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Abstract
We formulate a tropical analogue of Grothendieck’s section conjecture: that for every
stable graph � of genus g > 2, and every field k, the generic curve with reduction
type � over k satisfies the section conjecture. We prove many cases of this conjecture.
In so doing we show the existence of many examples of curves with no rational points
satisfying the section conjecture over fields of geometric interest, and then over p-
adic fields and number fields via a Chebotarev argument. We construct two Galois
cohomology classes o1 and õ2, which obstruct the existence of π1-sections and hence
of rational points. The first is an abelian obstruction, closely related to the period of
a curve and to a cohomology class on the moduli space of curves Mg studied by
Morita. The second is a 2-nilpotent obstruction and appears to be new. We study the
degeneration of these classes via topological techniques, and we produce examples
of surface bundles over surfaces where these classes obstruct sections. We then use
these constructions to show the existence of curves over p-adic fields and number
fields where each class obstructs π1-sections and hence rational points. Among our
geometric results are a new proof of the section conjecture for the generic curve of
genus g ≥ 3, and a proof of the section conjecture for the generic curve of even genus
with a rational divisor class of degree one (where the obstruction to the existence of a
section is genuinely non-abelian).

1 Introduction

The goal of this paper is to give a systematic way to prove the existence of many
examples of curves for which Grothendieck’s section conjecture holds. We begin by
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formulating a geometric analogue of the section conjecture “at the boundary ofMg ,"
which we refer to as the tropical section conjecture. We prove many cases of this con-
jecture, giving geometric examples where the section conjecture holds, by an analysis
of the degeneration of certain cohomology classes on the moduli space of curves,Mg ,
and on themoduli space of degree one divisor classes on the universal curve,Pic1Cg/Mg

.
We then use a Chebotarev density argument to prove the existence of (many) examples
of curves over p-adic fields for which the section conjecture holds, which yields by
standard approximation techniques (which we omit) the existence of many examples
over number fields. Our methods are inspired by “arithmetic topology," and indeed, a
key step in our construction is to pass from the existence of certain (topological) sur-
face bundles over surfaces to curves over p-adic fields with analogous properties. In
our view themain interest in this paper arises from its fusion of topological, geometric,
and arithmetic techniques.

The main technical innovation of the paper is the study of the Gysin images of two
cohomology classes o1, õ2 which obstruct π1-sections and hence rational points, as
well as the construction of õ2 itself (which appears to be new, though it is inspired by
work of Jordan Ellenberg [7] and Wickelgren [41]).

1.1 The section conjecture

Let k be a field and let X be a smooth projective k-curve (that is, a smooth, projective,
separated, geometrically connected k-scheme of dimension 1). Let k be a separable
closure of k and let x̄ ∈ X(k) be a geometric point of X . Then there is a short exact
sequence

1 → π ét
1 (Xk, x̄) → π ét

1 (X , x̄) → Gal(k/k) → 1, (1.1.1)

where π ét
1 denotes the étale fundamental group. To each rational point x ∈ X(k) one

may associate a canonical conjugacy class of splittings [sx ] of this exact sequence.
We call splittings of sequence (1.1.1) π1-sections. The starting point for this work is
Grothendieck’s section conjecture, which suggests that in many cases the sequence
above encodes all of the arithmetic of X :

Conjecture 1.1.2 (The section conjecture [12]) Suppose k is a finitely-generated field
of characteristic 0 and that the genus of X is at least 2. Then the map

X(k) → {splittings of sequence (1.1.1)}/conjugacy
x �→ [sx ]

is a bijection.

Though Grothendieck originally made his conjecture only over finitely-generated
fields of characteristic 0, it is widely believed to hold true in more generality—for
example, over p-adic fields.

Following Stix [37], we say that a smooth projective curve X/k trivially satisfies
the section conjecture if sequence (1.1.1) has no sections. As any map with target
the empty set is a bijection, such a curve evidently does in fact satisfy the section
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conjecture. (Of course it is in general by no means trivial to show that a curve does
indeed trivially satisfy the section conjecture.) While there is now a fair amount of
evidence for the section conjecture (see e.g. [39]), all known examples of curves X/k
satisfying the section conjecture do so trivially, at least to the authors’ knowledge.
Though this state of affairs is disappointing, it is perhaps worth noting that proving
the section conjecture in the case of k-curves X with X(k) = ∅ would in fact imply
the section conjecture for all X/k [37, Appendix C].

1.2 The tropical section conjecture

Let g ≥ 2 be an integer. Recall that the moduli spaceMg of smooth projective curves
of genus g has a Deligne–Mumford compactificationMg , parametrizing stable curves
of genus g. The boundary strata ofMg are indexed by stable graphs (see Sect. 2.1 for
more details). For a stable graph �, we denote the corresponding boundary stratum
by Z� .

Now suppose g > 2, and let k be a field. For each boundary stratum Z� ofMg , let
̂K� be the fraction field of the complete local ring O

̂K�
:= ̂OMg,k ,Z�

of Mg,k at the

generic point of Z� , and let C
̂K�

be the fiber of the universal curve Cg over ̂K� .

Conjecture 1.2.1 (Tropical section conjecture) For every field k and stable graph �,
the curve C

̂K�
trivially satisfies the section conjecture.

That is, we conjecture that the sequence (1.1.1) has no sections when we set X =
C

̂K�
. We think of C

̂K�
as “the generic curve with reduction type �." In our view this

conjecture is interesting because it aims to capture the local, geometric reasons for
the truth of the section conjecture. Indeed, the methods we use to prove special cases
of this conjecture can also be used to show the existence of arithmetic examples of
curves over local fields satisfying the section conjecture for geometric reasons, as we
explain later on in this introduction.

Remark 1.2.2 One can verify that the curves C
̂K�

have no rational points, at least in
characteristic 0, consistent with Conjecture 1.2.1. Indeed, it follows from the main
result of Hubbard’s thesis [20] that if � is the trivial graph, consisting only of a single
vertex of genus g, then C

̂K�
has no ̂K�-rational points; this is the case of the generic

curve. For non-trivial �, the analysis of rational points of the generic n-pointed curve
by Earle and Kra [6] implies that the only rational points on the special fiber of the
canonical curve over O

̂K�
are nodes. Now an analysis of the deformation theory of

these nodes shows that none of them lift to ̂K�-rational points of ĈK�
.

Remark 1.2.3 The assumption g > 2 is necessary so that ̂K� is a field, rather than a
gerbe over the spectrum of a field. This condition can be relaxed to g ≥ 2 if one allows
such objects into the formulation of the section conjecture, but we felt doing so would
introduce unnecessary clutter.

One of the main purposes of this paper is to prove several special cases of this
conjecture, and indeed to identify precise obstructions to the splitting of (1.1.1) in
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Fig. 1 The surface �� associated to a stable graph �. Here each edge of � corresponds to a marked loop
in �� , and a vertex of � labeled by an integer g corresponds to a component of the complement of the
marked loops in �� of genus g

these cases. All of the cases of this conjecture that we verify are of a combinatorial
nature, as we now explain.

Let ˜� be a connected tropical curve, i.e. a connected metric graph such that the
underlying graph � is stable in the sense of Sect. 2.1. One may associate (non-
functorially) a compact orientable surface �� to �, with marked loops γe on ��

for each edge e of � by “inflating �" (see Fig. 1 for an illustration, and Sect. 2.1 for
a precise description). We denote the Dehn twist around γe by Te. Now assume that
the edge lengths �(e) of the metric graph ˜� are positive integers. Let T� be the Dehn
multitwist along the marked curves in �� , that is,

T� =
∏

e∈E
T �(e)
e .

Let G be a group of orientation-preserving mapping classes acting on �� and per-
muting the loops γe up to isotopy, such that if g(γe) = γe′ for some g ∈ G, then
�(e) = �(e′). Then G commutes with T� up to isotopy and so we obtain an action
(up to isotopy) of 〈T�〉 × G on �� , where 〈T�〉 is the subgroup of the mapping class
group generated by T� . Hence we have a fibration

W = �� ×(〈T�〉×G) E(〈T�〉 × G) → B(〈T�〉 × G)

with fiber�� , where here E(〈T�〉×G) is a contractible spacewith free 〈T�〉×G-action
and

B(〈T�〉 × G) = E(〈T�〉 × G)/(〈T�〉 × G)

denotes the classifying space. The long exact sequence in homotopy groups gives:

1 → π1(��) → π1(W ) → 〈T�〉 × G → 1. (1.2.4)

Question 1.2.4 For which �,G does sequence (1.2.4) split?
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Oneobservation of this paper is that in somecases, answering this purely topological
question for certain G, �, allows us to (non-trivially) deduce Conjecture 1.2.1 for �

and certain k.

1.3 Main results

1.3.1 Geometric results

Let�,�′ be stable graphs.We say that� specializes to�′ if� can be obtained from�′
by contracting edges (or equivalently, if Z�′ is in the closure of Z�). So, for example
the graph consisting only of a single vertex of genus g specializes to every stable graph
of genus g.

Our first result is a verification of Conjecture 1.2.1 in many cases. A simple-to-state
special case of this result is:

Theorem 1.3.1 Let k be a field of characteristic 0.

(1) Let g > 2 be an integer. Let Cg−1 be the stable graph consisting of a (g−1)-cycle
all of whose vertices have genus 1. Then, if � is any graph which specializes to
Cg−1, the section conjecture is trivially true for C

̂K�
.

(2) Let g > 2 be an even integer, and let Tg be any stable tree of genus g admitting
an involution that fixes no vertices and stabilizes a unique edge. Then, if � is any
graph which specializes to Tg, the section conjecture is trivially true for C

̂K�
.

See Figs. 3 and 4 for other examples of graphs for which our method succeeds,
including some graphs corresponding to boundary components of Mg of maximal
codimension. See Corollary 6.1.2 for a strenghtening of (1) and Corollary 6.1.7 for a
strengthening of (2).

In fact we prove a substantially stronger result—in case (1) of Theorem 1.3.1,
we show that there is an obstruction to splitting sequence (1.1.1) arising from the
abelianization of the geometric étale fundamental group, and in case (2) we show that,
while there is no such abelian obstruction, there is an obstruction arising from the
second nilpotent quotient of the geometric étale fundamental group.

As a consequence of our argument in case (2), we find:

Theorem 1.3.2 Let k be a field of characteristic 0. Let g > 2 be even, and let Q :=
k(Pic1Cg/Mg

) be the function field of the moduli space of degree 1 divisors on the

universal curve over k. Then the section conjecture is trivially true for the base change
of the universal curve Cg to Q.

See Corollary 6.1.9 for a more precise statement—we show that while there is no
abelian obstruction to sections, there is in fact a 2-nilpotent obstruction. That is, we
show the sequence

1 → π ét
1 (Cg,Q)/L3π ét

1 (Cg,Q) → π ét
1 (Cg,Q)/L3π ét

1 (Cg,Q) → Gal(Q/Q) → 1

does not split, where Liπ ét
1 (Cg,Q) denotes the lower central series of π ét

1 (Cg,Q). As
far as we know even the following simple corollary is new:
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Corollary 1.3.3 Let k be a field of characteristic 0 and let g > 2 be even. The base
change of the universal curve to k(Pic1Cg/Mg

) has no rational points.

The following consequence of our methods partially strengthens a result of Hain
[14]:

Corollary 1.3.4 Let g > 2 be an integer and k a field of characteristic 0. Let L be an
extension L of the function field k(Mg) ofMg,k of degree not divisible by g−1. Then
the base change Cg,L of the universal curve Cg of genus g to L trivially satisfies the
section conjecture. Indeed, the exact sequence

1 → π ét
1 (Cg,k(Mg)

)ab → π ét
1 (Cg,L)/[π ét

1 (Cg,k(Mg)
), π ét

1 (Cg,k(Mg)
)]

→ Gal(k(Mg)/L) → 1

does not split.

See Corollary 6.1.3 for a stronger statement. Hain proves that the generic curve of
genus g over a field of characteristic zero satisfies the section conjecture if g ≥ 5.
Our proof strengthens his statement in some ways by showing that the obstruction
to splitting is in some sense abelian. Hain proves similar non-splitting results for the
level covers of Mg , about which we say nothing. While we state the results here in
characteristic 0 for simplicity, they in fact hold in any sufficiently large (in terms of
g) finite characteristic as well, as explained in Corollary 6.1.3.

In both cases ofTheorem1.3.1,weproceedbyfirst answering its topological variant,
Question 1.2.4, for (�,G) = (Cg−1, Z/(g − 1)Z) and (�,G) = (Tg, Z/2Z) in parts
(1) and (2) respectively.

1.3.2 Topological results and the cohomology ofMg

All of these results follow from an analysis of certain torsion cohomology classes on
Mg and Pic1Cg/Mg

over a field k of characteristic 0. We describe the situation over C

now. We study a class

o1 ∈ H2(Mg, V1)

(which we call the Morita class, as it was previously studied by Morita [29]) and a
class

õ2 ∈ M(Pic1Cg/Mg
, V2),

where the Vi are certain local systems on Mg and Pic1Cg/Mg
, respectively, and

M(Pic1Cg/Mg
, V2) is a certain functorial quotient of H2(Pic1Cg/Mg

, V2). These classes
obstruct splittings of sequence (1.1.1), in a sense which we now explain.

Let π : E → B be a surface bundle with fiber the orientable surface �g of genus
g, and let f : B → Mg the associated map. Let Liπ1(�g) be the lower central series
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filtration on π1(�g). Then

f ∗o1 ∈ H2(B, f ∗
V1)

is zero if and only if the exact sequence

0 → π1(�g)/L
2π1(�g) → π1(E)/L2π1(�g) → π1(B) → 1

splits. If the sequence does split, f admits a lift f̃ : B → Pic1Cg/Mg
. And if the

sequence

1 → π1(�g)/L
3π1(�g) → π1(E)/L3π1(�g) → π1(B) → 1

splits, then if f̃ ∗õ2 vanishes (though the converse need not hold).
Morita shows [29, Corollary 3, Proposition 4] that o1 is non-zero for B = Mg with

g ≥ 9. We are able to extend his non-vanishing result to all g ≥ 3 by constructing
certain surface bundles over the two-torus T 2, as we now explain. We construct maps
fg : T 2 → Mg such that the pullbacks f ∗

g o1 are non-trivial. Hence in particular
the associated surface bundles have no section. Similarly, for all g ≥ 2, we construct
maps hg : T 2 → Pic1Cg/Mg

such that h∗
gõ2 has order exactly 2. Hence again the

associated surface bundles have no section. These constructions answer a question of
Hillman [16, end of Section 10], who asked if there are surface bundles over tori with
(1) hyperbolic fiber and (2) no continuous section, for all g ≥ 2. See Corollary 5.1.13
and Theorem 5.2.8 for these topological constructions.

The construction of these bundles in fact gives substantially finer information
about the behavior of the classes o1, õ2, near the boundary of the Deligne–Mumford
compactification of Mg and the Caporaso compactification of Pic1Cg/Mg

[4]. Let
�1 = Cg−1, �2 = Tg be the stable graphs described in Sect. 1.3.1, and let E�i

be the exceptional divisor of the blowup of Mg at the stratum corresponding to �i .
We show the following (see Corollaries 5.3.2 and 5.3.5 for the precise statements):

Theorem 1.3.5 The Gysin image of o1 is non-zero in the cohomology of a Zariski-open
subset E◦

�1
of E�1 , and the Gysin image of õ2 is non-zero in (an appropriate quotient

of) the cohomology of a Zariski-open subset of the preimage of E�2 in a blowup of the
Caporaso compactification of Pic1Cg/Mg

.

The non-vanishing of these Gysin images is crucial for our arithmetic applications,
and for the proof of Theorem 1.3.1. In particular it more or less immediately shows
that these classes do not vanish at the generic points of the respective moduli spaces
on which they live.

1.3.3 Arithmetic results

Our main arithmetic results are arithmetic analogues of those described in Sect. 1.3.2.
We define classes o1,ét, õ2,ét in the étale cohomology of Mg , Pic1Cg/Mg

, with coef-

ficients in certain ̂

Z-local systems over any field of characteristic 0. These classes
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obstruct π1-sections (and hence rational points!) in a sense which we now explain.
Let C/k be a smooth projective curve over a field k of characteristic 0, and let
[C] : Spec(k) → Mg be the associated map. Then the Galois cohomology class
[C]∗o1,ét is zero if and only if the exact sequence

0 → π ét
1 (Ck̄)/L

2π ét
1 (Ck̄) → π ét

1 (C)/L2π ét
1 (Ck̄) → Gal(k̄/k) → 1

splits. This invariant is closely related to the period of C , as we describe in Sect. 4.2.2
and Remark 6.1.5. Similarly if [C̃] : Spec(k) → Pic1Cg/Mg

is a morphism, the non-

vanishing of [C̃]∗õ2,ét implies that the sequence

1 → π ét
1 (Ck̄)/L

3π ét
1 (Ck̄) → π ét

1 (C)/L3π ét
1 (Ck̄) → Gal(k̄/k) → 1

does not split (though the converse need not hold).
We show that there are many examples of curves C,C ′ for which [C]∗o1,ét ,

[C̃ ′]∗õ2,ét are non-vanishing. For instance, the geometric examples discussed in
Sect. 1.3.1 (e.g. the cases in which we prove the tropical section conjecture) have
this property. But we also use a Chebotarev argument to show the existence of many
curves over p-adic fields (and hence number fields) for which these classes do not
vanish. In particular, these curves trivially satisfy the section conjecture. For example,
we show:

Theorem 1.3.6 Let� be a graph as in Theorem 1.3.1. Then there exists a Zariski-dense
set S of closed points of Z�,Z such that for each s ∈ S, there exists a Frac(W (κ(s)))-
point s′ of Mg specializing to s, such that the section conjecture is true for the curve
Cg,s′ (that is, the Frac(W (κ(s)))-curve corresponding to s′).

Here κ(s) is the residue field of a closed point s andW (κ(s)) is the ring ofWitt vec-
tors of κ(s). See Theorems 6.2.1 and 6.2.3 for a stronger and more general statement.
In principle our method gives us quantitative control (in the sense of the Chebotarev
density theorem) over the Dirichlet density of the set S in the theorem.

