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This paper presents a hierarchical nonlinear control algo-
rithm for the real-time planning and control of cooperative
locomotion of legged robots that collaboratively carry ob-
jects. An innovative network of reduced-order models sub-
Jject to holonomic constraints, referred to as interconnected
linear inverted pendulum (LIP) dynamics, is presented to
study cooperative locomotion. The higher level of the pro-
posed algorithm employs a supervisory controller, based on
event-based model predictive control (MPC), to effectively
compute the optimal reduced-order trajectories for the inter-
connected LIP dynamics. The lower level of the proposed
algorithm employs distributed nonlinear controllers to re-
duce the gap between reduced- and full-order complex mod-
els of cooperative locomotion. In particular, the distributed
controllers are developed based on quadratic programming
(QP) and virtual constraints to impose the full-order dynami-
cal models of each agent to asymptotically track the reduced-
order trajectories while having feasible contact forces at the
leg ends. The paper numerically investigates the effective-
ness of the proposed control algorithm via full-order simu-
lations of a team of collaborative quadrupedal robots, each
with a total of 22 degrees of freedom. The paper finally in-
vestigates the robustness of the proposed control algorithm
against uncertainties in the payload mass and changes in
the ground height profile. Numerical studies show that the
cooperative agents can transport unknown payloads whose
masses are up to 57%, 97%, and 137% of a single agent’s
mass with a team of two, three, and four legged robots.

1 INTRODUCTION

Legged robots can form collaborative robot (co-robot)
teams that assist humans in labor-intensive tasks such as con-
struction, manufacturing, and assembly. The evolution of
legged robots that cooperatively manipulate/transport objects
can be described by high-dimensional and inherently unsta-
ble complex systems. Although powerful computational ap-
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Fig. 1. lllustration of a team of two Vision 60 robots augmented with
Kinova arms for cooperative locomotion. Full-order dynamical mod-
els of these robots are used for the numerical simulation.

proaches have allowed the deployment of distributed con-
trol algorithms for complex robot systems, state-of-the-art
techniques are tailored to the control of multi-robot systems
(MRSs) (see e.g., [1,2]) composed of collaborative robotic
arms and multi-fingered hands [3], aerial vehicles [4, 5], and
ground vehicles [6-8], but not sophisticated legged machines
that cooperatively transport objects.

The overarching goal of this paper is to develop a hierar-
chical computational algorithm to enable the real-time plan-
ning and control of cooperative locomotion for multiagent
legged robotic systems that carry objects. The higher level of
the proposed algorithm employs a supervisory control, based
on event-based model predictive control (MPC), to generate
optimal trajectories for individual agents. In particular, the
MPC is formulated for the optimal control of an intercon-
nected network of holonomically constrained reduced-order
systems, developed based on linear inverted pendulum (LIP)
models, subject to having feasible individual ground reaction
forces (GRFs). To reduce the gap between the network of
reduced- and full-order complex models of cooperative loco-
motion, distributed nonlinear controllers, based on quadratic
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Fig. 2. Overview of the proposed hierarchical nonlinear control algorithm for cooperative locomotion of legged agents subject to holonomic
constraints. The figure also illustrates the concept of the interconnected LIP dynamics.

programming (QP) and virtual constraints, are implemented
at the lower level of the proposed algorithm to impose the
full-order dynamics of each agent to asymptotically track the
optimal trajectories while keeping the GRFs at all contacting
leg ends in the friction cone. It is shown that the proposed
control approach can generate and robustly stabilize cooper-
ative locomotion patterns for multiagent quadrupedal robotic
systems in the presence of model uncertainties arising from
unknown payloads and ground height variations (see Fig. 1).

