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Abstract

We formulate a tropical analogue of Grothendieck’s section conjecture: that for every
stable graph I' of genus g > 2, and every field &, the generic curve with reduction
type " over k satisfies the section conjecture. We prove many cases of this conjecture.
In so doing we show the existence of many examples of curves with no rational points
satisfying the section conjecture over fields of geometric interest, and then over p-
adic fields and number fields via a Chebotarev argument. We construct two Galois
cohomology classes o] and 03, which obstruct the existence of 7r{-sections and hence
of rational points. The first is an abelian obstruction, closely related to the period of
a curve and to a cohomology class on the moduli space of curves .#, studied by
Morita. The second is a 2-nilpotent obstruction and appears to be new. We study the
degeneration of these classes via topological techniques, and we produce examples
of surface bundles over surfaces where these classes obstruct sections. We then use
these constructions to show the existence of curves over p-adic fields and number
fields where each class obstructs mj-sections and hence rational points. Among our
geometric results are a new proof of the section conjecture for the generic curve of
genus g > 3, and a proof of the section conjecture for the generic curve of even genus
with a rational divisor class of degree one (where the obstruction to the existence of a
section is genuinely non-abelian).

1 Introduction

The goal of this paper is to give a systematic way to prove the existence of many
examples of curves for which Grothendieck’s section conjecture holds. We begin by
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formulating a geometric analogue of the section conjecture “at the boundary of .#,,"
which we refer to as the tropical section conjecture. We prove many cases of this con-
jecture, giving geometric examples where the section conjecture holds, by an analysis
of the degeneration of certain cohomology classes on the moduli space of curves, .#,,
and on the moduli space of degree one divisor classes on the universal curve, Pic%fg A
We then use a Chebotarev density argument to prove the existence of (many) examples
of curves over p-adic fields for which the section conjecture holds, which yields by
standard approximation techniques (which we omit) the existence of many examples
over number fields. Our methods are inspired by “arithmetic topology," and indeed, a
key step in our construction is to pass from the existence of certain (topological) sur-
face bundles over surfaces to curves over p-adic fields with analogous properties. In
our view the main interest in this paper arises from its fusion of topological, geometric,
and arithmetic techniques.

The main technical innovation of the paper is the study of the Gysin images of two
cohomology classes o1, 05 which obstruct ;-sections and hence rational points, as
well as the construction of 05 itself (which appears to be new, though it is inspired by
work of Jordan Ellenberg [7] and Wickelgren [41]).

1.1 The section conjecture

Let k be a field and let X be a smooth projective k-curve (that is, a smooth, projective,
separated, geometrically connected k-scheme of dimension 1). Let k be a separable
closure of k and let ¥ € X (k) be a geometric point of X. Then there is a short exact
sequence ) )

1 - 7' (Xg, ¥) > 77 (X, %) — Gal(k/k) — 1, (1.1.1)

where nft denotes the étale fundamental group. To each rational point x € X (k) one
may associate a canonical conjugacy class of splittings [s,] of this exact sequence.
We call splittings of sequence (1.1.1) m-sections. The starting point for this work is
Grothendieck’s section conjecture, which suggests that in many cases the sequence
above encodes all of the arithmetic of X:

Conjecture 1.1.2 (The section conjecture [12]) Suppose k is a finitely-generated field
of characteristic 0 and that the genus of X is at least 2. Then the map

X (k) — {splittings of sequence (1.1.1)}/conjugacy

X = [s¢]

is a bijection.

Though Grothendieck originally made his conjecture only over finitely-generated
fields of characteristic 0, it is widely believed to hold true in more generality—for
example, over p-adic fields.

Following Stix [37], we say that a smooth projective curve X /k trivially satisfies
the section conjecture if sequence (1.1.1) has no sections. As any map with target
the empty set is a bijection, such a curve evidently does in fact satisfy the section
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conjecture. (Of course it is in general by no means trivial to show that a curve does
indeed trivially satisfy the section conjecture.) While there is now a fair amount of
evidence for the section conjecture (see e.g. [39]), all known examples of curves X /k
satisfying the section conjecture do so trivially, at least to the authors’ knowledge.
Though this state of affairs is disappointing, it is perhaps worth noting that proving
the section conjecture in the case of k-curves X with X (k) = ¥ would in fact imply
the section conjecture for all X /k [37, Appendix C].

1.2 The tropical section conjecture

Let g > 2 be an integer. Recall that the moduli space .#, of smooth projective curves
of genus g has a Deligne-Mumford compactification ./, , parametrizing stable curves
of genus g. The boundary strata of Wg are indexed by stable graphs (see Sect. 2.1 for
more details). For a stable graph I', we denote the corresponding boundary stratum
by Zr.

Now suppose g > 2, and let k be a field. For each boundary stratum Z of ./, let

KT be the fraction field of the complete local ring ;. := ﬁ%k\Zr of Ay i at the
8.0 —_

generic point of Zr, and let €. be the fiber of the universal curve ¢ over K.

Conjecture 1.2.1 (Tropical section conjecture) For every field k and stable graph T,
the curve ‘KKAF trivially satisfies the section conjecture.

That is, we conjecture that the sequence (1.1.1) has no sections when we set X =
Gy We think of €. as “the generic curve with reduction type I'." In our view this
conjecture is interesting because it aims to capture the local, geometric reasons for
the truth of the section conjecture. Indeed, the methods we use to prove special cases
of this conjecture can also be used to show the existence of arithmetic examples of
curves over local fields satisfying the section conjecture for geometric reasons, as we
explain later on in this introduction.

Remark 1.2.2 One can verify that the curves €. have no rational points, at least in
characteristic 0, consistent with Conjecture 1.2.1. Indeed, it follows from the main
result of Hubbard’s thesis [20] that if T" is the trivial graph, consisting only of a single
vertex of genus g, then €. has no Kr-rational points; this is the case of the generic
curve. For non-trivial I', the analysis of rational points of the generic n-pointed curve
by Earle and Kra [6] implies that the only rational points on the special fiber of the
canonical curve over O are nodes. Now an analysis of the deformation theory of

these nodes shows that none of them lift to I/(\r—rational points of C..

Remark 1.2.3 The assumption g > 2 is necessary so that Kr is a field, rather than a
gerbe over the spectrum of a field. This condition can be relaxed to g > 2 if one allows
such objects into the formulation of the section conjecture, but we felt doing so would
introduce unnecessary clutter.

One of the main purposes of this paper is to prove several special cases of this
conjecture, and indeed to identify precise obstructions to the splitting of (1.1.1) in
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Fig. 1 The surface X associated to a stable graph I'. Here each edge of I" corresponds to a marked loop
in X, and a vertex of I' labeled by an integer g corresponds to a component of the complement of the
marked loops in X of genus g

these cases. All of the cases of this conjecture that we verify are of a combinatorial
nature, as we now explain.

Let ' be a connected tropical curve, i.e. a connected metric graph such that the
underlying graph I is stable in the sense of Sect. 2.1. One may associate (non-
functorially) a compact orientable surface Xr to I', with marked loops y, on X
for each edge e of I" by “inflating I'" (see Fig. 1 for an illustration, and Sect. 2.1 for
a precise description). We denote the Dehn twist around y, by T,. Now assume that
the edge lengths £(e) of the metric graph T are positive integers. Let Tt be the Dehn
multitwist along the marked curves in Xr, that is,

Ty = 1_[ Teﬁ(e)_
ecE

Let G be a group of orientation-preserving mapping classes acting on Xr and per-
muting the loops y, up to isotopy, such that if g(y.,) = y. for some g € G, then
£(e) = £(¢'). Then G commutes with T up to isotopy and so we obtain an action

(up to isotopy) of (Tr) x G on X, where (1T) is the subgroup of the mapping class
group generated by Tr. Hence we have a fibration

W = 3r xqmyx6) E{Tr) x G) — B({Tr) x G)

with fiber X, where here E ((T1) x G) is a contractible space with free (71 ) x G-action
and

B({Tr) x G) = E({Tr) x G)/({Tr) x G)
denotes the classifying space. The long exact sequence in homotopy groups gives:

1 - 7 (Zr) > my(W) - (Tr) x G — 1. (1.2.4)
Question 1.2.4 For which I', G does sequence (1.2.4) split?
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One observation of this paper is that in some cases, answering this purely topological
question for certain G, I', allows us to (non-trivially) deduce Conjecture 1.2.1 for I"
and certain k.

1.3 Main results
1.3.1 Geometric results

Let T, I/ be stable graphs. We say that I" specializes to T'" if " can be obtained from I'’
by contracting edges (or equivalently, if Zp- is in the closure of Zr). So, for example
the graph consisting only of a single vertex of genus g specializes to every stable graph
of genus g.

Our first result is a verification of Conjecture 1.2.1 in many cases. A simple-to-state
special case of this result is:

Theorem 1.3.1 Let k be a field of characteristic 0.

(1) Let g > 2 be an integer. Let Cq_| be the stable graph consisting of a (g — 1)-cycle
all of whose vertices have genus 1. Then, if I is any graph which specializes to
Cg—1, the section conjecture is trivially true for €.

(2) Let g > 2 be an even integer, and let T, be any stable tree of genus g admitting
an involution that fixes no vertices and stabilizes a unique edge. Then, if T is any
graph which specializes to Ty, the section conjecture is trivially true for Cgfr.

See Figs. 3 and 4 for other examples of graphs for which our method succeeds,
including some graphs corresponding to boundary components of % of maximal
codimension. See Corollary 6.1.2 for a strenghtening of (1) and Corollary 6.1.7 for a
strengthening of (2).

In fact we prove a substantially stronger result—in case (1) of Theorem 1.3.1,
we show that there is an obstruction to splitting sequence (1.1.1) arising from the
abelianization of the geometric étale fundamental group, and in case (2) we show that,
while there is no such abelian obstruction, there is an obstruction arising from the
second nilpotent quotient of the geometric étale fundamental group.

As a consequence of our argument in case (2), we find:

Theorem 1.3.2 Let k be a field of characteristic 0. Let g > 2 be even, and let Q :=
k(Picclgg /. ///g) be the function field of the moduli space of degree 1 divisors on the

universal curve over k. Then the section conjecture is trivially true for the base change
of the universal curve G, to Q.

See Corollary 6.1.9 for a more precise statement—we show that while there is no
abelian obstruction to sections, there is in fact a 2-nilpotent obstruction. That is, we
show the sequence

1= 76, o) /L’ 7 (6, ) = 71 (€4,0)/L’7{' (€, ) - Gal(Q/Q) — 1

does not split, where L"nlét (%g@) denotes the lower central series of nft(%g@). As
far as we know even the following simple corollary is new:
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Corollary 1.3.3 Let k be a field of characteristic O and let g > 2 be even. The base
change of the universal curve to k(Pic}gg / ///g) has no rational points.

The following consequence of our methods partially strengthens a result of Hain
[14]:

Corollary 1.3.4 Let g > 2 be an integer and k a field of characteristic 0. Let L be an
extension L of the function field k(M) of Mg k of degree not divisible by g — 1. Then
the base change 6,1 of the universal curve €, of genus g to L trivially satisfies the
section conjecture. Indeed, the exact sequence

L = 71{"C, i)™ = ™ Co) /101G, 1) 11 C )]
— Gal(k(Ay)/L) — 1

does not split.

See Corollary 6.1.3 for a stronger statement. Hain proves that the generic curve of
genus g over a field of characteristic zero satisfies the section conjecture if g > 5.
Our proof strengthens his statement in some ways by showing that the obstruction
to splitting is in some sense abelian. Hain proves similar non-splitting results for the
level covers of .#,, about which we say nothing. While we state the results here in
characteristic 0 for simplicity, they in fact hold in any sufficiently large (in terms of
g) finite characteristic as well, as explained in Corollary 6.1.3.

Inboth cases of Theorem 1.3.1, we proceed by first answering its topological variant,
Question 1.2.4, for (I', G) = (Cy—1,Z/(g — 1)Z) and (I', G) = (T, Z/27Z) in parts
(1) and (2) respectively.

1.3.2 Topological results and the cohomology of .7

All of these results follow from an analysis of certain torsion cohomology classes on
Mg and Pic}g Jat, OVer a field k of characteristic 0. We describe the situation over C
8 8

now. We study a class
01 € H* (Mg, V1)

(which we call the Morita class, as it was previously studied by Morita [29]) and a
class

5 € M(Picg, ), ;. V2),

. . 1 .
where the V; are certain local systems on .#, and Plc%g Sty respectively, and

.1 . . . . 2 sl
M (Plc(@ﬂg Jlly V») is a certain functorial quotient of H (Plc(gg A V>). These classes

obstruct splittings of sequence (1.1.1), in a sense which we now explain.
Letm : E — B be a surface bundle with fiber the orientable surface X, of genus
g,andlet f : B — ./, the associated map. Let L'7r; (X,) be the lower central series
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filtration on 71 (X,). Then
fro1 € HX(B, f*Vy)
is zero if and only if the exact sequence
0 — 711(Z)/ L1 (Zg) — m1(E)/L*m1(2g) — m1(B) — 1

splits. If the sequence does split, f admits a lift f : B — Pic}g Iy And if the
sequence o

1 = 711(Z)/ L3711 (Zg) — m(E)/L*m1(2g) — mi(B) — 1

splits, then if /*03 vanishes (though the converse need not hold).

Morita shows [29, Corollary 3, Proposition 4] that 01 is non-zero for B = .#, with
g > 9. We are able to extend his non-vanishing result to all g > 3 by constructing
certain surface bundles over the two-torus 72, as we now explain. We construct maps
fe: T2 - Mg such that the pullbacks f;m are non-trivial. Hence in particular
the associated surface bundles have no section. Similarly, for all g > 2, we construct
maps hg : T? - Pic}gg JM, such that h2‘,0~2 has order exactly 2. Hence again the
associated surface bundles have no section. These constructions answer a question of
Hillman [16, end of Section 10], who asked if there are surface bundles over tori with
(1) hyperbolic fiber and (2) no continuous section, for all g > 2. See Corollary 5.1.13
and Theorem 5.2.8 for these topological constructions.

The construction of these bundles in fact gives substantially finer information
about the behavior of the classes o1, 02, near the boundary of the Deligne—-Mumford
compactification of .#, and the Caporaso compactification of Pic}gg A [4]. Let
'y = Cy_1,T2 = T, be the stable graphs described in Sect. 1.3.1, and let ET;
be the exceptional divisor of the blowup of 78 at the stratum corresponding to ;.
We show the following (see Corollaries 5.3.2 and 5.3.5 for the precise statements):

Theorem 1.3.5 The Gysin image of 01 is non-zero in the cohomology of a Zariski-open
subset EY. of Er,, and the Gysin image of 07 is non-zero in (an appropriate quotient
of) the cohomology of a Zariski-open subset of the preimage of Er, in a blowup of the
Caporaso compactification of Pic%g Jly

The non-vanishing of these Gysin images is crucial for our arithmetic applications,
and for the proof of Theorem 1.3.1. In particular it more or less immediately shows
that these classes do not vanish at the generic points of the respective moduli spaces
on which they live.

1.3.3 Arithmetic results

Our main arithmetic results are arithmetic analogues of those described in Sect. 1.3.2.
We define classes o; ¢, 024 in the étale cohomology of .7, Picl, .4, With coef-
’ ’ 8 8

ficients in certain Z-local systems over any field of characteristic 0. These classes
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obstruct mr1-sections (and hence rational points!) in a sense which we now explain.
Let C/k be a smooth projective curve over a field k of characteristic 0, and let
[C] : Spec(k) — .#, be the associated map. Then the Galois cohomology class
[C1*01 ¢ is zero if and only if the exact sequence

0 — 7f'(Cp /L (Cp) — 7iH(C) /L2 7 (C) — Gal(k/k) — 1

splits. This invariant is closely related to the period of C, as we describe in Sect. 4.2.2
and Remark 6.1.5. Similarly if [C] : Spec(k) — Pic(lgg J, is a morphism, the non-

vanishing of [C]¥0, ¢ implies that the sequence
1 = 7(Cp) /L3 (Cr) — 7f(C)/L37f(Cp) — Gal(k/k) — 1

does not split (though the converse need not hold).