We believe that our examples of curves C exhibiting the non-vanishing of õ2,ét
are particularly interesting, as they show that this class is a genuine (non-abelian)
obstruction to the existence of rational points. Unfortunately all of our examples are
of a local nature. It would be interesting to find an example of a curve over a number
field which has points everywhere locally, but which exhibits the non-vanishing of
õ2,ét . As far as we are aware there is no known example of a curve over a number field
which has points everywhere locally and is known to satisfy the section conjecture in
a genuinely non-abelian way.

1.4 Relation to previous work

Themain precursor to our geometricwork is the paper [14], which, as remarked earlier,
proves a form of Corollary 1.3.4 for g ≥ 5 over fields of characteristic 0. See also
related work of Watanabe in positive characteristic [40].
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The methods we use to prove this Corollary are also closely related to work on the
Franchetta conjecture, in particular [33]. Indeed, the class o1,ét is the image of the
class [Pic1Cg/Mg

] ∈ H1(Mg,Pic0Cg/Mg
) under the Kummer map (see Sect. 4.2.2 and

Remark 6.1.5), and so it is closely related to the period of a (relative) curve. This class
has been well-studied in the complex-analytic setting (see e.g. [29, 30]). The class õ2
has not, to our knowledge, been studied before, but it is related to unpublished work
of Ellenberg [7] and work of Wickelgren [41].

Our arithmetic examples of curves for which the section conjecture holds also
seem related to those constructed by other authors, though we do not know how to
make this precise. The examples constructed in [37] and [38, 6.2] have the same
reduction type as the curves constructed in special cases of Theorems 6.2.1 and 6.2.3.
It would be interesting to understand how o1,ét and especially õ2,ét is related to the
inequality for period and index for curves exploited by Stix. Harari and Szamuely
[19] study curves for which the abelianized fundamental exact sequence does not
split—implicitly, analyzing o1,ét—and construct examples where the obstruction to
splitting is fundamentally global, rather than local. It would be extremely interesting
to construct such an example with õ2,ét .

1.5 Structure of the paper

In Sect. 2 we recall various preliminaries and notation for the moduli spaces we
use, as well as their relevant compactifications, coarse spaces, and boundary strata.
Primarily, we use the Deligne–Mumford compactificationMg of the moduli space of
curvesMg , as well as the moduli space of degree one divisor classes on the universal
curve, Pic1Cg/Mg

, and its Caporaso compactification [4]. In Sect. 3, we recall the
various versions of theGysinmapswewill use (in group-theoretic, topological,Galois-
cohomological, and étale-cohomological contexts) and prove a useful variant of the
Chebotarev density theorem (Theorem 3.1.1) which may be of independent interest.
In Sect. 4, we define the classes o1, õ2, which are key to our analysis, and study
their basic properties, in both topological and étale cohomological settings. Because
the non-abelian group cohomology machinery required for the construction of õ2 is
quite involved, we have banished this construction and the ensuing calculations to the
appendix, Sect. 7, to which we refer frequently throughout the paper.

In Sect. 5, we begin proving the main results of the paper. We construct various
surface bundles over surfaces (with no sections) exhibiting the non-vanishing of the
classes o1, õ2. From these constructions, we deduce the non-vanishing of certainGysin
images of the classes o1, õ2 in the cohomology of boundary components of Mg and
Pic1Cg/Mg

(over the complex numbers). Again, we banish certain involved cocycle
computations with surface groups to the appendix, Sect. 7. In Sect. 6, we use stan-
dard comparison results to pass from these topological computations to results in étale
cohomology, and then in Galois cohomology. This is where we provide geometric
examples of curves for which the section conjecture is trivially true and prove many
special cases of Conjecture 1.2.1. We then use our modified Chebotarev density theo-
rem (Theorem 3.1.1) to show the existence of arithmetic examples over p-adic fields,
and hence over number fields.
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2 Themoduli space of curves and boundary strata

We begin by indicating our conventions regarding the various moduli spaces we will
use (primarily the moduli space of curves Mg and its Deligne–Mumford compactifi-
cation Mg), and recalling the combinatorics of their boundary strata.

2.1 Mg and its boundary

Let g > 1 be an integer and let Mg be the moduli space of algebraic curves; recall
thatMg is a smooth Deligne–Mumford stack over Spec(Z). LetMg be the Deligne–
Mumford compactification of Mg; recall that it is a smooth and proper Deligne–
Mumford stack over Spec(Z). When there is no chance of confusion, we will also use
the notation Mg to denote the complex-analytic moduli stack of genus g Riemann
surfaces; otherwise we will denote it by M an

g,C (and similarly with the analytification
of its Deligne–Mumford compactification).

We briefly recall the combinatorics of the boundary strata ofMg , and we interpret
the inertia about boundary components group-theoretically, in terms of Dehn twists.

Let � be a stable graph of genus g, i.e., a collection V of vertices and E of (undi-
rected) edges between pairs of vertices and a labeling h : V → Z≥0 such that:

(1) The Euler characteristic

χ(�) +
∑

v∈V
(2 − 2h(v)) = 2 − 2g,

(2) If h(v) = 0, then the degree of v is at least 3, and
(3) If h(v) = 1 then the degree of v is at least 1, and
(4) � is connected.

Given a vertex v of �, we say that h(v) is its genus.
We let

Z� ⊂ Mg

be the locally closed substack parametrizing stable curves of type �, i.e., stable curves
whose dual graph is isomorphic to �. The codimension of Z� in Mg is equal to the
number of edges of�. We say that � specializes to �′ if Z�′ is contained the closure of
Z� . Combinatorially this means that � can be obtained from �′ by contracting edges
and redistributing weights accordingly.

We briefly discuss the topology of a neighborhood of Z� in terms of the graph �.
We first (non-functorially) associate a surface�� to �, with a marked loop γe for each
edge of �, as illustrated in Fig. 1. Explicitly, to each vertex v of genus g and degree
d, associate an oriented surface �v of genus g, with deg(v) distinguished disjoint
closed discs ιv,e : 
 → �v for each edge e adjacent to v. Then �� is obtained
by gluing �vi \ ⋃

e∈nbd(vi ) ιvi ,e(

◦) to �v j \ ⋃

e∈nbd(v j )
ιv j ,e(


◦) along the circles
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ιvi ,e(δ
), ιv j ,e(δ
) if e is an edge between vi and v j . That is,

�� = colim

⎛

⎝

⊔

e∈E
δ
 ⇒

⊔

v∈V
�v \

⋃

e∈nbd(v)

ιv,e(

◦)

⎞

⎠ ,

where V , E are the set of vertices and edges of �, respectively. The boundaries of the
discs ιv,e(
) are the distinguished curves γe in �� . We say that � is the dual graph
of the marked surface �� .

Lemma 2.1.1 Let E� ⊂ BlZ�
Mg be the exceptional divisor. Thenany inertia subgroup

I� ⊂ π1(Mg) = Mod(g) corresponding to E� is conjugate to the group generated
by the Dehn multitwist about the curves γe (corresponding to the edges of �).

Here Mod(g) is the mapping class group of a genus g surface �g .

Proof The stratum Z� ⊂ Mg is (locally) the intersection of the boundary divisors of
Mg which contain it, with normal crossings. The monodromy about these boundary
divisors is worked out in [1, Theorem 2.2]. The lemma now follows from a local
computation (of the monodromy around the blowup of an intersection of divisors with
normal crossings), contained in, for example [15]. 
�

Wewill at some points be forced to work with the coarse spaces Mg ofMg and Mg

of Mg , and the sublocus M0
g of Mg and Mg

0
of Mg consisting of curves with trivial

automorphism group.

2.2 Pic1Cg/Mg
and its boundary

Let Cg be the universal curve over Mg . We will denote by PicdCg/Mg
the Gm-

rigidification of the moduli stack whose T -points are families of smooth proper genus
g curves over T with a line bundle of relative degree d (see e.g., [31, Section 2] for
a precise definition). We will also use the space Pd,g which coarsely represents the
Picard functor of degree d line bundles over M0

g . Caporaso constructs [4] a Cohen-

Macaulay compactification Pd,g of Pd,g , equipped with a proper map Pd,g → Mg

which will also be used.
Ebert and Randal-Williams [8] also consider analytic analogues of these moduli

stacks.Melo and Viviani [31] construct a map from these analytic stacks to the analyti-
fications of those described in the paragraph above. Both Ebert–Randal–Williams and
Melo–Viviani speculate that this map is an equivalence, but do not check it explicitly.
That said, by considering the fibers over points of Mg , it is easy to see that this map
induces an isomorphism on fundamental groups. Ultimately all of the work we do here
is group-theoretic in nature, so onemight equally well work with the stacks considered
by Ebert and Randal–Williams. For us, the fundamental relevant observation about
these analytic stacks is that their fundamental groups are given by

π1(Pic1Cg/Mg
) = π1(Cg)/L

2π1(�g).
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See e.g. [8, Section 2, Proposition 2.1, and Theorem 4.6] for a discussion of the
homotopy type of these stacks.

At various points in the text we will phrase things in terms of the (somewhat
complicated) stacks PicdCg/Mg

; for the reader uncomfortable with stacks, we indicate
now that this usage only leads to cleaner statements. Indeed, all of our main results
could be formulated entirely in terms of the schemes M0

g and Pd,g and their (scheme–
theoretic) compactifications.

We require the following fact from Caporaso [4, Section 7.2 and footnote at the
bottom of p. 594]:

Proposition 2.2.1 Let � be a stable tree and Z� the corresponding stratum of the
boundary of Mg (the coarse space ofMg). Then the fibers of the canonical projection
Pd,g → Mg over points of Z� are irreducible.

We will also make use of certain blowups of Pd,g; we will require the fact that they
are also Cohen–Macaulay. For this purpose we record the following:

Lemma 2.2.2 Let X be a Cohen–Macaulay scheme and V ⊂ X an lci subscheme.
Then BlV X is Cohen–Macaulay.

Proof This is [21, Proposition 5.5(1)]. 
�
Let D be a smooth connected divisor in a smooth complex variety X . By a deleted

neighborhood of D in X we will mean the complement of D in an ε-neighborhood
of D in X (in the Euclidean topology) of which D is a deformation retract; this is a
punctured disc bundle over D.

We will also require the following in Sect. 5.3, during our analysis of Gysin images
of certain cohomology classes onMg , P1,g:

Lemma 2.2.3 Let X be a smooth complex variety and let D ⊂ X be smooth and
connected of codimension one in X. Let ˜D be a deleted neighborhood of D in X and
let

π : ˜D → D

the associated punctured disc bundle. Let x ∈ ˜D be a point and y = π(x). Suppose
we have a ∈ π1(D, y), b ∈ π1(X , x) such that b is a generator of the local inertia
around D (i.e. it generates the kernel of the map π1(˜D, x) → π1(D, y) induced by
π ).

Then for any Zariski-open U ⊂ D containing y, there exist commuting elements
a′, b′ ∈ π1(π

−1(U ), x) such that

(1) π∗(a′) ∈ π1(U , y) maps to a in π1(D, y), and
(2) b′ maps to b in π1(˜D)

Proof For any inclusion U ⊂ D of a Zariski-open set containing y, the natural map
π1(U ) → π1(D) is surjective (as D is normal). Hence we may may lift a to π1(U , y)
and then to a′ ∈ π1(π

−1(U ), x). Now choosing b′ to be any lift of b contained in the
local inertia group of U in π−1(U ) gives the result. 
�

123



Surface bundles and the section conjecture

An essentially identical proof gives:

Lemma 2.2.4 Let X be a normal variety over an algebraically closed field k of charac-
teristic zero and D ⊂ X normal of pure codimension one in X. Let ȳ : Spec(k) → D
be a k-point such that X , D are both non-singular at ȳ (such a point exists by normal-
ity). Let a ∈ π ét

1 (D, ȳ) be any element. Let�D ⊂ Gal(k(X)/k(X)) be a decomposition
group associated to D and let b be a generator of the inertia of �D.

Then there exists a′ ∈ �D commuting with b.

Proof As �D surjects onto π ét
1 (D, ȳ) by normality, we may let a′ be any lift of a; it

automatically commutes with b as the inertia subgroup of �D is central.

3 Cohomological preliminaries

3.1 A form of the Chebotarev density theorem

One of the arithmetic goals of this paper is to provide an abundance of points of Mg

where certain cohomology classes do not vanish. These classes are in cohomological
degree 2, where we do not know how to directly prove the existence of such points.
However, the following variant of the Chebotarev density theorem gives such points
for classes in cohomological degree 1, and will be crucial for our applications:

Theorem 3.1.1 Let X be a finite-type, integral, normalZ-scheme of dimension at least
one, and letF be a locally constant constructible sheaf of abelian groups on X ét. If

α ∈ H1(X ét,F )

is non-zero, then the set of closed points x in X such thatα|x is nonzero is Zariski-dense.
Remark 3.1.2 In fact the proof gives substantially more—it gives an estimate on the
Dirichlet density on the set of closed points x with α|x non-zero. We omit this as it is
unnecessary for our purposes.

Before proceeding with the proof, we will need some lemmas.

Lemma 3.1.3 Let G be a finite group, and let A be a finite Z/pnZ[G]-module. Let
Hp ⊂ G be a p-Sylow subgroup. Then the natural restriction map

Hi (G, A) → Hi (Hp, A)

is injective for all i .

Proof This is a direct application of Restriction–corestriction. See e.g. [5, Corollary
3, pg. 105]. 
�
Lemma 3.1.4 Let G be a finite group and let A be a finite Z/pnZ[G]-module. If

α ∈ H1(G, A)

is non-zero, then there exists a cyclic subgroup W ⊂ G such that α|W is non-zero.
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Proof By Lemma 3.1.3, we may assume without loss of generality that G is a p-group
(by replacing it by a p-Sylow subgroup), hence nilpotent. We proceed by induction
on the length of a composition series for G. The base case, where G itself is cyclic, is
trivial.

Let V ⊂ G be a cyclic, order p subgroup of the center Z(G) (which is non-empty
as G is a p-group).

If α|V is non-zero the proof is complete, so we may assume α|V is zero. Then the
inflation-restriction sequence

0 → H1(G/V , AV ) → H1(G, A) → H1(V , A|V )G/V

implies that α is the image of some

α′ ∈ H1(G/V , AV ).

By the induction hypothesis, there exists a cyclic subgroupW ′ ⊂ G/V such that α′|W ′
is non-zero.

Let W ⊂ G be a cyclic subgroup such that W/(W ∩ V ) = W ′. Either W ∩ V = 0,
in which case the proof is complete, or W ∩ V = V . In this latter case, there is a
commutative diagram

H1(W ′, (A|W )V ) H1(W , A|W )

H1(G/V , AV ) H1(G, A)

where the horizontal arrows are injective by the inflation–restriction sequence, and
hence α|W is non-zero, as desired. 
�
Proof of Theorem 3.1.1 By the Chinese remainder theorem, we may assume thatF is
pn-torsion for some prime p, so that

H1(X ét,F ) = Ext1Sh(X ét)
(Z/pnZ,F ),

where Z/pnZ is the constant sheaf. The class α corresponds to a non-split extension
of lcc sheaves

0 → F → W → Z/pnZ → 0.

Let x̄ be a geometric point of X and let

G := im(π ét
1 (X , x̄) → Aut(Wx̄ ))

be the monodromy group of W .
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The class α is evidently the pullback of a class

ᾱ ∈ H1(G,Fx̄ ).

By Lemma 3.1.4, there exists a cyclic subgroupW of G such that ᾱ|W is non-zero.
Now by the classical Chebotarev density theorem [36, Theorem 9.11], the set of closed
points of X whose Frobenii generate a subgroup ofG conjugate toW is Zariski-dense,
from which we may conclude the result. 
�
Remark 3.1.5 Evidently there is no analogue of Theorem 3.1.1 for classes α ∈
Hi (X ét,F ), i > 1, as the cohomological dimension of a finite field is 1. One might
ask if there is an analogous result for classes in higher cohomological degree on vari-
eties over fields with higher cohomological dimension. We are unaware of any such
result, with the exception of [10, Theorem 2.5] (which inspired in part the arithmetic
results of this paper).

3.2 Gysin sequences and comparison results

Having provided in Theorem 3.1.1 a mechanism for finding non-zero specializations
of a class in cohomological degree 1, we now describe our mechanism for shifting the
classes we will study—namely o1, õ2, and their étale-cohomological variants—from
cohomological degree 2 to cohomological degree 1. We will use various versions of
the Gysin map, in étale, singular, group, and Galois cohomology for this purpose; we
recall these maps and the relationships between them now.

3.2.1 Gysin sequences in topology

Let π : E → B be a circle bundle, and let F be a locally constant sheaf of abelian
groups on E .

Proposition 3.2.1 (Thom–Gysin sequence) There is a long exact sequence

· · · → Hi (B, π∗F ) → Hi (E,F ) → Hi−1(B, R1π∗F ) → Hi+1(B, π∗F )

→ Hi+1(E,F ) → · · ·

Proof This is immediate from the Leray spectral sequence associated to π . 
�
Corollary 3.2.2 (Group-theoretic Thom–Gysin sequence) Let

G → H

be a surjection of groups with kernel K isomorphic to Z. Then for any G-module A,
there is a long exact sequence

· · · → Hi (H , AK ) → Hi (G, A) → Hi−1(H , AK ) → Hi+1(H , AK )

→ Hi (G, A) → · · ·
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Proof Apply Proposition 3.2.1 to the fibration K (G, 1) → K (H , 1). 
�
Wewill typically apply Proposition 3.2.1 in the following setting. Let X be a smooth

complex variety and D ⊂ X a smooth irreducible divisor. Then a deleted neighborhood
D̃ of D is (homotopic to) a circle bundle over D via a map

π : D̃ → D.

