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Laser-triggered ionization injection is a promising way of generating controllable high-quality electrons

in plasma-based acceleration. We show that ionization injection of electrons into a fully nonlinear plasma

wave wake using a laser pulse comprising of one or more Laguerre-Gaussian modes with combinations of

spin and orbital angular momentum can generate exotic three-dimensional spatial distributions of high-

quality relativistic electrons. The phase dependent residual momenta and initial positions of the ionized

electrons are encoded into their final phase space distributions, leading to complex spatiotemporal

structures. The structures are formed as a result of the transverse (betatron) and longitudinal (phase slippage

and energy gain) dynamics of the electrons in the wake immediately after the electrons are injected.

Theoretical analysis and three-dimensional simulations verify this mapping process leads to the generation

of these complex topological beams. These beams may trigger novel beam-plasma interactions as well as

produce coherent radiation with orbital angular momentum when sent through a resonant undulator.
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Plasma-based acceleration (PBA) [1,2] is attractive

because it can provide acceleration gradients in excess

of GV=cm. The last several decades have seen tremendous

progress in PBA [3], including the demonstration of high

gradients [4–6] and the generation of electron beams

suitable for applications, e.g., driving a compact free-

electron-laser [7] and advanced QED studies [8,9], pro-

ducing bright and collimated X-rays [10] for high energy

density science [11] and imaging applications [12]. The

production of high-quality electron beams [13–17] from

controllable injection schemes [18–27] has been instru-

mental for these advances. Recent work on plasma cath-

odes has opened the possibility of generating femtosecond

duration electron beams with peak currents as high as

hundreds of kA [28,29] and normalized emittance ϵn as low

as 10’s of nm [13,14,16,17,30–32].

Besides having the potential to achieve unprecedented

beam brightness, plasma cathodes can imprint multidi-

mensional spatial structures onto the accelerated beams.

For instance, several schemes purport to generate longitu-

dinally bunched (1D) electrons [33–37] with potential to

produce temporally coherent radiation [38]. Electron rings

have been observed in experiments from electron trapping

within wake pockets created by sheath splitting [39].

Simulations have predicted that such electron rings can

also be generated in donut shaped wakefields driven by

relativistic higher order Laguerre-Gaussian (LG) laser

pulses with normalized vector potentioal aL > 1 [40],

where aL ≡ 8.6 × 10−10λ ½μm�I1=2 ½W=cm2� > 1 and λ, I
are the wavelength and intensity of the laser pulse.
Producing electron beams with complicated topology

through self-injection in nonlinear plasma waves is both of

fundamental [41–44] and practical interest. Helically or

sinusoidally modulated beams could be used to achieve

superradiant emission of broadband X-rays in conventional

and plasma-based light sources [45]. Furthermore, relativ-

istic beams with nontrivial topologies could potentially

emit coherent radiation with orbital angular momentum

(OAM) [46,47], beyond the visible spectrum [48]. Short-

wavelength OAM (vortex) light is interesting because it can

extend the OAM laser-matter interactions to the nanometer

or even atomic scale thereby enable interesting applications

in many fields [49–54]. However, current laser plasma–

based schemes produce electron beams with spiral struc-

tures by transferring a large amount of angular momentum

to them through the twisted wakefield [44] or the twisted
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electromagnetic fields of a super-intense laser (aL ∼ 100)

with high-order LG mode [55–57]. These beams are

characterized by large emittance and almost continuous

energy spectrum, and are therefore not suitable for pro-

ducing coherent radiation.

In this paper, we show through theory and supporting

particle-in-cell (PIC) simulations that a plasma cathode

based on ionization injection into a nonlinear wakefield

from nonrelativistic lasers (aL ∼ 0.1) with combinations of

spin and orbital angular momentum can generate high-

quality electron beams with exotic three-dimensioanl (3D)

spiral spatial distributions. The intensity of the ionizing

laser needs to be only marginally above ionization thresh-

olds, ∼1017 W=cm2, thus such configuration is realizable

with standard technology. It is now well appreciated that a

circularly polarized (CP) laser carries spin angular momen-

tum while a linearly polarized LG mode carries OAM [46].

An OAM mode can be described as A⃗ ¼ −Reðσe⃗x þ
iêyÞaLcjljp ðr; θ; zÞeiðlθ−kzþωtÞ where the angular momentum

per photon is lℏ [46], and σ ¼ 1 for right-handed CP and

−1 for left-handed. The details for the complex functions

c
jlj
p are given in the Appendix A.

