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Abstract: We provide a theoretical justification for post-selection inference in high-

dimensional Cox models, based on the celebrated debiased Lasso procedure. Our

generic model setup allows time-dependent covariates and an unbounded time in-

terval, which is unique among post-selection inference studies on high-dimensional

survival analysis. In addition, we adopt a novel proof technique to replace the use

of Rebolledo’s central limit theorem. Our theoretical results provide conditions

under which our confidence intervals are asymptotically valid, and are supported

by extensive numerical experiments.
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1. Introduction

Since its introduction, the Cox proportional hazards model (Cox (1972)) has

become central to the analysis of censored survival data. The model posits that

the conditional hazard rate at time t 2 T for the survival time T̃ of an individual,

given their p-variate covariate vector Z(t), can be expressed as

�(t) := �0(t) exp
�
�o>Z(t)

 
, (1.1)

where �o 2 Rp is an unknown vector of regression coe�cients, and �0(·) is

an unknown baseline hazard function. With n individuals from a population,

we assume that for each i = 1, . . . , n, we observe a (possibly right-censored)

survival time Ti, an indicator �i of whether or not failure is observed, and the

corresponding covariate processes {Zi(t) : t 2 T }.
When p < n, the maximum partial likelihood estimator (MPLE) (Cox

(1975)) may be used to estimate �o. In the classical setting, the dimension

p is assumed to be fixed and the sample size n is allowed to diverge to infinity. In
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such a setting, and under a strong (and di�cult to check) condition on the weak

convergence of the sample covariance processes, Andersen and Gill (1982) de-

rived the asymptotic normality of the MPLE using counting process arguments

and Rebolledo’s martingale central limit theorem. This result can be used to

provide asymptotically valid confidence intervals for components of �o (or, more

generally, for linear combinations c>�o, for some fixed c 2 Rp).

Our interest lies in providing corresponding confidence intervals in the high-

dimensional regime, where p may be much larger than n. The motivation for

such a methodology arises from many di↵erent application areas, but particu-

larly those in biomedicine. Here, Cox models are ubiquitous, and data on each

individual, which may arise from combinations of genetic information, greyscale

values for each pixel in a scan, and many other types, are often plentiful. Our

construction begins with the Lasso penalized partial likelihood estimator b� stud-

ied in Huang et al. (2013), which is sparse, and is used here as an initial estimator.

We then seek a sparse estimator of the inverse of the negative Hessian matrix,

which we refer to as a sparse precision matrix estimator. In Zhang and Zhang

(2014) and van de Geer et al. (2014), who consider similar problems in linear

and generalized linear model settings, respectively, this sparse precision matrix

estimator is constructed using a nodewise Lasso regression (Meinshausen and

Bühlmann (2006)). In contrast, Javanmard and Montanari (2014) derived their

precision matrix estimators by minimizing the trace of the product of the sample

covariance matrix and the precision matrix, where the covariates are assumed

to be centered. However, in the Cox model setting, the counterpart of the de-

sign matrix is a mean-shifted design matrix, where the mean is based on a set

of tilting weights. This destroys the necessary independence structure. Instead,

we adopt a modification of the CLIME estimator (Cai, Liu and Luo (2011)) as

the sparse precision matrix estimator, which allows us to handle the mean sub-

traction. Adjusting b� by the product of our sparse precision matrix estimator

and the score vector yields a debiased estimator bb. Our main theoretical result

(Theorem 1) provides conditions under which c>bb is asymptotically normally

distributed around c>�o. The desired confidence intervals can then be obtained

straightforwardly. Recent applications of the debiasing idea, although not within

the context of regression problems, can be found in, for example, Janková and

van de Geer (2018).

The success of the debiased Lasso approach for high-dimensional post-selection

inference means it has received a great deal of attention in recent years. However,

ours is the first attempt to provide a theoretical justification for the method in
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the important area of survival analysis. In addition to this main contribution, we

believe that our novel proof techniques provide the survival analysis community

with new tools that can be applied in other related problems. Our list three

technical contributions are as follows:

• We avoid the di�cult assumption on the weak convergence of sample covari-

ance processes inherent in the martingale central limit theorem approach

(Bradic, Fan and Jiang (2011)). This entails a di↵erent approach, which

provides new insights, even in low-dimensional settings. In particular, we

introduce a new finite-sample concentration inequality (Lemma S2), which

controls the largest deviations from its population analogue of the weighted

sample covariate process.

• We allow the upper limit t+ of the time index set T to be infinite, and

do not assume that each subject has a constant, positive probability of re-

maining in the at-risk set at time t+. This di↵ers from the approach of, for

example, Fang, Yang and Liu (2017), who propose hypothesis tests based

on decorrelated scores and decorrelated partial likelihood ratios. Because

our concentration inequality is useful only when su�ciently many individ-

uals remain under study, this feature of the problem necessitates a novel

truncation argument.

• Our theory handles settings where p may be much larger than n; in fact, we

assume only that p = o(exp(na)), for every a > 0; this is sometimes called

the ultrahigh-dimensional setting (e.g. Fan, Samworth and Wu (2009)).

