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Abstract

Breiman challenged statisticians to think more broadly, to step into the unknown, model-
free learning world, with him paving the way forward. Statistics community responded
with slight optimism, some skepticism, and plenty of disbelief. Today, we are at the same
crossroad anew. Faced with the enormous practical success of model-free, deep, and ma-
chine learning, we are naturally inclined to think that everything is resolved. A new frontier
has emerged; the one where the role, impact, or stability of the learning algorithms is no
longer measured by prediction quality, but an inferential one – asking the questions of why
and if can no longer be safely ignored.
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1. Breiman was right

In his article “Statistical Modeling: The Two Cultures” (Breiman, 2001), Leo Breiman
marveled at the possibility of empirically built models, trained solely to improve predictions.
He argued for their potential impact on empirical applications. He advocated for a complete
reversal of model-driven statistical work, the one that clumsily tries, often strenuously, to
find the best or most appropriate model for a particular problem. Leo firmly believed that
a new age was upon us. Age of models without models or that of algorithms tuned all so
perfectly for a unique, individual, peculiar problem at hand. Looking back at it from today’s
perspective, with deep learning dominating the success of algorithmically-driven science, we
may wonder, how is it possible that the rest of the community failed to see it? Leo was
a singular voice at the time; the rest surely and steadily continued the well-established
statistical modeling path.

Breiman was a provocateur in the best possible terms. Without people like him, statis-
tics would not be where it is today. One might argue that breakthroughs made, paradigms
uncovered, premisses broken, only become possible when the well-established routes, like
trenches, hard to remove, are challenged, deemed inappropriate, or invalid.

Models are well understood to be a poor, overly simplistic representation of nature, its
complexity, and flexibility. However, models were believed to help approximate certain tasks
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useful for nature; the quote of George E.P. Box, “all models are wrong but some are useful,”
is cited to this day. The illusion of the success of model fitting was broken with a sequence
of Peter Bickel’s seminar works, among others; e.g., Albers et al. (1976); Bickel et al. (1993).
Bickel et al. (2006) established that goodness of fit tests have extremely low power unless the
direction of the alternative is precisely specified. Sometimes the direction of the alternative
was given by the metric implicitly used when constructing the tests. Such is the case of
the one-sample Kolmogorov test for goodness of fit to the uniform (0, 1) distribution. It
is well known that it has power at a rate n�1/2, notably only against alternatives where
|P (X  1/2) � 1/2| is large. In the above, n denotes the sample size. The �2 tests with
an increasing number of cells as n ! 1, on the other hand, have trivial power in every
direction at a n�1/2 rate. As goodness of fit tests measure the usefulness of the developed
models, these results implied impossibility in keeping up with the belief that all models are
useful.

A new measure of success of the fit was needed, and Leo Breiman, in “Statistical Model-
ing: The Two Cultures,” argued, in a manner of speaking, for a new definition of a measure
of goodness of fit – the one of predictive accuracy. A model that can predict well on a
hold-out dataset was regarded as beneficial. In a way, the success of deep learning and the
advent of over-parametrized neural networks are based precisely on this predictive accuracy
that Leo advocated. In some communities, this measure of “usefulness” has nowadays over-
powered all others. At the time of Breiman’s article, neural networks, although present as
models, were not tested and used for predictive accuracy. We understand nowadays that it
is only over-parametrized, overly-complex neural network designs, with many more param-
eters than samples, that are regarded as most powerful predictors; see Belkin et al. (2019).
Twenty years ago, Leo simply advocated, in no weak terms, that Statistics needs to take
this new challenge, step-up, and do more.