We show that there are many examples of curves C, C’ for which [CT*0; ¢,
[6'/]*52\;; are non-vanishing. For instance, the geometric examples discussed in
Sect. 1.3.1 (e.g. the cases in which we prove the tropical section conjecture) have
this property. But we also use a Chebotarev argument to show the existence of many
curves over p-adic fields (and hence number fields) for which these classes do not
vanish. In particular, these curves trivially satisfy the section conjecture. For example,
we show:

Theorem 1.3.6 Let " be a graph as in Theorem 1.3.1. Then there exists a Zariski-dense
set S of closed points of Zr 7 such that for each s € S, there exists a Frac(W (k (s)))-
point s' of M, specializing to s, such that the section conjecture is true for the curve
G5 (that is, the Frac(W (k (s)))-curve corresponding to s’).

Here « (s) is the residue field of a closed point s and W (k (s)) is the ring of Witt vec-
tors of k (s). See Theorems 6.2.1 and 6.2.3 for a stronger and more general statement.
In principle our method gives us quantitative control (in the sense of the Chebotarev
density theorem) over the Dirichlet density of the set S in the theorem.

We believe that our examples of curves C exhibiting the non-vanishing of 0 &
are particularly interesting, as they show that this class is a genuine (non-abelian)
obstruction to the existence of rational points. Unfortunately all of our examples are
of a local nature. It would be interesting to find an example of a curve over a number
field which has points everywhere locally, but which exhibits the non-vanishing of
07.¢- As far as we are aware there is no known example of a curve over a number field
which has points everywhere locally and is known to satisfy the section conjecture in
a genuinely non-abelian way.

1.4 Relation to previous work
The main precursor to our geometric work is the paper [14], which, as remarked earlier,

proves a form of Corollary 1.3.4 for g > 5 over fields of characteristic 0. See also
related work of Watanabe in positive characteristic [40].
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The methods we use to prove this Corollary are also closely related to work on the
Franchetta conjecture, in particular [33]. Indeed, the class o0 ¢ is the image of the
class [Pic(lgg /. //[g] e H! (A, Pic%g /. ///g) under the Kummer map (see Sect. 4.2.2 and
Remark 6.1.5), and so it is closely related to the period of a (relative) curve. This class
has been well-studied in the complex-analytic setting (see e.g. [29, 30]). The class 03
has not, to our knowledge, been studied before, but it is related to unpublished work
of Ellenberg [7] and work of Wickelgren [41].

Our arithmetic examples of curves for which the section conjecture holds also
seem related to those constructed by other authors, though we do not know how to
make this precise. The examples constructed in [37] and [38, 6.2] have the same
reduction type as the curves constructed in special cases of Theorems 6.2.1 and 6.2.3.
It would be interesting to understand how o, ¢ and especially 5_2\5 is related to the
inequality for period and index for curves exploited by Stix. Harari and Szamuely
[19] study curves for which the abelianized fundamental exact sequence does not
split—implicitly, analyzing o, ¢—and construct examples where the obstruction to
splitting is fundamentally global, rather than local. It would be extremely interesting
to construct such an example with 05 ¢.

1.5 Structure of the paper

In Sect. 2 we recall various preliminaries and notation for the moduli spaces we
use, as well as their relevant compactifications, coarse spaces, and boundary strata.
Primarily, we use the Deligne-Mumford compactification //_/g of the moduli space of
curves .#,, as well as the moduli space of degree one divisor classes on the universal
curve, Pic}gg A and its Caporaso compactification [4]. In Sect. 3, we recall the
various versions of the Gysin maps we will use (in group-theoretic, topological, Galois-
cohomological, and étale-cohomological contexts) and prove a useful variant of the
Chebotarev density theorem (Theorem 3.1.1) which may be of independent interest.
In Sect. 4, we define the classes o1, 03, which are key to our analysis, and study
their basic properties, in both topological and étale cohomological settings. Because
the non-abelian group cohomology machinery required for the construction of 03 is
quite involved, we have banished this construction and the ensuing calculations to the
appendix, Sect. 7, to which we refer frequently throughout the paper.

In Sect. 5, we begin proving the main results of the paper. We construct various
surface bundles over surfaces (with no sections) exhibiting the non-vanishing of the
classes 01, 0. From these constructions, we deduce the non-vanishing of certain Gysin
images of the classes o1, 03 in the cohomology of boundary components of .#, and
Picggg J, (over the complex numbers). Again, we banish certain involved cocycle
computations with surface groups to the appendix, Sect. 7. In Sect. 6, we use stan-
dard comparison results to pass from these topological computations to results in étale
cohomology, and then in Galois cohomology. This is where we provide geometric
examples of curves for which the section conjecture is trivially true and prove many
special cases of Conjecture 1.2.1. We then use our modified Chebotarev density theo-
rem (Theorem 3.1.1) to show the existence of arithmetic examples over p-adic fields,
and hence over number fields.
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2 The moduli space of curves and boundary strata

We begin by indicating our conventions regarding the various moduli spaces we will
use (primarily the moduli space of curves .#, and its Deligne-Mumford compactifi-

cation .#), and recalling the combinatorics of their boundary strata.

2.1 /4 and its boundary

Let g > 1 be an integer and let .#, be the moduli space of algebraic curves; recall
that .#, is a smooth Deligne-Mumford stack over Spec(Z). Let % be the Deligne—
Mumford compactification of .#,; recall that it is a smooth and proper Deligne—
Mumford stack over Spec(Z). When there is no chance of confusion, we will also use
the notation .#, to denote the complex-analytic moduli stack of genus g Riemann
surfaces; otherwise we will denote it by ;f‘c (and similarly with the analytification
of its Deligne—-Mumford compactification).

We briefly recall the combinatorics of the boundary strata of 73, and we interpret
the inertia about boundary components group-theoretically, in terms of Dehn twists.

Let I' be a stable graph of genus g, i.e., a collection V of vertices and E of (undi-
rected) edges between pairs of vertices and a labeling 4 : V — Zx¢ such that:

(1) The Euler characteristic

XM+ Q2 —2hw) =2-2g,

veV

(2) If h(v) = 0, then the degree of v is at least 3, and
(3) If h(v) = 1 then the degree of v is at least 1, and
(4) T is connected.

Given a vertex v of I', we say that 2 (v) is its genus.
We let

ZFC%

be the locally closed substack parametrizing stable curves of rype I, i.e., stable curves
whose dual graph is isomorphic to I'. The codimension of Zr in //_/g is equal to the
number of edges of I'. We say that I" specializes to I'” if Z is contained the closure of
Zr. Combinatorially this means that I" can be obtained from I'” by contracting edges
and redistributing weights accordingly.

We briefly discuss the topology of a neighborhood of Zr in terms of the graph I.
We first (non-functorially) associate a surface X to I', with a marked loop y, for each
edge of I, as illustrated in Fig. 1. Explicitly, to each vertex v of genus g and degree
d, associate an oriented surface X, of genus g, with deg(v) distinguished disjoint
closed discs ¢, : A — X, for each edge e adjacent to v. Then X is obtained
by gluing %,, \ Ueenbd(v,-) Ly.e(A°) to By, \ Ueenbd(vj) ty;.e(A°) along the circles
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ty,e(BA), ty; (8A) if e is an edge between v; and v;. That is,

sr=colim | | [sA=] |20\ | weda®].

ecE veV eenbd(v)

where V, E are the set of vertices and edges of I', respectively. The boundaries of the
discs ¢y o (A) are the distinguished curves y, in Xr. We say that I' is the dual graph
of the marked surface Xr.

Lemma 2.1.1 Let Er C Blﬂ(/l ¢ be the exceptional divisor. Then any inertia subgroup
It C m(AMg) = Mod(g) corresponding to Er is conjugate to the group generated
by the Dehn multitwist about the curves y, (corresponding to the edges of T').

Here Mod(g) is the mapping class group of a genus g surface X.

Proof The stratum Zr C Wg is (locally) the intersection of the boundary divisors of
Wg which contain it, with normal crossings. The monodromy about these boundary
divisors is worked out in [1, Theorem 2.2]. The lemma now follows from a local
computation (of the monodromy around the blowup of an intersection of divisors with
normal crossings), contained in, for example [15]. O

We will at some points be forced to work with the coarse spaces M of .2, and My

of .#,, and the sublocus Mg of My and M, of M, consisting of curves with trivial
automorphism group.

2.2 Pichg /.4, and its boundary

Let %, be the universal curve over .#,. We will denote by Piciépg J the Gy,-
rigidification of the moduli stack whose T -points are families of smooth proper genus
g curves over T with a line bundle of relative degree d (see e.g., [31, Section 2] for
a precise definition). We will also use the space Py , which coarsely represents the
Picard functor of degree d line bundles over Mg. Caporaso constructs [4] a Cohen-
Macaulay compactification Py g of Py, equipped with a proper map Py, — M,
which will also be used.

Ebert and Randal-Williams [8] also consider analytic analogues of these moduli
stacks. Melo and Viviani [31] construct a map from these analytic stacks to the analyti-
fications of those described in the paragraph above. Both Ebert—Randal-Williams and
Melo—Viviani speculate that this map is an equivalence, but do not check it explicitly.
That said, by considering the fibers over points of .#,, it is easy to see that this map
induces an isomorphism on fundamental groups. Ultimately all of the work we do here
is group-theoretic in nature, so one might equally well work with the stacks considered
by Ebert and Randal-Williams. For us, the fundamental relevant observation about
these analytic stacks is that their fundamental groups are given by

11 (Picg, , 4 ) = 11(Ce)/LPm1 (Zy).
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See e.g. [8, Section 2, Proposition 2.1, and Theorem 4.6] for a discussion of the
homotopy type of these stacks.

At various points in the text we will phrase things in terms of the (somewhat
complicated) stacks Pic‘fgg / //[g; for the reader uncomfortable with stacks, we indicate
now that this usage only leads to cleaner statements. Indeed, all of our main results
could be formulated entirely in terms of the schemes Mg and Py , and their (scheme-
theoretic) compactifications.

We require the following fact from Caporaso [4, Section 7.2 and footnote at the
bottom of p. 594]:

Proposition 2.2.1 Let T be a stable tree and Zr the corresponding stratum of the
boundary of M (the coarse space of M, ). Then the fibers of the canonical projection
Py — Vg over points of Zr are irreducible.

We will also make use of certain blowups of Py ,; we will require the fact that they
are also Cohen—Macaulay. For this purpose we record the following:

Lemma 2.2.2 Let X be a Cohen—Macaulay scheme and V. C X an Ici subscheme.
Then Bly X is Cohen—Macaulay.

Proof This is [21, Proposition 5.5(1)]. O

Let D be a smooth connected divisor in a smooth complex variety X. By a deleted
neighborhood of D in X we will mean the complement of D in an e-neighborhood
of D in X (in the Euclidean topology) of which D is a deformation retract; this is a
punctured disc bundle over D.

We will also require the following in Sect. 5.3, during our analysis of Gysin images
of certain cohomology classes on .#Z,, P :

Lemma 2.2.3 Let X be a smooth complex variety and let D C X be smooth and
connected of codimension one in X. Let D be a deleted neighborhood of D in X and
let

7:D— D

the associated punctured disc bundle. Let x € D bea point and y = 1 (x). Suppose
we have a € (D, y),b € m(X, x) such that b is a generator of the local inertia
around D (i.e. it generates the kernel of the map (D, x) — m(D, y) induced by
).

Then for any Zariski-open U C D containing y, there exist commuting elements
a',b e m (Y (U), x) such that

(1) mi(a") € m (U, y) maps to a in w1 (D, y), and
(2) b’ maps to b in (D)

Proof For any inclusion U C D of a Zariski-open set containing y, the natural map
m1(U) — m(D) is surjective (as D is normal). Hence we may may lift a to 1 (U, y)
and thento a’ € 7y (n’l (U), x). Now choosing &’ to be any lift of b contained in the
local inertia group of U in w1 (U) gives the result. O
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An essentially identical proof gives:

Lemma 2.2.4 Let X be a normal variety over an algebraically closed field k of charac-
teristic zero and D C X normal of pure codimension one in X. Let y : Spec(k) — D
be a k-point such that X, D are both non-singular at y (such a point exists by normal-
ity). Leta € nft (D, y) be any element. Let T'p C Gal(k(X)/k(X)) be a decomposition
group associated to D and let b be a generator of the inertia of I' p.

Then there exists a’ € T'p commuting with b.

Proof As I'p surjects onto nft(D, ¥) by normality, we may let a’ be any lift of a; it
automatically commutes with b as the inertia subgroup of I'p is central.

3 Cohomological preliminaries
3.1 A form of the Chebotarev density theorem

One of the arithmetic goals of this paper is to provide an abundance of points of .#,
where certain cohomology classes do not vanish. These classes are in cohomological
degree 2, where we do not know how to directly prove the existence of such points.
However, the following variant of the Chebotarev density theorem gives such points
for classes in cohomological degree 1, and will be crucial for our applications:

Theorem 3.1.1 Let X be a finite-type, integral, normal Z-scheme of dimension at least
one, and let F be a locally constant constructible sheaf of abelian groups on Xg. If

a e H (Xg, F)

is non-zero, then the set of closed points x in X such that oy is nonzero is Zariski-dense.

Remark 3.1.2 In fact the proof gives substantially more—it gives an estimate on the
Dirichlet density on the set of closed points x with «|, non-zero. We omit this as it is
unnecessary for our purposes.

Before proceeding with the proof, we will need some lemmas.

Lemma 3.1.3 Let G be a finite group, and let A be a finite 7./ p" Z[G|-module. Let
H, C G be a p-Sylow subgroup. Then the natural restriction map

H (G, A) — H'(H,, A)

is injective for all i.

Proof This is a direct application of Restriction—corestriction. See e.g. [5, Corollary
3, pg. 105]. O

Lemma 3.1.4 Let G be a finite group and let A be a finite Z/ p" Z| G1-module. If
a € HY(G, A)
is non-zero, then there exists a cyclic subgroup W C G such that a|w is non-zero.
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Proof By Lemma 3.1.3, we may assume without loss of generality that G is a p-group
(by replacing it by a p-Sylow subgroup), hence nilpotent. We proceed by induction
on the length of a composition series for G. The base case, where G itself is cyclic, is
trivial.

Let V C G be acyclic, order p subgroup of the center Z(G) (which is non-empty
as G is a p-group).

If «|y is non-zero the proof is complete, so we may assume «|y is zero. Then the
inflation-restriction sequence

0— H' (G/V,AY) - HY(G, A) — H'(V, A|y)°/Y
implies that « is the image of some
o« e HY(G/V, AY).
By the induction hypothesis, there exists a cyclic subgroup W’ C G/V such that o’ |y
is non-zero.
Let W C G be a cyclic subgroup such that W/ (W N V) = W/.Either WNV =0,

in which case the proof is complete, or W NV = V. In this latter case, there is a
commutative diagram

H'W', (Alw)")——= H' (W, Alw)

| |

HY GV, AV —= HY (G, A)

where the horizontal arrows are injective by the inflation—restriction sequence, and
hence «|w is non-zero, as desired. O

Proof of Theorem 3.1.1 By the Chinese remainder theorem, we may assume that .% is
p"-torsion for some prime p, so that

H'(Xg, F) = Bxtg ) (Z/p"Z. F),

where Z/p"Z is the constant sheaf. The class « corresponds to a non-split extension
of lcc sheaves

0> 9% > W — w — 0.
Let x be a geometric point of X and let

G :=im( (X, ) — Aut(#5))
be the monodromy group of #'.
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The class « is evidently the pullback of a class
@ e H'(G, F).