Our estimators and inference procedure are given in Section 2, and our the-

oretical arguments are presented in Section 3. Section 4 is devoted to extensive

numerical studies of our methdology on both simulated and real data. These

reveal, in particular, that valid p-values and confidence intervals for the noise

variables can be obtained with a relatively small sample size, whereas a larger

sample size is needed for good coverage of signal variables. Various auxiliary

results and proofs are given in the Supplementary Material (Yu, Bradic and

Samworth (2021)).

We conclude this section by introducing the notation used throughout the

remainder of this paper. For any set S, let |S| denote its cardinality. For a

vector v = (v1, . . . , vm)> 2 Rm, let kvk1, kvk, and kvk1 denote its `1, `2, and

`1 norms, respectively; we also write v⌦2 := vv>. Given a set J ✓ {1, . . . ,m},
we write vJ := (vj)j2J 2 R|J |. For a matrix A = (Aij)mi,j=1 2 Rm⇥m, let
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kAk1 := maxi,j=1,...,m |Aij | be the entrywise maximum absolute norm, and let

kAkop,1 := supv 6=0(kAvk1/kvk1) and kAkop,1 := supv 6=0(kAvk1/kvk1) denote
its operator `1 and operator `1 norms, respectively. In Lemma S1 in the Sup-

plementary Material, we show that kAkop,1 and kAkop,1 are the maximum of

the `1 norms of the rows of A, and the maximum of the `1 norms of its columns,

respectively. Given two real sequences (an) and (bn), we write an ⇣ bn to mean

0 < lim infn!1 |an/bn|  lim supn!1 |an/bn| < 1. Given a distribution func-

tion F , we write F̄ := 1� F . All probabilities and expectations are taken under

the true model with baseline hazard �0 and regression parameter �o, though we

suppress this in our notation.

2. Methodology

Recall that T ✓ [0,1) denotes our time index set. We assume that, for

i = 1, . . . , n, there exist independent triples
�
T̃i, Ui, {Zi(t) : t 2 T }

�
, where T̃i

is a nonnegative random variable indicating failure time, Ui is a nonnegative

random variable indicating a censoring time, and {Zi(t) : t 2 T } is a p-variate,

predictable time-varying covariate process. We further assume that T̃i and Ui are

conditionally independent, given {Zi(t) : t 2 T }. Writing Ti := min(T̃i, Ui) and

�i := 1{T̃iUi}, our observations are
��

Ti, �i, {Zi(t) : t 2 T }
�
: i = 1, . . . , n

 
. We

regard these observations as independent copies of a generic triple
�
T, �, {Z(t) :

t 2 T }
�
.

Let FT denote the distribution function of T , and let t+ := inf{t � 0 :

FT (t) = 1} denote the upper limit of the support of T . If t+ < 1, we assume

that T = [0, t+]; if t+ = 1, then we assume T = [0,1). In this sense, we

assume that T covers the entire support of the distribution of T . Therefore, in

particular, there are no individuals in the at-risk set at time t+.

For i = 1, . . . , n, define processes {Ni(t) : t 2 T } and {Yi(t) : t 2 T }
by Ni(t) := 1{Tit,�i=1} and Yi(t) := 1{Ti�t}, respectively. We regard these as

independent copies of processes {N(t) : t 2 T } and {Y (t) : t 2 T }, respectively.
Let N̄(t) := n�1

Pn
i=1Ni(t). Therefore, the natural �-field at time t 2 T is Ft :=

�({(Ni(t), Yi(t), {Zi(s) : s 2 [0, t]}) : i = 1, . . . , n}). In the Cox model (1.1),

Ni(t) has predictable compensator

⇤i(t,�
o) :=

Z t

0
Yi(s) exp

�
�o>Zi(t)

 
�0(s) ds,

with respect to the filtration (Ft : t 2 T ).
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Define the log-partial likelihood function, divided by n, at � 2 Rp by

`(�) = `n(�)

:=
1

n

nX

i=1

Z

T
�>Zi(s) dNi(s)�

Z

T
log

2

4
nX

j=1

Yj(s) exp
�
�>Zj(s)

 
3

5 dN̄(s).

Inspired by Zhang and Zhang (2014) and van de Geer et al. (2014), our main

object of interest is the one-step-type estimator

bb := b� + b⇥ ˙̀(b�), (2.1)

where b� = (�̂1, . . . , �̂p)> is an initial estimator of �o, b⇥ = (⇥̂ij)
p
i,j=1 is a sparse

precision matrix estimator that approximates the inverse of the negative Hessian

�῭(�o), and ˙̀(b�) is the score function evaluated at the initial estimator. In the

rest of this section, we discuss the definition and rationale for our choices of b� and
b⇥. Note that our proposals for b� and b⇥ depend on certain tuning parameters;

this dependence is suppressed in our notation. However, in our theoretical results,

we provide explicit conditions on these tuning parameters. Note that a similar

construction has also been proposed in a later submission Kong et al. (2018),

which focuses on the utility of such a construction under model misspecification.

2.1. Initial estimator

Following Huang et al. (2013), for � > 0, let

b� = b�(�) := argmin
�2Rp

�
�`(�) + �k�k1

 
. (2.2)

For i = 1, . . . , n and t 2 T , let w̃i(t,�) := Yi(t) exp{�>Zi(t)} be the ith weight,

and let

wi(s,�) :=
w̃i(s,�)Pn
j=1 w̃j(s,�)

be the ith normalized weight, with the convention that 0/0 := 0. The weighted

average of the covariate processes is defined by

Z̄(s,�) :=
nX

i=1

Zi(s)wi(s,�).