In ionization injection electrons are born insider a fully

blown out plasma wake through tunnel ionization of the

electric field from one or more laser pulses. The 3D phase

information of the laser at the instant of ionization is

imprinted onto the final electron distribution when the

electrons become trapped after the laser pulse eventually

overtakes them. The 3D spatial distributions evolve spa-

tiotemporally within the wake as the electrons gain energy

and phase slip longitudinally while executing betatron

oscillations under the transverse focusing force of the

ion column in the nonlinear wake. Although ionization

injection has been extensively studied, there has been no

investigation into how the spin and OAM of the laser is

imprinted onto the angular momentum and distribution of

the self-injected electrons. Here, we show that this concept

permits designing beams with complex spatiotemporal

distributions. The electrons generated in this new scheme

are characterized by small emittance (∼100 nm), small

energy spread (∼1.5 MeV), zero net angular momentum

with a small spread (∼100 nm ·mc), and kA current that

are suitable to produce high power short wavelength

radiation with OAM, where m is the electron mass and

c is the speed of light in vacuum. By using multiple laser

pulses with different polarizations and LG modes, a beam

with an axially varying spiral structure or multiple beams

with different twisted structures can be produced.

To illustrate how this injection scheme can be used to

generate spiraling and other complex 3D structured beams,

we consider a fully blown out wake generated by an

electron beam driver. We simulate the ionization injec-

tion by an appropriately delayed but comoving ultrashort

laser using nonevolving forces characteristic of nonlinear

wakefields using the 3D PIC code OSIRIS [58,59]. The

forces for electrons with forward velocity βzc are

Fz ¼ ξ
2
mω2

p; Fr ¼ −½r
2
þ ð1 − βzÞ r

2
�mω2

p, where ξ≡ ct −

z and r are the longitudinal and transverse coordinates

and ωp is the ambient plasma frequency. This significantly

reduces the computational requirements as we only need to

follow the injected particles. This approximation is well

justified as the wake created by a highly relativistic beam

driver evolves very slowly (hundreds of plasma periods

for GeV-class drivers) on the time scales of the injection

process (several plasma periods).

A CP 800 nm laser pulse with specified LG modes

propagates through a mixture of majority hydrogen

plasma with np ¼ 1.74 × 1017 cm−3 and minority He1þ

plasma with a density of 10−4np. The injected electrons are

supplied via laser ionization of the He1þ ions [60]. The

density of He1þ is set to be low to minimize the space

charge repulsion between the ionized electrons when they

have low energies. The lasers are focused at z ¼ 2
c
ωp

with a

spot size w0 ¼ 0.22 c
ωp
ð2.8 μmÞ and start at z ¼ −2 c

ωp
with

a duration τFWHM ¼ 0.23ω−1
p ð9.8 fsÞ. The intensities of the

pulses are adjusted to ensure similar injected charge in all

cases: aL ¼ 0.085 for ðl ¼ 0; p ¼ 0Þ while aL ¼ 0.14 for

other cases. The He1þ plasma starts from z ¼ −2 c
ωp

to

ensure that ionization within a Rayleigh length is included.

Simulation results are presented in Fig. 1 (see

Appendix B and C for details on the simulation parameters

and more cases). We only consider l ≥ 0 without loss of

generality. Density isosurfaces of the trapped electrons are

shown in the first column while their density distributions

in the ðθ; ξÞ plane are shown in the second column where

θ≡ atan2ðy; xÞ [61] is the angle in the transverse plane. As
is clear, electrons with complex 3D structures are formed.

When using a right-handed CP laser (σ ¼ 1) with a

fundamental LG mode ðl ¼ 0; p ¼ 0Þ, a single spiral beam
(corkscrew) is produced; when ðl ¼ 1; p ¼ 0Þ, two spiral-

ing beamlets twist around each other; when ðl ¼ 2; p ¼ 0Þ,
three beamlets twist together to form a triple helical

structure; when a left-handed CP laser (σ ¼ −1) with ðl ¼
1; p ¼ 0Þ is used, the spiral structure is absent altogether

with the resulting beam forming a series of hollow shells. In

the first two cases, the angle θ has an approximately linear

dependence on the longitudinal position ξ while this

dependence is absent in the last case. The beams have ϵn ∼

100 nm and ∼1.5 MeV uncorrelated energy spread (see

Appendix D for their longitudinal phase space). Their

energies at this time are ∼20 MeV and can be boosted to

GeV-class in the following acceleration.

As shown in Fig. 1, column 3, we introduce a bunching

factor bðk; lbÞ ¼ 1

N
j
P

N
j¼1

exp½iðlbθj − kξjÞ�j to quantify

the 3D structures, where N is the number of the electrons.

For the beam produced by the l ¼ 0 laser, the bunching

factor is maximum at ðlb ¼ 1; k ≈ 1.3kLÞ and the beam

is rich in spatial harmonics, i.e., ðlb ¼ 2; k ≈ 2.6kLÞ,
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ðlb ¼ 3; k ≈ 3.9kLÞ, and ðlb ¼ 4; k ≈ 5.2kLÞ. When a laser

with l ¼ 1 is used, the bunching factor achieves its

maximum at ðlb ¼ 2; k ≈ 1.5kLÞ and the second harmonic

appears at lb ¼ 4; k ≈ 3kL. When a laser with l ¼ 2 is used,

the bunching factor is maximum at ðlb ¼ 3; k ≈ 1.5kLÞ
while the harmonics are not distinctly present at this

propagation time. A self-consistent simulation where an

electron beam driver excites the wake and ionization of

nHe1þ ¼ 0.05np provides the injected electrons is shown by

the dashed line. The high current (2.5 kA) injected beam

with 11.3 pC charge has a similar bunching factor for

lb ¼ 3 which validates the nonevolving force model and

shows the structure is still formed even for kA currents.

