasso (SSL-Lasso), the additive model
(SSL-Additive), XGBoost (SSL-XGBoost), multilayer perceptron (SSL-MLP) and random
forest (SSL-RF) for which vanilla, preset tuning parameters are used. We compare with the
sample mean ¥ = n~! >, Y; and with the semi-supervised least squares estimator proposed in
Zhang et al. (2019) whenever p < n. We consider confidence intervals (9), where the significance
level is @ = 0.05 throughout. Each set of results is based on 200 repetitions with K = 5. The
black solid line in all the plots denotes the optimal ratio {a% — mbéen &%) /(m+n)}/ 012/. We will

see that, as long as the sample size 7 is large enough, our proposed semi-supervised estimator 6
is better than the sample mean Y in the sense of mean squared error.
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Fig. 1. Model 1: Comparison of SSL-lasso and the sample mean. (a) The ratio of mean squared errors. (b) The

average coverage of ¥ and 6. The mean squared error of the sample mean is denoted as MSEOQ. The plot includes
sample mean (red squares) and SSL-lasso (blue circles) estimates. The sparsity level of the linear coefficients,
s, is denoted with long dashed, dashed, dotted and solid lines for s = 90, s = 70, s = 50 and s = 30, respectively.
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Fig.2. Model 2: Comparison between Zhang et al. (2019) (SSLS) and our SSL estimators. (a) The ratio of mean

squared errors. (b) The average coverage. The plot includes sample mean (red squares), SSL-lasso (blue circles),

SSL-additive (green up triangles), SSL-XGBoost (purple pluses), SSL-RF (brown diamonds) and SSLS (pink down
triangles) estimates.

Model 1. Let X; ™ Ny—y (0, [,—1) withp = 500 and m = 10n,and ¥; = s~ Y5, X; +8;,

s € {30,50,70,90}, §; nd N(0,0.25). The results are presented in Fig. 1, where we observe that
our SSL-lasso estimator is more efficient than the sample mean, Fig. 1(a), regardless of the level
of sparsity. Figure 1(b) illustrates robustness in terms of the average coverage probability of the
SSL-lasso estimate.

Model 2. Let X; and §; be as in Model 1 and consider a nonlinear model ¥; = 3 cos(X;; +
Xin + Xi3) + &i, with p = 51, m = 10n. We compare our SSL estimator with a variety of base-
line procedures and the semi-supervised least squares estimator éSSLS of Zhang et al. (2019).
Figure 2(a) illustrates that SSLS is less efficient than the sample-mean estimator, that our
SSL-lasso is equivalent to the sample-mean, and that all other SSL-methods are more effi-
cient, with SSL-XGBoost outperforming the rest. Figure 2(b) demonstrates extremely poor
finite-sample coverage of SSLS and nominal coverage of our proposal.
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Fig.3. Model 3: Comparison of SSL-method with the sample mean. (a) The ratio of mean squared errors. (b) The
average coverage. The plot includes sample mean ( red squares), SSL-lasso (blue circles), SSL-additive (green up
triangles), SSL-XGBoost (purple pluses) and SSL-RF (brown diamonds) estimates.
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Fig. 4. Model 4: Impact of the size of additional data. (a) The ratio of mean squared errors. (b) The average coverage.
The plot shows sample mean (red squares), SSL-lasso (blue circles), SSL-additive (green up triangles), SSL-XGBoost
(purple pluses), SSL-RF (brown diamonds) and SSLS (pink down triangles) estimates.

iid . .
Model 3. Let X; < N,-1(0,C) be equicorrelated with C; = {1 — 1/2p)}1y=y +
1/(2p) 1=y, with p = 1001, m = 10n. We consider a nonlinear additive outcome model

Y, = Zf:_ll 0.7~ !sin Xjj) + 6;, where §; S N(0,0.25). Figure 3(a) demonstrates significant
gain in reduction of MSE for the proposed method, with the SSL-lasso in the lead. Figure 3(b)
presents strong finite sample coverage.

Model 4. Here we observe behaviour with varying m. Let X; and §; be as in Model 1 and
consider the nonlinear outcome of Model 3. Set p = 201, » = 500 and let m vary from 0.1 to
10n. We compare with ¥ and SSLS of Zhang et al. (2019). We see substantial gains in efficiency.
SSL-RF dominates the other estimators, both in terms of MSE, Fig. 4(a), and coverage, Fig. 4(b).
SSLS loses coverage with a larger m. When m is small, the ordinary least squares estimate’s
impact is not significant, and SSLS is similar to the sample mean Y. As m grows, the instability
of least squares and the unfitness of SSLS is exposed.
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Fig.5. Model 5: Is sample splitting needed? (a) The ratio of mean squared errors. (b) The average coverage. The

plot includes sample mean (red squares), SSL-Lasso (blue circles), SSL-XGBoost (purple pluses), SSL-MLP (orange