Hence for any i ≥ 0 and any locally constant sheaf ofAbelian groupsF onU = X\D,
there is a natural map

gD : Hi (U ,F ) → Hi (D̃,F |D̃) → Hi−1(D, R1π∗F |D̃),

which we refer to as a Gysin map.
One may alternately view the map above as follows. Let ι : U → X be the natural

inclusion, and j : D → X the inclusion of its complement. Then the Leray spectral
sequence for ι yields

E pq
2 = H p(X , Rq ι∗F ) �⇒ H p+q(U ,F ).

A local computation (see e.g. [27, Theorem 16.11] and the surrounding references)
yields a canonical isomorphism

j∗R1ι∗F � R1π∗F |D̃,

and under this identification the map gD agrees with the map

H2(U ,F ) → H1(X , R1ι∗F ) � H1(D, j∗R1ι∗F ) � H1(D, R1π∗F |D̃),

where the first map arises from the Leray spectral sequence for ι.

3.2.2 Gysin sequences in étale cohomology

There is an analogous story in étale cohomology. Let R be a complete discrete valuation
ring with residue field k and fraction field K . Let GK be the absolute Galois group of
K and let I ⊂ GK be the inertia subgroup. Let A be a finite discrete GK -module of
order prime to char(k).

Proposition 3.2.3 There is a long exact sequence

· · · → Hi (k, AI ) → Hi (K , A) → Hi−1(k, A(−1)I ) → Hi+1(k, AI )

→ Hi+1(K , A) → · · ·

Proof This follows from [28, Lemma 2.18]. 
�
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The Gysin map Hi (K , A) → Hi−1(k, A(−1)I ) globalizes as follows. Let X be
a regular scheme and let D ⊂ X be a regular subscheme of codimension one. Let
U = X \ D and let F be an lcc sheaf of abelian groups on U , tame along D, whose
order is invertible on X . Let ι : U → X be the natural inclusion. Then a local
computation shows that Ri ι∗F = 0 for i �= 0, 1, and that R1ι∗F is supported on
D; hence the hypercohomology spectral sequence for Rι∗F becomes a long exact
sequence

· · · → Hi (X , ι∗F ) → Hi (U ,F ) → Hi−1(D, R1ι∗F |D) → Hi+1(X , ι∗F )

→ Hi (U ,F ) → · · · .

As before, let X be a smooth complex variety and D ⊂ X is a divisor, and let

π : D̃ → D

be the projection from a deleted neighborhood of D to D (recall the definition of a
deleted neighborhood above Lemma 2.2.3). The complete local ring ̂OX ,D has residue

field C(D) and fraction field ̂
C(X). Let I ⊂ G

Ĉ(X)
be the inertia subgroup, and let

U = X \D. Let ι : U ↪→ X be the inclusion ofU into X and j : D → X the inclusion
of the complement. We record the evident compatibilities between the various Gysin
maps described above in this setting in the following proposition; we only sketch the
proof, which is a matter of unwinding the objects in question. Unfortunately we do
not know a precise reference.

Proposition 3.2.4 Let F be a locally constant sheaf of finite Abelian groups on
U (C)an, and letF ét be the associated sheaf on Uét. Then the diagram

H2(U (C)an,F )
gD

∼

H1(D(C)an, R1π∗(F |D̃))

∼

H2(Uét,F
ét) H1(Dét, j

∗R1ι∗F ét)

H2( ̂
C(X),F ét|

Ĉ(X)
) H1(C(D), (F ét|

Ĉ(X)
(−1))I )

commutes.

Proof sketch The primary issue is to observe that there is a canonical isomorphism

R1π∗(F |D̃)ét
∼→ j∗R1ι∗F ét;

once this isomorphism is estabilished, the commutativity of the top square follows from
the functoriality properties of the comparison between étale and singular cohomology;
the commutativity of the bottom square follows by the compatibility between étale
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and Galois cohomology and explicit computation of the restriction of j∗R1ι∗F ét to
the generic point of D.

To construct the desired isomorphism of sheaves, it suffices to do so in the topo-
logical setting, i.e. we wish to construct an isomorphism

R1π∗(F |D̃)
∼→ j∗R1ι∗F .

Thus it suffices to construct a canonical such isomorphism locally. So we consider the
case where 
 is the open unit ball in C

n , D ⊂ 
 is the vanishing locus of x0, andF
is a locally constant sheaf on 
 \ D.

Let 1 ∈ 
 \ D be a point. As 
 \ D has fundamental group Z, F is defined by
an automorphism τ : F1 → F1 (given by the monodromy about D), and direct
computations shows that both R1π∗(F |D̃), j∗R1ι∗F are canonically isomorphic to
the constant sheaf with value coker(τ − id), completing the proof. 
�

4 The primary and secondary Morita classes

We now construct the classes o1, o1,ét described in the introduction, which we refer
to as the primary Morita classes. Recall that these classes will obstruct splittings of
an abelianized version of the fundamental exact sequence (1.1.1). Explicitly, in the
topological setting, o1 will obstruct the splitting of sequence (4.1.1) below, and o1,ét
will obstruct the splitting of its profinite analogue.

4.1 The class o1 in the topological setting

We will give two constructions of the Morita class in the topological setting.

4.1.1 A group-theoretic construction

Let g > 1 and let �g be a compact orientable surface of genus g, and let Mod(g)
be the mapping class group of �g . Let Mod(g, 1) be the mapping class group of a
pointed genus g surface. The Birman exact sequence

1 → π1(�g) → Mod(g, 1) → Mod(g) → 1

is the exact sequence of fundamental groups associated to the fibration

Cg → Mg,

where Mg is the complex-analytic moduli stack of g curves, and Cg is the universal
curve over Mg .

Pushing out along the Hurewicz map

Hur : π1(�g) → H1(�g, Z),
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we obtain a short exact sequence

0 → H1(�g, Z) → Mod(g, 1)/[π1(�g), π1(�g)] → Mod(g) → 1. (4.1.1)

Definition 4.1.2 (Topological Morita class) Let

o1 ∈ H2(Mod(g), H1(�g, Z))

be the cohomology class associated to this extension.

We may equivalently view o1 as an element of H2(Mg, V1), where V1 is the
local system on Mg associated to the Mod(g)-representation H1(�g, Z), as Mg is a
K (Mod(g), 1).

Morita announced in [29] with proof in [30] the following theorem. For a geometric
interpretation and proof, see [18, Section 7].

Theorem 4.1.3 [29, 30] For g ≥ 9,

H2(Mod(g), H1(�g, Z)) = (Z/(2g − 2)Z)o1.

4.1.2 An analytic construction

We briefly give another description of theMorita class, in terms of the universal Picard
variety. Let PicdCg/Mg

be the (rigidified) moduli space of degree d line bundles on the

universal curve, as discussed in Sect. 2.2. Then Pic1Cg/Mg
is a torsor for

JCg/Mg := Pic0Cg/Mg
,

the universal Jacobian, so we can think of it as an element

[Pic1Cg/Mg
] ∈ H1(Mg, JCg/Mg ).

Let ω := �1
Cg/Mg

be the relative differentials, and let

π : Cg → Mg

be the projection. Then the “exponential" short exact sequence of sheaves onMg

0 → V1 := (R1π∗Z)∨ → (R0π∗ω)∨ → JCg/Mg → 0

induces a boundary map

δ : H1(Mg, JCg/Mg ) → H2(Mg, V1).

The following proposition (which we will not use) explains how to interpret the con-
struction in the previous section in terms of this data.
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Proposition 4.1.4 Under the natural identification

H2(Mod(g), H1(�g, Z)) � H2(Mg, V1),

the Morita class ouniv maps to δ([Pic1Cg/Mg
]).

Proof sketch This is an immediate consequence of the fact that the Abel-Jacobi map

Cg → Pic1Cg/Mg

induces an isomorphism on πab
1 on the fiber over every point of Mg , combined with

the fact that for any Riemann surface C , Pic1C is canonically a K (π1(C)ab, 1). 
�
See [8, Section 2] for a discussion of the JCg/Mg -torsors [PicdCg/Mg

].

4.2 The étale Morita class

There is some subtlety in defining the analogue of theMorita class in étale cohomology,
because it is not known that the mapping class group Mod(g) is a “good group"
in the sense of Serre (see e.g. [9, 3.4] for a brief discussion)—in particular, it is
not immediately clear that the Birman exact sequence remains exact upon profinite
completion (though this is in fact true, and has been used in existing literature, e.g.
in [17, Section 3.1]). Nonetheless we give two (equivalent) constructions of an étale-
cohomological analogue of the Morita class. As before, we fix an integer g > 1
throughout.

4.2.1 A group-theoretic construction

Proposition 4.2.1 Let p be a prime. The profinite (resp. prime-to-p) completion of the
Birman exact sequence is exact.

Proof This follows immediately from [2, Proposition 3], as the profinite (resp. prime-
to-p) completion of a surface group of genus g > 1 has trivial center. 
�

Now let k be a field and X a Deligne–Mumford stack over k; let x̄ be a geomet-
ric point of X . We denote by π ét

1 (X , x̄) the étale fundamental group of X , and by

π
(p)
1 (X , x̄) the group obtained via the following pushout:

π ét
1 (Xk̄, x̄) π ét

1 (X , x̄)

̂

π ét
1 (Xk̄, x̄)

(p)
π

(p)
1 (X , x̄).

Here the object in the lower left is the prime-to-p completion of π ét
1 (Xk̄, x̄).
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Now for x̄ a geometric point of Cg,k , [C] the corresponding geometric point of
Mg,k , and C the corresponding curve over k̄, let (B) (resp. (Bp)) be the following
sequences of profinite groups:

1 → π ét
1 (C, x̄) → π ét

1 (Cg,k, x̄) → π ét
1 (Mg,k, [C]) → 1 (B)

1 → π
(p)
1 (C, x̄) → π

(p)
1 (Cg,k, x̄) → π

(p)
1 (Mg,k, [C]) → 1 (Bp)

By Proposition 4.2.1, sequence (B) is exact if k has characteristic 0, and sequence
(Bp) is exact if k has characteristic p.

Now taking the quotient by the derived subgroup of the group on the left gives short
exact sequences

1 → π ét
1 (C, x̄)ab → π ét

1 (Cg,k , x̄)/[π ét
1 (C, x̄), π ét

1 (C, x̄)] → π ét
1 (Mg,k , [C]) → 1 (Bab)

1 → π
(p)
1 (C, x̄)ab → π

(p)
1 (Cg,k , x̄)/[π(p)

1 (C, x̄), π(p)
1 (C, x̄)] → π

(p)
1 (Mg,k , [C]) → 1

(Bab
p )

If k is a field of characteristic 0, let ̂V1 be the lissê

Z-sheaf onMg,k associated to the
π ét
1 -representation π ét

1 (C, x̄)ab (equivalently, ̂V1 = (R1π∗̂Z)∨). If k has characteristic
p, let ̂

V1
(p)

be the lisse ̂

Z

(p)-sheaf associated to π
(p)
1 (C, x̄)ab (equivalently, ̂

V1
(p) =

(R1π∗̂Z(p))∨).
If k is a field of characteristic 0, sequence (Bab) gives rise to a class in

H2(π ét
1 (Mg,k, [C]), π ét

1 (C, x̄)ab). We let o1,ét be the image of this class in H2(Mg,k,

V1) under the natural map

H2(π ét
1 (Mg,k, [C]), π ét

1 (C, x̄)ab) → H2(Mg,k, ̂

V1).

Similarly, if k is a field of characteristic p > 0, sequence (Bab
p ) gives rise to a class in

H2(π
(p)
1 (Mg,k, [C]), π(p)

1 (C, x̄)ab); we let o(p)
1,ét be its image in H2(Mg,k, ̂

V1
(p)

).

4.2.2 A construction using the Picard variety

We can also imitate the construction in Sect. 4.1.2, giving a construction which works
over an arbitrary base S. As before, we may consider the torsor

[Pic1Cg/Mg
] ∈ H1(Mg,S,ét, JCg/Mg,S).
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Definition 4.2.2 Let S be a scheme and let P be the set of primes invertible in S, and
define

̂

ZS :=
∏

p∈P

Zp.

Let

κ : H1(Mg,S,ét, JCg/Mg,S) → H2(Mg,S,ét, (R
1π∗̂ZS)

∨)

be the Kummer map. Then

oS1,ét := κ([Pic1Cg/Mg
]).

One can check (using e.g. geometric class field theory) that for S = Spec(k), these
classes agree with those defined in the previous section. We will not use this fact.

4.3 The secondary Morita classes

Wenow describe the classes õ2, õ2,ét , which obstruct splittings of a 2-nilpotent version
of sequence (1.1.1). For simplicity of presentationwehave relegated the involvedgroup
cohomology computations required to define these classes to the Appendix (Sect. 7),
but we briefly summarize them here and discuss how they are applied to our situation.

4.3.1 The topological setting

Fix an integer g > 1 and let �g be a compact orientable surface of genus g.
Let Lkπ1(�g) denote the lower central series of π1(�g), i.e. Lk+1π1(�g) :=
[π1(�g), Lkπ1(�g)] with L1π1(�g) = π1(�g). Recall that from the Birman exact
sequence

1 → π1(�g) → Mod(g, 1) → Mod(g) → 1 (4.3.1)

we obtained the sequence

1 π1(�g)/L2π1(�g) Mod(g, 1)/L2π1(�g)
p

Mod(g) 1,

which corresponded to the class o1 ∈ H2(Mod(g), π1(�g)/L2π1(�g)).
Wenowobserve thatMod(g, 1)/L2π1(�g) is canonically isomorphic (via theAbel-

Jacobi map) to π1(Pic1Cg/Mg
), as for any Riemann surface C the Abel-Jacobi map

induces an isomorphism π1(C)ab � π1(Pic1C ). Now let the group

π̃g = Mod(g, 1) ×Mod(g) π1(Pic1Cg/Mg
)
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be the fiber product via the natural map Mod(g, 1) → Mod(g) and the map p. The
group π̃g is the fundamental group of the base change of the universal curve Cg to
Pic1Cg/Mg

.

We have the following surjection of short exact sequences, where the bottom row
is the Birman sequence and the rightmost square is Cartesian:

1 π1(�g) π̃g π1(Pic1Cg/Mg
)

p

1

1 π1(�g) Mod(g, 1) Mod(g) 1

.

We construct a cohomology class which obstructs the splitting of a 2-nilpotent version
of the top sequence above.

First observe that the pullback p∗o1 of the primary Morita class to π1(Pic1Cg/Mg
)

is trivial. To see this triviality, note that this class classifies the sequence

1 → π1(�g)/L
2π1(�g) → π̃g/L

2π1(�g) → π1(Pic1Cg/Mg
) → 1, (4.3.2)

which we claim splits. Indeed, the map

π̃g/L
2π1(�g) � π1(Pic1Cg/Mg

) ×Mod(g) π1(Pic1Cg/Mg
) → π1(Pic1Cg/Mg

)

has a natural section, given by the diagonalmap
.Wemay now apply the construction
in the Appendix, Sect. 7, taking π = π1(�g), π̃ = π̃g and G = π1(Pic1Cg/Mg

). We
briefly introduce the content of this construction, leaving the proofs to Sect. 7.

Consider the sequences

0 → L2π1(�g)/L
3π1(�g) → π1(�g)/L

3π1(�g) → π1(�g)/L
2π1(�g) → 0,

(4.3.3)

0 → L2π1(�g)/L
3π1(�g) → π̃g/L

3π1(�g) → π̃g/L
2π1(�g) → 1. (4.3.4)

Note that the sequences 4.3.2, 4.3.3, 4.3.4 correspond to Sequences 7.1.2, 7.1.1,
7.1.3, respectively. Sequence (4.3.4) is classified by a class b ∈ H2(π̃g/L2π1(�g),
L2π1(�g)/L3π1(�g)). We define

o2 := 
∗b ∈ H2(π1(Pic1Cg/Mg
), L2π1(�g)/L

3π1(�g)). (4.3.5)

Now there are maps

m : H1(π1(Pic1C g/M g
), π1(�g)

ab)⊗2 ∪−→ H2(π1(Pic1C g/M g
), (π1(�g)

ab)⊗2)

[−,−]−→ H2(π1(Pic1C g/M g
), L2π1(�g)/L

3π1(�g))
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(given by the composition of the commutator map with the cup product), and

δ
 : H1(π1(Pic1Cg/Mg
), π1(�g)

ab) → H2(π1(Pic1Cg/Mg
), L2π1(�g)/L

3π1(�g))

given by the long exact sequence in non-abelian cohomology arising from
sequence 4.3.3 (and using the π1(Pic1Cg/Mg

)-action on π1(�g)/L3π1(�g) arising
from 
). We define

H2(π1(Pic1Cg/Mg
), L2π1(�g)/L3π1(�g)) := coker(m).

By Proposition 7.1.10, the composite map

δ : H1(π1(Pic1Cg/Mg
), π1(�g)

ab)
δ
−→ H2(π1(Pic1Cg/Mg

), L2π1(�g)/L
3π1(�g))

→ H2(π1(Pic1Cg/Mg
), L2π1(�g)/L3π1(�g))

is linear (and by Proposition 7.1.11, it is independent of the π1(Pic1Cg/Mg
)-action on

π1(�g)/L3π1(�g)). We define

M(π1(Pic1Cg/Mg
), L2π1(�g)/L

3π1(�g)) := coker(δ).

Definition 4.3.6 We define the secondary Morita class õ2 ∈ M(π1(Pic1Cg/Mg
),

L2π1(�g)/L3π1(�g)) to be the image of o2 in this quotient group. (Compare to
Definition 7.1.14.)

For the functoriality properties of this class, and details of the claims above, see
Sect. 7.

As Pic1Cg/Mg
is a K (π1(Pic1Cg/Mg

), 1), we may just as well think of the class õ2

as living in a quotient of H2(Pic1Cg/Mg
, V2), denoted M(Pic1Cg/Mg

, V2), where V2

is the local system corresponding to the π1-representation L2π1(�g)/L3π1(�g). We
may describe the local system V2 more explicitly as follows. There is a natural map
of local systems on Mg

Z(1) →
2

∧

V1,

given by the intersection pairing on V

∨
1 . The local system V2 is the pullback of the

cokernel of this map to Pic1Cg/Mg
.