1.1 Related Work, Motivation, and Challenges

Gait planning for complex dynamical models of coop-
erative locomotion is a significant challenge arising from the
hybrid nature of models, nonlinearities, high dimensionality,
and strong interactions amongst the agents. Hybrid systems
theory has provided powerful techniques for modeling and
analyzing dynamic locomotion of single legged machines
[9-18]. Advanced nonlinear control algorithms have been
developed to address the hybrid nature of locomotion such as
hybrid reduction [19], controlled symmetries [15], transverse
linearization [16], and hybrid zero dynamics (HZD) [10,20].
The HZD approach considers a set of kinematic constraints,
referred to as virtual constraints, to coordinate the links of the
robots during locomotion. Virtual constraints are asymptot-
ically imposed by the action of a feedback control law (e.g.,
input-output (I-O) linearization [21]) and have been vali-
dated for stable locomotion of bipedal robots [10, 11,22-25]
and powered prosthetic legs [26,27]. The HZD approach
formulates the gait planning problem as an offline nonlinear
programming problem (NLP) [24] which cannot address the
real-time planning for cooperative locomotion.

Various powerful MPC-based approaches have been in-
troduced for the real-time planning and robust control of
solitary legged machines, including the LIP-based approach
[28-34], single rigid body dynamics approach [35-37], non-
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linear MPC [38], policy-regularized MPC [39], and QP-
based whole-body control [40,41]. Quadrupedal robots that
cooperatively transport an object can be described by a set
of legged agents that are coupled to each other and the ob-
ject via a set of holonomic constraints. The challenge is
to develop real-time optimal control algorithms for such a
complex and inherently unstable robotic system that control
locomotion with many degrees of freedom (DOFs). Exist-
ing MPC approaches for legged robots are typically formu-
lated as QPs to be solved every time sample—this makes
the extension of these MPC-based techniques for compos-
ite mechanical systems arising from cooperative locomotion
of quadrupedal robots computationally intensive. We would
like to deploy innovative MPC techniques in the context of
networked systems that can reduce the computational bur-
den to allow real-time planning and coordination of sophis-
ticated co-robot teams. One approach to tackle this chal-
lenge is through the development of event-based MPC tech-
niques [33,42], in which MPC problems are solved at par-
ticular time samples, referred to as events (e.g., beginning
of each domain), rather than every time sample. Our previ-
ous work [33] presented a nonlinear control approach, based
on event-based MPC, for the robust and stable locomotion
of single quadrupedal robots. We would like to extend this
framework for the motion control of cooperative locomotion.

1.2 Objectives and Contributions

The objectives and contributions of this paper are as fol-
lows. We present an innovative and interconnected network
of reduced-order models to address the real-time planning
for cooperative locomotion of quadrupedal robots that carry
an object. The proposed network of reduced-order models is
nonlinear and developed based on the interconnection of LIP
models subject to holonomic constraints. We then present a
hierarchical nonlinear computational algorithm for the mo-
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tion control of legged co-robots (see Fig. 2). At the higher
level of the control scheme, we present a supervisory predic-
tive control algorithm, based on event-based MPC, to com-
pute the optimal center of mass (COM) trajectories for the
network of reduced-order models subject to the feasibility
of the individual net GRFs. To address the nonlinearity of
the interconnected reduced-order models and to formulate
a convex optimal control problem, the event-based MPC is
employed using the linearized dynamics at the beginning of
each continuous-time domain (i.e., event samples). At the
lower level of the control scheme, distributed nonlinear con-
trollers, based on QP and virtual constraints, are developed
to impose the full-order dynamical model of each agent to
asymptotically track the prescribed optimal COM trajecto-
ries while keeping all individual GRFs at the contacting leg
ends feasible. To demonstrate the effectiveness of the pro-
posed control algorithm, a series of extensive and full-order
numerical simulations is presented for cooperative locomo-
tion of a team of two, three, and four advanced quadrupedal
robots, Vision 60, augmented with Kinova arms, each with a
total of 22 DOFs (see Fig. 1). Itis numerically shown that the
proposed control scheme can generate and robustly stabilize
locomotion patterns for a team of quadrupedal robots that
carry different objects in the presence of model uncertainties
in terms of payloads and unknown ground height variation.
The numerical studies show that the agents can cooperatively
transport unknown payloads whose masses are up to 57%,
97%, and 137% of a singles agent’s mass with a team of two,
three, and four legged co-robots.