In reality, a gas mixture of hydrogen and helium can be

used while the electron of hydrogen and the first electron

of helium can be ionized by the beam driver and/or a

separate low intensity ionization laser. Thus the density

of He1þ which is formed by ionization of the first helium

electron can be adjusted by controlling the density of

helium atoms while the background electron density is

controlled by the ratio of hydrogen to helium.

When the polarization direction of the l ¼ 1 laser is

reversed from right-handed to left-handed, the bunching

factor is zero for all lb ≠ 0. Interestingly, the beams at this

time are hollow which may be used to generate plasma

wakes suitable for positron acceleration [40,62] and clean

the halo from heavy ion beams in conventional particle

accelerators [63].

To understand the simulation results, we propose a

model for the dynamics of the ionized electrons. After

being tunnel-ionized, the electrons begin to move under

the influence of the laser field and the plasma wakefield.

When studying the longitudinal dynamics, the axial

oscillations inside the laser pulse can be ignored since

the energy gain from the low-intensity laser is negligible

compared to that due to the wake. There is thus a

longitudinal mapping between initial longitudinal posi-

tion ξi and the final position ξ as described in Ref. [30].

In the case of a highly relativistic wake such as that

produced by a GeV class e-bunch, the electrons ionized

inside the wake first slip back but are accelerated by the

longitudinal electric field of the wake, until they gain

sufficient energy to move nearly synchronously (phase

locked) with the wake longitudinally. This nearly locked

position can be calculated using the form of the

acceleration gradient inside the wake [30,34] as

kpξ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ðkpξiÞ2
q

. Longitudinal mixing happens,

i.e., electrons released at different time can reside in

the same final slice [30].
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FIG. 1. The structures of the injected electrons at ωpt ¼ 31. First row: Isosurface of the electron density and its projections on each

plane. Second row: Normalized density distribution of the electrons in the θ − ξ plane. The black dashed lines represent the predications

from Eq. (2). Third row: bunching factor.
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The transverse motion of the injected electrons can be

divided into two stages. In the first stage, after ionization,

the electrons respond to the oscillating laser field. Since the

field amplitude of the laser (∼10
mcωp

e
) is typically much

higher than the local value of the wakefield (∼0.1
mcωp

e
), the

electrons can be assumed to oscillate only under the

influence of the laser field. The electrons are rapidly passed

over by the ionizing laser since their longitudinal velocities

are much less than c, and they then conduct betatron

oscillations in the wakefield [64].

The transverse canonical momentum P⃗⊥ ≡ p⃗⊥ − eA⃗⊥ is

conserved if a plane wave assumption is made. In the first

stage, so long as kLw0 ≫ 1 then canonical momentum

remains approximately satisfied for LG modes. We have

verified the conservation of P⃗⊥ for the parameters used

in the simulations by carrying out test particle simula-

tions using OSIRIS (see Appendix E). Thus, the momenta

of the electrons when they leave the laser pulse are equal to

the vector potential at the instant of ionization. For a CP
laser pulse of a single LG mode, the normalized vector

potential are approximately ax ≈ −σaðrÞ cosðlθ − ξ̂Þ;
ay ≈ aðrÞ sinðlθ − ξ̂Þ, where ξ̂ ¼ kLξ. The transverse coor-

dinates are assumed to be not changed during the transit

time of the lasers [65].

In the second stage, the electrons begin to respond to

the wakefield. Assuming each electron experiences a

constant acceleration gradient Ez and its energy increases

adiabatically, the asymptotic solution of the equation of

motion is [30]

x ≈

�

1

γ

�

1

4

xi cosΦþ
�

4

γ

�

1

4 pxi

mckp
sinΦ and

y ≈

�

1

γ

�

1

4

yi cosΦþ
�

4

γ

�

1

4 pyi

mckp
sinΦ ð1Þ

where xi ¼ ri cos θi; yi ¼ ri sin θi;
pxi

mc
≈ σai cosðlθi − ξ̂iÞ;

pyi

mc
≈ −ai sinðlθi − ξ̂iÞ, and ai is the laser normalized vector

potential when the electrons are ionized, Φ ≈
ffiffiffiffi

2γ
p

−
ffiffi

2
p

eEz=ðmcωpÞ is

the betatron phase, γ ¼ 1þ eEz

mc
ðz − z0Þ is the relativistic

factor. Equation (1) can be used to determine θ ¼
atan2ðy; xÞ [61].
The laser pulse transfers part of its angular momentum

(spin and orbital) to the ionized electrons as Lz ≡ xipyi −

yipxi ≈ riai sin½ðlþ σÞθi − ξ̂i� which is conserved when

the electrons move inside an axisymmetric ion column.