2. Statistics has since done more

Over the last two decades, statistics has stepped outside the model-driven molds and has
since Leo’s call-outs done a lot more. Statistics has focused on achieving generalization, not
through the construction of complicated models or theories, but simplification and model
reduction. Among others, seminar works of (Tibshirani, 1996) on Lasso and (Fan and Li,
2001; Fan and Lv, 2008) on model selection, sparked a whole new area of interest. Since
the beginning of the 21-st century, statistics has almost entirely moved away from the
goodness of fit. Instead, prediction accuracy came into the front view. It has made strides
in understanding theoretical aspects of random forests, (Scornet et al., 2015; Wager and
Walther, 2015; Athey et al., 2019) and boosting (Bühlmann and Yu, 2003; Zhang and Yu,
2005), in understanding prediction accuracy from scratch by establishing non-asymptotic
prediction error bounds (Bickel et al., 2009; Wainwright, 2019) and proposing new model-
free procedures (Politis, 2013; Barber and Candès, 2015) as well as Bayesian random forest
equivalents, such is Bayesian adaptive random trees (BART) (Chipman et al., 2010), among
others. Intersections between algorithmic-driven learning and statistics can also be seen in
new pathways in building the semi-supervised inferential tools by, for example, La↵erty
and Wasserman (2007) as well as by the recently departed Larry Brown and co-authors in
Zhang et al. (2019); Azriel et al. (2016), or others, such as Zhang and Bradic (2019) and
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Cannings et al. (2020). Recent interests have led to building inferential (statistical) tools
around algorithm-driven learning, see, e.g., works on conformal inference by Wasserman
et al. (2020); Lei et al. (2018); Barber et al. (2021) for example. One can only hope that
these are simple beginnings of a new statistical science era, driven and inspired by the
interplay of model-free and model-driven learning methods.

3. Model-free and model-driven statistics: scrutinized and impugned

The practical success of machine and deep learning is perhaps the culmination of what
Breiman advocated for in the article in question, Breiman (2001). Here, prediction accuracy
is the sole driver of quality of success. This is, of course, exacerbated by a concurrence of
both the availability of immense computing power as well by the access to datasets of
previously unimaginable scale. While machine learning innovations were largely driven by
Leo’s proposed prediction on a hold-out data, nowadays named generalization error, the
deep learning’s steep success came only after a hold-out prediction fell back into a within-
sample prediction. At least two paradoxes emerge when contrasting Leo’s work on random
forests and the origins of deep learning success.

First, there is a sharp contrast between Leo’s work on random forests and deep learning
methods in ways they re-use the data. Breiman’s work on random forests and the invention
of bootstrap aggregation (bagging) was designed to avoid the pitfalls of re-using the same
dataset. Bootstrapping the original data, combining trees drawn on di↵erent subsamples
of the data, was a way of capturing di↵erent aspects of the same dataset – all with the
intention of not reusing the same data instances repeatedly. Yet, neural networks and
stochastic gradient descent (SGD) training do quite the opposite. Epochs are more related
to permutations than to subsampling and bagging. With SGD, same instances of the dataset
are needed, required, and re-used, usually over a hundred times.

Secondly, Leo was a firm advocate of model-free learning, but one could argue that
neural networks are themselves quite the opposite, examples of extreme-model learning.
Deep learning success can now theoretically also be prescribed to over-parametrized learn-
ing regimes, where the number of nodes and edges is required to be far greater than the
number of samples; the number of layers seems secondary to the sheer number of the weight
parameters (Ma et al., 2018; Belkin et al., 2020). With this view in mind, one has to ask
whether neural networks are indeed model-free methods (Belkin et al., 2018)? In support
of this hypothesis are perhaps the many papers illustrating close connections between neu-
ral networks with an infinite number of parameters and specialized, complex kernel ridge
regression methods (Lee et al., 2019; Sohl-Dickstein et al., 2020).

It is clear, though, that neural-network learning is not model-driven learning and that
over-parametrized neural networks achieve more than models do. However, it is unclear to
what purpose. Prediction is no longer satisfactory and is not the only measure of success
in practice. Stability, reproducibility, and inference, require more than mere control of the
prediction error (Yu, 2013; Yu and Kumbier, 2020). For example, inferential tasks related
to the average treatment e↵ect are compelling and theoretically amenable to the prediction
accuracy lens. Nevertheless, the impact of machine-learning methods on such tasks has yet
to be unlocked.
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Figure 1: Histogram estimation error of 200 repeated cross-fitted Doubly Robust Average
Treatment E↵ect estimator with twenty covariates across three sample sizes: n = 1000
(pink), n = 2000 (blue) and n = 6000 (green). Dashed lines represent the corresponding
medians. Outcome and propensity models follow Example 1.