4.3.2 The étale setting

We only sketch the construction in the étale-cohomological setting, as it is essentially
identical to the construction in the previous section. Again, by Proposition 4.2.1, the
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profinite (resp. prime-to-p) completion of the Birman sequence remains exact; hence,
one may construct profinite (resp. prime-to-p) analogues of all of the exact sequences
above, as we now explain.

Let k be a field of characteristic 0. As we have already shown in Proposition 4.2.1,
the profinite completion of the Birman sequence is exact. Let x̄ be a geometric point
of Cg , [C] the corresponding point of Mg , and C the corresponding curve. We have
(by geometric class field theory) a canonical isomorphism

π ét
1 (Cg,k, x̄)/L

2π ét
1 (C, x̄) � π ét

1 (Pic1Cg/Mg,k
, x̄),

where on the right we view x̄ as a point of Pic1Cg/Mg,k
via the Abel-Jacobi map. If k

is a field of characteristic p > 0, we have an analogous isomorphism on π
(p)
1 . Thus

we may construct profinite (resp. prime-to-p) analogues of sequences (4.3.2), (4.3.3),
(4.3.4), as well as all of the other diagrams above, giving rise to classes

o2,ét ∈ H2(π ét
1 (Pic1Cg/Mg,k

, x̄), L2π ét
1 (C, x̄)/L3π ét

1 (C, x̄)),

õ2,ét ∈ M(π ét
1 (Pic1Cg/Mg,k

, x̄), L2π ét
1 (C, x̄)/L3π ét

1 (C, x̄))

in characteristic 0 and

o(p)
2,ét ∈ H2(π

(p)
1 (Pic1Cg/Mg,k

, x̄), L2π
(p)
1 (C, x̄)/L3π

(p)
1 (C, x̄)),

õ2,ét
(p) ∈ M(π

(p)
1 (Pic1Cg/Mg,k

, x̄), L2π
(p)
1 (C, x̄)/L3π

(p)
1 (C, x̄))

in characteristic p > 0. We denote the lisse ̂

Z-sheaf (resp. ̂

Z

(p)-sheaf) on
Pic1Cg/Mg,k,ét

corresponding to the coefficients in the cohomology groups above via

̂

V2, (resp.̂V2
(p)

). As beforewemay explicitly describê

V2 as the pullback toPic1Cg/Mg

of the cokernel of the map of lisse sheaves on Mg

̂

Z(1) →
2

∧

̂

V1

arising from the intersection form, and similarly with ̂

V2
(p)

.
Pulling back along the natural map

H2(π ét
1 (Pic1Cg/Mg,k

, x̄), L2π ét
1 (C, x̄)/L3π ét

1 (C, x̄)) → H2(Pic1Cg/Mg,k,ét
, ̂

V2)

we obtain a class in H2(Pic1Cg/Mg,k,ét
, ̂

V2) which we also call o2,ét , in an abuse of

notation, and similarly with õ2,ét, o
(p)
2,ét, õ2,ét

(p). Note that we do not know if these

pullback maps are isomorphisms, as it is not clear if Pic1Cg/Mg,k
is an étale K (π, 1).
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4.4 Vanishing of o1

We now discuss certain situations where the classes o1, oét1 , o(p)
1,ét vanish for geometric

reasons, and some consequences of this vanishing for o2. We first record the following
fundamental property of o1:

Proposition 4.4.1 Let g > 2 be an integer.

(1) Let E → B be a fibration with fiber �g, associated to a map f : B → Mg.
Then f ∗o1 = 0 if and only if central extension obtained by pulling back sequence
(4.1.1) along the map f∗ : π1(B) → Mod(g) splits.

(2) Let C be a smooth projective curve of genus g over a field k of characteristic 0,
associated to a map Spec(k) → Mg,k . Then the natural exact sequence

0 → π ét
1 (Ck̄)

ab → π ét
1 (C)/L2π ét

1 (Ck̄) → Gal(k̄/k) → 1

splits if and only if o1,ét|k vanishes.
(3) Let C be a smooth projective curve of genus g over a field k of characteristic

p > 0, associated to a map Spec(k) → Mg,k . Then the natural exact sequence

0 → π
(p)
1 (Ck̄)

ab → π
(p)
1 (C)/L2π

(p)
1 (Ck̄) → Gal(k̄/k) → 1

splits if and only if o(p)
1,ét|k vanishes.

Proof Immediate from the definition and functoriality of the sequences above. 
�

We now deduce some vanishing properties of o1.

Proposition 4.4.2 Let R be a Noetherian complete local ring with maximal ideal m,
residue field R/m = k and fraction field K . Let C/R be a projective curve with CK

smooth of genus g and Ck semistable of compact type. Suppose Ck(k) is non-empty.
If the residue characteristic of R is zero, then o1,ét|K is zero.

Proof We give the proof if the characteristic of k is zero; the proof in positive residue
characteristic is essentially identical, though more notationally involved. Let K be an
algebraic closure of K and k an algebraic closure of k. Let x̄ be a K -point of CK and
ξ̄ a specialization of x̄ . Then there is a commutative diagram of specialization maps

π ét
1 (CK , x̄)

sp

πK

π ét
1 (Ck, ξ̄ )

πk

Gal(K/K ) Gal(k/k).
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Now consider the quotient diagram

π ét
1 (CK , x̄)/L2π ét

1 (CK , x̄)
sp

πab
K

π ét
1 (Ck, ξ̄ )/L2π ét

1 (Ck, ξ̄ )

πab
k

Gal(K/K ) Gal(k/k).

As Ck̄ has compact type, this quotient diagram is Cartesian. But πk has a section (as
Ck has a rational point), hence the same is true for πab

k . Thus πab
K has a section, using

the Cartesian-ness of the diagram above. 
�
Corollary 4.4.3 Let � be a stable graph of genus g > 2 and let k be a field. Suppose
that

(1) The underlying graph of � is a tree, and
(2) Aut(�) stabilizes some edge of �.

Then if k has characteristic zero, o1,ét|̂K�
vanishes. Here ̂K� is defined as in Sect. 1.2.

Proof Let R� be the complete local ring ofMg at the generic point of Z� , the boundary
stratumofMg corresponding to stable curveswith dual graph�. LetC� be the pullback
of the universal curve to R� . The special fiber of C� has compact type by (1), and has
a rational point by (2) (namely, the node corresponding to the stabilized edge must be
rational). Hence we may conclude by Proposition 4.4.2. 
�
Remark 4.4.4 Let � be a graph as in Corollary 4.4.3, and let W� be the union of all
the boundary divisors of Mg,C

an
not containing the stratum Z� . Let U� be a deleted

neighborhood of Z� in Mg,C
an \ W� . Then an argument essentially identical to the

proof of Corollary 4.4.3 shows that o1|U vanishes. One may also make a rigid-analytic
version of this statement, but doing so is beyond the scope of this paper.

Remark 4.4.5 In any setting where o1 or o1,ét vanishes (as in Corollary 4.4.3 or
Remark 4.4.4), one may define a version of õ2 or õ2,ét . Indeed, the vanishing of these
classes imply that the sequences arising in Proposition 4.4.1 split, which suffices to
apply the construction in Sect. 7.1. For example, there is an analogue of õ2,ét defined
in M(̂K�, L2��/L3��), where �, ̂K� are as defined in Corollary 4.4.3 and �� is
the geometric étale fundamental group of C� . Likewise, there is an analogous class in
M(U�, V2), where U� is as defined in 4.4.4.

5 TheMorita classes for surface groups

Let h > 0 be an integer and�h a compact orientable surface of genus h. In this section,
we study the pull-back of the Morita classes along maps

π1(�h) → Mod(g)
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or

π1(�h) → π1(Pic1Cg/Mg
).

In other words, given a fibration

�g → E → �h,

we study the obstruction to splitting the “abelianized" and “2-nilpotent" analogues of
the exact sequence of fundamental groups:

1 → π1(�g)/L
2π1(�g) → π1(E)/L2π1(�g) → π1(�h) → 1

and

1 → π1(�g)/L
3π1(�g) → π1(E)/L3π1(�g) → π1(�h) → 1.

The calculations in this section are key to the degeneration arguments in the
applications to the section conjecture in Sect. 6. We produce explicit examples (The-
orem 5.1.10 through Corollary 5.1.13) where the pull-back of the primary Morita
class o1 is nontrivial. When the pullback of the Morita class o1 is trivial, we analyze
the pullback of the secondary Morita class õ2 (Definition 4.3.6). We produce explicit
examples where this secondary Morita class has exact order 2 (Theorems 5.2.7 and
5.2.8).

Our results will require substantial direct computation with cocycles; we will delay
these computations to Sect. 7 wherever possible.

5.1 Computing the primary Morita class for surface groups

We write

π1(�h) =
〈

a1, . . . , ah, b1, · · · , bh

∣

∣

∣

∣

h
∏

i=1

[ai , bi ]
〉

for the standard presentation of π1(�h).
Fix a homomorphism

γ : π1(�h) → Mod(g).

Choose lifts ˜γ (a1), ˜γ (b1) . . . , ˜γ (ah), ˜γ (bh) of γ (ai ), γ (bi ) from Mod(g) ⊂ Out
(π1(�g)) to Mod(g, 1) ⊂ Aut(π1(�g)). Then

˜R =
h

∏

i=1

[ ˜γ (ai ), ˜γ (bi )]
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is an inner automorphism of π1(�g), and hence can be written as conjugation by some
element r̃ ∈ π1(�g). Let Hur : π1(�g)→H1(�g, Z) be the Hurewicz (abelianization)
map.

Proposition 5.1.1 (The Morita class for surface groups) Under the identification

H2(π1(�h), H1(�g, Z)) � H0(π1(�h), H1(�g, Z)) � H1(�g, Z)π1(�h),

from Corollary 7.2.4, the pull-back γ ∗o1 is identified with the image of r̃ under the
composition

π1(�g)
Hur−→ H1(�g, Z) � H1(�g, Z)π1(�h).

Proof Let F2h := 〈a1, b1, . . . , ah, bh〉 be the free group with 2h generators, and let
R := ∏h

i=1[ai , bi ]. Let 〈R〉 � F2h be the normal subgroup generated by R, and let
〈R〉ab denote its abelianization.

By [13, Section 3.1, Theorem 2, Proposition 3], there is a resolution of Z as a
π1(�h) module of the form

0 → 〈R〉ab → Z[π1(�h)]2h → Z[π1(�h)] ε−→ Z → 0. (5.1.2)

Comparing it with the exact sequence (7.2.2), we get the isomorphism

〈R〉ab � Z[π1(�h)],
R �→ 1, (5.1.3)

hence this resolution is free.
Consider the following commutative diagram of exact sequences, where the second

row is the Birman exact sequence, the third row is the pushout of the second row
along the Hurewicz map Hur : π1(�g) → H1(�g, Z), and the map from the first row
to the second row comes from lifting the map γ : π1(�h) → Mod(g) to the map
φ2 : F2h → Mod(g, 1) defined by φ2(ai ) = ˜γ (ai ) and φ2(bi ) = ˜γ (bi ) for all i .

1 〈R〉 ι1

φ1

F2h

φ2

π1(�h)

γ

1

1 π1(�g)
ι2

H

Mod(g, 1) Mod(g)

�

1

1 H1(�g, Z) Mod(g, 1)/L2π Mod(g) 1

By [13, Section5.3,Theorem1], the extension classγ ∗o1 ∈ H2(π1(�h), H1(�g, Z))

is represented by the vertical map H ◦ φ1, where we compute H2 using the free
resolution (5.1.2). Unwinding the isomorphism given H2(π1(�h), H1(�g, Z)) ∼=
H1(�g, Z)π1(�h) described in Corollary 7.2.4 gives the result. 
�

123



W. Li et al.

Remark 5.1.4 We will primarily apply this result when h = 1—that is, for surface
bundles over a torus. It turns out this suffices for our applications. Indeed, this should be
unsurprising;we are interested in proving that theGysin images of certain cohomology
classes do not vanish. These classes live on the boundary of Mg in cohomological
degree 1. An argument analogous to the proof of Lemma 3.1.4 shows that one can
detect the non-vanishing of such classes by pulling along maps from the circle S1;
the preimage of a circle in the deleted neighborhood of a boundary component is
(homotopy equivalent to) a surface of genus 1.

Suppose we are given disjoint simple closed curves l1, . . . , ln on �g and a home-
omorphism S : �g → �g which permutes them up to isotopy. For each i , let
Tli ∈ Mod(g) denote the corresponding Dehn twist. Let π1(�1) = 〈a, b|[a, b]〉.
Define γ : π1(�1) → Mod(g) by specifying the images of a and b as follows. Let
γ (a) be the Dehn multitwist

γ (a) := T =
n

∏

i=1

Tli .

Let γ (b) = S ∈ Mod(g). As S permutes the l1, . . . , ln up to isotopy, S and T commute
inMod(g), so this defines a genuine homomorphism. Our goal now is to compute γ ∗o1
for γ of this form.

Construction 5.1.5 (Lifts of S, T ∈ Mod(g) toMod(g, 1)) To apply Proposition 5.1.1,
we need lifts ˜T ,˜S ∈ Aut(π1(�g)), which we now construct. Fix a point B ∈ �g that
does not lie on any of the closed curves l1, . . . , ln . Then B is fixed by T , and we get
an induced map ˜T : π1(�g, B) → π1(�g, B), given by g �→ T (g) for each g in
π1(�g, B).

For any choice of a path λ from B to S(B), there is an associated isomorphism

π1(�g, S(B)) � π1(�g, B)

g �→ λgλ−1.

Using this isomorphism, we define a lift

˜S : π1(�g, B) → π1(�g, B)

g �→ λS(g)λ−1,

with inverse given by

˜S−1(g) = S−1(λ−1)S−1(g)S−1(λ).

Lemma 5.1.6 Let γ, S, T , λ be as above. Let h be the loop T (λ)λ−1. Then the com-
mutator [˜T ,˜S] ∈ Aut(π1(�g, B)) is the inner automorphism of π1(�g, B) given
by

g → hgh−1.
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Proof For any g ∈ π1(�g, B),

[˜T ,˜S](g) = ˜T ◦ ˜S ◦ ˜T−1 ◦ ˜S−1(g) = ˜T ◦ ˜S ◦ ˜T−1(S−1(λ−1gλ))

= ˜T ◦ ˜S(T−1S−1(λ−1gλ)) = ˜T (λT−1(λ−1gλ)λ−1)

= T (λ)λ−1gλT (λ−1).


�
Combining this lemma with Proposition 5.1.1, we get the following corollary.

Corollary 5.1.7 The class γ ∗o1 is the image of Hur(T (λ)λ−1) in H1(�g, Z)π1(�1).

We also make the following simple observation:

Corollary 5.1.8 Consider the connected subsurfaces of�g with boundary components
given by loops {l1, . . . , ln}. If there exists such a subsurface �′ stabilized by S, i.e. S
is isotopic to a mapping class which restricts to an automorphism of �′, then γ ∗o1 is
trivial.

Proof Pick the base point B in Construction 5.1.5 to be on �′, and the path λ from B
to S(B) to be contained in �′. Since λ does not intersect any li , the multitwist T acts
on λ trivially and therefore T (λ)λ−1 = 1. Now apply Corollary 5.1.7. 
�
Remark 5.1.9 Corollary 5.1.8 above could alsobeprovenvia geometric considerations;
associated to the representation π1(�1) → Mod(g) is a (homotopy class of) fiber
bundle over �1 with fiber �g , and the hypotheses of Corollary 5.1.8 guarantee that
this fiber bundle has a continuous section.

We now give an example where γ ∗o1 has order g−1. Let�2
1 be a genus one surface

with two boundary components m1,m2. Consider the surface obtained by taking the
quotient

⎛

⎝

⋃

i∈Z/(g−1)Z

�2
1

⎞

⎠ / ∼

where ∼ is the equivalence relation identifying the copy of m1 on the i th copy of �2
1

withm2 on the i+1th copy of�2
1 . This is a surface of genus g with g−1marked loops

(namely, the images of the mi ), which we denote l1, . . . , lg−1. This marked surface is
pictured in Fig. 2.

Let S be the automorphism of �g that rotates the surface clockwise 2π
g−1 radians

(i.e. it is induced by cyclically permuting the components of the disjoint union in the
definition of our surface). Let Ti ∈ Mod(g) be the Dehn twist around the loop li ∈ �g ,
as indicated in Fig. 2. Then we define

γ (a) = T =
g−1
∏

i=1

Ti , γ (b) = S.
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Fig. 2 The marked surface �g with dual graph Cg−1

Note that the dual graph of the marked surface constructed above is the stable graph
Cg−1 described in the introduction.

Theorem 5.1.10 For γ as above, the order of γ ∗o1 is g − 1.

Proof We start by constructing lifts ˜T ,˜S of T and S to Aut(π1(�g)), following Con-
struction 5.1.5, so that we may apply Corollary 5.1.7 to compute γ ∗o1. Fix a base
point B = b1 on�g that does not lie on li , i = 1, . . . , g−1. Let {b1, . . . , bg−1} be the
S-orbit of B, such that S(bi ) = bi+1 for i = 1, . . . , g − 2 and S(bg−1) = b1.
The map S induces an isomorphism π1(�g, b1) � π1(�g, b2) and S−1 induces
π1(�g, b1) → π1(�g, bg−1).