The approach of this paper completely differs from [43]
in that the current paper presents an innovative network of
reduced-order models together with a supervisory MPC for
the real-time planning of cooperative locomotion, whereas
[43] only studied the stabilization of preplanned and offline
trajectories. In addition, the approach of [43] studied the lo-
comotion of two agents via the hybrid systems formulation
that cannot be easily extended to the locomotion of multiple
agents. We finally remark that the objective of this paper is
to study the development of hierarchical control algorithms
for stable and robust cooperative locomotion subject to the
holonomic constraints that can arise from cooperative trans-
portation problems. Hence, the main focus of the paper is on
cooperative locomotion, and robotic manipulators are being
used towards this goal.

2 INTERCONNECTED LIP DYNAMICS

The objective of this section is to derive an intercon-
nected network of reduced-order models for the cooperative
locomotion of N > 2 legged co-robots that carry an object.
The reduced-order network, referred to as the interconnected
LIP dynamics, will be utilized for the real-time trajectory
planning in Section 3. Here, we consider an open path graph
for the network of LIP dynamics with N vertices and N — 1
edges. In particular, all inner vertices have degree 2 except
the end vertices 1 and N that have degree 1 (see Fig. 2).
The vertices of the graph represent the agents, and the edges
represent interconnection between agents. In our notation,
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AL(i) denotes the set of all agents that are adjacent to the
agenti€ vV :={1,--- ,N}.

Remark 1 (Path Graphs). The reason for the assumption of
open path graph is to simplify the presentation of the interac-
tion forces and the interconnected LIP dynamics in Theorem
1. This also allows us to easily present the proposed control
scheme.

We consider the following LIP dynamics [28] for the
locomotion of the agenti € V

ey

i =

|10

1
(ri —wi) + Ll

where r; := col(r¥, 7)) € R? represents the Cartesian coordi-
nates of the COM of the agent i in the horizontal plane with
respect to the inertial world frame, ¢ denotes the height of the
COM, g is the gravitational constant, u; 1= col(u} ,uly ) € R2
represents the Cartesian coordinates of the center of pressure
(COoP), f; € R2 denotes the external force on the COM of the

agent 7, and m is the total mass of the agent

Assumption 1 (Rigidity). We suppose that there are holo-
nomic constraints amongst the adjacent agents as follows:

|ri —rl? i= (ri— 1)) " (ri = 1)) = cijy 2
for all i € V and j € N(i) and some constants cjj > 0.
The forces between agents i and j are further assumed to
be fij = —fji = (ri—rj) Aij, where \;; denotes the Lagrange
multipliers with the symmetry property Aij = Aj; (see Fig. 2).

We remark that from Assumption 1 as well as the sym-
metry condition, there are N — 1 independent Lagrange mul-
tipliers A;; to be determined. For future purposes, we show
these independent Lagrange multipliers as a vector A :=
col(hjjli=1,-- ,N—1,j=i+1) € R¥"!, where “col” rep-
resents the column operator. Throughout this paper, the bold-
face variables will correspond to the global variables of the
interconnected LIP network.

Remark 2. Assumption 1 considers the holonomic con-
straints amongst the COMs of the adjacent agents as the
LIP dynamics cannot address the moments about the COM.
In particular, the addition of robotic manipulators to the
reduced-order model can result in moments around the COM
generated by the arms. Hence, the interconnected LIP dy-
namics do not include the manipulator models. However,
we remark that the full-order dynamical model of coopera-
tive locomotion in Section 5 will consider the holonomic con-
straints amongst the manipulators’ end effectors (EEs). We
further assume that the EE’s motion with respect to the body
is almost static. The numerical results of Section 5 will show
the adequacy and validity of this assumption for the devel-
opment of the supervisory MPC. The numerical results will
also show that the proposed control algorithms can bridge
the gap between the developed interconnected LIP model and
the detailed full-order model. Section 6.2 will discuss this as-
sumption and the results with more details.
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Using this assumption, the interconnected network of
LIP dynamics can be expressed as

. _ 8 ! -
Vi:z(ri_ui)“f‘E Z (ri—rj)kij, i€V (3)

JEN(D)

subject to the holonomic constraints (2). For future purposes,
we define the augmented position, velocity, and control input
vectors as r := col(r;|i € V) € RN, #:=col(#;|i € V) €
R?N, and u := col(u;|i € V) € R?N. By differentiating the
holonomic constraint (2) twice along the trajectories of (3),
we get