crosses) and SSL-RF (brown diamonds) estimates. The number of folds, K, is denoted with solid, dashed and long
dashed lines for K = 1 (without cross-fitting), K = 5 and K = 20, respectively.
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Fig. 6. Model 6: Does partitioning matter? (a) The ratio of mean squared errors. (b) The average coverage. The plot

includes sample mean (red squares), SSL-OLS (blue circles), SSL-additive (green up triangles), SSL-XGBoost (purple

pluses), SSL-MLP (orange crosses), SSL-RF (brown diamonds) and SSL-SSLS (pink down triangles) estimates. The
number of cross-fitting repetitions, S, is denoted with solid and dashed lines for S = 1 and S = 5, respectively.

Model 5. 1s sample splitting needed? Let X; i Lognormal, (0, C), with C as in Model

3andp = 101, m = 10n. Let ¥; = Zjil{log(X,-j + 1)? + 0.1} + &;, where 8, o N(0,0.25).
We varied K from 1 to 5 and then to 20. We observe that some methods, like SSL-MLP, benefit
significantly from sample splitting: without it, they under-cover, Fig. 5(b), and have the largest
MSE, Fig. 5(a).

Model 6. In finite samples, the randomness from the K-partition creates an additional vari-
ance. We repeat the random K -partition S times, and for each time we obtain an estimate 6% and
the correspondmg estimated asymptotic variance 7 (6%). Here we > compare 6! with the average
=5 ZS | 6%. An asymptotlc confidence interval based on @ can be constructed using an
estimated variance V() = S~ Zszls{V(Gs) + (03 — §)?}. The outcome model is nonlinear
with one interaction term, ¥; = Xj1X» +0.5(X;3 +0.5)? +§;, and X; and &; are as in Model 1 with
p = 4, m = 10n. Figures 6(a) and 6(b) illustrate that partitions do not matter much for the least-
squares procedure: SSL-lasso, SSL-additive and SSL-RF do not vary much. However, highly
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Table 1. Experiments for the average treatment effect

Estimator Bias Emp SE ASE RMSE AC
n=100,m = 200 Linear outcome

Zhang & Bradic (ridgetridge) 0.0010 0.0881 0.0812 0.0879 0.935
Chernozhukov et al. (2017) (ridge+ridge) 0.0097 0.1295 0.1238 0.1295 0.930
Cheng et al. (2020) —0.0147 0.0885 0.0801 0.0895 0.925
n = 500,m = 1000 Linear outcome

Zhang & Bradic (ridgetridge) —0.0025 0.0333 0.0351 0.0333 0.945
Chernozhukov et al. (2017) (ridge+ridge) —0.0052 0.0588 0.0546 0.0588 0.965
Cheng et al. (2020) —0.0093 0.0329 0.0352 0.0341 0.940
n=200,m = 400 Nonlinear outcome

Zhang & Bradic (ridge+ridge) 0.0031 0.0660 0.0672 0.0659 0.965
Chernozhukov et al. (2017) (ridge+ridge) 0.0051 0.0714 0.0737 0.0714 0.955
Zhang & Bradic (additive+ridge) 0.0027 0.0622 0.0638 0.0621 0.960
Chernozhukov et al. (2017) (additive+ridge) 0.0054 0.0705 0.0731 0.0706 0.960
Zhang & Bradic (mlp+ridge) —0.0027 0.0518 0.0497 0.0518 0.935
Chernozhukov et al. (2017) (mlp-+ridge) 0.0015 0.0570 0.0596 0.0569 0.960
Cheng et al. (2020) —0.0209 0.0637 0.0655 0.0669 0.970
n = 500,m = 1000 Nonlinear outcome

Zhang & Bradic (ridge+ridge) —0.0005 0.0384 0.0413 0.0383 0.970
Chernozhukov et al. (2017) (ridge+ridge) —0.0014 0.0433 0.0457 0.0432 0.955
Zhang & Bradic (additive+ridge) —0.0001 0.0385 0.0395 0.0383 0.975
Chernozhukov et al. (2017) (additive+ridge) —0.0006 0.0436 0.0455 0.0435 0.960
Zhang & Bradic (mlp+ridge) —0.0025 0.0256 0.0275 0.0255 0.975
Chernozhukov et al. (2017) (mlp-+ridge) —0.0017 0.0361 0.0354 0.0361 0.940
Cheng et al. (2020) —0.0143 0.0377 0.0408 0.0402 0.945

Bias, average of the estimation biases; Emp SE, empirical standard error; ASE, average of estimated standard
errors; RMSE, root-mean-square error; AC, average coverage of the 95% confidence intervals.

nonlinear methods, such as SSL-MLP and SSL-XGBoost, benefit significantly from repeating
the partitioning process.