Let λ1 be a path from b1 to b2, and let λi = Si−1(λ1), as indicated in blue in
Fig. 2. Now we have isomorphisms π1(�g, b2) � π1(�g, b1) and π1(�g, bg−1) �
π1(�g, b1) induced by conjugation by λ1 and λ−1

g−1. As in Construction 5.1.5, conju-

gation by these isomorphisms gives us ˜S and ˜S−1 : π1(�g, b1) → π1(�g, b1).
By construction, Dehn twists Ti for i > 1 acts as identity on λ1 and therefore

˜T (λ1) = T1(λ1). So by Corollary 5.1.7, it suffices to show that the image of T1(λ1)λ
−1
1

in H1(�g, Z)〈S,T 〉 has order g − 1.
We now compute the 〈S, T 〉 action on H1(�g, Z). For an element g ∈ π1(�g, B),

we denote by [g] the class it represents in H1(�g, Z). Then there is a symplectic basis

{[λ1 . . . λg−1], [l1], α1, . . . , αg−1, β1, . . . , βg−1}

of H1(�g, Z) (pictured in Fig. 2). For simplicity,we denote byλ the class [λ1 . . . λg−1].
Note that the image of T1(λ1)λ

−1
1 in H1(�g, Z) is simply [l1]; we wish to show that

the image of this class in H1(�g, Z)〈S,T 〉 has order g − 1.
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Fig. 3 A genus 4 curve with
maximal degeneration

Explicitly, we have:

S(λ) = λ, S([l1]) = [l1], S(αi ) = αi+1, S(βi ) = βi+1,

T (λ) = λ + (g − 1)[l1], T ([l1]) = [l1], T (αi ) = αi , T (βi ) = βi .

As (T−1)λ = (g−1)[l1], the class [l1] has order dividing (g−1) in H1(�g, Z)<S,T>.
We now show it has order divisible by g − 1, as desired.

Indeed, consider the map H1(�g, Z) → Z/(g−1)Z sending [l1] to 1 and λ, αi , β j

to zero. This map is evidently S, T -equivariant (for the trivial S, T -action on Z/(g −
1)Z), and factors through H1(�g, Z)〈S,T 〉, which completes the proof. 
�
Remark 5.1.11 The strategy of the proof of Theorem 5.1.10 can be used to compute the
Morita class of many other marked surfaces with a given automorphism. For example,
the graph in Fig. 3, where each vertex has genus 0, is a genus 4 stable graph, dual to
the marked surface on the right. Let T be the Dehn multitwist about the marked loops
and S the order 3 automorphism given by rotating 2π

3 degrees clockwise. By direct
computation, we conclude the Morita class of the associated �4-bundle over the torus
is nontrivial of order 3.

We now observe that the result of Theorem 5.1.10 can be used to cheaply give many
other examples of surface bundles with non-trivial Morita class o1. We do not attempt
to give an exhaustive list here, but we indicate some strategies and examples.

Proposition 5.1.12 Let �g1 → E1 → �h and �g2 → E2 → �h be two fibrations,
corresponding to maps γ : π1(�h) → Mod(g1) and ξ : π1(�h) → Mod(g2). Let
ρ : E1 → E2 be a map over �h. The induced map H1(�g1, Z) → H1(�g2 , Z) on the
homology of the fibers gives a map

ρ∗ : H2(π1(�h), H1(�g1 , Z)) → H2(π1(�h), H1(�g2 , Z))

satisfying

ρ∗(γ ∗o1) = ξ∗o1.

Proof Immediate from the functoriality of o1. 
�
Using Proposition 5.1.12, we can extend the result of Theorem 5.1.10 tomany other

graphs, described in the following corollary.
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Corollary 5.1.13 Let �2r
g be a genus g surface with 2r boundary components, labeled

m1, . . . ,mr , n1, . . . , nr , and let l1, . . . , l j be disjoint simple closed loops on �2r
g .

Suppose that we are given a continuous map

f : �2r
g → �2

1

sending the mi isomorphically onto one of the boundary components of �2
1 and the

ni isomorphically onto the other boundary component, and sending the li to points.
Let

� :=
⎛

⎝

⊔

i∈Z/dZ

�2r
g

⎞

⎠ / ∼

be the surface obtained by taking d copies of �2r
g , indexed by Z/dZ, and identifying

the boundary component m j on the i th copy with the boundary component n j on
the i + 1th copy. Let S be the automorphism of this surface obtained by cyclically
permuting the components and let T be the Dehn multitwist about the curves li (on
all copies of �2r

g in the disjoint union) and the images of the mi , n j . Let � be the dual
graph of � (with all of these marked curves). Then if G is the genus of �, the induced
map

γ : 〈S, T 〉 = π1(�1) → Mod(G)

has the property that γ ∗o1 has order divisible by d.
See Fig. 4 for an illustration of the dual graphs � of the marked surfaces � con-

structed as above.

Proof The map f induces a map of surface bundles from the surface bundle in the
statement of the Corollary to the one considered in Theorem 5.1.10, over �1. The
result is immediate from Proposition 5.1.12. 
�

5.2 Computing the secondary Morita classes for surface groups

Wenowconsider situationswhereo1 vanishes. Parallel to our analysis ofo1 in Sect. 5.1,
we will now study pullbacks of the secondary Morita class õ2 to surface groups.

Suppose we are given a homomorphism γ2 : π1(�h) → π1(Pic1Cg/Mg
).

Remark 5.2.1 Note that as the Abel–Jacobi map induces a canonical isomorphism

Mod(g, 1)/L2π1(�g) � π1(Pic1Cg/Mg
)

so the data of a map γ2 as above is the same as a map γ : π1(�h) → Mod(g) and a
choice of splitting of the induced sequence

1 → H1(�g, Z) → π1(�h) ×Mod(g) Mod(g, 1)/L2π1(�g) → π1(�h) → 1.
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1

11

1

11

ε2ε1

n1 m1

Fig. 4 The dual graph of a marked surface as in Corollary 5.1.13, with r = 1. There is a map from the
lower surface to the upper surface satisfying the conditions of the corollary, given by collapsing the upper
subsurface to a point. The unlabeled vertices have genus 0

Such a splitting exists if and only if γ ∗o1 = 0, by definition. By Proposition 7.1.13
and the definition of õ2, the pullback γ ∗

2 õ2 is independent of the given splitting. That
is, γ ∗

2 õ2 only depends on γ , not the choice of lift γ2. Hence if we wish to be agnostic
of the choice of lift we will denote it γ ∗õ2.

Choose lifts ˜γ2(a1), ˜γ2(b1) . . . , ˜γ2(ah), ˜γ2(bh)ofγ2(ai ), γ2(bi ) fromπ1(Pic1Cg/Mg
)

� Mod(g, 1)/L2π1(�g) to Mod(g, 1). Then

˜R2 =
h

∏

i=1

[˜γ2(ai ), ˜γ2(bi )]

is an inner automorphism of π1(�g), and hence can be written as conjugation by some
element r̃2 ∈ π1(�g) as in Proposition 5.1.1. Since γ2 was a homomorphism, in fact
r̃2 ∈ L2π1(�g).

To reduce notational clutter, we will write π = π1(�g).

Proposition 5.2.2 (The secondary Morita class for surface groups) The secondary
Morita class γ ∗

2 õ2 is the image of r̃2 under the map

L2π → (L2π/L3π)π1(�h)
∼→ H2(π1(�h), L

2π/L3π) → M(π1(�h), L
2π/L3π),

where the first map is the natural quotient, the isomorphism comes from Corol-
lary 7.2.4, and the last map is the quotient map.
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g g

gg

S

b S(b)

λ

l

Fig. 5 The surface discussed in Theorem 5.2.7

Proof As in 5.1.1 we have the following commutative diagram:

1 〈R〉 F2h π1(�h)

γ2

1

1 L2π

Hur2

Mod(g, 1) π1(Pic1)

�

1

1 L2π/L3π Mod(g, 1)/L3π π1(Pic1) 1.

We conclude as in Proposition 5.1.1 that the class γ ∗
2 o2 can be represented by

Hur2(r̃2). By Remark 7.1.15, the class γ ∗
2 o2 ∈ H2(π1(�h), L2π/L3π) maps to

γ ∗
2 õ2 ∈ M(π1(�h), L2π/L3π). 
�
Now for each g ∈ Z≥1, we give a map

γ : π1(�1) → Mod(2g)

such that the Morita class γ ∗o1 is trivial, and such that the secondary Morita class
γ ∗
2 õ2 is nontrivial, where

γ2 : π1(�1) → π1(Pic1Cg/Mg
)

is a lift of γ as in Remark 5.2.1.
Let �2g be a closed Riemann surface of genus 2g. Let l be a null-homologous

closed curve which separates �2g into two subsurfaces each of genus g. Let S be the
order 2 orientation-preserving mapping class that preserves l and interchanges the two
subsurfaces shown in Fig. 5. Let T be the Dehn twist around the loop l. Observe that
T and S commute, and hence give rise to a map

γ : π1(�1) = 〈a, b | [a, b]〉 → Mod(g),
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α1

β1

αg

βg

S(α1)

S(β1)

S(αg)

S(βg)B S(B)

l

λ

Fig. 6 �2g with a set of generators of π1(�2g)

defined by a �→ T and b �→ S. This map gives rise to a �2g-bundle over the torus
�1; we denote its total space by E so that we have a fiber sequence

�2g → E → �1.

We will denote by G the group π1(�1).

Lemma 5.2.3 The Morita class γ ∗o1 is trivial.

Proof Let B be a point in�2g \ l and let λ be a path connecting B and S(B). We define
lifts ˜T ,˜S of T , S as described in Construction 5.1.5. By Lemma 5.1.6, the commutator
[˜T ,˜S] is an inner automorphism of π1(�2g, B) given as conjugation by T (λ)λ−1.

By Corollary 5.1.7, the Morita class γ ∗o1 is represented by Hur(T (λ)λ−1), that is,
the homology class of l. Since l is null-homologous, it follows that that γ ∗o1 is trivial.

�
Remark 5.2.4 We could also prove this by imitating the proof of Proposition 4.4.2,
i.e. by contracting the loop l above to a point.

As observed in the proof above, the loop T (λ)λ−1 is null-homologous. Thus the
commutator [˜T ,˜S] ∈ Mod(g, 1) is in the kernel of the natural map ι : Mod(g, 1) →
π1(Pic1). So we have already constructed a map

γ2 : G → π1(Pic1Cg/Mg
)

as in Remark 5.2.1, via

γ2(a) = ι(˜T )

and

γ2(b) = ι(˜S).

In particular, ˜T ,˜S are lifts of γ2(a), γ2(b).
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Let B be a point in �2g \ l and let λ be a path connecting B and S(B), as shown in
Fig. 6. As in the picture, we choose λ such that the loop λS(λ) is nullhomotopic. We
choose a set of generators of π1(�2g), denoted

{α1, β1, . . . , α2g, β2g},

in which α1, β1, . . . , αg, βg are drawn in Fig. 6, and in which αi = λS(α2g+1−i )λ
−1,

βi = λS(β2g+1−i )λ
−1, for g + 1 ≤ i ≤ 2g. We will use this basis for π1(�2g) for

the rest of the section. The homology classes represented by these elements will be
denoted by x1, y1 . . . , x2g, y2g for α1, β1, . . . , α2g, β2g; they form a symplectic basis
for H1(�2g, Z).

Lemma 5.2.5 The class γ ∗
2 o2 ∈ H2(G, L2π1(�2g)/L3π1(�2g)) has order 2 (with o2

defined as in Eq. (4.3.5)).

Proof By Proposition 5.2.2, the class γ ∗
2 o2 is represented by Hur2(T (λ)λ−1) (where

Hur2 : L2π1(�2g) → L2π1(�2g)/L3π1(�2g) is the natural quotient map). Observe
that the null-homologous loop T (λ)λ−1 is represented by word

∏g
i=1[αi , βi ]. By

Lemma 7.2.6, there is an isomorphism

L2π1(�2g)/L
3π1(�2g) � ∧2H1(�2g, Z)/

〈 2g
∑

i=1

xi ∧ yi

〉

induced by the map [α, β] �→ Hur(α) ∧Hur(β). The image of Hur2(T (λ)λ−1) under
this isomorphism is

∑g
i=1 xi ∧ yi , or equivalently −∑2g

i=g+1 xi ∧ yi .
Since l is null-homologous, theDehn twist T acts trivially on H1(�2g, Z) and hence

on L2π/L3π . Since S exchanges the two subsurfaces into which l separates �2g , we
have S(xi ) = x2g+1−i and S(yi ) = y2g+1−i . In particular, we have

S

( g
∑

i=1

xi ∧ yi

)

=
2g
∑

i=g+1

xi ∧ yi = −
g

∑

i=1

xi ∧ yi ,

so the image of
∑g

i=1 xi ∧ yi in (L2π1(�2g)/L3π1(�2g))G is 2-torsion.
We now show this element has order exactly 2 in (L2π1(�2g)/L3π1(�2g))G , by

constructing a G-equivariant map L2π1(�2g)/L3π1(�2g) → Z/2Z such that the
image of

∑g
i=1 xi ∧ yi is nontrivial.

As a Z-module, ∧2H1(�2g, Z) has basis 〈xi ∧ x j , yi ∧ y j , 1 ≤ i < j ≤ 2g, xi ∧
y j , 1 ≤ i, j ≤ 2g〉. Define a map

ρ : ∧2H1(�2g, Z)/〈
2g
∑

i=1

xi ∧ yi 〉 → Z/2Z

by ρ(x1 ∧ y1) = ρ(x2g ∧ y2g) = 1 and ρ(xi ∧ y j ) = 0 for the other basis elements.
Since S(x1 ∧ y1) = x2g ∧ y2g , this map is G-equivariant. As ρ(

∑g
i=1 xi ∧ yi ) = 1,
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we’ve shown that the image of Hur2(T (λ)λ−1) in (L2π1(�2g)/L3π1(�2g))G has
order exactly 2 as desired. 
�
Lemma 5.2.6 The image of H1(�2g, Z)G in H1(�2g, Z)G ⊗ (Z/2Z) is zero.

Proof The action of G on H1(�2g, Z) factors through Z/2Z. Now the result follows
from direct computation from the fact that H1(�2g, Z) is a direct sum of freeZ[Z/2Z]-
modules. 
�
Theorem 5.2.7 The secondary Morita class γ ∗

2 õ2 ∈ M(G, L2π1(�2g)/L3π1(�2g))

has order exactly 2.

Proof In this proof, we will let H = π1(�2g)/L2π1(�2g) and ω = ∑2g
i=1 xi ∧ yi .

Then by Lemma 7.2.6 we have L2π1(�2g)/L3π1(�2g) = ∧2H/〈ω〉. From the proof
of Lemma 5.2.5 we have that the element [e] := ∑g

i=1 xi ∧ yi ∈ ∧2H represents the
class γ ∗

2 o2 ∈ H2(G, L2π1(�2g)/L3π1(�2g)) � (∧2H/〈ω〉)G , and its image under
the map ρ defined in the proof of Lemma 5.2.5 is nontrivial.

Let the maps g, h be as defined in Lemma 7.2.13. We have the following commu-
tative diagram, where the horizontal solid arrows are the natural quotient maps:

HG ∧ H

∧2H

g′

∧2H/〈ω〉
g

(∧2H/〈ω〉)G

h

ρ
∧2(HG)

w

∧2(HG)/〈ω〉

Z/2Z Z/2Z H2(G,∧2H/〈ω〉).
ρ′

We will define ρ′ later. Here HG ∧ H denotes the subspace of ∧2H spanned by
elements of the form a ∧ b with a ∈ HG, b ∈ H .

To show the image of γ ∗
2 o2 in M(G, L2π1(�2g)/L3π1(�2g)) is nontrivial, we will

give explicit descriptions of the images of m and δ in (∧2H/〈ω〉)G and show they go
to 0 in Z/2Z under the map ρ in the commutative diagram above. See Sect. 7.1 for
the definition of the maps m, δ.

Analysis of the image of m: We start by analyzing the image of mapm, defined as
in Definition 7.1.9, using Lemma 7.2.9; we will freely use the notation and results of
Sect. 7.2.1. As T acts on H trivially, Equation (7.2.8) implies that forφ ∈ Hom(P1, H)

to be in ker d∗
2 , we must have φ(e) ∈ HG . Take φ,ψ ∈ ker d∗

2 ; then a representative
of m([φ] ⊗ [ψ]) is given by equation (7.2.10):

m(φ ⊗ ψ)(u) = φ(e) ∧ ψ( f ) − φ( f ) ∧ ψ(e).
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This implies that any class in imm can be represented by an element of HG ∧ H . By
Lemma 5.2.6, the image of HG ∧ H → ∧2(HG) lies in 2(∧2(HG)). Thus HG ∧ H
goes to 0 under the map w ◦ g′, as desired.

In particular, we see that ρ induces a natural map

ρ′ : H2(G,∧2H/〈ω〉) → Z/2Z

fitting into the commutative diagram above.
Analysis of the image of δ: Now we analyze the map

δ : H1(G, H) → H2(G, L2π/L3π)

of Definition 7.1.12, using Lemma 7.2.11; we wish to show that ρ′ ◦ δ = 0. Note that
using the resolution of the trivial Z[G]-module described in Sect. 7.2.1, we have a
natural surjection

ker(d∗
2 : Hom(P1, H) → Hom(P2, H)) → H1(G, H).

Because the map ρ′ ◦ δ is linear by Proposition 7.1.10, it suffices to check that it
vanishes on a set of generators of ker(d∗

2 ). As T acts trivially on H the condition that
φ ∈ Hom(P1, H) lies in ker(d2) is exactly the condition that φ(e) ∈ HG .

Now letφ ∈ ker d∗
2 represent a class [φ] ∈ H1(G, H) such thatφ(e) = xi+x2n+1−i

(or yi + y2n+1−i ) for some 1 ≤ i ≤ g and φ( f ) = x j (or y j ) for some 1 ≤ j ≤ 2g.

Such φ generate ker(d∗
2 ) by the previous paragraph. Then we may choose ˜φ(e) =

αiλS(αi )λ
−1 (resp. βiλS(βi )λ

−1) and ˜φ( f ) = α j (resp. β j ) for 1 ≤ j ≤ g or
˜φ( f ) = λS(α2g+1− j )λ

−1 (resp. λS(β2g+1− j )λ
−1) for g + 1 ≤ j ≤ 2g to be lifts of

φ(e), φ( f ) to π1(�2g)/L3π1(�2g).
By Lemma 7.2.11, a representative in L2π1(�2g)/L3π1(�2g) of the class δ([φ])

is given by

[φ(e)−1, φ( f )]˜φ( f )
T
(˜φ( f ))−1

˜φ(e)(˜φ(e)
S
)−1.