Then, it follows from the subgradient conditions for optimality (i.e., the Karush–

Kuhn–Tucker conditions) that there exists ⌧̂ = (⌧̂1, . . . , ⌧̂p)>, such that
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0 = � ˙̀(b�) + �b⌧ = � 1

n

nX

i=1

Z

T

�
Zi(s)� Z̄(s, b�)

 
dNi(s) + �b⌧ ,

where kb⌧k1  1 and ⌧̂j = sgn(�̂j) if �̂j 6= 0.

2.2. The estimator of the precision matrix

For � 2 Rp, we have

῭(�) = �
nX

i=1

Z

T

�
Zi(s)� Z̄(s,�)

 ⌦2
wi(s,�) dN̄(s).

However, the presence of the weights in this integral makes it di�cult to analyze

directly. As a first step toward obtaining a more tractable expression, we rewrite

this equation as

῭(�) = � 1

n

nX

i=1

Z

T

�
Zi(s)� Z̄(s,�)

 ⌦2
w̃i(s,�) db⇤(s,�),

where we define b⇤(t,�) := n
R t
0

�Pn
j=1 w̃j(s,�)

 �1
dN̄(s) to be the Breslow esti-

mator of
R t
0 �0(s) ds (Breslow (1972)). Now, recall from, among others, Andersen

et al. (1993, p. 66) that the process {N(t) : t 2 T } has the Doob–Meyer decom-

position

N(t) = M(t) +

Z t

0
w̃(s,�o)�0(s) ds, (2.3)

where {M(t) : t 2 T } is a mean-zero martingale. This motivates us to define a

population approximation to �῭(�o) by

⌃ := E

Z

T
{Z(s)� µ(s,�o)}⌦2 dN(s)

= E

Z t+

0

�
Z(s)� µ(s,�o)

 ⌦2
w̃(s,�o)�0(s) ds,

where, for t 2 T and � 2 Rp,

µ(t,�) :=
E{Z(t)Y (t) exp(�>Z(t))}
E{Y (t) exp(�>Z(t))} .

Our goal in this subsection is to define an estimator of ⌃�1 with properties that

we can analyze. To this end, observe that an oracle, with knowledge of �o, could
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estimate ⌃ by

bV(�o) :=
1

n

nX

i=1

Z

T

�
Zi(s)� Z̄(s,�o)

 ⌦2
dNi(s)

=
1

n

nX

i=1

�i
�
Zi(Ti)� Z̄(Ti,�

o)
 ⌦2

.

This suggests the genuine estimator

bV(b�) = 1

n

nX

i=1

�i
�
Zi(Ti)� Z̄(Ti, b�)

 ⌦2
. (2.4)

Whereas both �῭(b�) and bV(b�) can be considered as estimators of ⌃, it turns out

that the latter is a much more convenient expression to study, from a theoretical

perspective.

As mentioned in the introduction, both Zhang and Zhang (2014) and van

de Geer et al. (2014) employ a nodewise regression to obtain a sparse precision

matrix estimator b⇥. In those cases, the design matrices consist of independent

rows, which facilitate the adoption of Lasso-type methods; in the Cox model,

however, we do not have the luxury of row independence, because bV, defined
in (2.4), involves Z̄(Ti, b�).

As an alternative, we adapt the CLIME estimator of Cai, Liu and Luo (2011),

originally proposed in the context of precision matrix estimation. Let b⇥ =

( b⇥1, . . . , b⇥p)> be defined by

b⇥j 2 argmin
bj2Rp

n
kbjk1 :

��bV(b�)bj � ej
��
1  �n

o
, (2.5)

where e>j := (1{j=l})
p
l=1 2 Rp, for j = 1, . . . , p. The original proposal of Cai,

Liu and Luo (2011) symmetrized b⇥ by taking both the (i, j)th and (j, i)th o↵-

diagonal entries as the corresponding entry of b⇥ with the smaller absolute value.

In our theoretical analysis, it turned out to be convenient not to symmetrize in

this way. In practice, we found the di↵erence to be negligible; see Section 4.1.

For j = 1, . . . , p, let ˙̀
j(�) denote the jth component of the score vector at �,

and let ῭
j(�) 2 Rp have lth component @2`(�)/@�l@�j . By a Taylor expansion,

for each j = 1, . . . , p, there exists e�j on the line segment between b� and �o, such

that
˙̀
j(b�) = ˙̀

j(�
o) + ῭

j(e�j)
>(b� � �o). (2.6)
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Now, let M(e�) 2 Rp⇥p be the matrix with jth row ῭
j(e�j)>. It follows that with

bb defined as in (2.1), and for any c 2 Rp with kck1 = 1, we can write

c>(bb� �o) = c>
�b� + b⇥ ˙̀(b�)� �o

 

= c>⌃�1 ˙̀(�o) + c>
� b⇥�⌃�1

�
˙̀(�o)

+c> b⇥
�
˙̀(b�)� ˙̀(�o)

 
+ c>(b���o)

= c>⌃�1 ˙̀(�o) + c>( b⇥�⌃�1) ˙̀(�o) + c>{ b⇥M(e�) + I}(b� � �o).