Since the electrons are ionized uniformly in θi by a CP
laser, each slice possesses zero net angular momentum if

lþ σ ≠ 0 with a small spread. On the other hand, when

lþ σ ¼ 0, each slice possesses a ξ-dependent angular

momentum. The net transverse momentum of each slice

is finite for l ¼ 0 and zero for l ≠ 0. Thus, the center of

each slice oscillates linearly for l ¼ 0 and stays at rest for

other cases.
To analyze the formation of these twisted structures, we

must map the initial spatial distribution of the ionized
electrons to their present distribution. For electrons released
at ri, ξi and ti, the angular distribution is gl;σðθÞ ¼
fðθiÞj dθdθi j

−1 ¼ j α2þ1þ2σαcos½ðlþσÞθi−ξ̂i�
α2−σl−αðl−σÞcos½ðlþσÞθi−ξ̂i�

j, where α¼ kpri
ffiffi

2
p

ai

1

tanΦ

and ai is assumed to have a weak dependence on ri, and
fðθiÞ ¼ 1 is assumedbecause aCP laser is used.While θðθiÞ
is known, there is no explicit expression for θi as a function of
θ. However, we can still make some useful observations.
Clearly if l ≥ 1, then if α ¼ 0 or∞, gl;σðθÞ is a constant. The
variable α evolves as the particles are accelerated and α ¼
0ð∞ÞwhenΦ ¼ nπ þ π

2
ðnπÞwhere n is an integer. We next

discuss some behaviors for a right-handedCP laser: gl≥1;1ðθÞ
achieves its maxima at θi ¼ 2nπþξ̂i

lþ1
for α ≥ l or 0 ≤ α < 1, at

θi ¼ ð2nþ1Þπþξ̂i
lþ1

for α < −l or −1 ≤ α < 0, and at a θi when

the denominator vanishes for 1 ≤ jαj < l. Figure 2(a) shows

the dependence of g2;1 on α and θi. The angles θi ¼ 2nπþξ̂i
lþ1

or

ð2nþ1Þπþξ̂i
lþ1

are mapped to θ ¼ θi when ðαþ 1Þ sinΦ > 0 and

θ ¼ θi þ π when ðαþ 1Þ sinΦ < 0. Thus at some betatron
phases, these electrons are concentrated at lþ σ equally

spaced angles which depend linearly on ξi. This concen-
tration has a quasiperiod of thebetatron phase, π

2
.More details

can be found inAppendixG. For these special angles, gl;σðθÞ
is then known.

For l ¼ 0, the dynamics is different, i.e., when

α ¼ 0ðΦ ¼ nπ þ π
2
Þ, then from Eq. (1) it can be seen that

(c) (d)

(a) (b)

FIG. 2. Theoretical analysis of the twisted structure. (a) g2;1ðθÞ
with kpξi ¼ 2.24. The value at each α is normalized by 10 when

1 ≤ jαj < 2 and its maximum for other α. (b) The bunching factor

(k ¼ 0; lb ¼ lþ σ) and the betatron phase of the electrons

ionized with kpri ¼ 0.1; ai ¼ 0.1; kpξi ¼ 2.24, and ti ¼ 0.

(c) l ¼ 0, σ ¼ 1: the distribution of the electrons and their

centers (black circles) at ωpt ¼ 31 in five different slices using

Eq. (1). (d) The evolution of the peak of the bunching factor and

the radial position of the center of the kpξ ¼ 3 slice.
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r ¼ γ1=4
ffiffi

2
p

ai
kp

and θ ¼ ξ̂iðsinΦ > 0Þ or ξ̂i þ πðsinΦ < 0Þ.
This indicates a single spiral beam is formed. Thus, the

angular distribution has a quasiperiod of the betatron phase,

π. The bunching factor of the electrons for l ¼ 0 and l ¼ 2

in Fig. 2(b) confirms the quasiperiodic behavior of the

angle distribution. The insets show the distribution at

ωpt ¼ 0, 33 and 44 for l ¼ 2.

Physically the electrons in each slice form lþ σ beam-

lets and the center of each one conducts linearly oscillations

with a ξi-dependent angle. The twisted structures do not

rotate, they only flip when the centers cross the origin.

Electrons are ionized at different ri, which complicates

how electrons are distributed in θ. However, there are always

betatron phases where electrons are concentrated at lþ σ

angles due to evolution of α ∝ 1

tanΦ
. Furthermore, due to

longitudinal mixing [30], one slice contains electrons ionized

at different times ti, which leads to a spread of the phase,

which blurs the twisted structure. The betatron phase grows

slower as the electrons gain energy, thus the rms spread of the

phase decreases as σΦ ≈
kpLinj
ffiffiffiffi

12
p 1

ffiffiffiffi

2γ
p [30], where Linj is the

distance over which ionization occurs. In the simulations

presented here kpLinj ∼ 8. As a result, the amplitude of the

oscillations of b increases monotonically during the accel-

eration as shown in Fig. 2(d). Figure 2(c) shows the

distribution of the electrons with different ri and ti at five
slices (kpξi ¼ 2.236, 2.249, 2, 262, 2.287, 2.3 which

correspond to kpξ ¼ 3, 3.01, 3.019, 3.029, 3.038, 3.048

based on the longitudinal mapping). For each kpξi, the values

of ri and ti are consistent with what is seen in simulations.