We discuss the average treatment e↵ect estimation and the (unknown) impact of random
forest estimates for illustrative purposes. For brevity, we focus on a simple(st) setting of
independent and identically distributed observations, receiving a binary treatment under the
assumption that the treatment satisfies some form of exogeneity (Rosenbaum and Rubin,
1983). Di↵erent forms of this assumption are referred to as unconfoundedness. Consider
a setting with n units, for whom we observe outcomes {Yi}ni=1 2 R. There is a binary
treatment that varies by units, denotes with Di 2 {0, 1} and a pair of potential outcomes
Yi(0) and Yi(1) for all units. In this way, the realized or observed outcome can be represented
as Yi = DiYi(1) + (1 � Di)Yi(0). For each unit, we also observe a vector of potential
confounders Xi 2 Rp. We are interested in estimating the average treatment e↵ect ⌧ =
E[Yi(1)�Yi(0)], which becomes identifiable under an additional overlap assumption P(D =
1|X) 2 (0, 1). As we notice, for each unit i we only observe either Yi(0) or Yi(1), making
the estimation of ⌧ challenging. There are many possible ways to estimate ⌧ , but a double
robust or augmented inverse probability weighting (AIPW) estimate stands out (Robins
et al., 1994). It is semi-parametrically optimal (Hahn, 1998) and asymptotically normal
when either the outcome model or the treatment assignment model is correctly specified
(Robins and Rotnitzky, 1995) – property also named model double-robust. There is a
broad consensus that double-robustness is well understood in under-parametrized settings
(Babino et al., 2019). With the work of Chernozhukov et al. (2018) double-robustness
was extended to over-parametrized models, but the e↵ect of machine-learning methods,
although speculated and partially articulated, was not fully described. General conditions
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such as “product-rate-condition” implied a possible validity of machine learning methods
in the context of double-robust estimates.

However, upon further inspection, we observe that current theoretical understandings
of random forests do not extend to the “product-rate-condition.” The slow rate of conver-
gence of the forests might indicate that a random forest estimate of the outcome and the
treatment assignment might fail in satisfying this condition. We performed two simple sim-
ulation experiments to explore the impact of sample size, parameter size, and the random
forest itself on the ATE estimation. Example 1 corresponds to Heterogeneous confounding
with features drawn from a mixture of multivariate normal distributions with covariances
being identity and Toeplitz with correlation o↵-diagonal being ⇢ = �0.5 and mixing prob-
ability 0.7. Example 2 corresponds to a simple, high-dimensional, and sparse setting. Both
examples are described below.

[Example 1.] Heterogeneous confounding

Outcome: E[Yi(a)|Xi] = X>
i � + log(|X>

i �|) + a,

where � = (1, 1, . . . , 1)> and � = 2� .

Propensity: logit
h
P(Di = 1|Xi)

i
= ↵X>

i ✓1 + (1� ↵)X>
i ✓2

where ✓1 = (1, 1, . . . , 1)>, ✓2 = ✓1/2 and ↵ = 0.8.

[Example 2.] High-dimensional and sparse confounding

Outcome: E[Yi(a)|Xi] = X>
i �a,

where �0 = (1, 0, 1, 0, . . . , 0)>, and �1 = (1, 0, 0, 1, 0, . . . , 0)>.

Propensity: logit
h
P(Di = 1|Xi)

i
= X>

i �,

where � = (1, 1, 0, . . . , 0)>.

In the above logit(q) = q/(1� q) and the dimensions of the features in both Examples
varies from 2, 20 to 200, respectively. In Example 1 treatment assignment follows a mixture
model with both models being logistic and the mixture probability being 0.8.

We implement a random-forest version of the cross-fitted augmented inverse propen-
sity score estimator. The outcome and propensities are estimated in a single sample, I1
then evaluated on a separate sample, I2, and averaged. Honest trees were used, whereas
tuning parameters of the random forest were trained using cross-validation. Let cµa(·) and
c⇡a(·) denote the estimated random forests corresponding to the potential outcome models
E[Yi(a)|Xi = x] = µa(x) as well as the treatment assignment model bP[Di = a|Xi = x] =
⇡a(x). The AIPW cross-fitted estimate is then neatly represented as

⌧̂ =
1

|I2|
X

i2I2

 
cµ1(Xi)�cµ0(Xi) +

Di �c⇡1(Xi)

c⇡1(Xi)(1�c⇡1(Xi))
(Yi � b⇡Di(Xi))

!
.

We varied the sample size from n = 1000 to n = 2000 and n = 6000. Plots highlighting
the histograms and boxplots of the error ⌧̂ �1 of the estimated average treatment e↵ect are
presented in Figures 1 and 2. Example 1 is presented in Figures 1a and 1b while Example
2 in Figures 2a and 2b.
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Figure 2: Estimation error of 1000 repeated cross-fitted Doubly Robust Average Treatment
E↵ect estimator with 200 covariates across three sample sizes: n = 1000 (purple), n = 2000
(blue) and n = 6000 (yellow). Dashed lines represent the corresponding medians. Outcome
and propensity models are 2-sparse linear and logistic model, respectively.