Let ˜l ∈ π1(�2g, B) be a loop based at B homologous to l. If ˜φ( f ) = α j or

β j , then T acts trivially on it and the element ˜φ( f )
T
(˜φ( f ))−1 is trivial. If ˜φ( f ) =

λS(α2g+1− j )λ
−1 or λS(β2g+1− j )λ

−1, then

˜φ( f )
T
(˜φ( f ))−1 = [˜φ( f ),˜l] ∈ L3π1(�2g)

as˜l ∈ L2π1(�2g). In both cases we have

[φ(e)−1, φ( f )]˜φ( f )
T
(˜φ( f ))−1

˜φ(e)(˜φ(e)
S
)−1

= [φ(e)−1, φ( f )]˜φ(e)(˜φ(e)
S
)−1 mod L3π1(�2g).
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Now suppose ˜φ(e) = αiλS(αi )λ
−1. Then

˜φ(e)
S = λS(αi )S(λ)αi S(λ−1)λ−1 = λS(αi )S(λ)αi .

Thus

˜φ(e)(˜φ(e)
S
)−1 = αiλS(αi )λ

−1α−1
i S(λ)−1S(αi )

−1λ−1 = [αi , λS(αi )λ
−1].

So we have that

[φ(e)−1, φ( f )]˜φ(e)(˜φ(e)
S
)−1 = [φ(e)−1, φ( f )][αi , λS(αi )λ

−1] mod L3π1(�g)

is a representative for δ([φ]). In additive notation, we’ve found that

−φ(e) ∧ φ( f ) + xi ∧ x2g+1−i ∈ ∧2H

is a representative for δ([φ]). Sinceφ(e)∧φ( f ) ∈ HG∧H , it is sent to 0 under themap
w ◦ g′. Since S(xi ) = x2g+1−i , we have g′(xi ∧ x2g+1−i ) = 0. Thus ρ′(δ([φ])) = 0.

Now an identical argument works in the case ˜φ(e) = βiλS(βi )λ
−1, from which we

conclude the result. 
�
Note that the only property of the Dehn twist T used in the proof of Theorem 5.2.7

is it lies in the Torelli subgroup of Mod(g), i.e, it acts trivially on H1(�2g, Z). So an
identical (if notationally more involved) proof yields:

Theorem 5.2.8 Let �2g be a surface of genus g, and let l1, . . . , lN be disjoint simple
closed curves on�2g. Suppose that the dual graph � of this marked surface is a stable
tree. Suppose moreover that �2g admits an involution S permuting the li , such that
the induced automorphism of � has the following property: S fixes no vertices and
stabilizes exactly one edge. Let E be the surface bundle over the torus induced by the
automorphism S and the Dehn multitwist about the li , and let γ : π1(�1) → Mod(g)
be the induced map. Then γ ∗o1 = 0, and γ ∗õ2 has order exactly 2.

Remark 5.2.9 Suppose� is any graph admitting an involution Swhich fixes no vertices
and stabilizes a unique edge. Suppose moreover that this edge is separating. Let�� be
the correspondingmarked surface, and consider the��-bundle over the torus obtained
from the involution S and theDehnmultitwist about themarked curves. Thenwe expect
the methods above will show that õ2 obstructs sections for this surface bundle.

5.3 Analytic consequences

We now deduce from the computations of Sects. 5.1 and 5.2 the non-vanishing of
certain Gysin images of the primary and secondary Morita classes. In this section, we
work with complex-analytic stacks.
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5.3.1 Degeneration of the primary Morita class

Let

γ : π1(�1) = 〈a, b | [a, b]〉 → Mod(g)

be a homomorphism such that γ (a) is a Dehn multi-twist along a collection of
disjoint loops l1, . . . , ln ∈ �g, and such that γ (b) is (in the isotopy class of) a self-
homeomorphism of�g permuting the li . Let� be the dual graph of themarked surface
(�g, l1, . . . , ln). That is, � is the labeled graph with one vertex for each component
of �g \ {l1, . . . , ln}, labeled with the genus of this subsurface, and an edge between
adjacent components for each shared boundary component li (see Fig. 1). Suppose �

is a stable graph, and let Z� be the corresponding stratum of the boundary of Mg .
Let

E� ⊂ BlZ�
Mg

be the exceptional divisor of the blowup ofMg at Z� . Let Sg be the set of stable graphs
of genus g with a single edge, and Sg,� the set of stable graphs of genus g with a single
edge which specialize to �. That is, Sg corresponds to the set of boundary divisors of
Mg , and Sg,� corresponds to the set of stable graphs with one edge obtainable from
� via contraction, or equivalently the set of boundary divisors of Mg containing Z� .
Let

Mg,� = BlZ�
Mg \

⋃

�′∈Sg\Sg,�
˜D�′

and

E◦
� = E� ∩ Mg,�,

where D�′ is the boundary divisor of Mg corresponding to �′, and˜D�′ is its proper
transform in BlZ�

Mg. That is, Mg,� is the complement in BlZ�
Mg of the proper

transforms of the boundary components not containing Z� , and E◦
� is the part of the

exceptional divisor contained in this complement.
There is a natural inclusion

ι : Mg ↪→ Mg,�,

with complement E◦
� . Now let F be a locally constant sheaf of Abelian groups on

Mg . Let ˜E◦
� be a deleted neighborhood of E◦

� inMg,� and

π : ˜E◦
� → E◦

�
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the corresponding circle bundle. Recall from Sect. 3.2 that there is a natural Gysin
map

g� : H2(Mg,F ) → H1(E◦
�, R1π∗F |

˜E◦
�
).

Proposition 5.3.1 With the above notation, suppose γ ∗o1 �= 0. Then g�(o1) is non-
zero of order divisible by that of γ ∗o1.

Proof Recall that

o1 ∈ H2(Mg, V1);

wewill abuse notation and also denote byV1 theMod(g)-representation corresponding
to this local system.

By Lemmas 2.1.1 and 2.2.3, the map

γ : π1(�1) → Mod(g)

factors through π1(˜E◦
�), with γ (a) a generator of the inertia subgroup I� ⊂ π1(˜E◦

�)

(that is, the subgroup ofπ1(˜E◦
�) generated by a fiber ofπ—namely, aDehnmultitwist).

We have a commutative diagram of short exact sequences of groups

0 〈a〉 π1(�1)

γ

π1(�1)/〈a〉 0

0 I� π1(˜E◦
�)

π∗
π1(E◦

�) 1.

Writing Z for π1(�1)/〈a〉, this diagram induces a morphism of long exact sequences
arising from the Hochschild–Serre spectral sequence (see Sect. 3.2) as follows:

···H2(π
1(E◦�),V

I�
1)H2(π

1(
˜

E◦�),V
1)

g�

γ∗

H1(π
1(E◦�),(V1)I�)

γ∗

H3(π
1(E◦�),V

I�
1)···

···H2(Z,γ∗V〈a〉
1)H2(π

1(�1),γ∗V
1)

p
H1(Z,γ∗(V1)〈a〉)H3(Z,γ∗V〈a〉

1)···.

Now

H2(Z, γ ∗
V

〈a〉
1 ) = H3(Z, γ ∗

V

〈a〉
1 ) = 0

for degree reasons, so the map p in the diagram above is an isomorphism. Hence

γ ∗g�(o1) = p(γ ∗o1),

has the same order of γ ∗o1, which completes the proof. 
�
The following is immediate:
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Corollary 5.3.2 For the graphs � in Corollary 5.1.13, g�(o1) is non-zero.

For example, we have that g�(o1) is non-zero for the graph Cg−1 described in
Theorem 1.3.1, as well as the graphs depicted in Figs. 3 and 4.

5.3.2 Degeneration of the secondary Morita class

We now analyze the analogous situation with õ2, in cases that γ ∗o1 = 0. Our results
and proofs are almost identical to those above, except insofar as there are additional
complications arising from the fact that γ ∗õ2 resides in a (non-trivial) quotient of
H2(π1(�1), γ

∗
V2), namely M(π1(�1), γ

∗
V2), and from the fact that we are forced

to work with the scheme P1,g rather than Pic1Cg/Mg
, due to the inadequacy of existing

compactifications of this latter stack for our purposes. (Recall that Pd,g coarsely rep-
resents the degree d Picard functor over the locus of automorphism-free curves M0

g ;
see Sect. 2.2 for details.)

As before, let

γ : π1(�1) = 〈a, b | [a, b]〉 → Mod(g)

be a homomorphism such that γ (a) is a Dehn multi-twist along a collection of
disjoint loops l1, . . . , ln ∈ �g, and such that γ (b) is (in the isotopy class of) a self-
homeomorphism of�g permuting the li . Let� be the dual graph of themarked surface
(�g, l1, . . . , ln). Suppose � is a stable tree, and let Z� be the corresponding stratum

of the boundary of Mg
0
(the locus in Mg parametrizing automorphism-free stable

curves). Suppose now that γ ∗o1 = 0, so by Remark 4.4.5 or Remark 5.2.1, we may
define γ ∗õ2.

Let q : P1,g → Mg be the canonical forgetful map, and let

P1,g
0 = q−1(Mg

0
)

be the preimage of Mg
0
. Let

P1,g,� := Blq−1(Z�)P1,g
0

and let F� be the exceptional divisor. Let P1,g,�
r
be the regular locus of P1,g,�

0
; as P1,g

is Cohen-Macaulay and Z� is an lci subscheme ofMg
0
, F� has non-empty intersection

with P1,g,�
r
by Lemma 2.2.2. Note that F� is irreducible by Proposition 2.2.1. The

map q lifts to a natural map

p : P1,g,�r → Bl
Z�∩Mg

0Mg
0
.

Let F◦
� = p−1(E◦

�), and let

P� = p−1(Mg,� ∩ Bl
Z�∩Mg

0Mg
0
) \ F◦,sing

� ,
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where Mg,� is the coarse space ofMg,� . Note that we have deleted the singular locus
of F◦

� from this scheme.
Observe that P1,g is a smooth open subscheme of P� , and F◦,ns

� is its complement;

it is regular by definition. Let ˜F◦,ns
� be a deleted neighborhood of F◦,ns

� , and let

π : ˜F◦,ns
� → F◦,ns

�

be the corresponding circle bundle. There is a natural Gysin map

g� : H2(P1,g, V2|P1,g ) → H1(F◦,ns
� , R1π∗V2|˜F◦,ns

�

).

Let

h� : M(P1,g, V2|P1,g ) → N (F◦,ns
� , R1π∗V2|˜F◦,ns

�

)

be the induced map, where N (F◦,ns
� , R1π∗V2|˜F◦,ns

�

) is the maximal quotient of

H1(F◦,ns
� , R1π∗V2|˜F◦,ns

�

) such that such a factorizationof g� throughM(P1,g, V2|P1,g )
exists, as described in detail in Sect. 7.1.3.

Proposition 5.3.3 With the above notation, suppose

γ ∗õ2 ∈ M(π1(�1), γ
∗
V2)

is non-zero. Then h�(õ2) ∈ N (F◦,ns
� , R1π∗V2|˜F◦,ns

γ
) is non-zero of order divisible by

that of γ ∗õ2.

Proof The proof is essentially the same as that of Proposition 5.3.1. Indeed, let

γ̃ : π1(�1) → π1(Pic1Cg/Mg
)

be a lift of γ ; such a lift exists as γ ∗o1 = 0 by assumption. As before, γ̃ factors through

π1(
˜F◦,ns

� ) by Lemmas 2.1.1 and 2.2.3. So we have a commutative square (arising from
a map of Gysin sequences)

M(π1(
˜F◦,ns

� ), V2)
h�

γ̃ ∗

N (π1(F
◦,ns
� ), (V2)I� )

γ̃ ∗

M(π1(�1), γ̃
∗
V2)

p
N (Z, γ̃ (V2)〈a〉)

But the map p above is an isomorphism as

H2(Z, γ̃ ∗
V

〈a〉
2 ) = H3(Z, γ̃ ∗

V

〈a〉
2 ) = 0
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for degree reasons. Now

γ̃ ∗h�(õ2) = p(γ̃ ∗õ2)

is non-zero by assumption, which completes the proof. 
�
We record a function-field analogue of this statement. Let ̂S� be the fraction field

of the complete local ring of P� at the generic point of F◦,ns
� , and let T� = C(F◦,ns

� )

be its residue field. As before we have a Gysin map

h� : M(̂S�, ̂V2|S� ) → N (T�, ̂

V2(−1)|I )

(see 3.2 for details on Galois-cohomological Gysin maps and Sect. 7.1.3 for a recol-
lection of the group N ).

Proposition 5.3.4 For � as in Proposition 5.3.3, we have

h�(̃o2,ét) �= 0.

Proof The proof is identical to that of Proposition 5.3.3, replacing the use of
Lemma 2.2.3 with Lemma 2.2.4. 
�

We immediately deduce:

Corollary 5.3.5 Let � be as in Theorem 5.2.8. Then h�(õ2) (resp. h�(̃o2,ét)) is non-
zero.

In particular, this non-vanishing holds for the graphs Tg described in Theorem 1.3.1.

6 Consequences for the section conjecture

6.1 Geometric results

We now deduce the main geometric results stated in the introduction from the Gysin
computations performed in the previous section. Let k be a field, possibly of positive
characteristic, and let g > 2 be an integer.

6.1.1 Consequences arising from non-vanishing of o1

Recall that if � was a stable graph of genus g, we defined Z� to be the corresponding
stratum of the boundary of Mg,k and E� to be the exceptional divisor of the blowup
BlZ�

Mg,k . We let ̂L� be the fraction field of the complete local ring of BlZ�
Mg,k at

the generic point of E� . Recall from Proposition 5.3.1 that we denoted the Gysin map
into the cohomology of E◦

� by g� .

Proposition 6.1.1 Let � be a stable graph of genus g such that, over the complex
numbers, g�(o1) has order d > 1. Then over a field of characteristic 0, o1,ét|̂L�

has

order divisible by d. Over a field of characteristic p > 0with p not dividing d, o(p)
1,ét|̂L�

has order divisible by d.
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Proof The idea of the proof is to use the fact that for normal varieties the first étale
cohomology group injects into the Galois cohomology of the generic point; the same
is true for normal Deligne–Mumford stacks. We use the notation from Sect. 5.3. Let

ι : Mg ↪→ Mg,�

be the natural open embedding and let

j : E◦
� ↪→ Mg,�

its closed complement. In characteristic 0, we have a commutative diagram of Gysin
maps

H2(Mg, ̂

V1)
g�

H1(E◦
�, j∗R1π∗̂

V1)

H2(̂L�, ̂

V1|̂L�
) H1(k(E◦

�), ̂

V1|̂L�
(−1)|I ).

By comparison with the analytic setting g�(o1,ét) is non-zero; now we conclude by
the injectivity of the right-hand vertical arrow (as first étale cohomology of a smooth
Deligne–Mumford stack injects into the Galois cohomology of its generic point).

The proof in characteristic p > 0 is identical; by the argument above it suffices to
show that for the Gysin map

g� : H2(Mg,k, ̂

V1
(p)

) → H1(E◦
�, j∗R1π∗̂

V1
(p)

),

we have g�(o(p)
1,ét) is non-zero. Now letW (k) be the Witt vectors of k and let K be the

fraction field of W (k). We have a commutative diagram

H2(Mg,k, ̂

V1
(p)

)
g�

H1(E◦
�,k, j

∗R1π∗̂

V1
(p)

)

H2(Mg,K , ̂

V1
(p)

)
g�

H1(E◦
�,K , j∗R1π∗̂

V1
(p)

)

where the vertical arrows are cospecialization maps, whence the result follows from
the characteristic 0 situation. 
�
Corollary 6.1.2 Let �′ be a graph specializing to one of the graphs � appearing in
Corollary 5.1.13, and let k be a field. Let d be as in Corollary 5.1.13. Then the tropical
section conjecture (Conjecture 1.2.1) is true for �′, k as long as char(k) does not
divide d. In fact the abelianized fundamental exact sequence

1 → π ét
1 (Ĉ

K�′
)ab → π ét

1 (ĈK�′ )/L
2π ét

1 (Ĉ
K�′

) → Gal(̂K�′/̂K�′) → 1
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does not split.

Proof It suffices to show that o1,ét |̂K�′ is non-zero in characteristic 0, and o(p)
1,ét |̂K�′ is

non-zero in characteristic p. By assumption there is a natural map γ : ̂K�′ → ̂L�,

with ̂L� defined as in Proposition 6.1.1. By functoriality we have

γ ∗o1,ét |̂K�′ = o1,ét|̂L�

in characteristic 0 and γ ∗o(p)
1,ét |̂K�′ = o(p)

1,ét|̂L�
in characteristic p, so it suffices to

show that o1,ét|̂L�
(resp. o(p)

1,ét|̂L�
) is non-zero. But this follows by combining Propo-

sition 6.1.1 with Corollary 5.3.2. 
�
Corollary 6.1.3 Suppose char(k) = 0 or char(k) > g − 1. Let L/k(Mg) be an exten-
sion of degree not divisible by g − 1. Then the class o1,ét|L is non-zero. That is, the
abelianized fundamental exact sequence

1 → π ét
1 (Cg,k(Mg)

)ab → π ét
1 (Cg,k(Mg))/[π ét

1 (Cg,k(Mg)
,

π ét
1 (Cg,k(Mg)

] → Gal(k(Mg)/L) → 1

does not split. In particular, the section conjecture is “trivially true" for the base
change of the generic curve to L.

Proof This is immediate fromCorollary 6.1.2 applied in the case where�′ is the graph
consisting of a single vertex of genus g. 
�
Remark 6.1.4 In [14], Hain proves (among other things) that the section conjecture is
true for the generic curve of genus g ≥ 5 over a field of characteristic 0. Our result
Corollary 6.1.3 refines this result by showing that in fact the abelianized analogue of
the fundamental exact sequence does not split (and that the result is in fact true for all
g ≥ 3).