The concentration at certain angles is clearly seen. In Fig. 2

(d), the long-term behavior of both b and r of the center

shows the oscillations and the increase of b with time is seen.

When the laser polarization is left-handed CP, similar

conclusions can be obtained when l ≠ 1. However, in the

case when l ¼ 1, g1;−1ðθÞ does not depend on θ, which

indicates that the electrons are distributed uniformly in θ,

which is consistent with the third row of Fig. 1.

Based on the aforementioned longitudinal mapping [30],

the electrons are concentrated at angles that can be written

as a function of their positions ξ after injection. For

example, when α < −l and ðαþ 1Þ sinΦ > 0 (θi where

gl;σ is maximum is mapped to θ ¼ θi),

θ ≈
2nþ 1

jlþ σj π þ
ðkL=kpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkpξÞ2 − 4

q

jlþ σj ; ð2Þ

Eq. (2) indicates there are jlþ σj beamlets spiraling around

each other. The comparison between the angles at which

electrons are concentrated in the θ − ξ plane and those

predicted by Eq. (2) are shown in the second column of

Fig. 1. Good agreement is obtained.

The mapping from the phase distribution of LG-CP

lasers to the 3D structure of the injected electrons can be

extended to lasers with arbitrary phase distribution and

electrons with more complicated structures being produced.

Here, we show an example [Fig. 3(a)]: two right-handed

CP laser pulses, one with ðl ¼ 0; p ¼ 0Þ; aL ¼ 0.057;
kpξcenter ¼ 2.5 and the other with ðl ¼ 2; p ¼ 0Þ; aL ¼
0.106; kpξcenter ¼ 2.3, copropagate into the nonlinear wake

driven by an 1 GeV electron beam. The structure of the

injected electrons gradually evolves from three beamlets

at the head of the beam to 1 beamlet at the tail [Fig. 3(b)].

The bunching factor achieves the maximum at ðlb ¼ 1;
k ∼ 1.7kLÞ and their harmonics from the l ¼ 0 laser, and at

ðlb ¼ 3; k ∼ 1.3kLÞ from the l ¼ 2 laser. Additionally the

bunching factor achieves the maximum at ðlb ¼ −2; k ≈
0.12kLÞ and ðlb ¼ 4; k ≈ 2.8kLÞ which is due to the mutual

interactions (beating) between these two laser pulses. The

generated electron beam has a charge of 8 pC, a 1.2 kA

peak current, a 105 (86) nm emittance and a 1.3 MeV

uncorrelated energy spread. By using laser pulses that have

different wavelengths, modes, angles, and delays one can

produce exotic 3D structured electron beams.

We point out that in contrast to previous work [44,55–57]

our work generates electrons with topological structures

when they conduct the betatron motion in the linear fields of

an ion column. These beams acquire zero net angular

momentumwith finite spread from the laser. This is different

from other work where the beam possesses a significant

amount of angular momentum [44,55–57] and the spiral

motion of ions is needed to conserve the angular momentum.

These high-quality beams are suitable to produce high power

coherent radiation with orbital angular momentum (OAM)

from ultraviolet to X-ray if they are boosted to high energy

and propagate through a magnetic undulator [48].
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FIG. 3. The structure of the injected electrons when two right-

handed CP laser pulses with ðl ¼ 0; p ¼ 0Þ and ðl ¼ 2; p ¼ 0Þ
are used. (a) A illustration of the laser-triggered ionization

injection in a beam driven plasma wake. (b) Density isosurface

and its projections to each plane. (c) The bunching factor. The

profiles of the pulses are as same as in Fig. 1.
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We point out that in contrast to previous work [44,55–57]

we consider using a low-intensity CP laser with LG modes

to generate topologically structured electron beams with

high quality, i.e., high current, low-energy spread and low

emittance. The beams form the topological structures gradu-

ally after they leave the laser pulse and conduct the betatron

motion in the linear focusing fields inside an ion column.

They acquire zero net angular momentum with finite spread

(see Appendix F) from the laser which makes it possible to

couple them out of the plasma while preserving their

structures [66–70]. This is different from other work where

the beam possesses a significant amount of angular momen-

tum [44,55–57] and the spiral motion of ions is needed to

conserve the angular momentum. These high-quality beams

are suitable to produce high-power coherent radiation with

OAM from ultraviolet to X-ray wavelengths if they are

boosted to high energy in an acceleration section and then

propagate through a magnetic undulator [48].
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APPENDIX A: EXPRESSIONS OF THE LASERS

WITH LAGUERRE-GAUSSIAN MODES

The transverse components of the normalized vector

potential of a circularly polarized LG laser used in the

simulation is

A⃗ðr; θ; z; tÞ ¼ −Reðσe⃗x þ iêyÞaLcjljp ðr; θ; zÞeiðlθ−kzþωtÞ;

ðA1Þ

where êx;y are the unit vector along the x and y directions,

σ ¼ 1 for right-handed polarization and σ ¼ −1 for left-

handed polarization. The LG modes are defined as

c
jlj
p ðr;θ; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p!