(2.7)

In Section 3, we provide conditions under which, when both sides of (2.7) are

rescaled by n1/2, the first, dominant term is asymptotically normal, and the

second and third terms are asymptotically negligible. This is the main step in

deriving asymptotically valid confidence intervals for c>�o.

3. Theory

3.1. Assumptions and main result

Recall that our underlying processes are n independent copies of the triple�
T̃ , U,Z

�
, where Z := {Z(t) : t 2 T }, and that we assume T̃ and U are con-

ditionally independent, given Z. Our observations are n independent copies of�
T, �, {Z(t) : t 2 T }

�
, and we assume that the conditional hazard function of

T̃ at time t, given Z, satisfies (1.1)1, for some �o 2 Rp. We use the following

assumptions:

(A1) (a) The process {Z(t) : t 2 T } is predictable, and there exists a deter-

ministic KZ > 0, with supt2T P{kZ(t)k1  KZ} = 1.

(b) The process {Z(t) : t 2 T } is uniformly Lipschitz in the sense that

there exists a deterministic L > 0, such that

P

⇢
sup

s,t2T ,s 6=t

kZ(s)�Z(t)k1
|s� t|  L

�
= 1.

(A2) (a) The random variable T has a bounded density fT with respect to the

Lebesgue measure.

(b)
R t+
0 t↵fT (t) dt < 1, for some ↵ > 0.

1In the terminology of, e.g., Kalbfleisch and Prentice (2002, Sec. 6.3), this means that all time-dependent
covariates are external.
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(A3) (a) p = pn = o(en
a

), for every a > 0.

(b) do := |{j : �o
j 6= 0}| satisfies do = o

�
n1/2/ log1/2(np)

�
.

(A4) (a) Writing S := {j : �o
j 6= 0}, N := {j : �o

j = 0}, and

 := inf
{v2Rp\{0}:kvNk12kvSk1}

d1/2o {v> ῭(�o)v}1/2

kvSk1
,

we have that 1/ = Op(1).

(b) maxj=1,...,p⌃jj = O(1) as n ! 1.

(c) lim infn!1 k⌃�1kop,1 > 0, and writing rj :=
Pp

i=1 1{(⌃�1)ij 6=0}, for

j = 1, . . . , p, there exists �0 > 0, such that

k⌃�1k2op,1max

⇢
d2o log(np)

n1/2
, don

�(1/3��0)

�
max

j=1,...,p
rj

=o

✓
1

log1/2(np)

◆
.

A discussion of these assumptions is in order. Condition (A1) concerns the

boundedness and Lipschitz continuity of the covariate process. It is likely that

the first of these conditions could be replaced with a tail condition, at the ex-

pense of further complicating the theoretical analysis. Indeed, in our simulations

in Section 4, we explore settings in which kZ(t)k1 is unbounded. Condition

(A2) consists of two mild and interpretable conditions on the distribution of

the observed failure times. Condition (A3)(a) controls the rate of growth of

the dimensionality as the sample size increases, and, in particular, allows super-

polynomial growth. However, the sparsity assumption (A3)(b) ensures that

the number of important variables (those with nonzero regression coe�cients) is

more tightly controlled. Condition (A4)(a) is a high-level condition on the so-

called compatibility factor of ῭(�o); in the presence of our other assumptions, we

find that this essentially amounts to a condition on the smallest eigenvalue of ⌃;

see the discussion following Lemma 1. The other parts of (A4) imposes further

conditions on ⌃, and, in the case of(A4)(c), the way its properties interact with

the sparsity level of �o.

The confidence intervals for the regression coe�cients are constructed based

on the results derived in the following theorem.

Theorem 1. Assume (A1)–(A4), and let c 2 Rp be such that kck1 = 1 and
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c>⌃�1c ! ⌫2 2 (0,1). For b� in (2.2), let � ⇣ n�1/2 log1/2(np), and for b⇥
in (2.5), let

�n ⇣
⇢
max

✓
k⌃�1kop,1

do log(np)

n1/2
, k⌃�1kop,1n�(1/3��0)

◆�
.

Then, for bb defined in (2.7), we have

n1/2c>(bb� �o)
d! N (0, ⌫2),

as n ! 1. Moreover,

n1/2 c
>(bb� �o)

(c> b⇥c)1/2
d! N (0, 1).

Remark 1. Theorem 1 can be extended to include testing a hypothesis about a

fixed-dimensional sub-vector of �o, such as H0 : �o
1 = �o

2 = �o
3 = 0, by choosing

an appropriate matrix C in place of the vector c. However, for simplicity of

exposition, we state the result in terms of a single linear combination of the

components of �o.