By Lemma 3.1.4, there exists a cyclic subgroup W of G such that a|w is non-zero.
Now by the classical Chebotarev density theorem [36, Theorem 9.11], the set of closed
points of X whose Frobenii generate a subgroup of G conjugate to W is Zariski-dense,
from which we may conclude the result. O

Remark 3.1.5 Evidently there is no analogue of Theorem 3.1.1 for classes o €
H! (X, .F),i > 1, as the cohomological dimension of a finite field is 1. One might
ask if there is an analogous result for classes in higher cohomological degree on vari-
eties over fields with higher cohomological dimension. We are unaware of any such
result, with the exception of [10, Theorem 2.5] (which inspired in part the arithmetic
results of this paper).

3.2 Gysin sequences and comparison results

Having provided in Theorem 3.1.1 a mechanism for finding non-zero specializations
of a class in cohomological degree 1, we now describe our mechanism for shifting the
classes we will study—namely o1, 02, and their étale-cohomological variants—from
cohomological degree 2 to cohomological degree 1. We will use various versions of
the Gysin map, in étale, singular, group, and Galois cohomology for this purpose; we
recall these maps and the relationships between them now.

3.2.1 Gysin sequences in topology

Let 7 : E — B be a circle bundle, and let .% be a locally constant sheaf of abelian
groups on E.

Proposition 3.2.1 (Thom—Gysin sequence) There is a long exact sequence

o> H' (B, 7.%) > H(E, ) —> H (B, R'n,.%) > H'(B, 1.%)
— HYYWE, #)—> ...

Proof This is immediate from the Leray spectral sequence associated to 7. O
Corollary 3.2.2 (Group-theoretic Thom—Gysin sequence) Let
G—H

be a surjection of groups with kernel K isomorphic to 7. Then for any G-module A,
there is a long exact sequence

. — H'(H,A¥") > H'(G,A) > H(H, Ax) — H'T'(H, AX)
— H'(G,A) — -~
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Proof Apply Proposition 3.2.1 to the fibration K (G, 1) - K(H, 1). O

We will typically apply Proposition 3.2.1 in the following setting. Let X be a smooth
complex variety and D C X asmooth irreducible divisor. Then a deleted neighborhood
D of D is (homotopic to) a circle bundle over D via a map

7 :D — D.

Hence foranyi > 0 and any locally constant sheaf of Abelian groups.# onU = X\ D,
there is a natural map

gp: H'(U,7) - H (D, Z|p) — H™'(D, R'm.F| ),
which we refer to as a Gysin map.
One may alternately view the map above as follows. Lett : U — X be the natural

inclusion, and j : D — X the inclusion of its complement. Then the Leray spectral
sequence for ¢ yields

E} = HP (X, R1,.F) = HPT(U, 7).

A local computation (see e.g. [27, Theorem 16.11] and the surrounding references)
yields a canonical isomorphism

J*R'W.TF ~ R'n, . F| 5,
and under this identification the map gp agrees with the map
H*(U,Z)— H'(X,R'w.7) =~ H'(D, j*R".7) ~ H' (D, R'n,. 7| 5),

where the first map arises from the Leray spectral sequence for ¢.

3.2.2 Gysin sequences in étale cohomology

There is an analogous story in étale cohomology. Let R be a complete discrete valuation
ring with residue field £ and fraction field K. Let G g be the absolute Galois group of
K and let I C G be the inertia subgroup. Let A be a finite discrete G x-module of
order prime to char (k).

Proposition 3.2.3 There is a long exact sequence

. — H(k, A" > H'(K,A) > H Yk, A(=1);) > HT 'k, A
— H*TYK,A) — -

Proof This follows from [28, Lemma 2.18]. O
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The Gysin map H' (K, A) — H'~'(k, A(—1);) globalizes as follows. Let X be
a regular scheme and let D C X be a regular subscheme of codimension one. Let
U = X \ D and let .% be an Icc sheaf of abelian groups on U, tame along D, whose
order is invertible on X. Let ¢ : U — X be the natural inclusion. Then a local
computation shows that R't,.# = 0 fori # 0, 1, and that R'1,.% is supported on
D; hence the hypercohomology spectral sequence for Ri,..# becomes a long exact
sequence

o> H'(X,.F) — H' (U, Z) - H™'(D, R".7 |p) - HT' (X, 1.7)
— H U, F)— - .

As before, let X be a smooth complex variety and D C X is a divisor, and let
7:D— D

be the projection from a deleted neighborhood of D to D (recall the definition of a
deleted neighborhood above Lemma 2.2.3). The complete local ring 6/3—(:) has residue
field C(D) and fraction field @ Let I C G(C/()?) be the inertia subgroup, and let
U =X\D.Lett: U — X betheinclusion of U into X and j : D — X the inclusion
of the complement. We record the evident compatibilities between the various Gysin
maps described above in this setting in the following proposition; we only sketch the
proof, which is a matter of unwinding the objects in question. Unfortunately we do
not know a precise reference.

Proposition 3.2.4 Let F be a locally constant sheaf of finite Abelian groups on
U(©)™, and let F** be the associated sheaf on Ug,. Then the diagram

8D

H>*(U(C)™, ) HY(D(©)™, R'n, (F|5))
H*(Uy, &) ——————= H'(Dg, j*R'1. F)

| |

HYC(X), 74 55) —= H'(C(D), (F¥| 555(= 1))

commutes.

Proof sketch The primary issue is to observe that there is a canonical isomorphism
Rlﬂ*(g|b)ét :) j*RlL*ﬁét;

once this isomorphism is estabilished, the commutativity of the top square follows from

the functoriality properties of the comparison between étale and singular cohomology;
the commutativity of the bottom square follows by the compatibility between étale
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and Galois cohomology and explicit computation of the restriction of j*R'(,.# € 1o
the generic point of D.

To construct the desired isomorphism of sheaves, it suffices to do so in the topo-
logical setting, i.e. we wish to construct an isomorphism

R'7(Z|5) = j*R'.Z.
Thus it suffices to construct a canonical such isomorphism locally. So we consider the
case where A is the open unit ball in C*, D C A is the vanishing locus of x¢, and .#
is a locally constant sheaf on A \ D.
Let 1 € A\ D be a point. As A \ D has fundamental group Z, .% is defined by
an automorphism 7 : %] — .%| (given by the monodromy about D), and direct

computations shows that both R'z, (7| Bl *R11,.7 are canonically isomorphic to
the constant sheaf with value coker(r — id), completing the proof. O

4 The primary and secondary Morita classes

We now construct the classes o1, 01 ¢ described in the introduction, which we refer
to as the primary Morita classes. Recall that these classes will obstruct splittings of
an abelianized version of the fundamental exact sequence (1.1.1). Explicitly, in the

topological setting, o will obstruct the splitting of sequence (4.1.1) below, and 0} ¢
will obstruct the splitting of its profinite analogue.

4.1 The class 01 in the topological setting

We will give two constructions of the Morita class in the topological setting.

4.1.1 A group-theoretic construction
Let g > 1 and let X, be a compact orientable surface of genus g, and let Mod(g)
be the mapping class group of X,. Let Mod(g, 1) be the mapping class group of a
pointed genus g surface. The Birman exact sequence
1 — m1(Xg) — Mod(g, 1) — Mod(g) — 1
is the exact sequence of fundamental groups associated to the fibration
G — My,
where .7, is the complex-analytic moduli stack of g curves, and % is the universal
curve over .#,.
Pushing out along the Hurewicz map

Hur : 71(Z,) — Hi(Zg, 7Z),
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we obtain a short exact sequence
0 — Hi(Z,. Z) — Mod(g, 1)/[m1(Zg). 71 (Z,)] — Mod(g) — 1. (4.1.1)
Definition 4.1.2 (Topological Morita class) Let
01 € H*(Mod(g), Hi(Z¢, 7))

be the cohomology class associated to this extension.

We may equivalently view o; as an element of H Z(J/Ig, V1), where Vy is the
local system on ./, associated to the Mod(g)-representation Hi(X,, Z), as .4, is a
KMod(g), 1).

Morita announced in [29] with proof in [30] the following theorem. For a geometric
interpretation and proof, see [18, Section 7].

Theorem 4.1.3 [29, 30] For g > 9,
H?(Mod(g). H\(Z,. Z)) = (Z/(2g — 2)Z)o;.
4.1.2 An analytic construction

We briefly give another description of the Morita class, in terms of the universal Picard
variety. Let Pic‘fgg v be the (rigidified) moduli space of degree d line bundles on the

universal curve, as discussed in Sect. 2.2. Then Pic! is a torsor for
gg’/%g
PO
ch:g’/<%g = Plcggﬂ%g N
the universal Jacobian, so we can think of it as an element
. 1 1

[Plc(gg///[g] € H (M,, J%g////g).

Letw := QL be the relative differentials, and let
bl My
T 6y — My
be the projection. Then the “exponential” short exact sequence of sheaves on .#,
0— Vi :=R'72)" - R'r0)" — I, )., = O
induces a boundary map
8 H (My. Jig,y.a,) — H (Mg V).

The following proposition (which we will not use) explains how to interpret the con-
struction in the previous section in terms of this data.
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Proposition 4.1.4 Under the natural identification
H*(Mod(g), Hi(Zg, Z)) ~ H*(My, V1),
the Morita class oyniy maps to 8([Pic<1€g / ///g]).

Proof sketch This is an immediate consequence of the fact that the Abel-Jacobi map
s 1
Ce — Plc%;g J

induces an isomorphism on T[]ab on the fiber over every point of .#,, combined with
the fact that for any Riemann surface C, Piclc is canonically a K (711 (C)™, 1). m]

. . . ) . d
See [8, Section 2] for a discussion of the J(,gg /., ~tOTSOTS [Plc%ﬂg / //(g].

4.2 The étale Morita class

There is some subtlety in defining the analogue of the Morita class in étale cohomology,
because it is not known that the mapping class group Mod(g) is a “good group"
in the sense of Serre (see e.g. [9, 3.4] for a brief discussion)—in particular, it is
not immediately clear that the Birman exact sequence remains exact upon profinite
completion (though this is in fact true, and has been used in existing literature, e.g.
in [17, Section 3.1]). Nonetheless we give two (equivalent) constructions of an étale-
cohomological analogue of the Morita class. As before, we fix an integer g > 1
throughout.

4.2.1 A group-theoretic construction

Proposition 4.2.1 Let p be a prime. The profinite (resp. prime-to- p) completion of the
Birman exact sequence is exact.

Proof This follows immediately from [2, Proposition 3], as the profinite (resp. prime-
to-p) completion of a surface group of genus g > 1 has trivial center. O

Now let k be a field and X a Deligne-Mumford stack over k; let x be a geomet-
ric point of X. We denote by 77'(X, X) the étale fundamental group of X, and by

nl(p )(X , X) the group obtained via the following pushout:

(X, X) —— 1$U(X, %)

| |

— (p)

(X, %) —— P (X, ).
Here the object in the lower left is the prime-to-p completion of nft(X B X).
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Now for X a geometric point of %, , [C] the corresponding geometric point of
Mg i, and C the corresponding curve over k, let (B) (resp. (Bp)) be the following
sequences of profinite groups:

1 = 78(C, %) = 7Gx, X) — 7S (Mg, [C]) — 1 (B)

1 = 7 P(C, %) = 7P (Gos, %) = 7P (My s, [C]) — 1 (B,)

By Proposition 4.2.1, sequence (B) is exact if k£ has characteristic 0, and sequence
(B)p) is exact if k has characteristic p.

Now taking the quotient by the derived subgroup of the group on the left gives short
exact sequences

1= 784(C, D)™ - 7{ (G, D)/ 7 (C, %), 7(C, )] = 7{ (M i, [C) = 1 (B®)

1= 7P (@C 5 — 7" eu. D/1xP €. 5), 7P C. )1 > 7 (M. [C) - 1
(B2)

If k is a field of characteristic 0, let W//} be the lisse Z-sheaf on .7, o,k associated to the
nf‘-representation Jrf't (C, x)® (equivalently, @T =(R 17T,KIZ\)V). If k has characteristic
p, let @(p ) be the lisse Z(P)-sheaf associated to nl(p ) (E, )E)ab (equivalently, @(p ) =
(R' 7, Z(PHV).

If k is a field of characteristic 0, sequence (B®) gives rise to a class in
H> (! (Mg, [C]), m{1(C, ¥)™). We let 0, ¢ be the image of this class in H? (.4, x,
V1) under the natural map

H>(t{ (Mg 1, [C]), 78T, B)™®) = H* (Mo, V1)

Similarly, if k is a field of characteristic p > 0, sequence (B;“,b) gives rise to a class in

Hz(rrl(p)(///g,k, [c, rrl(p)(E, %)2); we let oipgt be its image in Hz(///g,k, @\1([7)).

4.2.2 A construction using the Picard variety

We can also imitate the construction in Sect. 4.1.2, giving a construction which works
over an arbitrary base S. As before, we may consider the torsor

[Pic%g/%g] € Hl(//lg,S,ét, I, ).,.8)-
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Definition 4.2.2 Let S be a scheme and let P be the set of primes invertible in S, and
define

ZS = 1_[ Zp.

peP
Let
ke H (My s 6. Jg,0,.5) = H (Mg 5.4 (R'm.Zg)")
be the Kummer map. Then
S .|
Ol,é[ = K([Plc%?g/{%g]).

One can check (using e.g. geometric class field theory) that for S = Spec(k), these
classes agree with those defined in the previous section. We will not use this fact.

4.3 The secondary Morita classes

We now describe the classes 02, 0. &, which obstruct splittings of a 2-nilpotent version
of sequence (1.1.1). For simplicity of presentation we have relegated the involved group
cohomology computations required to define these classes to the Appendix (Sect. 7),
but we briefly summarize them here and discuss how they are applied to our situation.

4.3.1 The topological setting

Fix an integer ¢ > 1 and let X, be a compact orientable surface of genus g.
Let Lkm(Eg) denote the lower central series of m1(Xg), i.e. Lk“m(Zg) =
[71(Zg), L¥m1 (Eg)] with L7y (E,) = 71 (). Recall that from the Birman exact
sequence

1 — m(Zy) — Mod(g, 1) — Mod(g) — 1 4.3.1)

we obtained the sequence
| —— 71 (%) /L2711 (Z4) — Mod(g, 1)/L%71 (%) —— Mod(g) — 1,

which corresponded to the class o] € H?Mod(g), (Eg)/L2m (Xe)).
We now observe that Mod (g, 1)/L?m (2 ¢) is canonically isomorphic (via the Abel-
Jacobi map) to (Picggg /. ///g), as for any Riemann surface C the Abel-Jacobi map

induces an isomorphism 71 (C)? ~ 7, (Piclc). Now let the group

g = Mod(g, 1) XMod(g) 71 (Pic}ffg//fg)
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be the fiber product via the natural map Mod(g, 1) — Mod(g) and the map p. The
group 7, is the fundamental group of the base change of the universal curve %, to
.
Plc(gg Sty . o
We have the following surjection of short exact sequences, where the bottom row
is the Birman sequence and the rightmost square is Cartesian:

s 1
1 ——m(Zy) g m(Plc%;g////g) —1.

| |

1 —— 7 (X,) — Mod(g, 1) Mod(g)

We construct a cohomology class which obstructs the splitting of a 2-nilpotent version
of the top sequence above.

First observe that the pullback p*o; of the primary Morita class to 7 (Pic}gg /. //[g)
is trivial. To see this triviality, note that this class classifies the sequence

2 = 2 . 1

I = m(Bg)/Lm(Bg) = mg /L7 (Bg) — my (Plc%////g) — 1, 4.3.2)
which we claim splits. Indeed, the map

- 2 ~ .1 .1 .1

g /L7m(E,) = m(Plcng/(///g) X Mod(g) 71 (Plccgg///[g) — (Plc%ﬁg////g)
has a natural section, given by the diagonal map A. We may now apply the construction
in the Appendix, Sect. 7, taking 7 = m1(X,), T = 7, and G = m) (Piclgg/.///g). We
briefly introduce the content of this construction, leaving the proofs to Sect. 7.