πðpþjljÞ!

s

w0

wðzÞ

�

ffiffiffi

2
p

r

wðzÞ

�jlj
exp

�

−
r2

w2ðzÞ

�

×L
jlj
p

�

2r2

w2ðzÞ

�

exp

�

−ikL
r2

2RðzÞ

�

expðiψðzÞÞ;

ðA2Þ

whereLl
p are the generalized Laguerre polynomials, wðzÞ ¼

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð z
zR
Þ2

q

is the spot size, RðzÞ ¼ z½1þ ð z
zR
Þ2� is the

radius of curvature of thewavefront, zR ¼ πw2

0

λL
is theRayleigh

length, andψðzÞ ¼ ð2pþ jlj þ 1Þ arctanð z
zR
Þ. The amplitude

is determined through aL. These expressions can be found

easily in textbooks.

APPENDIX B: PARTICLE-IN-CELL

SIMULATION SETUP

For the simulations shown in Figs. 1, 2, and 4, we use a

moving window propagating at speed of light in vacuum c

with a box size of 1.3 × 2.4 × 2.4ðc=ωpÞ3 and 650 × 960 ×

960 cells along the z, x, and y directions, respectively. The

cell sizes correspond to 0.002c=ωp along the z direction

and 0.0025c=ωp along the x and y directions. The time step

is dt ¼ 0.0013245ω−1
p which is close to the Courant limit

and one macroparticle per cell is used to represent the He1þ

ion. The ions are immobile in the simulations. The code

uses the Ammosov-Delone-Krainov (ADK) tunneling ion-

ization model [60].

The self-consistent simulation shown in the second

row of Fig. 1 (dashed line in the bunching factor plot)

and Fig. 3 uses a moving window propagating at c with a

box size of 10 × 10 × 10ðc=ωpÞ3 and 5000 × 1000 × 1000

cells along the z, x, and y directions, respectively. The grid

size is 0.002c=ωp along the z direction and 0.01c=ωp along
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FIG. 4. The structures of the injected electrons at ωpt ¼ 31

when a CP laser pulse with ðσ ¼ −1; l ¼ 0; p ¼ 0Þ or ðσ ¼
−1; l ¼ 2; p ¼ 0Þ is used. The first column: the isosurface of the

electron density distribution and its projections on each plane.

The second column: the bunching factor of the injected electrons.
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the x and y directions. The time step is dt ¼ 0.001ω−1
p and

onemacroparticle per cell is used to represent the beamdriver

electron, the plasma electrons and the He1þ ion. The ions are

immobile in the simulations. We use the customized field

solver described in Ref. [59]. An electron beam driver with

1 GeV energy and 19 kA peak current is used to excite the

nonlinear wave wake The spot size of the bi-Gaussian beam

driver nb ∼ exp ð− r2

2σ2r
− z2

2σ2z
Þ is σr¼0.7c=ωpð8.9 μmÞ and its

duration is σz¼0.835c=ωpð10.6 μmÞ.

APPENDIX C: THE STRUCTURES OF THE

INJECTED ELECTRONS WHEN A LASER

PULSE WITH ðσ = − 1;l = 0;p = 0Þ
OR ðσ = − 1;l = 2;p = 0Þ IS USED

The density isosurface of the injected electrons and their

bunching factors in two more cases are shown in Fig. 4:

ðσ ¼ −1; l ¼ 0; p ¼ 0Þ and ðσ ¼ −1; l ¼ 2; p ¼ 0Þ. Their
structures and the maximums of the bunching factor are

consistent with the theoretical predictions: when

ðσ ¼ −1; l ¼ 0; p ¼ 0Þ, a single spiral beam is formed,

and the bunching factor achieves its maximum at ðlb ¼
−1; k ≈ 1.3kLÞ and the beam is rich in spatial harmonics;

when ðσ ¼ −1; l ¼ 2; p ¼ 0Þ, a single spiral beam is

produced and the bunching factor achieves its maximum

at ðlb ¼ 1; k ≈ 1.3kLÞ. The profile and the intensity of the

lasers are the same as that of Fig. 1.

APPENDIX D: LONGITUDINAL PHASE SPACE

OF THE INJECTED BEAMS

In Fig. 5, we show the charge distribution of the injected

beams in their longitudinal phase space ðγmc2; ξÞ for the

five cases studied in Fig. 1. The self-consistent simulation

(bottom right) has an acceleration gradient with a smaller

chirp (Fz ≈ 0.4ξmω2
p) due to a relatively weak driver. Thus,

the beam from this simulation has lower energy at the same

acceleration distance.