It follows immediately from Theorem 1 that for any q 2 (0, 1), an asymptotic

(1� q)-level confidence interval for c>�o is given by

⇥
c>bb� zq/2n

�1/2(c> b⇥c)1/2, c>bb+ zq/2n
�1/2(c> b⇥c)1/2

⇤
,

where zq is the (1� q)th quantile of the standard normal distribution. In partic-

ular, for each j = 1, . . . , p, an asymptotic (1� q)-level confidence interval for �o
j

is provided by

⇥
b̂j � zq/2n

�1/2(b⇥jj)
1/2, b̂j + zq/2n

�1/2(b⇥jj)
1/2]. (3.1)

3.2. Proof of theorem 1

The proof of Theorem 1 contains three main steps: a) provide the properties

of the initial estimator b�; b) show the asymptotic normality of the first term

in (2.7); and c) show that the remainder terms in (2.7) are negligible. These

steps are tackled using the intermediate results in the following three subsections

(the proofs are deferred to the Supplementary Material). The final subsection

completes the proof.

First, in step b), note that the first term in (2.7) is split in two by subtracting
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and adding the population quantity µ(s,�o) in the integrand of the expression

for the score function ˙̀(�o) at �o. This allows us to apply the Lindeberg–

Feller central limit theorem to the first (dominant) term to obtain its limiting

distribution. The remainder term is a normalized sum of mean-zero, exchange-

able random variables, the variances of which are controlled by weighted inte-

grals over T of kZ̄(·,�o) � µ(·,�o)k21. We expect this term to be small when

the at-risk set size is reasonably large. However, because we allow this at-risk

set to be empty at t+, we adopt a novel truncation technique in which we set

t⇤ := F�1
T (1� n�1/2), and treat the time intervals from zero to t⇤ and from t⇤ to

t+ separately. For the former interval, we develop a new finite-sample concen-

tration inequality (Lemma S2) to control supt2[0,t⇤) kZ̄(·,�o) � µ(·,�o)k1. In

the latter case, we exploit the boundedness of the process Z̄(·,�o), together with

Jensen’s inequality, to argue that the weighted integral over this region is also

asymptotically negligible.

For step c), we derive a special form of the martingale concentration in-

equality using the decoupling techniques of de la Peña (1999), and concentration

inequalities for sub-gamma random variables.

3.2.1. The initial estimator

The following lemma gives the required properties for the score function at

�o and the initial estimator. The first result is proved in Lemma 3.3 of Huang

et al. (2013). The second combines Theorem 3.2 and Theorem 4.1 of the same

study.

Lemma 1. (i) Assume (A1)(a). Then, for each x > 0,

P{k ˙̀(�o)k1 > x}  2pe�nx2/(8K2
Z).

(ii) Assume (A1)(a), (A3)(b), and (A4)(a), and take � ⇣ n�1/2 log1/2(np)

in (2.2). Then,

kb� � �ok1 = Op

✓
do log

1/2(np)

n1/2

◆
.

Remark 2. More generally, if we take a sequence (an) diverging to infinity

arbitrarily slowly, and set � ⇣ n�1/2 log1/2(anp) in (2.2), then under the con-

ditions of Lemma 1(ii), we have kb� � �ok1 = Op(do log
1/2(anp)/n1/2). In fact,

if we further assume that p = pn ! 1 as n ! 1, then we may take � =

An�1/2 log1/2 p in (2.2), and for su�ciently large A > 0, conclude that kb� �
�ok1 = Op(do log

1/2 p/n1/2).
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We now discuss (A4)(a) in greater depth. For arbitrary finite t⇤ 2 T
and M > 0, let C1 := 1 + ⇤0(t⇤), and let C2 := 2⇤0(t⇤)/r⇤, where r⇤ :=

E
⇥
Y (t⇤)min{M, e�

o>Z(t⇤)}
⇤
. Further, let

⌃(t⇤;M) := E

Z t⇤

0

�
Z(s)� µ(s,�o;M)

 ⌦2
Y (s)min{M, e�

o>Z(t⇤)}�0(s) ds,

where

µ(t,�o;M) :=
E
⇥
Z(t)Y (t)min{M, e�

o>Z(t)}
⇤

E
⇥
Y (t)min{M, e�o>Z(t)}

⇤ .

Write ⇢⇤ for the smallest eigenvalue of ⌃(t⇤;M), and let

tn,p,✏ := max

⇢
4

3n
log

✓
2.221p(p+ 1)

✏

◆
,

2

n1/2
log1/2

✓
2.221p(p+ 1)

✏

◆�
.

Then, the proof of Huang et al. (2013, Theorem 4.1) states that, for each ✏ 2
(0, 1/3),

P

"
 < ⇢⇤ � 36doK

2
Z

(
21/2C1

n1/2
log1/2

 
p(p+ 1)

✏

!
+C2t

2
n,p,✏

)#
 3✏+ e�nr2⇤/(8M

2).

Because t⇤ and M are considered fixed, it is natural to assume that both

lim supn!1max(C1, C2) < 1 and lim infn!1min(⇢⇤, r⇤) > 0. In that case,

under (A3)(b), we have P( < lim infn!1 ⇢⇤/2)  4✏ for su�ciently large n;

thus, (A4)(a) holds.

3.2.2. The dominant and remainder terms

Here, we will describe the limiting behavior of the dominant term in Propo-

sition 1, and the limiting behavior of the remainder terms in Propositions 2 and

3. All proofs can be found in the Supplementary Material.

After rescaling by n1/2, the leading term in (2.7) is

n1/2c>⌃�1 ˙̀(�o) =
1

n1/2

nX

i=1

Z

T
c>⌃�1

�
Zi(s)� Z̄(s,�o)

 
dNi(s).