The results are clear. Random forest, doubly-robust estimate fails to cover the true
e↵ect in almost all instances. Average coverage corresponding to Example 1 and Example
2 are presented in Table 1. In low-dimensional problems, with p = 2 the case of large
sample size n = 6000 gets it close to covering but even with p = 20 the coverage is far from
95%. For covariate dimension 200, we see an awkward false concentration below zero: the
estimate is getting more sure, less variable but at the wrong center.

n = 1000 n = 2000 n = 6000

Example 1
p = 2 83.5 89.5 94

p = 20 56.6 58.5 32.5

Example 2 p = 200 18.5 07 0.1

Table 1: Coverage of 95% confidence intervals.

The reasons for these shortcomings are unknown at the moment. We need to further
our knowledge of model-free learning’ e↵ects beyond their sole predictive accuracy.
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4. The next frontier: theory with practice instead of theory vs. practice

The new age of Data Science is upon us. With it comes the new challenge of addressing the
questions of why and if a scientific or practical phenomenon has been discovered. This, in
turn, requires new standards, formulations, definitions aimed at addressing the fundamental
questions of whether there exists a phenomenon to be discovered, why the discovery was
made, who influenced it, will it change drastically if we were to have observed somewhat
di↵erent, distorted or data that has been intervened upon. Although models are known to be
a poor representation of nature, we are now faced with questions whether our current, well-
established, and natural go-to definitions are an excessively simplified depiction of practice,
of the type of questions that might influence the domain of applications significantly. One
might wonder if we now have to think of advancing the questions rather than models so
that they advantageously drive the science?

Moreover, instinctive theoretical principles are no longer valid. Nonparametrics, an
area perhaps the closest to model-free learning, traditionally utilizes di↵erent regulariza-
tion methods to stabilize the estimators. Paradoxically, Tikhonov regularization (Tikhonov,
1943) characterizes much of the early nonparametrics works (Hoerl and Kennard, 1970), and
it also characterizes current theoretical underpinnings of deep neural networks; e.g., Jacot
et al. (2018); Arora et al. (2019). More broadly, regularization has been one of the threads
underlying and connecting various research areas of statistics in the past two decades. We
have made strong strides in understanding it, using it, designing it. We’ve successfully
designed inferential tasks on the shoulders of those findings despite the negative impact of
regularization, that is, the bias it a↵ects; e.g.,Van de Geer et al. (2014); Zhu and Bradic
(2018). Regularization, albeit more implicit, is ever-present in deep learning. Much of the
practical success of neural networks is attributed to various e↵ects of the regularization.
Suddenly the e↵ect of regularization is multi-faceted: parameter, architecture, batch nor-
malization, gradient descent, and more (Neyshabur et al., 2017; Razin and Cohen, 2020).
This begs the question of whether the established notion of regularization is perhaps too
wide to be useful?

Leo advocated strongly in favor of model-free learning. One of the natural bridges
between model-free and model-driven learning lies perhaps in the notion of model mis-
specification. However, we now understand that model misspecification manifests itself
di↵erently in under- and over-parametrized settings (Bradic et al., 2019a). Classical no-
tions reflect misspecification concerning parametrization structure, but we now understand
that misspecification in the number of parameters is also possible. Fundamental limits of
these impacts are largely unknown, although some progress has been made, for example,
in Bradic et al. (2018), Bradic et al. (2019b) or Cai and Guo (2018) where robustness to
sparsity is studied. Since the e↵ect of the classical definition changes, new definitions are
needed even for model misspecification. We see that robustness guarantees depend on spe-
cific structures which we do not understand well yet. Inferential tasks inadvertently su↵er
because of it, and we still do not understand the reason behind it all.

Lastly, new formulations are needed to better understand the new data world surround-
ing us, which uses the data to make decisions a↵ecting millions of people, benefit science,
and push the boundaries of the existing domains. Perhaps it is again the time to lean on
Leo’s firm conviction that breakthroughs happen in conjunction with the practical appli-

27



Bradic and Zhu

cations and not against them. It is the time to listen and interact with practice, learn
how to ask better questions, not only provide a better fitting but bridge the gap between
theoretical goals and their purpose, usefulness, and scientific discovery.
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