Consider the sequences

0 — Lm1(Zg)/L’m1(2g) — m1(Sg)/L3m1(Zg) — 11(Zg) /L1 (Zg) — 0,
(4.3.3)

0 — L2711 (Bg) /L3701 (Zg) — g/ L371(Zg) — 7g/L?m1(Zg) — 1. (4.3.4)

Note that the sequences 4.3.2, 4.3.3, 4.3.4 correspond to Sequences 7.1.2, 7.1.1,
7.1.3, respectively. Sequence (4.3.4) is classified by a class b € Hz(ﬁg/L2m(Eg),
L7 (Z,)/L3m1(Z,)). We define

07 := A*b € H*(m (Pic(lé)g////g), L2711 (Zg)/L3m1(Zy)). (4.3.5)
Now there are maps

. U .
m: H'(u1(Picy,; 4 ). 11(89)*™)® — H*(m1(Pieg, ) 4 ). (11(5)*)%%)

[-.-] .
— H*(mi(Picy,; 4), L*m1(Z0)/LPm1 ()
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(given by the composition of the commutator map with the cup product), and
Sa H'(mi(Pieg, ) ). m1(S9)™) — H(mi(Piey, | 4 ). L*11(S9)/L°m1(Z))
given by the long exact sequence in non-abelian cohomology arising from

sequence 4.3.3 (and using the | (Pic%g////g)-action on m(Zg)/L3m(Eg) arising
from A). We define

2 sol 2 3 —
H (”1(Plc%’g///fg)’ Ly (X,)/L (X)) := coker(m).
By Proposition 7.1.10, the composite map

. s .
8 H' (i (Picys ;). m1(Z)™) = H*(m1 (Picy ;4 ), LPm1(Z)/LPm1 (Ey))

1
— H2(m (Plc(gg/’///g), Lzﬂl(zg)/L37Tl(Eg))

is linear (and by Proposition 7.1.11, it is independent of the (Pic%g / ///g)-action on
71(Zg)/L371(Zy)). We define

M (r (Pic}gg/%), L?m1(Zg)/ L3711 (Zy)) := coker(8).

Definition 4.3.6 We define the secondary Morita class 0, € M(m; (Pic%lg /. ///g),
Lzm(Eg)/L3JT1(Zg)) to be the image of o0y in this quotient group. (Compare to
Definition 7.1.14.)

For the functoriality properties of this class, and details of the claims above, see
Sect. 7.

. 1 . .1 . . ~

As Plc%g Ja, 18 2 K (m; (Plc%g /. ///g), 1), we may just as well think of the class 0>

.. . . 2 sl . 1
as living in a quotient of H (Plc%)g Sty V>), denoted M (Plc%)g Jlly V>), where V,

is the local system corresponding to the 7 -representation L?m, (3g)/ L3 (Xg). We
may describe the local system V, more explicitly as follows. There is a natural map
of local systems on .#,

2
7 - A\ Vi,

given by the intersection pairing on VY. The local system V5 is the pullback of the
cokernel of this map to Pic(lg My
8 "8

4.3.2 The étale setting

We only sketch the construction in the étale-cohomological setting, as it is essentially
identical to the construction in the previous section. Again, by Proposition 4.2.1, the
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profinite (resp. prime-to- p) completion of the Birman sequence remains exact; hence,
one may construct profinite (resp. prime-to- p) analogues of all of the exact sequences
above, as we now explain.

Let k be a field of characteristic 0. As we have already shown in Proposition 4.2.1,
the profinite completion of the Birman sequence is exact. Let x be a geometric point
of @, [C] the corresponding point of .#,, and C the corresponding curve. We have
(by geometric class field theory) a canonical isomorphism

7} (G, 1)/ L2} (C, 3) 2= m} (Pieyy | 4 10 ),

where on the right we view X as a point of Picggg Sl gk via the Abel-Jacobi map. If k

is a field of characteristic p > 0, we have an analogous isomorphism on nl(p ). Thus
we may construct profinite (resp. prime-to- p) analogues of sequences (4.3.2), (4.3.3),
(4.3.4), as well as all of the other diagrams above, giving rise to classes

o0& € H (' (Picy, | 4 1. %), L*ai'(C, 0)/L*7{'(C, ),

Ora € M(nft(Pic}gg Sl B L*7%(C,%)/L*7(C, %))
in characteristic O and

oy € A" (Picy, | 4 . ), L’m\" (C, 5)/L’x" (C, %)),

na’ e M@ ®icy, , .5, 127" (€, 5/ 7" (C, %)

in characteristic p > 0. We denote the lisse 7-sheaf (resp. Z(P)-sheaﬂ on
Pic}gg |y kot corresponding to the coefficients in the cohomology groups above via

@, (resp. @(p )). As before we may explicitly describe @ as the pullback to Pic% A,
8 8
of the cokernel of the map of lisse sheaves on .#,

2
Z) — A\Vi

arising from the intersection form, and similarly with @(p ).

Pulling back along the natural map
H? (i (Piey, | 1 0, L2a{'(C, )/ L*x{'(C, 0) — H*Piey, , 4 1 4 V2)

we obtain a class in H Z(Pic}g J M Ko @) which we also call 0, g, in an abuse of
Gyl My k, :

notation, and similarly with 0, &, oép gt,gz\;(p ) Note that we do not know if these

pullback maps are isomorphisms, as it is not clear if Pic(]g Mk is an étale K (7, 1).
Eol My,
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4.4 Vanishing of 0q

We now discuss certain situations where the classes o1, 0l , Y’ ) vanish for geometric

reasons, and some consequences of this vanishing for 0. We first record the following
fundamental property of o1:

Proposition 4.4.1 Let g > 2 be an integer.

(1) Let E — B be a fibration with fiber X,, associated to a map f : B — .
Then f*o1 = 0 if and only if central extension obtained by pulling back sequence
(4.1.1) along the map f, : m1(B) — Mod(g) splits.

(2) Let C be a smooth projective curve of genus g over a field k of characteristic 0,
associated to a map Spec(k) — M, . Then the natural exact sequence

0 — 7{(CH™ — 7f{(C)/L2x{ (Cp) — Gal(k/k) — 1

splits if and only if 0y ¢k vanishes.
(3) Let C be a smooth projective curve of genus g over a field k of characteristic
p > 0, associated to a map Spec(k) — Mg k. Then the natural exact sequence

0— 7 P(CH™ — 7 P(C)/L27 P (C}) — Gal(k/k) — 1

splits if and only if oip é?t| k vanishes.
Proof Immediate from the definition and functoriality of the sequences above. O

We now deduce some vanishing properties of o;.

Proposition 4.4.2 Let R be a Noetherian complete local ring with maximal ideal m,
residue field R/m = k and fraction field K. Let C /R be a projective curve with Cg
smooth of genus g and Cy semistable of compact type. Suppose Ci (k) is non-empty.
If the residue characteristic of R is zero, then 0 |k is zero.

Proof We give the proof if the characteristic of k is zero; the proof in positive residue
characteristic is essentially identical, though more notationally involved. Let K be an
algebraic closure of K and k an algebraic closure of k. Let X be a K -point of Cx and
£ a specialization of . Then there is a commutative diagram of specialization maps

7 (Ck, %) ——> 7(Cy, E)

Gal(K /K) — Gal(k/k).
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Now consider the quotient diagram

T Ck, %) /L2 (Cgr ) ——> 78(Cy, E) /L2 78(Cr, )
lﬂab lnab
K k
Gal(K /K) Gal(k/k).

As Cj has compact type, this quotient diagram is Cartesian. But 775 has a section (as
Cy has a rational point), hence the same is true for n,‘jb. Thus & Ia(b has a section, using
the Cartesian-ness of the diagram above. O

Corollary 4.4.3 Let T be a stable graph of genus g > 2 and let k be a field. Suppose
that

(1) The underlying graph of T is a tree, and
(2) Aut(I") stabilizes some edge of T'.

Then if k has characteristic zero, 0y ¢ | g;. vanishes. Here Kr is defined as in Sect. 1.2.

Proof Let R be the complete local ring of Zg at the generic point of Zr, the boundary
stratum of % corresponding to stable curves with dual graph I'. Let 6T be the pullback
of the universal curve to Rr. The special fiber of 6T has compact type by (1), and has
arational point by (2) (namely, the node corresponding to the stabilized edge must be
rational). Hence we may conclude by Proposition 4.4.2. O

Remark 4.4.4 Let T be a graphags in Corollary 4.4.3, and let Wi be the union of all
the boundary divisors of ./, ¢,C  not containing the stratum Zr. Let Ur be a deleted

neighborhood of Zr in ///g,(can \ Wr. Then an argument essentially identical to the
proof of Corollary 4.4.3 shows that 01|y vanishes. One may also make a rigid-analytic
version of this statement, but doing so is beyond the scope of this paper.

Remark 4.4.5 In any setting where o1 or o; ¢ vanishes (as in Corollary 4.4.3 or
Remark 4.4.4), one may define a version of 03 or 5;'; Indeed, the vanishing of these
classes imply that the sequences arising in Proposition 4.4.1 split, which suffices to
apply the construction in Sect. 7.1. For example, there is an analogue of 05 ¢ 07 ¢ defined
in M(Kr, LZHr/LSHr) where T, Kr are as defined in Corollary 4.4.3 and Ir is
the geometric étale fundamental group of %1. Likewise, there is an analogous class in
M (Ur, V), where Ur is as defined in 4.4.4.

5 The Morita classes for surface groups

Let/ > 0be aninteger and Xj a compact orientable surface of genus /. In this section,
we study the pull-back of the Morita classes along maps

m1(Zp) — Mod(g)
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or
71(Sh) — w1 (Picy,, 4)-
In other words, given a fibration
Yo —> E — X,

we study the obstruction to splitting the “abelianized" and “2-nilpotent" analogues of
the exact sequence of fundamental groups:

1 — 71(%,)/L?71(%,) — w1 (E)/L*m1(Zg) — m1(Zy) — 1
and
1 — 71(Z)/ L1 (Zg) — m(E)/L*m1(2g) — 11 (Zy) — 1.

The calculations in this section are key to the degeneration arguments in the
applications to the section conjecture in Sect. 6. We produce explicit examples (The-
orem 5.1.10 through Corollary 5.1.13) where the pull-back of the primary Morita
class o1 is nontrivial. When the pullback of the Morita class o; is trivial, we analyze
the pullback of the secondary Morita class 0y (Definition 4.3.6). We produce explicit
examples where this secondary Morita class has exact order 2 (Theorems 5.2.7 and
5.2.8).

Our results will require substantial direct computation with cocycles; we will delay
these computations to Sect. 7 wherever possible.

5.1 Computing the primary Morita class for surface groups

We write

h
[ Jai. b,~1>
i=1

w1 (Zp) =<al,~--,ah,b1w-~ , by

for the standard presentation of w1 (Xj).
Fix a homomorphism

y () — Mod(g).

Choose lifts y/(\ct_l/)y/@_l/) . y(ap), y/(z;;S of y(a;), y(b;) from Mod(g) C Out
(1(Z,)) to Mod(g, 1) C Aut(r(Xg)). Then

h
R=]Tly@).y®]

i=1
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is an inner automorphism of 71 (), and hence can be written as conjugation by some
element 7 € 1 (Xg). Let Hur: m((X,)— H (X, Z) be the Hurewicz (abelianization)
map.

Proposition 5.1.1 (The Morita class for surface groups) Under the identification
H* (01 (2h), Hi(Zg, 7)) = Ho(m1(Zh), Hi(Zg, 2)) = H1(Zg, L)y (5))s

from Corollary 7.2.4, the pull-back y*o is identified with the image of ¥ under the
composition

Hi
T1(Eg) —> Hi(Sg, Z) — Hi(Zg, L)y (5)-

Proof Let F?' .= (a1, b1, ..., an, by) be the free group with 2i generators, and let
R = ]_[f.’:l[ai, b;]. Let (R) <t F?" be the normal subgroup generated by R, and let
(R)?? denote its abelianization.

By [13, Section 3.1, Theorem 2, Proposition 3], there is a resolution of Z as a
71(Xj) module of the form

0 — (R) — Zlx1 (T — Zni(Z)] > Z — 0. (5.1.2)
Comparing it with the exact sequence (7.2.2), we get the isomorphism

(RYY ~ Z[m (Zp)],
R 1, (5.1.3)

hence this resolution is free.

Consider the following commutative diagram of exact sequences, where the second
row is the Birman exact sequence, the third row is the pushout of the second row
along the Hurewicz map Hur: m1(Xg) — Hy(X,, Z), and the map from the first row
to the second row comes from lifting the map y: 7 (Zp) — Mod(g) to the map

¢2: F¥' — Mod(g, 1) defined by ¢(a;) = y (@) and ¢ (b;) =  (b;) for all i.

Lt

1 (R) F2h T (Zp) ——1

T

| —— 11(3¢) ——— Mod(g, 1) —— Mod(g) — 1

K | ¥

| —— H(Z,, Z) — Mod(g, 1)/L*71 — Mod(g) — 1

By [13, Section 5.3, Theorem 1], the extension class y 01 € Hz(rrl(Eh), H(Zg, 7))
is represented by the vertical map H o ¢, where we compute H?> using the free
resolution (5.1.2). Unwinding the isomorphism given H2(1(Z), H\(%g,72)) =
H\(Zg, Z)7, () described in Corollary 7.2.4 gives the result. m|
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Remark 5.1.4 We will primarily apply this result when 4 = 1—that is, for surface
bundles over a torus. It turns out this suffices for our applications. Indeed, this should be
unsurprising; we are interested in proving that the Gysin images of certain cohomology
classes do not vanish. These classes live on the boundary of .#, in cohomological
degree 1. An argument analogous to the proof of Lemma 3.1.4 shows that one can
detect the non-vanishing of such classes by pulling along maps from the circle S';
the preimage of a circle in the deleted neighborhood of a boundary component is
(homotopy equivalent to) a surface of genus 1.

Suppose we are given disjoint simple closed curves [y, ..., [, on X, and a home-
omorphism § : X, — X, which permutes them up to isotopy. For each i, let
1), € Mod(g) denote the corresponding Dehn twist. Let 71 (%1) = (a, b|[a, b]).
Define y: m1(X1) — Mod(g) by specifying the images of a and b as follows. Let
y (a) be the Dehn multitwist

y() =T = HTlr

i=1

Lety(b) = S € Mod(g). As S permutes thely, .. ., [, up toisotopy, S and 7 commute
in Mod(g), so this defines a genuine homomorphism. Our goal now is to compute y *o
for y of this form.

Construction 5~.1 é (Liftsof S, T € Mod(g) toMod(g, 1)) To apply Proposition5.1.1,
we need lifts ', S € Aut(sr1 (X)), which we now construct. Fix a point B € X, that
does not lie on any of the closed curves [y, ..., ;. Then B is fixed by T, and we get
an induced map T : m1(Zg, B) — m(Zg, B), given by g — T (g) for each g in
w1 (2, B).

For any choice of a path A from B to S(B), there is an associated isomorphism

m1(Xg, S(B)) = m1(Xg, B)
g )»g)fl.

Using this isomorphism, we define a lift

S: m1(Zg, B) = m1(Zg, B)
g~ AS(g» ",
with inverse given by
STHe =5 s s ).
Lemma 5.1:6~Let y,S, T, X be as above. Let h be the loop T(A)A‘l. Then the com-
mutator [T, S] € Aut(ni(Zg, B)) is the inner automorphism of m(Xq, B) given

by

g — hgh™\.
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Proof For any g € m1(%g, B),

[T,S1(g) =ToSoT 'oS ' (g)=ToSoT (S '(x "g1)
=ToST's !0 gy =TT ' g™
=TMWrgar (0™ h).

Combining this lemma with Proposition 5.1.1, we get the following corollary.
Corollary 5.1.7 The class y*o; is the image of Hur(T (J)A~") in H\(Zg, Z)ry(5y)-
We also make the following simple observation:

Corollary 5.1.8 Consider the connected subsurfaces of ¥, with boundary components
given by loops {l1, .. ., I,}. If there exists such a subsurface ¥’ stabilized by S, i.e. S
is isotopic to a mapping class which restricts to an automorphism of ¥', then y*oy is
trivial.