We prove that its limiting distribution is Gaussian.

Proposition 1. Assume (A1), (A2), (A3)(a), and (A4)(c), and let c 2 Rp

be such that kck1 = 1 and c>⌃�1c ! ⌫2 2 (0,1). Then,

n1/2c>⌃�1 ˙̀(�o)
d! N (0, ⌫2),
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as n ! 1.

The two remainder terms in (2.7) are controlled in Propositions 2 and 3,

respectively.

Proposition 2. Assume conditions (A4), (A2)(a), (A3)(b), (A4)(a), and

(A4)(c). For b� in (2.2), let � ⇣ n�1/2 log1/2(np), and for b⇥ in (2.5), let

�n ⇣ max

✓
k⌃�1kop,1

do log(np)

n1/2
, k⌃�1kop,1n�(1/3��0)

◆
.

Then, for c 2 Rp, with kck1 = 1, we have

c>
� b⇥�⌃�1

�
˙̀(�o) = op(n

�1/2).

Recall the definition of the matrix M(e�), which is defined just after (2.6),

and appears in (2.7).

Proposition 3. Assume (A1), (A2)(a), (A3)(b), and (A4). For b� in (2.2),

let � ⇣ n�1/2 log1/2(np), and for b⇥ in (2.5), let

�n ⇣ max

✓
k⌃�1kop,1

do log(np)

n1/2
, k⌃�1kop,1n�(1/3��0)

◆
.

Then, for c 2 Rp, with kck1 = 1, we have

c>( b⇥M(e�) + I)(b� � �o) = op(n
�1/2).

3.2.3. Completion of the proof

We now summarize all the results from the previous three subsections.

Proof of Theorem 1. From (2.7) and Propositions 1–3, we deduce from Slutsky’s

theorem that under the stated assumptions, the first claim follows. To prove the

second claim, note that

��c> b⇥c� c>⌃�1c
�� 

�� b⇥�⌃�1
��
1 = op(1),

where the final claim follows from (S2.5), Lemma S3, and (A4)(c). A further

application of Slutsky’s theorem yields the second claim.

4. Numerical Experiments

In this section, we investigate the numerical performance of our proposed

method. We begin by discussing various practical implementation issues in Sec-
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tion sec-pracissue. In Sections 4.2 and 4.3, we present analyses of simulated data

and real data, respectively.

4.1. Practical issues

4.1.1. Software

Recall that the debiased estimator bb is obtained from a Lasso estimator
b� of the vector of true regression coe�cients �o = (�o

1 , . . . ,�
o
p)

>, as well as a

CLIME-type estimator b⇥ of ⌃�1, the population version of the inverse of the

negative Hessian matrix. We use the R (R Core Team (2017)) package glmnet

(Friedman, Hastie and Tibshirani (2010); Simon et al. (2011)) to compute b�, and
adapt the clime (Cai, Liu and Luo (2012)) and flare (Li et al. (2014)) packages

to obtain b⇥. The clime package is more accurate, but is slow to compute

for high-dimensional data; the flare algorithm computes only an approximate

solution, but is faster. For simplicity, we refer to the modified clime and flare

algorithms as the clime and flare packages, respectively. We also conducted

analyses based on unmodified clime and flare (with sym = ‘or’) packages;

the di↵erences were negligible.

4.1.2. Tuning parameters

Our theoretical results provide conditions on the tuning parameters � and

�n, under which our confidence intervals are asymptotically valid. However, in

practice, the unknown population quantities and the unspecified constants mean

that these conditions do not provide a practical algorithm for choosing these

tuning parameters. Therefore, to choose �, we use the default 10-fold cross-

validation algorithm implemented in the glmnet package, with a grid of 100

di↵erent tuning parameters, equally spaced on the log scale. When using the

clime and flare packages to compute b⇥, the default 10-fold cross-validation

algorithms were used to compute �n, with tr
�
diag

�
(b⌃ b⇥ � I)2

��
as the cross-

validation criterion.

4.1.3. Covariates

Assumption (A1)(i) asks that the covariate processZ be bounded. However,

in our numerical results, we generate the covariate processes from a multivariate

Gaussian distribution, owing to the convenience of generating di↵erent correla-

tion structures. A simulation setting based on uniformly distributed covariates

can be found in the Supplementary Material. We also focus on time-independent

covariates, for simplicity.
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Note that even if Z = (Z1, . . . , Zp)> has the identity covariance matrix,

this does not necessarily mean that ⌃ = (⌃ij) is the identity matrix. We can

illustrate this for Z ⇠ Np(0,⌃Z), as follows: suppose that (⌃Z)ij = 0 whenever

�o
i 6= 0 and �o

j = 0. Then,

• for any i, j with �o
i 6= 0 and �o

j = 0, we have ⌃ij = 0;

• for any i, j with �o
i = 0 and �o

j = 0, we have

⌃ij = E(ZiZj)E

Z t+

0
Y (s) exp

0

@
X

l:�o
l 6=0

�o
l Zl

1

A�0(s) ds;

• for any i, j with �o
i 6= 0 and �o

j = 0, we have

⌃ij = E

Z t+

0
ci(s)cj(s)Y (s) exp

0

@
X

l:�o
l 6=0

�o
l Zl

1

A�0(s) ds,

where

ci(s) := Zi �
E
n
ZiY (s) exp

⇣P
l:�o

l 6=0 �
o
l Zl

⌘o

E
n
Y (s) exp

⇣P
l:�o

l 6=0 �
o
l Zl

⌘o .