(ri= )" (= #y) |l = #4]* = 0. @

Combining (3) and (4) then results in
8 8 . .
7= rill* = AUl ri) (i —up) + |7 —

(ri—ry)"
m

+ Z (ri—r)hy— Z (rj = 1) Mj

leN(i) keN())

:0’

foralli=1,---,N—1and j =i+ 1 which can be written in
a compact form to solve for the Lagrange multipliers A, i.c.,

AN(r)A‘:b(raiuu)‘ (5)

Here, Ay € RWV-1>x(V=1) 5 3 symmetric matrix as follows:

2||el2||2—€1T2€23 0 0 .- 0
—ehen2llenlP—ehess 0 - 0
0 _€L6232||€34||2—6Lg45... 0 7
0 0 0 0 "'2||eN—1.,NH2

in which e;; ;= r; —r; € R%. In addition, b := col(b;|i =
1,~~- N — 1) S RNfl, where b; := %(F,’ — rj)T(ui —Ltj) —
28\ |r;—rj||* —ml||#;—#;||* with j =i+1. In what follows, we
study the conditions under which there is a unique solution
A for the algebraic equation (5).

Theorem 1 (Uniqueness of A). Suppose that N > 2 and As-
sumption 1 is met. Then, the matrix Ay (r) is positive definite
if ri # rj (or, equivalently, e;; #0) foralli € V and j € N(i).

Proof. See Appendix 8.1. O

Using Theorem 1, the Lagrange multipliers can be
solved as A = Ay'(r) b(r,#,u) which in combination with
(3) results in the following compact and nonlinear equations
of motion

r—=

100

1
(r—u)+ LV, ©)
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where L(A) := [L;;] € R*V*2V is a weighted Laplacian ma-
trix with the blocks L;; € R?*? for 1 <i,j < N such that
L= (Zkeﬂ\[(i) Aik) b, Lij:= —7\‘”'12 for j € AL(i), and Lij:=
0, for j ¢ A[(i). Here, I, and 0, denote the identity and zero
matrices of order 2, respectively. We remark that according
to the construction procedure, the state manifold for the in-
terconnected LIP dynamics can be expressed as

M = {(r,7)|leij||* = cij, ejjéij = 0,i € V, j € N (i)},

for some ¢;; > 0 which is invariant under the flow of (6).
In addition, we can show that M is a 2N + 2-dimensional
embedded submanifold of R*.

Example 1. For the case of two agents, the interconnected
LIP dynamics can be expressed as the following nonlinear
system

= %(71 —up)— %(71 —n)
L 8= n)(n —r) (w —w) (ri—=r)|i =
2L|r =2 2||ri =22
i = %(r2*u2)+2%(1’1*r2)
Cgln=r)(n—r) (i —w) (r—r)lli =
2L =2 ? 2|1 =22

By defining the augmented state vector x := col(r,#) €
R*V . the nonlinear state equation for the coupled LIP dynam-
ics can be expressed as x = f(x,u), where f : M x R?N —
TM is differentiable and T denotes the tangent bundle of
the manifold 4. In addition, the continuous-time dynamics
can be discretized using the Euler approach as follows:

x[k+ 1] = x[k] + T, f (x[k], u[k])
=: F(x[k],u[k]), N

in which T denotes the sampling time and x[k] and u[k] rep-
resent the state vector and control inputs at the time sample
k € Z>p:={0,1,---}, respectively.

3 SUPERVISORY PREDICTIVE CONTROL

The objective of this section is to develop a supervisory
control algorithm, based on the interconnected LIP dynam-
ics, MPC, and convex optimization, to effectively plan and
coordinate multi-agent legged robots in real-time.