Proof Pick the base point B in Construction 5.1.5 to be on X, and the path A from B
to S(B) to be contained in X’. Since A does not intersect any /;, the multitwist 7 acts
on A trivially and therefore 7 (A)A~! = 1. Now apply Corollary 5.1.7. O

Remark 5.1.9 Corollary 5.1.8 above could also be proven via geometric considerations;
associated to the representation 71(X;) — Mod(g) is a (homotopy class of) fiber
bundle over ¥ with fiber X, and the hypotheses of Corollary 5.1.8 guarantee that
this fiber bundle has a continuous section.

We now give an example where y *o1 has order g — 1. Let Ef be a genus one surface
with two boundary components m 1, my. Consider the surface obtained by taking the
quotient

2
U =i/~
ieZ/ (g7

where ~ is the equivalence relation identifying the copy of m on the ith copy of E%
with m; on the i 4- 1th copy of 212. This is a surface of genus g with g — 1 marked loops

(namely, the images of the m;), which we denote /1, . .., [;_1. This marked surface is
pictured in Fig. 2.
Let S be the automorphism of X, that rotates the surface clockwise % radians

(i.e. it is induced by cyclically permuting the components of the disjoint union in the
definition of our surface). Let 7; € Mod(g) be the Dehn twist around the loop /; € X,
as indicated in Fig. 2. Then we define

g—1
y@=T=][% r® =5
i=1
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Fig.2 The marked surface ¥, with dual graph Cy_j

Note that the dual graph of the marked surface constructed above is the stable graph
C,_1 described in the introduction.

Theorem 5.1.10 For y as above, the order of y*oy is g — 1.

Proof We start by constructing lifts T, Sof T and S to Aut(r(Xg)), following Con-
struction 5.1.5, so that we may apply Corollary 5.1.7 to compute y*o;. Fix a base
point B = by on g thatdoesnotlieon/;,i =1,...,g—1.Let{by, ..., be_1} be the
S-orbit of B, such that §(b;) = b1y fori = 1,...,¢ —2 and S(bg_1) = b1.
The map § induces an isomorphism 71 (X, b1) =~ m1(Xg, by) and S~! induces
1 (Xg, b1) = m1(Zg, bg—1).

Let A1 be a path from by to by, and let A; = Si_l(kl), as indicated in blue in
Fig. 2. Now we have isomorphisms 71 (X, by) =~ m1(XZg, b1) and 71 (X4, be—1) =
71(Xg, b1) induced by conjugation by A1 and )Lg_l]. As in Construction 5.1.5, conju-
gation by these isomorphisms gives us Sand S—!: m1(Xg, b1) — m(Zg, by).

By construction, Dehn twists 7; for i > 1 acts as identity on A; and therefore
T(M) = T1(A1).Soby Corollary 5.1.7, it suffices to show that the image of T} (M)kl_l
in Hy(Zg, Z)(s,T) has order g — 1.

We now compute the (S, T') action on H; (X, Z). For an element g € m1(Xg, B),
we denote by [g] the class it represents in H(Xg, Z). Then there is a symplectic basis

{[Ar-- Ag—i) ] ars oo og—1, Bis oo, Bg—1)

of Hy (X, Z) (pictured in Fig. 2). For simplicity, we denote by A the class [A1 ... Ag_1].
Note that the image of T (Al)kfl in H! (X, Z) is simply [/1]; we wish to show that
the image of this class in Hy (X, Z)(s,T) has order g — 1.
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Fig.3 A genus 4 curve with
maximal degeneration

Explicitly, we have:

S =1, 8ShD =1h], Sl) =aiy1, SBi) = Bit1s
T =xr+@g—Dlh], TAhD =1Ll T@) =a, T(B)=P5Hi.

As (T —1)x = (g—1[l1], the class [/; ] has order dividing (g —1) in H' (Xg,Z)<s,7>-
We now show it has order divisible by g — 1, as desired.

Indeed, consider the map H; (X, Z) — Z/(g —1)Z sending [[1] to 1 and A, o;, B;
to zero. This map is evidently S, T-equivariant (for the trivial S, T-action on Z/(g —
1)Z), and factors through Hi(Xg, Z)s, 1), which completes the proof. O

Remark 5.1.11 The strategy of the proof of Theorem 5.1.10 can be used to compute the
Morita class of many other marked surfaces with a given automorphism. For example,
the graph in Fig. 3, where each vertex has genus 0, is a genus 4 stable graph, dual to
the marked surface on the right. Let 7' be the Dehn multitwist about the marked loops
and S the order 3 automorphism given by rotating 27” degrees clockwise. By direct
computation, we conclude the Morita class of the associated X4-bundle over the torus
is nontrivial of order 3.

We now observe that the result of Theorem 5.1.10 can be used to cheaply give many
other examples of surface bundles with non-trivial Morita class o;. We do not attempt
to give an exhaustive list here, but we indicate some strategies and examples.

Proposition 5.1.12 Let X, — Ey — X and Ly, — E» — X, be two fibrations,
corresponding to maps vy : w1 (Zp) — Mod(g1) and & : w1 (X)) — Mod(g»). Let
o E1y — E3 be amap over Xy. The induced map H\ (X, Z) — H{(Zg,, Z) on the
homology of the fibers gives a map

st H2 (1 (Z), Hi(Zg,, 7)) — H> (1 (Zh), Hi(Zg,, 7))
satisfying
px(y¥o1) = E%0y.

Proof Immediate from the functoriality of o;. O

Using Proposition 5.1.12, we can extend the result of Theorem 5.1.10 to many other
graphs, described in the following corollary.
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Corollary 5.1.13 Let Zgr be a genus g surface with 2r boundary components, labeled

mi,...,mp,ny,...,n, and let Iy, ..., 1; be disjoint simple closed loops on E;’.
Suppose that we are given a continuous map

.32 2
fiE =%

sending the m; isomorphically onto one of the boundary components of 212 and the
n; isomorphically onto the other boundary component, and sending the l; to points.
Let

]

Ll =)/~

ieZ)dZ

be the surface obtained by taking d copies of Eg’ , indexed by 7./dZ, and identifying
the boundary component mj on the ith copy with the boundary component n; on
the i + 1th copy. Let S be the automorphism of this surface obtained by cyclically
permuting the components and let T be the Dehn multitwist about the curves l; (on
all copies of Ef,’ in the disjoint union) and the images of the m;, n;. Let I" be the dual
graph of B (with all of these marked curves). Then if G is the genus of 8, the induced
map

y (S, T) =m (X)) - Mod(G)

has the property that y*o1 has order divisible by d.

See Fig. 4 for an illustration of the dual graphs I' of the marked surfaces E con-
structed as above.

Proof The map f induces a map of surface bundles from the surface bundle in the
statement of the Corollary to the one considered in Theorem 5.1.10, over X1. The
result is immediate from Proposition 5.1.12. O

5.2 Computing the secondary Morita classes for surface groups

We now consider situations where o vanishes. Parallel to our analysis of o1 in Sect. 5.1,
we will now study pullbacks of the secondary Morita class 03 to surface groups.
Suppose we are given a homomorphism y» : w1 (X)) — m(Piclﬁ i ).
©glttg

Remark 5.2.1 Note that as the Abel-Jacobi map induces a canonical isomorphism
Mod(g, 1)/L?m1 () = 1 (Picy, ;4 )

so the data of a map y» as above is the same as a map y : m1(X;,) — Mod(g) and a
choice of splitting of the induced sequence

1 — Hi(Zg,7) — m1(Sh) XMod(g) Mod(g, 1)/L*m1(Zg) — 71(Zy) — 1.
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€1

Fig. 4 The dual graph of a marked surface as in Corollary 5.1.13, with » = 1. There is a map from the
lower surface to the upper surface satisfying the conditions of the corollary, given by collapsing the upper
subsurface to a point. The unlabeled vertices have genus 0

Such a splitting exists if and only if y*0; = 0, by definition. By Proposition 7.1.13
and the definition of 03, the pullback y; 03 is independent of the given splitting. That
is, y;°02 only depends on y, not the choice of lift y,. Hence if we wish to be agnostic
of the choice of lift we will denote it y*03.

—~

Chooselifts yz(a1), y2(b1) . .., y2(an), y2(bp) of y2(ai), y2(b;) from, (Picclgg////g)
~ Mod(g, 1)/L2n1(2g) to Mod(g, 1). Then

h
Ry =] [oa(@). ya(bi)]
i=1

is an inner automorphism of 71 (X,), and hence can be written as conjugation by some
element 7 € m1(X,) as in Proposition 5.1.1. Since y, was a homomorphism, in fact
Fy € Lzm(Eg).

To reduce notational clutter, we will write w7 = 71 (Zy).

Proposition 5.2.2 (The secondary Morita class for surface groups) The secondary
Morita class y; 03 is the image of i under the map

L’ — (L*n/L*m)ns,) — H>(1(Zh), L2 /L37) — M(m1(Zh), L*n/L3n),

where the first map is the natural quotient, the isomorphism comes from Corol-
lary 7.2.4, and the last map is the quotient map.
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b : S(b)

Fig.5 The surface discussed in Theorem 5.2.7

Proof Asin 5.1.1 we have the following commutative diagram:

1 (R) F2h T (Zp) ——1
| l |-
1 L7 Mod(g, 1) —— 71 (Pic!) —— 1

=TT

| —— L*n/L37 —— Mod(g, 1)/L37r — 7| (Pic!) —— 1.

We conclude as in Proposition 5.1.1 that the class y;0; can be represented by
Hur, (7). By Remark 7.1.15, the class y; 05 € H2(m(Zp), L2/ L37) maps to
¥302 € M(mt1(Zh), L2/ L 7). O

Now for each g € Z>1, we give a map
y 1 mi(X1) — Mod(2g)

such that the Morita class y*o; is trivial, and such that the secondary Morita class
Y5 02 is nontrivial, where

y2 i1 (S1) = mi(Picy,, 4)

is a lift of y as in Remark 5.2.1.

Let X, be a closed Riemann surface of genus 2g. Let [ be a null-homologous
closed curve which separates X, into two subsurfaces each of genus g. Let S be the
order 2 orientation-preserving mapping class that preserves / and interchanges the two
subsurfaces shown in Fig. 5. Let T be the Dehn twist around the loop /. Observe that
T and S commute, and hence give rise to a map

y:mi(E1) = {a,b|[a, b]) > Mod(g),
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Fig.6 X, with a set of generators of 771 (X)

defined by @ — T and b + S. This map gives rise to a Xg-bundle over the torus
%1; we denote its total space by E so that we have a fiber sequence

Yo > E — Z.
We will denote by G the group 1(Z1).
Lemma 5.2.3 The Morita class y*oy is trivial.

Proof Let B be a pointin X, \/ and let 2 be a path connecting B and S(B). We define
lifts T Sof T, S as described in Construction 5.1.5. By Lemma 5.1.6, the commutator
[T, S]is an inner automorphism of 7| (Ezg, B) given as conjugation by T (A)A L.

By Corollary 5.1.7, the Morita class y*oy is represented by Hur(7 (A)A~1), that is,
the homology class of /. Since [ is null-homologous, it follows that that y*o is trivial.
O

Remark 5.2.4 We could also prove this by imitating the proof of Proposition 4.4.2,
i.e. by contracting the loop / above to a point.

As observed in the proof above, the loop T (A)A~! is null-homologous. Thus the
commutator [7', S] € Mod(g, 1) is in the kernel of the natural map ¢ : Mod(g, 1) —
m1(Pic'). So we have already constructed a map

G — m (Pic%g s
as in Remark 5.2.1, via
y2(a) = «(T)
and
y2(b) = u(S).
In particular, f, S are lifts of v (a), y2(b).
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Let B be a point in X, \ / and let A be a path connecting B and S(B), as shown in
Fig. 6. As in the picture, we choose A such that the loop AS (%) is nullhomotopic. We
choose a set of generators of 71 (X7g), denoted

{a15 ﬁl’ ...,OlZg, ﬁzg}’

in which a1, B1, ..., ag, Bg are drawn in Fig. 6, and in which o; = kS(ang_i))Fl,
Bi = )LS(,Bngr],i))L_], for g +1 < i < 2g. We will use this basis for 71 (X2,) for
the rest of the section. The homology classes represented by these elements will be
denoted by x1, y1 ..., X2g, y2¢ foray, B, ..., azg, Bag; they form a symplectic basis
for Hl(Ezg, Z).

Lemma5.2.5 The class yyo02 € H*(G, L*111(X24)/L 11 (22,)) has order 2 (with 03
defined as in Eq. (4.3.5)).

Proof By Proposition 5.2.2, the class y; 0 is represented by Hur, (7T (M)A~1) (where
Hur, : Lzm(Ezg) — L2n1(22g)/L3n1(22g) is the natural quotient map). Observe
that the null-homologous loop T'(A)A~! is represented by word ]—[le[ai, Bil. By
Lemma 7.2.6, there is an isomorphism

28
L*71(220)/ L 701(Sag) ~ A Hy(Eag, Z)/<X: xXi A yi>

i=1

induced by the map [«, 8] — Hur(a) A Hur(B). The image of Hurp (7 (A)A~") under
this isomorphism is 3"%_, x; A y;, or equivalently — 7% g1 Xi A Vi

Since [ is null-homologous, the Dehn twist T" acts trivially on H; (X2, Z) and hence
on L2 /L37. Since S exchanges the two subsurfaces into which [ separates Yog, WE

have S(x;) = x24+1—; and S(y;) = y24+1—;. In particular, we have

g 2g g
S(in/\yl) = Z xi/\yi=—2xi/\)’i,
i=1 i=1

i=g+1

so the image of Zle Xi A y; in (L?*m, (Zgg)/L3rr1 (¥2¢))G is 2-torsion.

We now show this element has order exactly 2 in (L7 (Z0,)/L3m1(22¢))G, by
constructing a G-equivariant map Lzm(Zzg)/L37r1(22g) — 7/27 such that the
image of Zle X; A yj is nontrivial.

As a Z-module, /\2H1(22g, Z) has basis (x; Axj,yi ANyj, 1 <1< j<2gx A
vj, 1 <i, j <2g). Define a map

28
p i APHI(Zag, 2)/(Y xi A yi) — Z/2Z

i=1

by p(x1 A y1) = p(x2g A y2g) = 1 and p(x; A y;) = 0 for the other basis elements.
Since S(x1 A y1) = X24 A Y24, this map is G-equivariant. As ,O(Z‘ig:1 xiANyi) =1,
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we’ve shown that the image of Hurp(7T(MA™Y) in (L271(Zag)/L371(Zg))G has
order exactly 2 as desired. O

Lemma 5.2.6 The image of Hi (X2, 7)% in H, (X2g, Z)G ® (Z/2Z) is zero.

Proof The action of G on Hj (X2, Z) factors through Z/27Z. Now the result follows
from direct computation from the fact that Hy (X, Z) is a direct sum of free Z[Z/27]-
modules. m|

Theorem 5.2.7 The secondary Morita class y;03 € M(G, L*1(Z2g)/L371 ()
has order exactly 2.

Proof In this proof, we will let H = nl(Ezg)/L2n1(Ezg) and w = I.zﬁl Xi A Yi.
Then by Lemma 7.2.6 we have L7, (Zzg)/L3m (Xpe) = /\ZH/(a)). From the proof
of Lemma 5.2.5 we have that the element [e] := ngz 1 Xi N Yi € AN2H represents the
class y502 € HX(G, L?71(Z2,)/L371(22¢)) =~ (A*H/(w))g, and its image under
the map p defined in the proof of Lemma 5.2.5 is nontrivial.

Let the maps g, & be as defined in Lemma 7.2.13. We have the following commu-
tative diagram, where the horizontal solid arrows are the natural quotient maps:

HS AH

H——— N’H/(w) —— (N*H/(0)g

2

A2(Hg) — A} (Hg) /(@)

-

L)20 ———=T7)2% < HXG, N*H/(w)).
P

A

p

We will define p’ later. Here H® A H denotes the subspace of A?H spanned by
elements of the forma A b witha € HY, b € H.