. iid .
Model 7. (Average treatment effect). Consider Xj; ~ Un(—1,1) with p = 11, and D; ~
Ber[1/{14exp(5'/? 2]5:1 X;i/2)}1. Inthe linear setting, the outcome modelis ¥; = D;(148{ X))+

(1 — D) B} X; + 8;, where §; % N(0,0.22) and By = —(0.5'72,0.5,0.5%/2,0.52,0.52,0,0,0,0,0),
B1 = —PBo. In the nonlinear setting, the outcome model is ¥; = D;{X;1Xj» + 0.5(Xj3 + 0.5)%} +
(1 — D){Xi1 X2 — 0.5(X;3 + 0.5)2} + ;. For the linear setting our proposed estimator and the
estimator of Chernozhukov et al. (2017) estimate the propensity and the outcome model by
cross-validated generalized and linear ridge regression. For the nonlinear setting, the outcome
models are estimated by ridge regression, additive model and multilayer perceptron. The param-
eters & and S of Cheng et al. (2020) are estimated by cross-validated adaptive lasso, where the
initial weights are estimated by linear regression or generalized linear regression; the parameter
y is estimated by cross-validated lasso; the kernel is chosen to be sixth-order Gaussian, and
the bandwidth is estimated by the plug-in method. Table 1 contains all the results. We found
that the biases of our SSL and the supervised estimator of Chernozhukov et al. (2017) are not
sensitive to the choice of the tuning parameters, while the bias of Cheng et al. (2020) is. Under
the linear outcome models, the two SSL estimators have smaller mean squared errors than the
supervised estimator; under nonlinear outcome models, our semi-supervised mlp+ridge estimator
outperforms the others.
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Fig. 7. Real data. (a) A back-to-back bar chart comparing the labelled and unlabelled groups’ mutation proportions on

reverse transcriptase positions between 1 and 240. The blue colour on the top denotes the unlabelled group, and the red

colour on the bottom denotes the labelled group. (b) Confidence intervals of the average treatment effect. We compare

the sample mean of the labelled samples (red border and red fill), supervised Chernozhukov et al. (2017) estimators

(red border), and our SSL-method estimators (blue border). Estimators of the propensity score and the outcome model
are: logistic + lasso (green fill), XGBoost + XGBoost (aqua fill), RF + RF (purple fill).

5.2. HIV drug resistance

We consider the dataset of Baxter et al. (2006), available at the Stanford University HIV Drug
Resistance Database (Rhee et al., 2003), https://hivdb.stanford.edu. It is known
that mutations are common in HIV, and some of the mutations may affect HIV drug resistance.
We provide estimation and inference for the average treatment effect of a specific mutation on
the reverse transcriptase to the drug resistance. The outcome is lamivudine (3TC), a nucleoside
reverse transcriptase inhibitor (NRTI), drug resistance. The treatment, D, denotes the existence
of a mutation on the 7'th position of the HIV’s reverse transcriptase. Explanatory variables X;,
where j € {1,2,...,240} \ {T}, denote the existence of a mutation on the jth position. We
consider the subtype B sequence. Redundant viruses obtained from the same individuals were
excluded. We obtained n = 423 pairs of supervised data (D; r, Y;, {Xi;};%7)7_| and m = 2458
pairs of additional unlabelled covariates (D; r, {X; J}j#T);n:tzil- Fix T € {1,2,...,240}. Before
we perform our semi-supervised methods, we first check whether there is a significant difference
between the distribution of X in the two groups; see the back-to-back bar chart of the labelled and
unlabelled groups’ mutation proportions on different reverse transcriptase positions in Fig. 7(a).
The p-value based on the Pearson statistic was obtained using a permutation distribution (Agresti
& Klingenberg, 2005) and resulted in a value of 0.178. We do not have any significant evidence
that the covariates’ distributions differ between the supervised and unlabelled groups. Estimators
of the propensity score and the outcome model are: (logistic) lasso + lasso, XGBoost + XGBoost,
and random forest + random forest. In order to improve the stability of the estimator, we trim
each 60 (X;) to (0.01,0.99). We compare with the sample estimator Qi D)~ Yo DiYi—
30, (=D}~ 3 (1 - Dy)Y;, suitable only for homogeneous effects. Figure 7(b) shows the
confidence intervals for § on several positions based on different estimators. We can see that there
is a large average treatment effect on position 184, a small average treatment effect on positions 39
and 69, and potentially a small average treatment effect on positions 41, 75 and 203. The sample
estimator is most different from the rest on positions 41, 98, 151 and 203. The sample estimator is
biased when the distribution of X on treated and control is different. It implies that the mutations
on positions 41, 98, 151 and 203 are significantly dependent on the other positions’ mutations.
Moreover, our confidence intervals are shorter than those of Chernozhukov et al. (2017). This
coincides with the fact that additional unlabelled data provide improved asymptotic efficiency.
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