Remark 6.1.5 In fact the estimates of Theorem 5.1.10 imply that the class o1,ét|k(Mg)

has order divisible by g − 1. Because of the relationship between the class o1,ét and
the class [Pic1Cg/Mg

] ∈ H1(Mg,S,ét, JCg/Mg,S) discussed in 4.2.2, this estimate gives
a lower bound on the period of the generic curve of genus g; namely the period of
the generic curve is divisible by g − 1. In fact it is known (by the main result of [33])
that the period of the generic curve over any field is 2g − 2; see [26] for an explicit
statement. Over fields for which it applies, Corollary 6.1.3 implies that, if Cgen is
the generic curve, the class of [Pic1Cgen

] is not divisible in the Weil-Chatelet group of

Pic0Cgen
, which was not to our knowledge previously known. It is natural from the point

of view of the section conjecture to ask if [Pic1Cgen
] in fact generates the quotient of the

Weil-Chatelet group by its divisible part, and what its order is in this group. Of course
it is also natural to ask what is the true order of o1,ét|k(Mg). Our degeneration methods
are related to those of Ma [26]. See e.g. [23, 24] for a discussion of the period-index
problem for curves.
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We get similar bounds for the period of the curves C
̂K�

above. Analogously, it
would be interesting to study the Picard groups of the curves C

̂K�
.

6.1.2 Consequences of the non-vanishing of õ2

We now perform a similar analysis with the class õ2. The arguments are almost iden-
tical.

Proposition 6.1.6 Let k be a field of characteristic different from 2. Let ̂S� be the
fraction field of the complete local ring of P� at the generic point of F◦,ns

� , defined as in
Sect. 5.3.2. Then if k has characteristic 0, õ2,ét|̂S�

is non-zero for� as in Theorem 5.2.8;

if k has characterstic p > 2, then õ2,ét
(p) is non-zero.

Proof The statement in characteristic 0 is immediate from Corollary 5.3.5; if k has
characteristic p > 0 it follows as in the proof of Proposition 6.1.1. 
�
Corollary 6.1.7 Let k be a field of characteristic different from 2. Let �′ be a graph
specializing to one of the graphs appearing in Theorem 5.2.8. Let̂Q�′ be the fraction
field of the complete local ring of P1,g at π−1(Z�′). Then if Cg,̂Q�′ is the base change

of the universal curve tôQ�′ , the sequence

1 → π ét
1 (C

g,̂Q�′
)/L3π ét

1 (C
g,̂Q�′

) → π ét
1 (Cg,̂Q�′ )/

L3π ét
1 (C

g,̂Q�′
) → Gal(̂Q�′/̂Q�′) → 1

does not split.

Proof It suffices to show õ2,ét |̂Q�′ is non-zero. But by Proposition 6.1.6, its pullback

to ̂S� is non-zero, as desired. 
�
We immediately deduce:

Corollary 6.1.8 Let �′ be a graph specializing to one of the graphs appearing in
Theorem 5.2.8. Then the tropical section conjecture (Conjecture 1.2.1) is true for �′
over fields of characteristic different from 2. In fact the sequence

1 → π ét
1 (C

g,̂K�′
)/L3π ét

1 (C
g,̂K�′

) → π ét
1 (Cg,̂K�′ )/

L3π ét
1 (C

g,̂K�′
) → Gal(̂K�′/̂K�′) → 1

does not split.

Proof We have just shown that õ2,ét (resp. õ2,ét
(p)) does not vanish after pulling back

tôQ�′ ; the result is immediate. 
�
Finally, we have the following simple corollary:
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Corollary 6.1.9 Let k be a field of characteristic different from 2, and let Q be the field
of meromorphic functions on P1,g,k . Then if g > 2 is even and if Cg,Q is the base
change of the universal curve to Q, the sequence

1 → π ét
1 (Cg,Q)/L3π ét

1 (Cg,Q) → π ét
1 (Cg,Q)/L3π ét

1 (Cg,Q) → Gal(Q/Q) → 1

does not split.

Proof This is immediate from Corollary 6.1.7 for the case of the graph consisting only
of a single vertex. 
�

6.2 Arithmetic results

We now use the results above to show the existence of arithmetic examples of curves
trivially satisfying the section conjecture, over p-adic fields and then number fields.
In this section we work over Z. We first show the existence of examples such that o1,ét
obstructs sections. For a closed point z of a scheme we denote by κ(z) its residue field.

Theorem 6.2.1 Let � be a graph as in Corollary 5.1.13. There exists a Zariski-dense
set S of closed points of Z� such that: for each s ∈ S, there exists a Frac(W (κ(s)))-
point s′ of Mg specializing to s, such that the corresponding curve Cg,s′ trivially
satisfies the section conjecture (indeed o1,ét|s′ is non-vanishing).
Proof Notation is as in Proposition 6.1.1. We first observe that for p � g, we have

g�(o(p)
1,ét) �= 0 ∈ H1(E◦

�,Fp
, j∗R1π∗̂

V1
(p)

),

by Proposition 6.1.1 and Corollary 5.1.13. The restriction of this class to any open
subscheme of E◦

�,Fp
is non-zero by Proposition 6.1.1 as well. Hence by Theorem 3.1.1

(applied after replacing E◦
�,Fp

with an open substack representable by a scheme), there

exists a Zariski-dense set of points Sp of E◦
�,Fp

such that o(p)
1,ét|s is non-zero for s ∈ Sp.

Let S be the union of the images of the Sp (over all p) in Z� .
Now for s ∈ Sp, let s′ be any deformation of s into Mg , over W (κ(s)), which is

transverse to E◦
� (i.e. a local equation for E◦

� pulls back to a uniformizer ofW (κ(s))).
Such a lift exists as BlZ�

Mg is smooth. Nowwe have a commutative diagram of Gysin
maps

H2(Mg,W (κ(s)), ̂

V1
(p)

)
g�

H1(E◦
�,Fp

, j∗R1π∗̂

V1
(p)

)

H2(Frac(W (κ(s))), ̂

V1
(p)|Frac(W (κ(s)))) H1(κ(s), j∗R1π∗̂

V1
(p)|κ(s))

where the vertical arrows are restriction. By our choice of s, we have g�(o(p)
1,ét)|κ(s)

non-zero. Hence o(p)
1,ét|s′ is non-zero, as desired. 
�
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Remark 6.2.2 The method above could be used equally well to show the existence of
examples of curves over e.g. Fq((t)) satisfying the section conjecture or indeed to
show the existence of examples over any complete discrete valuation ring with finite
residue field.

We now use an essentially identical argument to product examples where õ2,ét
obstructs sections, with some mild complications arising from the fact that õ2,ét is not
a cohomology class, but rather a coset of such:

Theorem 6.2.3 Let � be a graph as in Theorem 5.2.8. There exists a Zariski-dense set
S of closed points of F◦,ns

� such that: for each s ∈ S, there exists a Frac(W (κ(s)))-
point s′ of P1,g specializing to s, such that the corresponding curve Cg,s′ trivially
satisfies the section conjecture (indeed o2,ét|s′ is non-vanishing).
Proof By Corollary 5.3.5, we have that for p � 0,

h�(̃o2,ét
(p)

) ∈ N (F◦,ns
�,Fp

, i∗R1 j∗̂

V2
(p)

)

is non-zero, where j : P1,g → P� is the natural inclusion and i : F◦,ns
� → P� is the

inclusion of its complement. Hence the same is true for

g�(o(p)
2,ét) ∈ H1(F◦,ns

�,Fp
, i∗R1 j∗̂

V2
(p)

),

where o(p)
2,ét is defined as in Sect. 4.3.2. Let Sp be the set of closed points of F

◦,ns
� such

that for s ∈ S,

g�(o(p)
2,ét)|κ(s) �= 0;

by Theorem 3.1.1, this set is Zariski-dense in F◦,ns
�,Fp

. As before let S be the union of

the Sp and, for each s ∈ S, let s′ be a deformation of s to a Frac(W (κ(s)))-point of
P1,g , transverse to F◦,ns

� . Such a deformation exists by the smoothness of P� .
Now let L = Frac(W (κ(s))) and OL = W (κ(s)). We wish to show that for an L-

point s′ as above, we have õ2,ét
(p)|s′ �= 0. We have a commutative diagram of Gysin

maps

M(P1,g,OL ,
̂

V2
(p)

)
h�

N (F◦,ns
�,OL

, j∗R1π∗̂

V2
(p)

)

M(L, ̂

V2
(p)|L) N (κ(s), j∗R1π∗̂

V2
(p)|κ(s))

By assumption, g�(o(p)
2,ét)|κ(s) �= 0; it thus suffices to show that this class is not annihi-

lated in the passage from H1(κ(s), j∗R1π∗̂

V2
(p)|κ(s)) to N (κ(s), j∗R1π∗̂

V2
(p)|κ(s)).
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As h�(o(p)
2,ét) �= 0 by assumption, it suffices to show that the natural map

H1(P1,g,OL ,
̂

V1
(p)

) → H1(L, ̂

V1
(p)|L)

is surjective, by the definition of N (see Sect. 7.1.3). Now

H1(P1,g,OL ,
̂

V1
(p)

) → H1(OL , ̂

V1
(p)|OL )

is surjective because it has a section induced by the structure map P1,g,OL →
Spec(OL). Thus it suffices to show that the natural map

H1(OL , ̂

V1
(p)|OL ) → H1(L, ̂

V1
(p)|L)

is surjective. But this follows from the inflation-restriction exact sequence; if I ⊂
GL := Gal(L/L) is the inertia subgroup, the cokernel of the above map injects into

H1(I , ̂

V1
(p)

)GL/I .

By assumption � is a stable tree, so I acts trivially on ̂

V1
(p)

. Thus this group is simply

Homcts(I ab, ̂

V1
(p)

)GL/I . But this last vanishes for weight reasons; I ab has weight −2

and ̂

V1
(p)

has weight −1 (again as � is a tree). 
�
Remark 6.2.4 One may immediately use the above theorems to construct examples
of curves over number fields for which the existence of π1-sections is obstructed by
o1,ét (resp. õ2,ét) by algebraization and Artin approximation. See e.g. [37, 7.5] for an
explanation.
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7 Appendix: Group cohomology constructions and computations

7.1 Obstructions arising from extensions by a 2-nilpotent group

Suppose we are given a short exact sequence of continuous maps of (not necessarily
commutative) discrete or pro-finite groups

1 → π → π̃ → G → 1.

Then conjugation induces an outer action of G on π .
Let π = L1π ⊃ L2π ⊃ . . ., where Lk+1π = [π, Lkπ ], be the lower central series

of π .
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7.1.1 Non-abelian cohomology computations

Consider the sequences

0 → L2π/L3π → π/L3π → π/L2π → 0, (7.1.1)

0 → π/L2π → π̃/L2π → G → 1, (7.1.2)

and
0 → L2π/L3π → π̃/L3π → π̃/L2π → 1. (7.1.3)

Definition 7.1.4 Let

1 → A → B → C → 1

be a split exact sequence of groups, with A abelian. For two sections s1, s2 : C → B,
we say they are equivalent if there exists some element a ∈ A such that s1(c) =
as2(c)a−1 for any c ∈ C .

Lemma 7.1.5 Let

1 → A → B → C → 1

be a exact sequence of (discrete or pro-finite) groups, with A abelian. Then the set
of continuous sections s : C → B up to equivalence is, if non-empty, canonically a
torsor for H1(C, A).

Proof This is [32, I.5, Exercise 4], taking f = id,G = G ′. 
�
Proposition 7.1.6 The set of continuous sections to sequence 7.1.2 up to equivalence
is, if non-empty, canonically a torsor for H1(G, π/L2π).

Proof Immediate from Lemma 7.1.5. 
�
Definition 7.1.7 Suppose sequence 7.1.2 admits a splitting s, inducing an action of G
on π/L3π . Let

δs : H1(G, π/L2π) → H2(G, L2π/L3π)

be the boundary map in non-abelian cohomology arising from sequence 7.1.1. Con-
cretely, for a cocycle x : G → π/L2π , we lift it to a continuous map x̃ : G → π/L3π

and define a cocycle representing the class δs([x]) as

δs(x)(a, b) = x̃(a)(x̃(b))s(a)(x̃(ab))−1 (7.1.8)

where here a ∈ G acts on x̃(b) ∈ π/L3π via the splitting s. For reference, see [34,
Section 5.6, 5.7].
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Definition 7.1.9 We define a mapm : H1(G, π/L2π)⊗2 → H2(G, L2π/L3π) as the
composition of the cup product with the map on H2 induced by the commutator map:

m : H1(G, π/L2π)⊗2 ∪−→ H2(G, (π/L2π)⊗2)
[−,−]−→ H2(G, L2π/L3π).

Explicitly, the second map is induced by the following map between coefficients:

(π/L2π)⊗2 → L2π/L3π

α ⊗ β �→ α̃β̃α̃−1β̃−1

where α̃, β̃ are lifts of α, β ∈ π/L2π to π/L3π .

Note that the map m above is defined independent of any choice of section to
sequence 7.1.2.

Proposition 7.1.10 (Compare to [7, Proposition 1]) Let δs and m be the maps defined
in Definitions 7.1.7, 7.1.9. Then we have

δs(x + y) − δs(x) − δs(y) = m(x ⊗ y).

Proof Let x, y : G → π/L2π be cocycles representing classes in H1(G, π/L2π) and
let x̃, ỹ : G → π/L3π be continuous set-theoretic lifts of x, y from Sequence 7.1.1.

By definition, a cocycle representing the class x ⊗ y ∈ H2(G, (π/L2π)⊗2) is

x ⊗ y : a, b �→ x(a) ⊗ y(b)a .

So m(x ⊗ y) can be represented by

m(x ⊗ y) : a, b �→ [x̃(a), ỹ(b)a]

where the choice of the action of a ∈ G on ỹ(b) does not affect this commutator.
Now we have

(δs(x + y) − δs(x) − δs(y))(a, b)

= x̃(a)ỹ(a)x̃(b)a ỹ(b)a ỹ−1(ab)x̃−1(b)a x̃−1(a)ỹ(ab)ỹ−1(b)a ỹ−1(a)

= x̃(a)ỹ(a)x̃(b)a ỹ−1(a)ỹ(a)ỹ(b)a ỹ−1(ab)x̃−1(b)a x̃−1(a)ỹ(ab)ỹ−1(b)a ỹ−1(a)

= x̃(a)ỹ(a)x̃(b)a ỹ−1(a)x̃−1(b)a x̃−1(a)ỹ(a)ỹ(b)a ỹ−1(ab)ỹ(ab)ỹ−1(b)a ỹ−1(a)

= x̃(a)[ỹ(a), x̃(b)a]x̃−1(a)

= [ỹ(a), x̃(b)a].

Here, we used the fact that ỹ(a)ỹ(b)a ỹ−1(ab), [ỹ(a), x̃(b)a] ∈ L2π/L3π is in the
center of π/L3π . And we conclude by noticing δs(x + y) − δs(x) − δs(y) does not
change if we switch x, y. 
�

In particular δs is a homomorphism of abelian groups modulo the image of m.
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Proposition 7.1.11 Let s1, s2 be sections to sequence 7.1.2. FollowingDefinition 7.1.7,
each section induces a G-action onπ/L3π and hence a boundary map in cohomology

δsi : H1(G, π/L2π) → H2(G, L2π/L3π).

Then

δs1(x) − δs2(x) = m([s1 − s2] ⊗ x),

where m is the map defined in Definition 7.1.9 and [s1 − s2] ∈ H1(G, π/L2π) is the
element classifying the difference between s1, s2 from Proposition 7.1.6. This class is
represented by the cocycle cs2s1 : g �→ s1(g)s2(g)−1.

Proof Following Definition 7.1.7, if we denote by x̃ : G → π/L3π a continuous lift
of x , then

δsi (x)(a, b) = x̃(a)x̃(b)si (a) x̃−1(ab)

where a ∈ G acts on x̃(b) ∈ π/L3π through conjugation by s̃i (a), where s̃i : G →
π̃/L3π is a continuous lift of si to π̃/L3π , i.e.

x̃(b)si (a) = s̃i (a)x̃(b)s̃i (a)−1.

Note that since different choices of lifts differ by an element in L2π/L3π , which is in
the center of π/L3π , this action is independent of s̃i , justifying the notation. So now
we have

(δs1(x) − δs2(x))(a, b)

= x̃(a)s̃1(a)x̃(b)s̃1
−1(a)x̃−1(ab)x̃(ab)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

= x̃(a)s̃1(a)x̃(b)s̃1
−1(a)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

= x̃(a)s̃1(a)s̃2
−1(a)s̃2(a)x̃(b)s̃2

−1(a)s̃2(a)s̃1
−1(a)s̃2(a)x̃−1(b)s̃2

−1(a)x̃−1(a)

= x̃(a)[s̃1(a)s̃2
−1(a), s̃2(a)x̃(b)s̃2

−1(a)]x̃−1(a)

= m(cs2s1 ⊗ x)(a, b).

Here we used the fact that m(cs2s1 ⊗ x)(a, b) = [c̃s2s2(a), x̃(b)a] is defined inde-
pendent of the choice of the G-action on π/L3π , so we chose to take the action to be
conjugation by s̃2(a). Also, the elements s̃1(a)s̃2

−1(a), s̃2(a)x̃(b)s̃2
−1(a) ∈ π/L3π ,

which implies their commutator lies in L2π/L3π and hence commutes with x̃(a) ∈
π/L3π . 
�

7.1.2 Construction of the class õ2

Definition 7.1.12 Let

H2(G, L2π/L3π) := H2(G, L2π/L3π)/im(m).
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By Proposition 7.1.11, for any two sections s1, s2 to sequence 7.1.2, the composite
maps

H1(G, π/L2π)
δsi−→ H2(G, L2π/L3π) → H2(G, L2π/L3π)

are canonically identified. We denote this (canonical) composite map by δ. Note that
by Proposition 7.1.10, δ is linear.

As L2π/L3π is abelian, sequence 7.1.3 gives rise to a class in b ∈ H2(π̃/L2π, L2

π/L3π). Given a splitting s of sequence 7.1.2, there is an induced class s∗b ∈
H2(G, L2π/L3π); this class depends on s.