To show the image of y; 05 in M (G, L3m (Egg)/L3rr1 (X2g)) is nontrivial, we will
give explicit descriptions of the images of m and 8 in (A2H /(w))¢ and show they go
to 0 in Z/27 under the map p in the commutative diagram above. See Sect. 7.1 for
the definition of the maps m, §.

Analysis of the image of m: We start by analyzing the image of map m, defined as
in Definition 7.1.9, using Lemma 7.2.9; we will freely use the notation and results of
Sect.7.2.1. As T actson H trivially, Equation (7.2.8) implies that for ¢ € Hom(Py, H)
to be in ker d5, we must have ¢ (e) € H G Take ¢, ¥ € ker d5; then a representative
of m([¢] ® [¥]) is given by equation (7.2.10):

m@ Q@ Y)(u) = p(e) N (f) = o(f) A(e).
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This implies that any class in im m can be represented by an element of H% A H. By
Lemma 5.2.6, the image of HC A H — A%(Hg) lies in 2(A%(Hg)). Thus HC A H
goes to 0 under the map w o g’, as desired.

In particular, we see that p induces a natural map

o't HX(G, A2H /{(w)) — Z/27Z

fitting into the commutative diagram above.
Analysis of the image of 5: Now we analyze the map

§:H'(G,H) — H2(G, L’7/L3x)

of Definition 7.1.12, using Lemma 7.2.11; we wish to show that o’ o § = 0. Note that
using the resolution of the trivial Z[G]-module described in Sect. 7.2.1, we have a
natural surjection

ker(d; : Hom(P;, H) — Hom(P2, H)) — HY(G, H).

Because the map p’ o § is linear by Proposition 7.1.10, it suffices to check that it
vanishes on a set of generators of ker(dik). As T acts trivially on H the condition that
¢ € Hom(P, H) lies in ker(d>) is exactly the condition that ¢ (e¢) € H G,

Nowlet¢ € ker dj representaclass [¢] € HY(G, H) such that¢ (e) = xj+xon41—i
(or yi + y2n41—;) forsome 1 <i < g and ¢(f) = x; (or y;) for some 1 < j < 2g.
Such ¢ generate ker(d;) by the previous paragraph. Then we may choose ¢ (e) =
a;AS(a)A =1 (resp. BirS(B)AY) and ¢(f) = a; (resp. Bj) for 1 < j < gor
(f) = AS(aag+1—j)A " (resp. AS(Bag1—j)r 1) for g + 1 < j < 2g to be lifts of
$(e), (f) 1o 11 (Tag) /L1 ().

By Lemma 7.2.11, a representative in L?m (Zgg)/L37r1 (X2g) of the class 5([¢])
is given by

B oI @GN D@ ).

Let] € 1(Z2g, B) be a loop based at B homologous to /. If m = aj or

T —~— ——
Bj, then T acts trivially on it and the element ¢(f) (¢ (f N~ s trivial. If d(f) =
1S (02g+1- )21 or AS(Bag41— /)21, then

N @ =16 T1 € L3r1 ()

asl e L7, (X2¢). In both cases we have

6" 6N @GN D@ )"
— 6@ p (NP @@ )" mod L3 (Tay).
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Now suppose % = a;AS(a;)2 L. Then

B = AS@)SMa SO YA = AS@)S(a.
Thus
— ——§ _
@@ )" = airS@)r o S TS (@) AT = [y, AS(@)A T

So we have that

B d(NIp@@@ )" = [d(e) " (Nllr. AS@)A~'] mod L3 ()

is a representative for §([¢]). In additive notation, we’ve found that
—¢ () AD(f) +xi Axagi1-i € AH

is arepresentative for 8 ([¢]). Since ¢ (e) Ap (f) € HO AH ,itis sent to 0 under the map
w o g'. Since S(x;) = x2g41—i, we have g'(x; A x2441—;) = 0. Thus p'(8([¢])) = 0.
Now an identical argument works in the case ¢(e) = B;AS (ﬂi)k_l, from which we
conclude the result. O

Note that the only property of the Dehn twist 7" used in the proof of Theorem 5.2.7
is it lies in the Torelli subgroup of Mod(g), i.e, it acts trivially on H; (X, Z). So an
identical (if notationally more involved) proof yields:

Theorem 5.2.8 Let Yo, be a surface of genus g, and let Iy, ..., Iy be disjoint simple
closed curves on Xog. Suppose that the dual graph T" of this marked surface is a stable
tree. Suppose moreover that ¥y, admits an involution S permuting the I;, such that
the induced automorphism of T has the following property: S fixes no vertices and
stabilizes exactly one edge. Let E be the surface bundle over the torus induced by the
automorphism S and the Dehn multitwist about the [;, and let y : w1(X1) — Mod(g)
be the induced map. Then y*o1 = 0, and y*03 has order exactly 2.

Remark 5.2.9 Suppose I' is any graph admitting an involution S which fixes no vertices
and stabilizes a unique edge. Suppose moreover that this edge is separating. Let X be
the corresponding marked surface, and consider the X-bundle over the torus obtained
from the involution S and the Dehn multitwist about the marked curves. Then we expect
the methods above will show that 05 obstructs sections for this surface bundle.

5.3 Analytic consequences
We now deduce from the computations of Sects. 5.1 and 5.2 the non-vanishing of

certain Gysin images of the primary and secondary Morita classes. In this section, we
work with complex-analytic stacks.
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5.3.1 Degeneration of the primary Morita class

Let
y 1 m(X1) = {a, b | [a, b]) — Mod(g)

be a homomorphism such that y(a) is a Dehn multi-twist along a collection of
disjoint loops 1, ..., [, € Xg, and such that y () is (in the isotopy class of) a self-
homeomorphism of X, permuting the /;. Let I" be the dual graph of the marked surface
(Xg,11,...,1,). That is, I' is the labeled graph with one vertex for each component
of ¥, \ {l1,...,1,}, labeled with the genus of this subsurface, and an edge between
adjacent components for each shared boundary component /; (see Fig. 1). Suppose I
is a stable graph, and let Z be the corresponding stratum of the boundary of .#.
Let

Er C Blz/_/g

be the exceptional divisor of the blowup of % at Zr.Let S ¢ be the set of stable graphs
of genus g with a single edge, and S, - the set of stable graphs of genus g with a single
edge which specialize to I'. That is, S, corresponds to the set of boundary divisors of
%, and S, corresponds to the set of stable graphs with one edge obtainable from
I' via contraction, or equivalently the set of boundary divisors of % containing Zr.
Let

Myr =Bl dl;\ | ) Dr
IeSe\Sg.r

and

Er=ErnN ///g,r,
where Dy is the boundary divisor of .#, corresponding to I'/, and/ﬁljis its proper
transform in Blz%. That is, .#, r is the complement in Blz% of the proper
transforms of the boundary components not containing Zr, and Ep. is the part of the

exceptional divisor contained in this complement.
There is a natural inclusion

L My — My,

with complement E7.. Now let .# be a locally constant sheaf of Abelian groups on
Myg. Let ET. be a deleted neighborhood of E}. in .#,  and

. [o °
7w Ef — Ep
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the corresponding circle bundle. Recall from Sect. 3.2 that there is a natural Gysin
map

er: H*(M,, F) — Hl(Efi, Rln*ﬁﬂgﬁ).

Proposition 5.3.1 With the above notation, suppose y*oy # 0. Then gr(o1) is non-
zero of order divisible by that of y*o;.

Proof Recall that
o1 € H (Mg, V1);
we will abuse notation and also denote by V| the Mod(g)-representation corresponding
to this local system.
By Lemmas 2.1.1 and 2.2.3, the map
y s (X)) — Mod(g)

factors through 7} (Elé), with y (a) a generator of the inertia subgroup Ir C | (l’fvl‘l)
(thatis, the subgroup of 771 (E}.) generated by a fiber of 7—namely, a Dehn multitwist).
We have a commutative diagram of short exact sequences of groups

0 (a) 71(Z1) 71(21)/ (@) —=0
o
0 —— Ir — m(Ep) — = m (Ep) — 1.

Writing Z for w1 (X1)/(a), this diagram induces a morphism of long exact sequences
arising from the Hochschild—Serre spectral sequence (see Sect. 3.2) as follows:

Crt— (e D eH < (DO A D) H <—— (AA (IR H <—— (JAA D) eH ~——
WA A
e A DI <— (TOA) (D)) H < (A (D) 10 H <~—— (A () 105 ~— -
Now
2 wyia) 3 syr(a)
H*(Z,y™V{") =H(Z,y"V) =0
for degree reasons, so the map p in the diagram above is an isomorphism. Hence
* *
y gr(o1) = p(y~o1),
has the same order of y*0;, which completes the proof. O

The following is immediate:
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Corollary 5.3.2 For the graphs T in Corollary 5.1.13, gr(o1) is non-zero.

For example, we have that gr(o1) is non-zero for the graph C,_; described in
Theorem 1.3.1, as well as the graphs depicted in Figs. 3 and 4.

5.3.2 Degeneration of the secondary Morita class

We now analyze the analogous situation with 03, in cases that y*o; = 0. Our results
and proofs are almost identical to those above, except insofar as there are additional
complications arising from the fact that y*0; resides in a (non-trivial) quotient of
H2 (1 (21), y*Va), namely M (1 (21), y*V>), and from the fact that we are forced
to work with the scheme P ; rather than Pic%g A due to the inadequacy of existing
compactifications of this latter stack for our purposes. (Recall that Py , coarsely rep-
resents the degree d Picard functor over the locus of automorphism-free curves M?;
see Sect. 2.2 for details.)
As before, let

y :mi(X%1) = (a, b | [a, b]) — Mod(g)

be a homomorphism such that y(a) is a Dehn multi-twist along a collection of
disjoint loops 1, ..., [, € Xg, and such that y () is (in the isotopy class of) a self-
homeomorphism of X, permuting the /;. Let I" be the dual graph of the marked surface
(2g. 1, ..., 1y). Suppose I' is a stable tree, and let Zr be the corresponding stratum

of the boundary of Vgo (the locus in Vg parametrizing automorphism-free stable
curves). Suppose now that y*o; = 0, so by Remark 4.4.5 or Remark 5.2.1, we may
define y*03.

Letqg : m — Vg be the canonical forgetful map, and let

—0 1,90
P, =q '(My)

be the preimage of M, . Let

- -0
Pl,g,F = qu*‘(?p) Pl,g

and let FT be the exceptional divisor. Let Py g,rr be the regular locus of Py g ;as Py,

is Cohen-Macaulay and Z is an Ici subscheme of M ¢ » Fr hasnon-empty intersection
with Pp, g,rr by Lemma 2.2.2. Note that Fr is irreducible by Proposition 2.2.1. The
map ¢ lifts to a natural map

p: PlgF —>BIZ MVOM

Let FR = p~!(E}), and let

o smg

Pr=p~ (MgrﬂBl —OM )\F
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where My - is the coarse space of .#, . Note that we have deleted the singular locus
of Fp from this scheme.
Observe that Py 4 is a smooth open subscheme of Pr, and F F ™ s its complement;

it is regular by definition. Let '™ be a deleted neighborhood of F£'™, and let

T Fls,ns N Fls,ns
be the corresponding circle bundle. There is a natural Gysin map

gr i HX(PLg, Valp, ) = H'(FE™, R'm.Va| =50).
r

Let

hr : M(Prg, Valp,,) = NOFE™, R'tValo5)
r

be the induced map, where N (Flf’ns, Rln*V2|Fm) is the maximal quotient of
r

H! (Flg,ns’ R'7,V,| F_ﬂ/s) such that such a factorization of gr- through M (P14, Valp, ,)

r
exists, as described in detail in Sect. 7.1.3.

Proposition 5.3.3 With the above notation, suppose
y 02 € M(m1(21), y*V2)

is non-zero. Then hr(02) € N(Flf’ns, Rln*V2|;;m—;) is non-zero of order divisible by
¥

that of y*05.

Proof The proof is essentially the same as that of Proposition 5.3.1. Indeed, let
~ . . 1
y m(X)) = 711(P1c<gg/%g)

be alift of y; such a lift exists as y*o; = 0 by assumption. As before, 3 factors through

T (Fli”ns) by Lemmas 2.1.1 and 2.2.3. So we have a commutative square (arising from
a map of Gysin sequences)

oms h 0.1
M (i (F2™), Vo) ——= N (1 (F2"™), (V2)1;.)

R R

M1 (21), 77V2) — 2= N(Z, 7 (V2) ()

But the map p above is an isomorphism as
H(Z,7°V") = B2, 7*Vy") = 0
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for degree reasons. Now
V*hr(02) = p(7*02)

is non-zero by assumption, which completes the proof. O

We record a function-field analogue of this statement. Let St be the fraction field
of the complete local ring of Pr at the generic point of F™, and let Tr = C(F2'™)
be its residue field. As before we have a Gysin map

hr : M(Sr, Vals) = N(Tr, Va(=D)l1)
(see 3.2 for details on Galois-cohomological Gysin maps and Sect. 7.1.3 for a recol-

lection of the group N).

Proposition 5.3.4 For I' as in Proposition 5.3.3, we have

hr(024) # 0.

Proof The proof is identical to that of Proposition 5.3.3, replacing the use of
Lemma 2.2.3 with Lemma 2.2.4. O
We immediately deduce:

Corollary 5.3.5 Let " be as in Theorem 5.2.8. Then hr(03) (resp. hr @g)) is non-
zero.

In particular, this non-vanishing holds for the graphs T, described in Theorem 1.3.1.

6 Consequences for the section conjecture
6.1 Geometric results

We now deduce the main geometric results stated in the introduction from the Gysin
computations performed in the previous section. Let k be a field, possibly of positive
characteristic, and let g > 2 be an integer.

6.1.1 Consequences arising from non-vanishing of o,

Recall that if I was a stable graph of genus g, we defined Zr to be the corresponding
stratum of the boundary of .#,, ; and Er to be the exceptional divisor of the blowup
BIZ%. We let IjF be the fraction field of the complete local ring of Blﬁ% at
the generic point of Er. Recall from Proposition 5.3.1 that we denoted the Gysin map
into the cohomology of E}. by gr.

Proposition 6.1.1 Let I" be a stable graph of genus g such that, over the complex
numbers, gr(o1) has order d > 1. Then over a field of characteristic 0, 0y |, has

(p)

order divisible by d. Over a field of characteristic p > O with p not dividing d, 0" . |+

has order divisible by d.
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Proof The idea of the proof is to use the fact that for normal varieties the first étale

cohomology group injects into the Galois cohomology of the generic point; the same

is true for normal Deligne-Mumford stacks. We use the notation from Sect. 5.3. Let
Vi Mg — My T

be the natural open embedding and let

Jj: Ep — Mg

its closed complement. In characteristic 0, we have a commutative diagram of Gysin
maps

&r

H (M. V) HY(ER, j*R'm. V1)

|

HX(Lr. Vi) — H'K(ER). Vil (= DID).

By comparison with the analytic setting gr (o} ¢) is non-zero; now we conclude by
the injectivity of the right-hand vertical arrow (as first étale cohomology of a smooth
Deligne-Mumford stack injects into the Galois cohomology of its generic point).

The proof in characteristic p > 0 is identical; by the argument above it suffices to
show that for the Gysin map

gr: B2 Mo, V') > HY(ER, j*R'7 7,

we have gr (oip é)t) is non-zero. Now let W (k) be the Witt vectors of k£ and let K be the
fraction field of W (k). We have a commutative diagram

——~ g ° . ——~
HX Moy V") —5 HY(ER, R0

| |

—_— g . —_—
HX My x 1"y —5 HYED . j*R' .07
where the vertical arrows are cospecialization maps, whence the result follows from
the characteristic O situation. O

Corollary 6.1.2 Let T/ be a graph specializing to one of the graphs T appearing in
Corollary 5.1.13, and let k be a field. Let d be as in Corollary 5.1.13. Then the tropical
section conjecture (Conjecture 1.2.1) is true for T'', k as long as char(k) does not
divide d. In fact the abelianized fundamental exact sequence

1 > 78(E=)™ > 7% /L2n (=) — Gal(K1 /K1) — 1
Kl"’ KF’ KI-/
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does not split.