Models of legged locomotion are hybrid and can
be illustrated as directed graphs. In this representation,
continuous-time dynamics are represented by vertices of the
graph to describe the evolution of the system by the La-
grangian dynamics. The edges of the graph then represent
the instantaneous and discrete-time transitions amongst the
continuous-time dynamics to model the possible and abrupt
changes in the state vector according to the rigid impacts of
the leg ends with the environment. In this paper, we consider
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(a) lllustration of the proposed supervisory predictive control. Here, agents share their actual and reduced-order states with the

higher-level supervisory control. The supervisory control then optimizes for the COM motions subject to the interconnected LIP dynamics
and feasibility conditions. (b) lllustration of the directed cycle to represent the locomotion pattern of each agent with different continuous-time
domains. Snapshot of the cooperative locomotion highlights different domains for each agent.

a general locomotion (walking) pattern for the quadrupedal
agents with start and stop conditions as a directed graph
Gw = (Y, Ey) (see Fig. 3), where the vertices set 1), repre-
sents the continuous-time domains (e.g., double-, triple-, and
quadruple-contact domains) and edges set ‘£, C Y, X ¥,
denotes the discrete-time transitions (e.g., impacts and take-
offs) (see Fig. 3b). We further suppose that there are my; > 1
continuous-time domains and each continuous-time domain
consists of n, > 1 grid points (i.e., time samples) (see Fig.
3a). In this paper, we consider a general aperiodic loco-
motion pattern. Hence, domains are enumerated to show
the successive continuous-time domains from start to stop.
Consequently, there can be two distinct domains with the
same stance legs (e.g., domains 2 and my; — 1 in Fig. 3b).
The domain indicator function is then defined as { : Z>o —
{1,2,...,my} by {(k) := \_%J +1 for 0 < k < mgng and
C(k) :=my for k > mgn, to assign the domain index for every
time sample. Here, |- | represents the floor function.

For the feasibility of the interconnected LIP model, we
assume that all local control inputs (i.e., COPs) u;[k] for i €
9/ lie in a time-varying support polygon which is defined
as the convex hull of the contacting points with the ground.
That is,

wilk] € Uy, k€ Zso, VieV, (®)

in which ‘Ué(m C R? is the corresponding support polygon
for the agent i in the domain {(k) (see Fig. 2). In addition,
the net GRF acting on the agent i must be in the friction cone.
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These friction cone conditions together with the dynamics
(6) can be expressed as the following nonlinear inequality
constraints

Cineq (X[k],ulk]) <0, Vk € Z>o. )

Problem 1 (Real-Time Planning of Agents). Let us con-
sider the locomotion pattern G,, with a given set of desired
footholds encoded in the convex hulls (i.e., support polygons)
‘Zlé(k) for all agents i € V. For a given initial state xo € M

and final state xy € M, the planning problem consists of find-
ing an optimal augmented control input ulk) in real time that
steers the interconnected LIP dynamics (7) from xo to Xy sub-
Jject to the constraints (8) and (9).

Remark 3 (Computation of Footholds). We remark that the
desired footholds are computed at the beginning of the loco-
motion and are used during the locomotion to form the sup-
port polygons in Problem 1. One way to compute the desired
footholds is as follows. We can first consider a straight line
connecting the initial position of each agent to its final posi-
tion in the horizontal plane. We then generate a sequence of
footholds along this line via a proper step length.

To address Problem 1, we consider a supervisory pre-
dictive control that has access to the global positions (i.e.,
reduced-order sates) of all agents (i.e., r; for i € V) via a di-
rect communication network [1]. We then extend the event-
based MPC approach of [33]—that generates optimal trajec-
tories for locomotion of a single agent—to address the mo-
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tion planning problem for cooperative locomotion of multi-
agent robots. In the proposed approach, the supervisory pre-
dictive control is solved at the event samples, taken at the
beginning of continuous-time domains, to reduce the com-
putational burden of the networked system.

Remark 4 (Supervisory MPC). The supervisory predictive
control can be either solved on one of the agents’ onboard
computers or all agents’ computers. The first approach
would result in a heterogeneous team with a leader, and the
latter one would result in a homogeneous team. In the first
approach, the supervisory MPC is solved at the beginning of
each continuous-time domain for the leader. In contrast, in
the second approach, the MPC is solved at the beginning of
continuous-time domains for each agent. Although the first
approach generally requires less computation burden than
the second one, our numerical results show that both of these
techniques are computationally tractable for cooperative lo-
comotion of a team of legged robots with up to four agents.
In particular, the computation time for the supervisory MPC
in these techniques takes less than 1 (ms) (see Section 5 for
details).