Proposition 7.1.13 Suppose s1, s2 are two sections to sequence 7.1.2, with difference

[s1 − s2] ∈ H1(G, π/L2π).

Denote by s∗
1b − s∗

2b the image of s∗
1b − s∗

2b in H2(G, L2π/L3π). Then we have

s∗
1b − s∗

2b = δ([s1 − s2]), where

δ : H1(G, π/L2π) → H2(G, L2π/L3π)

is the map from Definition 7.1.12.

Proof By definition, the extension class b ∈ H2(π̃/L2π, L2π/L3π) is represented by
a cocycle g1, g2 �→ g̃1g̃2g̃1g2

−1 where g̃1, g̃2, g̃1g2 are lifts of g1, g2, g1g2 ∈ π̃/L2π

to π̃/L3π . Thus, the induced class s∗
i b is represented by

x, y �→ s̃i (x)s̃i (y)s̃i
−1(xy)

where s̃1, s̃2 : G → π̃/L3π are continuous lifts of s1, s2.
We will prove the desired statement by showing

s∗
1b − s∗

2b = δs2([s1 − s2]) ∈ H2(G, L2π/L3π).

Let cs2s1 : g �→ s1(g)s2(g)−1 be a cocycle representing the class [s1 − s2]. Then
g → s̃1(g)s̃2

−1(g) is a continuous lift of cs2s1 and by Definition 7.1.7, we have

δs2(cs2s1)(x, y) = s̃1(x)s̃2
−1(x)(s̃1(y)s̃2

−1(y))s2(x)s̃2(xy)s̃1
−1(xy)

= s̃1(x)s̃2
−1(x)s̃2(x)s̃1(y)s̃2

−1(y)s̃2
−1(x)s̃2(xy)s̃1

−1(xy)

= s̃1(x)s̃1(y)s̃2
−1(y)s̃2

−1(x)s̃2(xy)s̃1
−1(xy)

= (s̃1(x)s̃1(y)s̃1
−1(xy))(s̃1(xy)s̃2

−1(xy))

(s̃2(xy)s̃2
−1(y)s̃2

−1(x))(s̃2(xy)s̃1
−1(xy))

= s∗
1b(x, y) − s∗

2b(x, y)
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In the last step, we used that the element s̃1(xy)s̃2
−1(xy) lies inπ/L3π and the element

s̃2(xy)s̃2
−1(y)s̃2

−1(x) lies in L2π/L3π . So they commute with each other. 
�
Definition 7.1.14 Let

M(G, L2π/L3π) = coker(δ : H1(G, π/L2π) → H2(G, L2π/L3π)).

Then for any section s : G → π̃/L2π of sequence 7.1.2,we let õ2 ∈ M(G, L2π/L3π)

be the image of s∗b. This class is independent of s by Proposition 7.1.13.

Remark 7.1.15 Letγ : G ′ → G be a grouphomomorphism.Pulling back the sequence

1 → π → π̃ → G → 1

along this line, we obtain a sequence

1 → π → π̃ ×G G ′ → G ′ → 1

with analogous properties to the corresponding sequence for G; hence we may
define M(G ′, L2π/L3π). There exists a unique map γ ∗ : M(G, L2π/L3π) →
M(G ′, L2π/L3π) which makes the following diagram commute:

H2(G, L2π/L3π)
γ ∗

H2(G ′, L2π/L3π)

M(G, L2π/L3π)
γ ∗

M(G ′, L2π/L3π)

From the definition it is clear that γ ∗õ2 = õ2.

Proposition 7.1.16 The obstruction õ2 ∈ M(G, L2π/L3π) vanishes if the sequence

1 → π/L3π → π̃/L3π → G → 1

splits.

Proof Immediate from the definition. 
�

7.1.3 Gysin images of õ2

Throughout this paperwewill consider variousGysin images of õ2, as we now explain.
Suppose that we are in the situation described above, and moreover G sits in a short
exact sequence

1 → I → G → H → 1
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with I = Z (in the discrete setting) or I = ̂

Z (in the pro-finite setting). Then as in
Sect. 3.2, we have a natural (Gysin) map

g : H2(G, L2π/L3π) → H1(H , (L2π/L3π)I )

arising from the Hochschild-Serre spectral sequence.
We let

H1(H , (L2π/L3π)I ) := coker(g ◦ m : H1(G, π/L2π)⊗2 → H1(H , (L2π/L3π)I ))

and define

N (H , (L2π/L3π)I ) := coker(g ◦ δ : H1(G, π/L2π) → H1(H , (L2π/L3π)I )).

Then by definition the natural Gysin map g above descends to a map

h : M(G, L2π/L3π) → N (H , (L2π/L3π)I ).

We now discuss the functoriality properties of the map h defined above. Suppose
we have a map of short exact sequences of groups

1 I ′

∼

G ′

γ

H ′

η

1

1 I G H 1

inducing an isomorphism I ′ ∼→ I as above.
Pulling back the sequence

1 → π → π̃ → G → 1

along this line, we obtain a sequence

1 → π → π̃ ×G G ′ → G ′ → 1

with analogous properties to the corresponding sequence for G; hence we have an
analogous map

h′ : M(G ′, L2π/L3π) → N (H ′, (L2π/L3π)I ′).
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It is immediate from the functoriality of the Hochschild-Serre spectral sequence that
the evident square

M(G, L2π/L3π)
h

γ ∗

N (H , (L2π/L3π)I )

η∗

M(G ′, L2π/L3π)
h′

N (H ′, (L2π/L3π)I ′)

commutes.

7.2 Cohomological preliminaries for surface groups

We now specialize to the case where G is a surface group, i.e. we let G = π1(�h) for
some h ≥ 1. G has presentation

G = 〈a1, b1 . . . , ah, bh |
h

∏

i=1

[ai , bi ]〉.

We will make the computations described in Sect. 7.1 explicit in this case.
Let G act on Z[G] by multiplication on the left. We begin by introducing a finite

free resolution of Z as a (trivial) Z[G]-module. Let Ri = [ai , bi ] and R = ∏h
i=1 Ri .

As a convention, we set a0 = b0 = 1.

Proposition 7.2.1 [11, Proposition 2.1] There is an exact sequence of Z[G]-modules

0 → P2
d2−→ P1

d1−→ P0
ε−→ Z → 0 (7.2.2)

where P0 = Z[G] with generator v, P1 = (Z[G])2h with generators ei , fi , i =
1, . . . , h and P2 = Z[G] with generator u. Then, on the generators the maps are
defined as

ε : v �→ 1,

d1 : ei �→ (ai − 1)v,

fi �→ (bi − 1)v,

d2 : u �→
h

∑

i=1

(

∂R

∂ai
ei + ∂R

∂bi
fi

)

,

where the partial derivatives are the Fox derivatives.

Let M be a left G-module and apply the functor Hom(•, M) to Sequence (7.2.2).
We get a sequence

0 ←− Hom(P2, M)
d∗
2←− Hom(P1, M)

d∗
1←− Hom(P0, M) ←− · · ·
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whose cohomology is precisely H∗(G, M). Since P2 is a freeZ[G]-module generated
by a single element u, the group Hom(P2, M) is isomorphic to M via the map φ �→
φ(u). Thus, each class in H2(G, M) can be represented by an element of M . The
following corollary gives an explicit description of H2(G, M) in these terms.

Corollary 7.2.3 [11, Corollary 3.1], [25, Corollary 11.2] For any left G-module M,

H2(G, M) � M/

(

∂R

∂a1
,

∂R

∂b1
, . . . ,

∂R

∂ah
,

∂R

∂bh

)

M .

Corollary 7.2.4 Let I := ker(ε). For any left G-module M,

H2(G, M) � M/I M = MG .

Proof Using Corollary 7.2.3, the only thing to show is
(

∂R
∂a1

, ∂R
∂b1

, . . . , ∂R
∂ah

, ∂R
∂bh

)

M =
I M . Since

∂R

∂ai
=

⎛

⎝

i−1
∏

j=0

R j

⎞

⎠ ai (1 − bi )a
−1
i ,

∂R

∂bi
=

⎛

⎝

i−1
∏

j=0

R j

⎞

⎠ aibi (1 − a−1
i )b−1

i ,

we get an inclusion
(

∂R
∂a1

, ∂R
∂b1

, . . . , ∂R
∂ah

, ∂R
∂bh

)

M ⊂ I M .

The Z[G]-module I M is generated by elements of the form (1 − ai )m, (1 −
bi )m, i = 1, . . . , h,m ∈ M . For any m ∈ M , let m′

i = aim and m′′
i = bim. Then we

have

(1 − ai )m = −aib
−1
i a−1

i

⎛

⎝

i−1
∏

j=0

R j

⎞

⎠

−1
∂R

∂bi
m′′

i , (1 − bi )m = a−1
i

⎛

⎝

i−1
∏

j=0

R j

⎞

⎠

−1
∂R

∂ai
m′

i .

So we have the reverse inclusion and conclude the statement. 
�
Note that the abstract isomorphism in the statement of Corollary 7.2.4 follows from

Poincaré duality for surfaces; the purpose of the corollary is to make this isomorphism
explicit in terms of the free resolution of Proposition 7.2.1.

Proposition 7.2.5 Let φ ⊗ ψ ∈ (ker d∗
2 )⊗2 ⊂ Hom(P1, M)⊗2 represent the class

[φ] ⊗ [ψ] ∈ H1(G, M)⊗2. Then the class [φ] ∪ [ψ] ∈ H2(G, M⊗2) is represented
by a cocycle φ ∪ ψ ∈ Hom(Z[G], M⊗2) defined by u �→ φ ⊗ ψ(
11(u)) where

11 : P2 → P1 ⊗ P1 is a part of a diagonal approximation 
 : P → P ⊗ P
constructed in [11, Theorem 2.2].

Proof This immediately follows from the definition of cup product. See for example
[3, Section 5.3]. 
�
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Lemma 7.2.6 The map

L2G/L3G → (∧2(G/L2G))/〈
g

∑

i=1

ai ∧ bi 〉

[x, y] �→ [x] ∧ [y]

is an isomorphism where [x] is the image of x ∈ G under the natural map G →
G/L2G.

Proof Let F = 〈a1, b1, . . . , ag, bg〉 be the free group. By statement (4) in [35, Sec-
tion 4.3, page 20], the graded Lie algebra (F/L2F) ⊕ (L2F/L3F) with the bracket
operation given by the commutator is isomorphic to (F/L2F)⊕ (∧2(F/L2F)). Then
by Section 1, Theorem on page 17]Labute, the statement in our lemma for a group G
with a single defining relation follows. 
�

7.2.1 Computation for the surface group�1(61)

Now we specialize to the case h = 1 and carry out some computations to be used in
Sect. 5.2.

Let

G = π1(�1) = 〈S, T |[S, T ]〉

with an outer action on π1(�g) given by a sequence

1 → π1(�g) → π1(E) → G → 1,

where E is a �g-bundle over �1. In this section, we will be considering the two
G-modules π1(�g)/L2π1(�g) and L2π1(�g)/L3π1(�g).

The free resolution of Z as a Z[G]-module in Proposition 7.2.1 in this case is given
as follows:

0 −→ P2
d2−→ P1

d1−→ P0
ε−→ Z −→ 0 (7.2.7)

where P2 = Z[G]with generator u, P1 = Z[G]2 with generators e, f and P0 = Z[G]
with generator v. The maps are:

d2(u) = (1 − S)e − (1 − T ) f ,

d1(e) = (T − 1)v, d1( f ) = (S − 1)v.

Appling the functor Hom(•, π1(�g)/L2π1(�g)) to this resolution, we see that the
groups H∗(G, π1(�g)/L2π1(�g)) are given by the cohomology of the sequence

0 ←− Hom(P2, π1(�g)/L
2π1(�g))

d∗
2←− Hom(P1, π1(�g)/L

2π1(�g))

d∗
1←− Hom(P0, π1(�g)/L

2π1(�g)) ←− · · ·
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Cocycles in ker d∗
2 are given by φ ∈ Hom(P1, π1(�g)/L2π1(�g)) satisfying

(1 − S)φ(e) − (1 − T )φ( f ) = 0. (7.2.8)

Lemma 7.2.9 Let φ,ψ ∈ ker d∗
2 represent classes [φ], [ψ] ∈ H1(G, π1(�g)/L2π1

(�g)). Then a cocycle in Hom(P2, L2π1(�g)/L3π1(�g)) representing the class
m([φ] ⊗ [ψ]) is given by

m(φ ⊗ ψ)(u) = φ(e) ∧ Tψ( f ) − φ( f ) ∧ Sψ(e). (7.2.10)

Proof By Proposition 7.2.5, an element in Hom(P2, π/L2π) which represents the
class

[φ] ∪ [ψ] ∈ H2(G, (π1(�g)/L
2π1(�g))

⊗2)

is given by

(φ ⊗ ψ ◦ 
11)(u) = φ(e) ⊗ ψ(T f ) − φ( f ) ⊗ ψ(Se)

where the map


11 : u �→ e ⊗ T f − f ⊗ Se

is from [11, Theorem 2.2]. Thus by Definition 7.1.9 and Lemma 7.2.6,

m(φ ⊗ ψ)(u) = φ(e) ∧ Tψ( f ) − φ( f ) ∧ Sψ(e)

represents the class m([φ] ⊗ [ψ]) ∈ H2(G, L2π1(�g)/L3π1(�g)). 
�
In the following, we consider the case where the sequence

1 → π1(�g)/L
2π1(�g) → π1(E)/L2π1(�g) → G → 1

splits. So we fix a section s : G → π1(E)/L2π1(�g) and let S, T act on
π1(�g)/L3π1(�g) via the section s. We compute the boundary map δs from Defi-
nition 7.1.7 explicitly in the following lemma.

Lemma 7.2.11 Let φ ∈ ker d∗
2 represent the class [φ] ∈ H1(G, π1(�g)/L2π1(�g)).

Then a cocycle in Hom(P2, L2π1(�g)/L3π1(�g)) representing the class δs([φ]) is
given by

δs(φ)(u) = [˜φ(e)
−1

, ˜φ( f )]
(

˜φ( f )
T
)

˜φ( f )
−1

˜φ(e)

(

˜φ(e)
S
)−1

where ˜φ(e), ˜φ( f ) ∈ π1(�g)/L3π1(�g) are lifts of φ(e), φ( f ) ∈ π1(�g)/L2π1(�g).
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Proof We start with giving an embedding of the resolution (7.2.7) into the standard
resolution of Z as a Z[G]-module as follows:

0 Z[G] d2

ι2

Z[G]2 d1

ι1

Z[G] ε

�

Z

�

0

· · · Z[G3] D2
Z[G2] D1

Z[G] ε
Z 0

where the maps are given by

ι2(u) = (ST , S, T ) − (S, T , 1),

ι1(e) = −(T , 1), ι1( f ) = −(S, 1).

Since ι1 is injective andZ[G2] = ⊕g∈GZ[G](1, g) is a freeZ[G]-module, there exists

φ′ ∈ ker D∗
2 ⊂ HomZ[G](Z[G2], π1(�g)/L

2π1(�g))

such that φ′((1, T−1)) = (φ(e)−1)T
−1
, φ′((1, S−1)) = (φ( f )−1)S

−1
, or equivalently

ι1 ◦ φ′ = φ. Now direct computation shows that an inhomogeneous cocycle x : G →
π1(�g)/L2π1(�g) representing the class [φ] ∈ H1(G, π1(�g)/L2π1(�g)) is given
by

x(T−1) = (φ(e)−1)T
−1

, x(S−1) = (φ( f )−1)S
−1

and hence

x(T ) = φ(e), x(S−1T ) = (φ( f )−1φ(e))S
−1

Now choose a lift x̃ of x to π1(�g)/L3π1(�g) such that

x̃(T−1) = (˜φ(e)
−1

)T
−1

, x̃(S−1T ) = (˜φ( f )
−1

˜φ(e))S
−1

Using Equation (7.1.8) in Definition 7.1.7, we may compute an inhomogeneous
cocycle representing δs([x]) = δs([φ]). Translating back into homogeneous cocycles
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and evaluating on ι2(u) gives:

(δs(x)(S
−1T , T−1))S(δs(x)(T

−1, S−1T ))ST )−1

=
(

(

˜φ(e)
−1

˜φ( f )

)S−1 (

˜φ(e)
T−1

)S−1T (

˜φ( f )
S−1

)−1
)S

⎛

⎝

(

˜φ(e)
T−1

(

˜φ(e)
−1

˜φ( f )

)S−1 (

˜φ( f )
S−1

)−1
)ST

⎞

⎠

−1

= [˜φ(e)
−1

, ˜φ( f )]
(

˜φ( f )
T
)

˜φ( f )
−1

˜φ(e)

(

˜φ(e)
S
)−1

,

as desired. 
�

Remark 7.2.12 It might not seem obvious that the element

(

˜φ( f )
T
)

˜φ( f )
−1

˜φ(e)
(

˜φ(e)
S
)−1

is in L2π1(�g). But if we apply the natural map π1(�g)/L3π1(�g) →
π1(�g)/L2π1(�g) to it, we get T (φ( f )) − φ( f ) + φ(e) − S(φ(e)), which is 0 by
Equation (7.2.8). Thus this claim follows from the fact that φ was a cocycle.

Finally, we record the following diagram, whichwill be useful for our computations
in Sect. 5.2.

Lemma 7.2.13 Let H = π1(�g)/L2π1(�g), ω = ∑g
i=1 ai ∧ bi , and let ω be the

image of ω under the natural map ∧2H → ∧2HG. Then there exists a unique map h
which makes the following diagram commute.

(∧2H)/〈ω〉 f

g

((∧2H)/〈ω〉)G

h

(∧2HG)/〈ω〉

Proof The only thing we need to show is that ker f ⊂ ker g. The group ker f is
generated by elements of the form gα ∧ gβ − α ∧ β, for g ∈ G. Observe that
elements of the form (g − 1)α ∧ β are contained in ker g. Since gα ∧ gβ − α ∧ β =
gα ∧ (g − 1)β + (g − 1)α ∧ β, we conclude our lemma. 
�
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