Proof 1t suffices to show that 01 ¢t bg-is non-zero in characteristic 0, and 051’ é)tlj(\is
r ’ r’

non-zero in characteristic p. By assumption there is a natural map y : K — Lr,

with L1 defined as in Proposition 6.1.1. By functoriality we have

V*Ol,étlfr\,z o1&y

in characteristic 0 and y*o ip e)tlf\ = ip e)l| i in characteristic p, so it suffices to

show that 0y ¢ |z (resp. o(p ) ./ 7) is non-zero. But this follows by combining Propo-

sition 6.1.1 with Corollary 5 3 2 O

Corollary 6.1.3 Suppose char(k) = 0 or char(k) > g — 1. Let L /k(.#,) be an exten-
sion of degree not divisible by g — 1. Then the class 0} ¢l is non-zero. That is, the
abelianized fundamental exact sequence

U= 1" C i)™ = ™ Corar) /105G, 5z
786, 1) — Gal(R(A) /L) — |

does not split. In particular, the section conjecture is “trivially true" for the base
change of the generic curve to L.

Proof This is immediate from Corollary 6.1.2 applied in the case where I' is the graph
consisting of a single vertex of genus g. O

Remark 6.1.4 In [14], Hain proves (among other things) that the section conjecture is
true for the generic curve of genus g > 5 over a field of characteristic 0. Our result
Corollary 6.1.3 refines this result by showing that in fact the abelianized analogue of
the fundamental exact sequence does not split (and that the result is in fact true for all
g =3).

Remark 6.1.5 In fact the estimates of Theorem 5.1.10 imply that the class 0} | My)
has order divisible by ¢ — 1. Because of the relationship between the class o0 & and
the class [PIC% wa le H! (M, 565 I, /. #,.s) discussed in 4.2.2, this estimate gives
a lower bound on the period of the generic curve of genus g; namely the period of
the generic curve is divisible by g — 1. In fact it is known (by the main result of [33])
that the period of the generic curve over any field is 2g — 2; see [26] for an explicit
statement. Over fields for which it applies, Corollary 6.1.3 implies that, if Cgep is
the generic curve, the class of [Piclcgen] is not divisible in the Weil-Chatelet group of
Pic%geu , which was not to our knowledge previously known. It is natural from the point
of view of the section conjecture to ask if [Piclcgen] in fact generates the quotient of the
Weil-Chatelet group by its divisible part, and what its order is in this group. Of course
itis also natural to ask what is the true order of 0y g[k(m,). Our degeneration methods

are related to those of Ma [26]. See e.g. [23, 24] for a discussion of the period-index
problem for curves.
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We get similar bounds for the period of the curves ¢, above. Analogously, it
would be interesting to study the Picard groups of the curves €.

6.1.2 Consequences of the non-vanishing of 0,
We now perform a similar analysis with the class 0. The arguments are almost iden-
tical.

Proposition 6.1.6 Let k be a field of characteristic different from 2. Let 5; be the
fraction field of the complete local ring of Pr at the generic point of F. S defined as in
Sect. 5.3.2. Then ifk has characteristic 0, 05 &| sp isnon-zero forT" as in Theorem 5.2.8;

if k has characterstic p > 2, then Fz\g(p ) is non-zero.

Proof The statement in characteristic 0 is immediate from Corollary 5.3.5; if k has
characteristic p > 0 it follows as in the proof of Proposition 6.1.1. O

Corollary 6.1.7 Let k be a field of characteristic different from 2. Let T be a graph

specializing to one of the graphs appearing in Theorem 5.2.8. Let@?be the fraction
field of the complete local ring of P g arm ~N(Zy). Then lng /\IS the base change

of the universal curve to Qr/, the sequence
I = (6 52/ L7} (6 =) = 71'(6, 5]

n?‘«ég/g—r\,) — Gal(Qr/0r) — |

does not split.

Proof 1t suffices to show E_ZTéTIE\is non-zero. But by Proposition 6.1.6, its pullback
—_ F,

to St is non-zero, as desired. O
We immediately deduce:

Corollary 6.1.8 Let T’ be a graph specializing to one of the graphs appearing in
Theorem 5.2.8. Then the tropical section conjecture (Conjecture 1.2.1) is true for T’
over fields of characteristic different from 2. In fact the sequence

1 »nﬁ(% A>/L3 ‘(% A)enl‘(% )/

/Kl-*/) — 1

does not split.

Proof We have just shown that 0, ¢ (resp. 6;‘5(” ') does not vanish after pulling back
to Qrv; the result is immediate. O

Finally, we have the following simple corollary:
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Corollary 6.1.9 Let k be a field of characteristic different from 2, and let Q be the field
of meromorphic functions on Py g . Then if g > 2 is even and if Gy, is the base
change of the universal curve to Q, the sequence

1= 7%, )/ L7 (%, 5) — 71 (6;.0) /L’ 7} (%, 5) — Gal(Q/Q) — 1

does not split.

Proof This is immediate from Corollary 6.1.7 for the case of the graph consisting only
of a single vertex. O

6.2 Arithmeticresults

We now use the results above to show the existence of arithmetic examples of curves
trivially satisfying the section conjecture, over p-adic fields and then number fields.
In this section we work over Z. We first show the existence of examples such that o} ¢
obstructs sections. For a closed point z of a scheme we denote by « (z) its residue field.

Theorem 6.2.1 Let I' be a graph as in Corollary 5.1.13. There exists a Zariski-dense
set S of closed points of Zr such that: for each s € S, there exists a Frac(W (k (s)))-
point s of My specializing to s, such that the corresponding curve €y ¢ trivially
satisfies the section conjecture (indeed 01 &y is non-vanishing).

Proof Notation is as in Proposition 6.1.1. We first observe that for p > g, we have

gr@7)) £0 € H' (ERp . j*R'm "),
by Proposition 6.1.1 and Corollary 5.1.13. The restriction of this class to any open
subscheme of E}. F, is non-zero by Proposition 6.1.1 as well. Hence by Theorem 3.1.1
(applied after replacm g E? I'F, with an open substack representable by a scheme), there

exists a Zariski-dense set of points S, of E7. IF, such that o(p ) s

Let S be the union of the images of the S, (over all p)in Z r.

Now for s € S, let 5" be any deformation of s into .#g, over W (k (s)), which is
transverse to E. (i.e. a local equation for ET. pulls back to a uniformizer of W (« (s))).
Such a lift exists as Bl>— /// ¢ is smooth. Now we have a commutative diagram of Gysin
maps

is non-zero fors € S,.

() gr —(p)
H (Mg w17 H'(Epp . j*R'm. V")

| |

H2Frac(W (k (5))). V17 Fracw e s1y)) ——= H (), R o)

where the vertical arrows are restriction. By our choice of s, we have gr(oiiy <§)t)|K(S)

non-zero. Hence o(p ) .ls’ 18 non-zero, as desired. m|
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Remark 6.2.2 The method above could be used equally well to show the existence of
examples of curves over e.g. I, ((¢)) satisfying the section conjecture or indeed to
show the existence of examples over any complete discrete valuation ring with finite
residue field.

We now use an essentially identical argument to product examples where 05 ¢
obstructs sections, with some mild complications arising from the fact that 0, ¢ is not
a cohomology class, but rather a coset of such:

Theorem 6.2.3 Let I be a graph as in Theorem 5.2.8. There exists a Zariski-dense set
S of closed points of FZ'™ such that: for each s € S, there exists a Frac(W (k (s)))-
point s’ of Py g specializing to s, such that the corresponding curve Gy ¢ trivially
satisfies the section conjecture (indeed 0y |y is non-vanishing).

Proof By Corollary 5.3.5, we have that for p > 0,
hr@2a ) € NUEE iR T2

is non-zero, where j : P ;, — Pr is the natural inclusion and i : F'™ — Pr is the
inclusion of its complement. Hence the same is true for

o . . (p)
gr(of)) e H'(Fee it R' .7,

where o;p é)t is defined as in Sect. 4.3.2. Let S, be the set of closed points of FZ'™ such

that for s € S,
(p) .
8r (02,ét)|K(s) #0;

by Theorem 3.1.1, this set is Zariski-dense in F, lfﬁ}sp As before let S be the union of

the S, and, for each s € S, let s’ be a deformation of s to a Frac(W (« (s)))-point of
Py ¢, transverse to Flf’ns. Such a deformation exists by the smoothness of Pr.

Now let L = Frac(W (k(s))) and &1 = W (k(s)). We wish to show that for an L-
point s” as above, we have a‘e{(p ) | # 0. We have a commutative diagram of Gysin
maps

— h o . —
M(Py g0, o) —= NF L j* R, ")

! l

() . < (p)
M(L, V2P| ) ——= N (s), j*R'mV2 " le(s)

By assumption, gr (ogp é)t) lic(sy 7 O; it thus suffices to show that this class is not annihi-

lated in the passage from HI(K(s),j*Rln*@(p)ms)) to N(K(s),j*Rln*@(p)ms)).
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As hr(o;f’ é?t) # 0 by assumption, it suffices to show that the natural map

H' (P10, i) = H'(L, 710
is surjective, by the definition of N (see Sect. 7.1.3). Now

(p) (p)

H' (Pig o, Vi) - H 01, V17"15,)

is surjective because it has a section induced by the structure map Py, g5, —
Spec(€L). Thus it suffices to show that the natural map

H 0L, NP5 — H'(L,T,7|1)

is surjective. But this follows from the inflation-restriction exact sequence; if I C
G := Gal(L/L) is the inertia subgroup, the cokernel of the above map injects into

Hl(l, @(ﬁ))GL/I.

By assumption I is a stable tree, so I acts trivially on ﬁ(p ) Thus this group is simply
Homgs (720, @(P))GL/I' But this last vanishes for weight reasons; 1%° has weight —2
and @(p) has weight —1 (again as I is a tree). O
Remark 6.2.4 One may immediately use the above theorems to construct examples
of curves over number fields for which the existence of mq-sections is obstructed by
01 ¢ (resp. 05 ¢) by algebraization and Artin approximation. See e.g. [37, 7.5] for an
explanation.
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7 Appendix: Group cohomology constructions and computations
7.1 Obstructions arising from extensions by a 2-nilpotent group

Suppose we are given a short exact sequence of continuous maps of (not necessarily
commutative) discrete or pro-finite groups

l>nm—->7—>G—1.

Then conjugation induces an outer action of G on 7.
Letw = L'z o L7 o ..., where L¥*7 = [, L¥x], be the lower central series
of .
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7.1.1 Non-abelian cohomology computations

Consider the sequences

0— LG/L37r — 7[/L37r — n/szr — 0, (7.1.1)

0 n/L*nr — 7#/L’7 — G — 1, (7.1.2)
and

0— L*>n/L’7 —» #/L%7 — #/L%7 — 1. (7.1.3)

Definition 7.1.4 Let
l1-A—-B—->C—1

be a split exact sequence of groups, with A abelian. For two sections s1, 52 : C — B,
we say they are equivalent if there exists some element a € A such that si(c) =
as»(c)a! for any ¢ € C.

Lemma7.1.5 Let
l1-A—>B—->C—>1

be a exact sequence of (discrete or pro-finite) groups, with A abelian. Then the set
of continuous sections s : C — B up to equivalence is, if non-empty, canonically a
torsor for H'(C, A).

Proof This is [32, 1.5, Exercise 4], taking f =id, G = G'. O

Proposition 7.1.6 The set of continuous sections to sequence 7.1.2 up to equivalence
is, if non-empty, canonically a torsor for H' (G, w/L*).

Proof Immediate from Lemma 7.1.5. |

Definition 7.1.7 Suppose sequence 7.1.2 admits a splitting s, inducing an action of G
on /L3, Let

8 H'(G,7n/L*n) - H*(G, L*n/L’n)
be the boundary map in non-abelian cohomology arising from sequence 7.1.1. Con-
cretely, for a cocycle x : G — m/L*m, weliftit to a continuous map X : G — 7 /L3w
and define a cocycle representing the class &5 ([x]) as

85(x)(a, b) = ¥(a)(F(b))* @ (% (ab)) ™ (7.1.8)

where here a € G acts on %(b) € /L3 via the splitting s. For reference, see [34,
Section 5.6, 5.7].
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Definition 7.1.9 We defineamapm : H'(G, 7/L*7)®? — H?*(G, L>7/Lx) as the
composition of the cup product with the map on H? induced by the commutator map:
m: H'(G, 7/L*7)®2 % H2(G, (n/L*7)®2) =5 H2(G, L7/ 13 7).
Explicitly, the second map is induced by the following map between coefficients:
(n/L*1)®? > L’7 /L%
a® B afa !
where &, 5 are lifts of «, B € JT/LZJT to TL’/L3TL'.

Note that the map m above is defined independent of any choice of section to
sequence 7.1.2.

Proposition 7.1.10 (Compare to [7, Proposition 1]) Let §; and m be the maps defined
in Definitions 7.1.7, 7.1.9. Then we have
85 (x + y) — 8s(x) — Sx(y) =mx® Y)-

Proof Letx, y : G — m/L*n be cocycles representing classes in H' (G, /L) and
let ¥, 5 : G — /L7 be continuous set-theoretic lifts of x, y from Sequence 7.1.1.
By definition, a cocycle representing the class x ® y € H*(G, (r/L*7)®?) is

xX®y:a, b x(a)Q yb)~*.
So m(x ® y) can be represented by
mx ®y):a,bi> [x(a), y(b)]

where the choice of the action of a € G on y(b) does not affect this commutator.
Now we have

(85 (x +y) = 8 (x) = 8s(»)(a, b)
=X (@)F(@iB)F (b5 ab)i ()% @)F@b)i (b))
= X@F @I BT (@F@FB)*5 ab)i~ B F @)F (@ab)F T ()T (a)
= @ @35 @ 0T @F@FB) T (@b)§ab)y~ (b))
= X(@)[5(a), ()15 ()
= [§(a), ¥(b)"].

Here, we used the fact that 3(a)y(b)*3~(ab), [¥(a), ¥(b)*] € L?w/L’x is in the

center of 77/ L37. And we conclude by noticing §;(x + y) — 85(x) — 85(y) does not
change if we switch x, y. O

In particular & is a homomorphism of abelian groups modulo the image of m.
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Proposition 7.1.11 Let sy, 52 be sections to sequence 7.1.2. Following Definition7.1.7,
each section induces a G-action on 7t/ L3 7 and hence a boundary map in cohomology

8y : HY(G,m/L*n) — H*(G, L*n/L’n).
Then
85 () — 85, (x) = m([s1 — $2] ® x),

where m is the map defined in Definition 7.1.9 and [s1 — s2] € H' (G, w/L*) is the
element classifying the difference between sy, sy from Proposition 7.1.6. This class is
represented by the cocycle cg,s, : g F> S1 (g)s2(g)~ L.

Proof Following Definition 7.1.7, if we denote by ¥ : G — 7/L>m a continuous lift
of x, then

85 (X)(a, b) = F(@)X(b) 3~ (ab)

where a € G acts on x(b) € 7T/L3T[ through conjugation by s;(a), where 5; : G —
7 /L is a continuous lift of s; to 7 /L37, i.e.

b)Y = 5 (@)F(B)§i (@)

Note that since different choices of lifts differ by an element in L7 /L3m, which is in
the center of /L3, this action is independent of §;, justifying the notation. So now
we have

(5, (x) — 85, (x))(a, b)

= ¥ (@)Si(@iB)5i (@i (ab)i(ab)s (@) (b)5~ (@)F (a)

= H@5i@ib)si” (@H@F G5 @i ()

= {(@51(@0% ™ (@2@I0)% T @025~ @2@i ™ 0™ @i @)

= ¥(@)[§i (@)~ (@), H(@ib)5H @) (@)

= m(Cszsl ® x)(a, b).