In order to satisfy the sparse precision matrix conditions, we consider the follow-

ing two choices of ⌃Z in our simulations in Section 4.2.

a. ⌃Z
a = I;

b. ⌃Z
b = (⌃Z

b )ij , with

(⌃Z
b )ij =

8
>>>>><

>>>>>:

1, if i = j,

0.5, if i 6= j, �o
i 6= 0,�o

j 6= 0,

0, if i 6= j,�o
i �

o
j = 0, |�o

i |+ |�o
j | > 0,

0.5|i�j|, if i 6= j,�o
i = 0,�o

j = 0.

4.1.4. A simple preliminary example

To illustrate several of the features that arise in more complicated settings,

we consider the following two scenarios: let n = 1,000; p = 10; Z ⇠ Np(0, I);

�o
1 = · · · = �o

d = 1, and �o
d+1 = · · · = �o

p = 0, for d = 1, 3; �0(t) = 1, for all t > 0;

and Ui = 3 when do = 1, and Ui = 5 when do = 3. Given these settings, the
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average censoring rate is around 15%. In the top-left blocks of Tables 1 and 2,

we report the average initial estimator error �̂j � �o
j for each index j = 1, . . . , p,

the average debiased estimator error b̂j � �o
j , the average empirical coverage

(EC) of the 95% confidence intervals, their average widths, and the average p-

values, based on 400 repetitions. Standard errors for all quantities are given in

parentheses.

Here, the results are quite encouraging: the biases of the estimates �̂j of

the signal variables are corrected substantially by the debiased estimator b̂j , the

coverage probabilities are satisfactory (certainly in the do = 1 case), and the p-

values for the noise variables appear to be approximately uniformly distributed

(note that, under uniformity, the standard errors should be close to 1/(400 ⇥
12)1/2 ⇡ 0.014). Of course, this is a setting in which the usual inference for the

MPLE is also valid, as illustrated in the bottom-right blocks of Tables 1 and 2

(for ease of exposition, the MPLE estimators are collected in the b̂j��o
j columns).

The MPLE was computed using the package survival (Therneau (2015)).

Closer inspection, however, reveals that the situation is not perhaps as ideal

as it first seemed. First, although the bias correction works very well for the noise

variables, it slightly under-corrects for the signal variables. Second, the widths

of the confidence intervals are slightly smaller than those for the MPLE, which

is an e�cient estimator. These issues both arise from our choice of precision

matrix estimator b⇥, which aims to provide a good approximation to ⌃�1 in

di↵erent matrix norms. To attempt to address this, we widened the intervals by

replacing the diagonal entries of b⇥ in (3.1) with the diagonal entries of e⇥, where
e⇥ = (e⇥ij) 2 Rp⇥p is given by

e⇥ij =

8
<

:

b⇥ij if i 6= j;

max
n

1
bV( b�)jj

, b⇥jj

o
if i = j.

(4.1)

The rationale behind our definition of e⇥ is that, in an extreme case, when bV(b�)
is a diagonal matrix, b⇥ is still a biased estimator of ⌃�1. Because our precision

matrix estimators are also potentially sensitive to the choice of tuning parameter,

and the default choice tends to over-penalize, we consider alternative options to

the 10-fold cross-validation choice �CV in the other blocks of Tables 1 and 2:

(1) Top-right: b⇥, 0.1�CV: confidence interval constructed based on (3.1), with

0.1�CV used in b⇥, which is provided by the clime package;
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(2) Middle-left: e⇥: confidence interval replaces b⇥ in (3.1) with e⇥, computed

using (4.1) with �CV in the clime package;

(3) Middle-right: b⇥, flare: confidence interval based on (3.1), and b⇥ is com-

puted using the flare package;

(4) Bottom-left: Merge: confidence interval constructed based on (3.1), the

tuning parameter for the sparse precision matrix is provided by the flare

package using cross-validation, and b⇥ is optimized by the clime package

using the aforementioned tuning parameter.

Comparing the columns of �̂j ��o
j and b̂j ��o

j , we can see that our proposed

methods indeed correct the bias due to the shrinkage introduced by the Lasso

estimators. However, the biases for the signal variables are not fully corrected,

and the signs of the errors all tend to be under-corrected, except for the b⇥, 0.1�CV

blocks. A comparison of the b⇥,�CV and b⇥, 0.1�CV blocks show that the tuning

parameter chosen using 10-fold cross-validation still over-penalizes the sparse

precision matrix estimation, leading to an under-correction of bb. From the EC

and Width columns in the b⇥,�CV and e⇥ blocks, we can see that in some cases,

using e⇥ indeed helps to improve the coverages (naturally, the confidence intervals

are a little wider). We can also see that the flare package does not produce

identical solutions to those of the clime package, even in this relatively simple

context. Note that the b⇥, FLARE, and Merge blocks have the same initial

estimators, the same tuning parameter grids for b⇥, and the same cross-validation

algorithms. Further investigation in the case do = 1 reveals that the flare

package tends to choose slightly larger tuning parameters, which explains the

better centering and coverage of the clime confidence intervals; see Table 3.