APPENDIX E: CONSERVATION OF P⃗⊥ FOR A

FOCUSED LASER WITH LG MODE

We confirm the conservation of P⃗⊥ when the electrons

are ionized and move inside a focused laser with LG mode

by carrying out OSIRIS simulation. The setup of the

simulation is shown in Fig. 6(a) where a laser pulse with

ðσ ¼ 1; l ¼ 2; p ¼ 0Þ is considered. Two lines of He1þ

ions at y ¼ 0 and different axial locations (at the focal

position of the laser and one Rayleigh length away from the

focal position) are initialized. There is no external field in

the simulation, thus the released electrons oscillate inside

the laser pulse and drift after the laser passes them. Their

momenta after being passed by the laser are the residual

momenta we require. As shown in Figs. 6(b) and 6(c), we

can see the plane wave (transverse invariance) approxima-

tion works well for the parameters studied here.

APPENDIX F: THE TRANSVERSE MOMENTUM

DIRECTION OF THE INJECTED BEAMS

We show the transverse momentum direction of 1000

sampled electrons in Fig. 7 for ðσ ¼ 1; l ¼ 2; p ¼ 0Þ case

FIG. 5. Longitudinal phase space of the injected beams at

ωpt ¼ 31. The charge density is normalized to its peak in each

subplot. The black lines are the energy spectrum. The blue line in

the self-consistent case (bottom right) shows the current profile.
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FIG. 6. Simulation study of the conservation of P⃗⊥. The profile

and intensity of the laser pulse is the same as that of Fig. 1.

FIG. 7. The direction of the transverse momentum of 1000

sampled electrons.
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at ωpt ¼ 31. The direction of the momentum is approx-

imately along the radial direction which indicate each

electron has a small angular momentum.

APPENDIX G: PROPERTIES OF gl;σðθðθiÞÞ
In this section, we discuss the properties of the function

gl;σðθðθiÞÞ. We start with

tan θ ¼ y

x
ðG1Þ

then

d tanðθðθiÞÞ
dθi

¼ d tan θ

dθ

dθ

dθi
¼

dy
dθi

x − dx
dθi

y

x2

⇒
dθi

dθ
¼

d tan θ
dθ

x2

dy
dθi

x − dx
dθi

y

¼ x2 þ y2

dy
dθi

x − dx
dθi

y
ðG2Þ

where d tan θ
dθ

¼ 1

cos2 θ
¼ x2þy2

x2
is used. Substituting the expres-

sions of x and y, it is straightforward to obtain

dθi

dθ
¼ α2 þ 1þ 2σα cos½ðlþ σÞθi − ξ̂i�

α2 − σl − αðl − σÞ cos½ðlþ σÞθi − ξ̂i�
ðG3Þ

where α ¼ kpri
ffiffi

2
p

ai

1

tanΦ
.

1. Right-handed case: σ = 1

When the laser is right-handed CP polarized, the

expression for gl;1 can be obtained as

gl;1ðθÞ ¼
�

�

�

�

dθi

dθ

�

�

�

�

¼ jα2 þ 1þ 2α cos x̄j
jα2 − l − αðl − 1Þ cos x̄j ; ðG4Þ

where x̄ ¼ ðlþ 1Þθi − ξ̂i and l ¼ 0; 1; 2; 3;….

When l ¼ 0, gl;1 is simplified to g0;1 ¼ jα2þ1þ2α cos x̄j
jα2þα cos xj . It is

easy to see g0;1 reaches its maximum at x̄ ¼ 2nπ for α ≥ 1,

at x̄ ¼ � cos−1ð−αÞ þ 2nπ for −1 ≤ α < 1, and at x̄ ¼
ð2nþ 1Þπ for α < −1, where n is an integer.

For l ≥ 1, the story is more complicated. For α ≥ l, gl;1
achieves its maximumwhen x̄ ¼ 2nπ since the denominator

is minimum and the numerator is maximum. For 1 ≤ α < l,

the denominator is zero when x̄ ¼ � cos−1ð α2−l
αðl−1ÞÞ þ 2nπ,

thus gl;1 reaches its maximum, which is infinity, at these

locations. For 0 ≤ α < 1, by solving dgl;1ðx̄Þ=dx̄ ¼ 0, the

maximum value of gl;1 is found to occur at x̄ ¼ 2nπ. The

properties of gl;1 for α < 0 can be found similarly, i.e., gl;1
reaches its maximum at x̄ ¼ ð2nþ 1Þπ for −1 ≤ α < 0

or α < −l, and at x̄ ¼ � cos−1ð α2−l
αðl−1ÞÞ þ ð2nþ 1Þπ for

−l ≤ α < −1.

2. Left-handed case: σ = − 1

When the laser is left-handed CP polarized, the expres-

sion of gl;−1 is

gl;−1ðθÞ ¼
jα2 þ 1 − 2α cos x̄j

jα2 þ l − αðlþ 1Þ cos x̄j ðG5Þ

where x̄ ¼ ðl − 1Þθi − ξ̂i and l ¼ 0; 1; 2; 3;….

When l ¼ 0, gl;−1 is simplified as g0;−1 ¼ jα2þ1−2α cos xj
jα2−α cos xj . It

is easy to see gl;−1 reaches its maximum at x̄ ¼ ð2nþ 1Þπ
for α ≥ 1, at x̄ ¼ � cos−1 αþ 2nπ for −1 ≤ α < 1, and

at x ¼ 2nπ for α < −1. When l ¼ 1, it is trivial to

see g1;−1 ¼ 1.