Here we used the fact that m(cy,5, ® x)(a, b) = [Cs,s,(a), X(b)] is defined inde-

pendent of the choice of the G-action on 7/ L37, so we chose to take the action to be
conjugation by s3(a). Also, the elements s (a)s~[1 (a), s}(a)i(b)s}fl (a) € m/L37,

which implies their commutator lies in L?7/L>m and hence commutes with ¥ (a) €
3
/L m. O

7.1.2 Construction of the class 03

Definition 7.1.12 Let

H2(G, L2n/L37) := H*(G, L*7/L’7) /im(m).
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By Proposition 7.1.11, for any two sections s, s» to sequence 7.1.2, the composite
maps

Ss.
HY(G,n/L*n) —> H*(G, L*n/L’7) - H2(G, L?7/L37)

are canonically identified. We denote this (canonical) composite map by 8. Note that
by Proposition 7.1.10, § is linear.

As L?7/L37 is abelian, sequence 7.1.3 gives rise to a class in b € H?(7/L?w, L?
7/L37). Given a splitting s of sequence 7.1.2, there is an induced class s*b €
HZ(G, LG/L3n); this class depends on s.

Proposition 7.1.13 Suppose s1, s2 are two sections to sequence 7.1.2, with difference

[s1 —s2]l € HY(G, 7 /L%7).

Denote by sib — s3b the image of s{b — s3b in H*(G, L?7 /L3w). Then we have

sib — s3b = 8([s1 — s2]), where

§: HY(G,n/L*7) — H%(G, L7 /L37)

is the map from Definition 7.1.12.

Proof By definition, the extension class b € H?(7 /L?m, L>7/L3m) is represented by

~ o~ ——~——1] ~ ~ . ~
acocycle g1, g2 > £1828182  where g1, &, 8182 arellifts of g1, g2, g182 € 7 /L*
to 7 /L37. Thus, the induced class s7b is represented by

X,y > Si0§5 0§ (xy)

where §i, 3 : G — 7/L3n are continuous lifts of sy, s5.
We will prove the desired statement by showing

sth — s3b = 85, ([s1 — 52]) € H*(G, L*7/Lm).

Let cs5 1 8 — sl(g)sz(g)’1 be a cocycle representing the class [s; — s2]. Then
g— S (g)s}_1 (g) is a continuous lift of ¢,,s, and by Definition 7.1.7, we have

SIS @ MK N5 )5 ()
S10)5 7 0)H )5S ST 5T 052005 ()
= 511N MH T @K@y ()
(ST OSTOST ) 1y~ (xy)

(S $H T MH ) E)$ T x)
=s7b(x,y) — s5b(x, y)

8‘92 (Csle )(x,y)
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In the last step, we used that the element 57 (xy)s3 T y) liesin 7/ L3 and the element
$2 (xy)s~[l (y)s}*1 (x) lies in L% /L3m. So they commute with each other. O

Definition 7.1.14 Let

M(G, L*7/L37) = coker(8 : H'(G, n/L*n) — H2(G, L>7/L37)).

Then for any sections : G — 7 /L*r of sequence 7.1.2, weletos € M(G, L>mw /L)
be the image of s*b. This class is independent of s by Proposition 7.1.13.

Remark 7.1.15 Lety : G’ — G be a group homomorphism. Pulling back the sequence
l>nm—->7—->G—1
along this line, we obtain a sequence
l>nmn—-axgG -G =1
with analogous properties to the corresponding sequence for G; hence we may

define M(G’, L?>7/L3r). There exists a unique map y* : M(G, L*w/L37) —
M(G’, L*>7/Lm) which makes the following diagram commute:

HX(G, L*n/L37) ——~ H*(G', L*n/L37)

Lo

M(G, L’n/L31) —— M(G', L*n/L37)
From the definition it is clear that y*0; = 0.
Proposition 7.1.16 The obstruction 65 € M(G, L>7/L37) vanishes if the sequence
1 — 7T/L371 — ﬁ/L3n - G—1
splits.
Proof Immediate from the definition. O
7.1.3 Gysin images of 0;
Throughout this paper we will consider various Gysin images of 03, as we now explain.
Suppose that we are in the situation described above, and moreover G sits in a short

exact sequence

1—-1—->G—H—>1
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with I = 7Z (in the discrete setting) or [ = 7 (in the pro-finite setting). Then as in
Sect. 3.2, we have a natural (Gysin) map

¢: H*(G,L*n/L’7) > H'(H, (L*7/L7);)

arising from the Hochschild-Serre spectral sequence.
We let

HY(H, (L?7/L3m);) := coker(g om : H'(G, n/L*m)®> — H'(H, (L*7/L’7)))

and define

N(H, (L*7/L’7);) := coker(g o 8 : H' (G, w/L*n) — H'(H, (L?>7/L3m)1)).
Then by definition the natural Gysin map g above descends to a map
h:M(G, L*n/L*r) — N(H, (L*7/L*7))).

We now discuss the functoriality properties of the map % defined above. Suppose
we have a map of short exact sequences of groups

1 I G H' 1
kb
1 1 G H 1

inducing an isomorphism [’ = I as above.
Pulling back the sequence

l>7—->7—->G—1
along this line, we obtain a sequence
l>nmn—>axgG -G =1

with analogous properties to the corresponding sequence for G; hence we have an
analogous map

W M(G', L*7/L*7) — N(H', (L*7/L7) ).
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It is immediate from the functoriality of the Hochschild-Serre spectral sequence that
the evident square

M(G, L*7/L37) — "~ N(H, (L?7/L37);)
k :
M(G', L*>7/L3n) M N, (L2 /L3m) )

commutes.

7.2 Cohomological preliminaries for surface groups

We now specialize to the case where G is a surface group, i.e. we let G = m1(X),) for
some i > 1. G has presentation

h
G = (ar.br....an. by | [ Jlai. bi1).

i=1

We will make the computations described in Sect. 7.1 explicit in this case.

Let G act on Z[G] by multiplication on the left. We begin by introducing a finite
free resolution of Z as a (trivial) Z[G]-module. Let R; = [a;, b;] and R = ]_[f‘=1 R;.
As a convention, we set ag = by = 1.

Proposition 7.2.1 [11, Proposition 2.1] There is an exact sequence of Z[G]-modules

0P P pS7z50 (12.2)
where Py = Z[G] with generator v, P| = (Z[G])Zh with generators e;, fi,i =
1,...,h and P, = Z[G] with generator u. Then, on the generators the maps are

defined as

e:vie> 1,
d1: e — (a,' — 1)0,
Ji > (bi = D,

h
IR IR
d: R+ 225,
’ uﬁg(aaieﬁabiﬁ)

where the partial derivatives are the Fox derivatives.

Let M be a left G-module and apply the functor Hom(e, M) to Sequence (7.2.2).
We get a sequence

dx d¥
0 «— Hom(P>, M) <— Hom(P;, M) <— Hom(Py, M) «— -
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whose cohomology is precisely H*(G, M). Since P, is a free Z[G]-module generated
by a single element u, the group Hom( P>, M) is isomorphic to M via the map ¢ +—
¢ (u). Thus, each class in H 2(G, M) can be represented by an element of M. The
following corollary gives an explicit description of H?(G, M) in these terms.

Corollary 7.2.3 [11, Corollary 3.1], [25, Corollary 11.2] For any left G-module M,

HZ(G M)~ M/ 3R oR dR OR M
’ 3171 7 day, Oby,

Corollary 7.2.4 Let I := ker(¢). For any left G-module M,
H*(G,M)~M/IM = Mg.

Proof Using Corollary 7.2.3, the only thing to show is (%, IR -

aby
I M. Since

®<:;
2:
|

ﬂ)Mz

R -
R |ai(l —bpa; ', — = R; | aib;(1 —a Hp !,
aal 1_[ ai( l)al ab; jl:!) il i a; )l

we get an inclusion (%, %, el gﬂﬁ abh) MCIM.

The Z[G]-module IM is generated by elements of the form (1 — a;)m, (1 —
biym,i =1,...,h,m € M.Forany m € M, let m; = a;m and m; = b;m. Then we
have

-1 . -1

R IR
—m, (1—b,')m:ai_l HR/ ;.

i—1
-1 _—1
(I —a;)m = —a;b; " q; E)Rj ob;

So we have the reverse inclusion and conclude the statement. O

Note that the abstract isomorphism in the statement of Corollary 7.2.4 follows from
Poincaré duality for surfaces; the purpose of the corollary is to make this isomorphism
explicit in terms of the free resolution of Proposition 7.2.1.

Proposition7.2.5 Let ¢ ® € (ker d;‘)®2 C Hom(P;, M)®? represent the class
[p]1 ® [¥] € H' (G, M)®2. Then the class [p]1U [¥] € H*(G, M®?) is represented
by a cocycle ¢ U ¥ € Hom(Z[G], M®2) defined by u — ¢ @ ¥ (A11(u)) where
A11 : P» — Py ® Py is a part of a diagonal approximation A : P — P ® P
constructed in [11, Theorem 2.2].

Proof This immediately follows from the definition of cup product. See for example
[3, Section 5.3]. O
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Lemma 7.2.6 The map

8
L*’G/L*G — (AZ(G/LZG))/(Z ai A b;)
i=1
[x, Y] = [x] A Ly]
is an isomorphism where [x] is the image of x € G under the natural map G —
G/L%G.

Proof Let F = (a1, b1, ..., ag, bg) be the free group. By statement (4) in [35, Sec-
tion 4.3, page 20], the graded Lie algebra (F/L?>F) @ (L*>F /L>F) with the bracket
operation given by the commutator is isomorphic to (F/L>F) @ (A*(F /L*F)). Then
by Section 1, Theorem on page 17]Labute, the statement in our lemma for a group G
with a single defining relation follows. O

7.2.1 Computation for the surface group 77 (21)

Now we specialize to the case & = 1 and carry out some computations to be used in
Sect. 5.2.
Let

G=m((X)=(S,TI[S,T]
with an outer action on 71 (X,) given by a sequence
1 - m((Zg) - m(E) - G — 1,
where E is a Xg-bundle over Xj. In this section, we will be considering the two
G-modules 71 (Z;)/L*m1(Z,) and L2m1(X,)/L3 w1 (Z).

The free resolution of Z as a Z[G]-module in Proposition 7.2.1 in this case is given
as follows:

0—P -5 p N p 70 (7.2.7)

where P, = Z[G] with generator u, P; = Z[G]? with generators ¢, f and Py = Z[G]
with generator v. The maps are:

du)=10-=8e—-1-T)f,
di(e) = (T —Dv, di(f)=(S—Du.

Appling the functor Hom(e, 1 (X,)/ L?m (Xg)) to this resolution, we see that the
groups H*(G, m1(Xg)/ L’m (Xg)) are given by the cohomology of the sequence

0 «<— Hom(P», nl(Zg)/Lzm(Zg)) £ Hom(Py, nl(Zg)/Lzm(Eg))

d*
< Hom(Py, 71 (2,)/ L1 (Zg)) «— - --
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Cocycles in ker dJ are given by ¢ € Hom(Py, (Eg)/Lzm(Eg)) satisfying
(I =) — 1 =T)p(f) =0. (7.2.8)

Lemma7.2.9 Let ¢, € kerd} represent classes [¢], [¥] € H'(G, 71(Z,)/L*m
(Xg)). Then a cocycle in Hom(P,, Lzm(Zg)/L37'rl(Eg)) representing the class

m([¢] ® [Y]) is given by
m(@ @ Y)u) =) NTY(f) —d(f) ASy(e). (7.2.10)

Proof By Proposition 7.2.5, an element in Hom(P3, n/LG) which represents the
class

[p1U Y] € H*(G, (m1(Z,)/L7m1(Z))%?)
is given by
(@ ®Y o A1W) =d(e) @Y (TF) — $(f) ® Y (Se)
where the map
Alp:ur—e®Tf — f®Se
is from [11, Theorem 2.2]. Thus by Definition 7.1.9 and Lemma 7.2.6,

m(@Y)(u) =) ANTY(f) —o(f) ASy(e)
represents the class m([¢p] ® [Y]) € H*(G, L?71(Z,)/ L1 (Zy)). ]

In the following, we consider the case where the sequence
1 = m1(Zg)/L*71(Zg) — mi(E)/L*m1(Zg) — G — 1

splits. So we fix a section s : G — m(E)/Lzm(Zg) and let S, 7T act on
T (Zg)/L3m (Xg) via the section s. We compute the boundary map §; from Defi-
nition 7.1.7 explicitly in the following lemma.

Lemma7.2.11 Let ¢ € kerd] represent the class [$] € H' (G, m(Zg)/Lzm(Eg)).
Then a cocycle in Hom(P, Lzm(Zg)/L3n1(Eg)) representing the class 5;([¢]) is
given by

-1

S

5w = (@ d()] (ﬁf)T> GRI0) <¢(e> )

where ¢ (), §(f) € 71(Zg)/L31(S,) are lifts of ¢ (€), () € m1(S)/L2m1(Te).
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Proof We start with giving an embedding of the resolution (7.2.7) into the standard
resolution of Z as a Z[ G]-module as follows:

0 71G] — = 71612~ - 716] -~ 7 0
lzz ltl \L'v lN
7163 -2 7161 2> 7161 ——~ 7. 0

where the maps are given by

)= T,S,T)—-(S,T,1),

te) =—(T,D,u(f) =—(,D.
Since (1 is injective and Z[G?] = @eecZIG1(1, g) is afree Z| G]-module, there exists

¢’ € ker D5 C HomyG1(ZIG?], 11 (Z,)/L*m1 ()

such that ¢/ (1, 7)) = (&)™ )7, ¢/((1, S71) = (¢(/H)™H5™", or equivalently
t1 0@’ = ¢. Now direct computation shows that an inhomogeneous cocycle x : G —
71(Xg)/ L7 (Z,) representing the class [¢] € H' (G, m1(Zg)/L*m1(Z,)) is given
by

x(T =@ HT L xs T =@HHS
and hence
x(T) = ¢le), x(S7'T) = (¢(f) ' $(e)S
Now choose a lift X of x to nl(Eg)/L3n1(Eg) such that
ST =@ AT = @) dlen

Using Equation (7.1.8) in Definition 7.1.7, we may compute an inhomogeneous
cocycle representing 85 ([x]) = 85 ([¢]). Translating back into homogeneous cocycles
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and evaluating on ¢ (u) gives:

G ST, TS @S (x)(T ™!, s 1)) !

NS ST e 1P
=((¢(€) ¢(f)> <¢(€) ) <¢(f) ) )

NS s o

(¢>(€) <¢>(€) ¢>(f)) (¢(f) ) )

el o T\~ 5\ !
=[pe) ,o(f)] <¢(f) )¢(f) ¢ (e) <¢(8) ) .
as desired. O

e T\ o~ ] ——
Remark 7.2.12 1t might not seem obvious that the element <¢( D) ) o(f) ¢(e)

-1
s
<¢(e) ) is in L2 (Z,). But if we apply the natural map 71 (X,)/L371(Z,) —

nl(Eg)/Lzm(Eg) to it, we get T(d(f)) — @ (f) + ¢(e) — S(¢(e)), which is O by
Equation (7.2.8). Thus this claim follows from the fact that ¢ was a cocycle.

Finally, we record the following diagram, which will be useful for our computations
in Sect. 5.2.

Lemma7.2.13 Let H = m(Eg)/L27r1(Eg), w = Zle a; A b;, and let @ be the
image of w under the natural map AN*H — N?Hg. Then there exists a unique map h
which makes the following diagram commute.

(N2H) /{w) —L = (N2 H) (o6

o

(A2HG)/ (@)

Proof The only thing we need to show is that ker f C ker g. The group ker f is
generated by elements of the form ga A g8 — a A B, for g € G. Observe that
elements of the form (g — 1)a A B are contained in ker g. Since ga A g8 —a A B =
gaN(g— 1B+ (g — Da A B, we conclude our lemma. O
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