4.2. Further simulated examples

In order to provide a deeper understanding of our proposed method, we

consider the following 16 simulation settings, where CT is the censoring time,

and CR is the censoring rate:

(1) n = 1,000; p = 10; �o
j = 1, j = 1, 2, 3; �o

j = 0, j = 4, . . . , 10; Z ⇠ N (0,⌃Z
a );

CT = 5; and CR ⇡ 15%;

(2) n = 1,000; p = 10; �o
j = 1, j = 1, 2, 3; �o

j = 0, j = 4, . . . , 10; Z ⇠ N (0,⌃Z
a );

CT = 2; and CR ⇡ 30%;

(3) n = 1,000; p = 10; (�o
1 ,�

o
2 ,�

o
3) = (1.2, 1, 0.8); �o

j = 0, j = 4, . . . , 10; Z ⇠
N (0,⌃Z

a ); CT = 5; and CR ⇡ 15%;
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Table 3. Selected tuning parameter comparisons.

Packages Mean Median
clime 0.022 0.015
flare 0.026 0.025

(4) n = 1,000; p = 10; (�o
1 ,�

o
2 ,�

o
3) = (1.2, 1, 0.8); �o

j = 0, j = 4, . . . , 10; Z ⇠
N (0,⌃Z

a ); CT = 2; and CR ⇡ 30%;

(5� 8) As for (1)–(4), but with Z ⇠ N (0,⌃Z
b ); and CT = 10, 2.5, 10, 2.5;

(9� 10) As for (1)–(2), but with p = 300; �o
j = 1, j = 1, . . . , 6; �o

j = 0, j =

7, . . . , 300; and CT = 9, 2.5;

(11� 12) As for (3)–(4), but p = 300; (�o
1 , . . . ,�

o
6) = (0.5, 0.7, 0.9, 1.1, 1.3, 1.5);

�o
j = 0, j = 7, . . . , 300; and CT = 10, 3;

(13� 16) As for (9)–(12), but with Z ⇠ N (0,⌃Z
b ); and CT = 100, 7, 100, 7.

In Table 4, we report the averaged results for the signal and noise variables

separately, with b⇥ and e⇥ chosen using 10-fold cross-validation. The simulations

were run on a cluster, each node of which is an Intel(R) Xeon(R) CPU E5-2670

0@2.60GHz machine, with 16 CPUs. One repetition of an (n, p) = (1,000, 300)

setting, 32 minutes, on average. This is why we limit our simulations to p = 300,

even though our theory can handle p � n settings.

It is reassuring to see that, in all cases, the confidence intervals for the noise

variables have close to nominal coverage, and the p-values for the noise variables

appear to be uniformly distributed. Thus, our methodology is providing a reliable

method for identifying signal variables, with uncertainty quantification. On the

other hand, although the confidence intervals for the signal variables have good

coverage when p = 10 (particularly with e⇥), it is much more challenging to ensure

adequate coverage for the signal variables in the p = 300 case. Apparently, the

sample size needs to be very large for the asymptotics to have an e↵ect, to the

extent that we can think, for instance, that (A4)(c) is satisfied. The greater

width of the intervals when using e⇥ yields improved coverage for the signal

variables, but leads to some over-coverage for the noise variables.

One approach in high-dimensional settings, then, is to use our methodology

as a screening method to identify signal variables (with false discovery guaran-

tees). Then use the standard MPLE inference to obtain confidence intervals for

the signal variables at a second stage. Further discussion can be found in the

Supplementary Material.
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Figure 1. Solution paths

4.3. Real-data analysis

In this section, we apply our method to a di↵use large B-cell lymphoma

(DLBCL) data set, comprising survival times of 240 DLBCL patients and gene

expression data for 7,399 genes (Rosenwald et al. (2002)). To reduce the dimen-

sionality, we computed the Lasso path, noting that the cross-validation algorithm

picked the 16th largest value of � on our grid of size 100. In total, 84 variables

were selected at some stage in the first 25 � values. Thus, we retain these 84

variables in our subsequent analysis.

In Figure 1, we plot the glmnet solution paths, with solid and black paths

denoting variables deemed to be significant, according to our methodology, and

dashed and grey paths denoting variables deemed nonsignificant. The left and

right panels correspond to the use of b⇥ and e⇥, respectively, and the vertical

lines indicate the regularization parameter values chosen using cross-validation.

The only di↵erence between the inferences drawn from the two precision matrix

estimates is the confidence interval widths; thus, the variables selected when

using b⇥ are a proper subset of those obtained using e⇥.

Some variables enter the model fairly early along the path, but appear not to

be statistically significant, according to our methods. These variables are often

omitted from the model at a later stage along the path, as other variables enter.

This observation is demonstrated in Table 5, which presents the median life spans

of the corresponding variables, where a life span is defined as the proportion of
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Table 5. Median life spans for variables deemed significant and nonsignificant.

b⇥ e⇥
No. Significant Insignificant No. Significant Insignificant
41 0.78 0.26 32 0.78 0.35

the locations on the solution paths for which a certain variable is chosen.

Supplementary Material

The online Supplementary Material contains auxiliary results, remaining

proofs. and further numerical results.
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