When l > 1, we need to be more careful. For α ≥ l, by
solving dgl;−1ðx̄Þ=dx̄ ¼ 0, the maximum value of gl;−1 is

found at x̄ ¼ 2nπ. When 1 ≤ α < l, the denominator is

zero when x̄ ¼ � cos−1ð α2þl
αðlþ1ÞÞ þ 2nπ, thus gl;−1 reaches its

maximum of infinity at these locations. For 0 ≤ α < 1, gl;−1
reaches its maximum at x̄ ¼ ð2nþ 1Þπ. The properties of

gl;−1 for α < 0 can be found similarly, i.e., gl;−1 reaches its

maximum at x̄ ¼ ð2nþ 1Þπ for α < −l, at x̄ ¼
� cos−1ð α2þl

αðlþ1ÞÞ þ 2nπ for −l ≤ α < −1, and at x̄ ¼ 2nπ

for −1 ≤ α < 0. The value of gl;σðx̄Þ is shown in Fig. 8 for

5 cases.

3. Mapping between θi and θ: Right-handed case σ = 1

When the laser is right-handed polarized, the relation

between θ and θi is

θ ¼ atan2

�

kpri
ffiffiffi

2
p

ai
sin θi cosΦ − sinðlθi − ξ̂iÞ sinΦ;

kpri
ffiffiffi

2
p

ai
cos θi cosΦþ cosðlθi − ξ̂iÞ sinΦ

�

: ðG6Þ

We can note when ðlþ 1Þθi − ξ̂i ¼ 2nπ, θi is mapped to

θ ¼ θi ¼
2nπ þ ξ̂i

lþ 1
if

kpri
ffiffiffi

2
p

ai
cosΦþ sinΦ > 0; ðG7Þ

and to

θ ¼ π þ θi ¼
ð2nþ lþ 1Þπ þ ξ̂i

lþ 1

if
kpri
ffiffiffi

2
p

ai
cosΦþ sinΦ < 0: ðG8Þ

Clearly, the angle
2nπþξ̂i
lþ1

is equivalent to
ð2nþlþ1Þπþξ̂i

lþ1
when l

is odd.
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When ðlþ 1Þθi − ξ̂i ¼ ð2nþ 1Þπ,

θ ¼ θi ¼
ð2nþ 1Þπ þ ξ̂i

lþ 1
if

kpri
ffiffiffi

2
p

ai
cosΦ − sinΦ > 0;

ðG9Þ

and to

θ ¼ π þ θi ¼
ð2nþ lþ 2Þπ þ ξ̂i

lþ 1

if
kpri
ffiffiffi

2
p

ai
cosΦ − sinΦ < 0: ðG10Þ

These angles are also equivalent when l is odd.

4. Mapping between θi and θ: Left-handed

case σ = − 1

When the laser is left-handed polarized, the relation

between θ and θi is

θ ¼ atan2

�

kpri
ffiffiffi

2
p

ai
sin θi cosΦ − sinðlθi − ξ̂iÞ sinΦ;

kpri
ffiffiffi

2
p

ai
cos θi cosΦ − cosðlθi − ξ̂iÞ sinΦ

�

: ðG11Þ

We can note when ðl − 1Þθi − ξ̂i ¼ 2nπ, θi is mapped to

θ ¼ θi ¼
2nπ þ ξ̂i

l − 1
if

kpri
ffiffiffi

2
p

ai
cosΦ − sinΦ > 0; ðG12Þ

and to

θ ¼ π þ θi ¼
ð2nþ l − 1Þπ þ ξ̂i

l − 1

if
kpri
ffiffiffi

2
p

ai
cosΦ − sinΦ < 0: ðG13Þ

When l is odd, these angles are equivalent.

When ðl − 1Þθi − ξ̂i ¼ ð2nþ 1Þπ,

θ ¼ θi ¼
ð2nþ 1Þπ þ ξ̂i

l − 1
if

kpri
ffiffiffi

2
p

ai
cosΦþ sinΦ > 0;

ðG14Þ

and to

θ¼ πþ θi ¼
ð2nþ lÞπþ ξ̂i

l− 1
if

kpri
ffiffiffi

2
p

ai
cosΦþ sinΦ< 0;

ðG15Þ

when l is odd, these angles are also equivalent.

5. An example of the evolution of the angles

We show the evolution of θ for particles with different θi
when ðl ¼ 2; σ ¼ 1Þ in Fig. 9. When there are three knots,

i.e., the angles concentrate at three distinct values, the

bunching factor reaches its maximum [see Fig. 2(b) in the

main text].

FIG. 8. The value of gl;σðx̄Þ. Note the value at each α is normalized by 10 when 1 ≤ jαj < l and its maximum for other α.
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FIG. 9. Left: the initial distribution of the electrons. These

electrons are initialized with kpri ¼ 0.1; ai ¼ 0.1; kpξi ¼ 2.24
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