The nonlinear interconnected LIP dynamics in (7) are
then linearized at the event samples to formulate a convex op-
timization problem. More specifically, we consider an affine
approximation of (7) at the event sample k = [n, for some
integer [ > 0 to estimate the future states as follows:

Xiyjrik =AXgy jk+Bugyjp+d, j=0,1,--+ Ny—1

Xk = x[k], (10)

where N, = nj, n, denotes the control horizon for some posi-
tive integer np > 1, X3 jx represents the estimated state of
the interconnected LIP network model at time k 4+ j pre-
dicted at time k, and u;_, j; denotes the input of the LIP net-
work (i.e., COPs) at time k+ j computed at time k. In ad-
dition, the Jacobian matrices and affine term are computed
from (7) and updated at every event sample according to
A =2 (x[k],ulk —1]) € RN B := 9L (x[k]ulk —1]) €
R¥W*2N “and d := F (x[k],u[k — 1]) — Ax[k] — Bu[k — 1] €
R*N. An analogous technique can be used to estimate (9) as
the following affine inequality

¢xk-‘rj|k—i_\I‘uk—}—j‘k—’—‘nSO) j:O>17"'7N/1_1' (11)

We then formulate a convex MPC problem over the con-
trol horizon Nj, to steer (10) from xo € M to xy € M subject
to (8) and (11), that is,

Ny—1
p 0 p () + ) L (i B k) (12)
KN~ 1]k j=0

s.t.  Dynamics (10) and inequalities (8) and (11),

where UkJrNh,]‘k = col(uk‘k, ce ,uk+Nh,1‘k) S RZNN”. Here,
the terminal and stage cost functions are given by

Paper DS-21-1157

S....

f f Diorso,i € ]R:;

@ : Center of mass of agent |

Inertial frame

Fig. 4. lllustration of 22 DOFs for the full-order model of each robotic
agent. The agents are composed of the 18-DOF quadrupedal robot
Vision 60 plus the 4-DOF Kinova arm. Six unactuated DOFs are as-
sociated with the absolute position and orientation of the torso frame
with respect to an inertial world frame. Each leg of the robot then
consists of three actuated joints as hip roll, hip pitch, and knee joints.
The arm is finally composed of four actuated joints. The axis of actu-
ation for actuated joints are shown with dashed lines, where the axes
with circle ends, axes with square ends, and axes with triangle ends
represent the x, y, and z directions, respectively.

PO i) = k= X5y, P and L0 jie, e i) =
[ —x,‘:?:jlkHzQ + ||uk+j‘k||12e, respectively, for some pos-
itive definite matrices P € R*™** 0 ¢ R¥™*4N and R €

RZV>*2N In addition, xi‘fﬂ . denotes a desired state trajectory

and ||z||3 := z' Pz. We remark that the supervisory event-
based MPC can be translated into QP. Let (x ko Ui ,) de-
note the optimal solution over the control horizon. Then the
optimal COM trajectory of the agents over one continuous-
time domain (i.e., xzﬂ,“( for j=0,---,n,—1) will be utilized
as the reference trajectory to be tracked by the low-level dis-
tributed controllers in Section 4. The MPC problem will be
solved again at the beginning of the next continuous-time do-
main.

4 DISTRIBUTED CONTROLLERS

The objective of this section is to present the low-level
distributed controllers to impose the full-order dynamical
models of individual agents to asymptotically track the opti-
mal reduced-order trajectories prescribed by the supervisory
predictive control while having feasible contact forces. Here,
we extend the virtual constraints controller of [33] for the de-
velopment of distributed controllers for multi-agent systems.
More specifically, the distributed low-level controller formu-
lates the I-O linearization problem as a QP that addresses the
feasibility of each agent’s individual GRFs at the contact-
ing leg ends while tracking the optimal COM trajectories for
cooperative locomotion and desired swing leg path of each
agent. We remark that, unlike the supervisory MPC, the dis-
tributed low-level controller only considers the full-order dy-
namical model of each agent. Hence, it does not require the
full state measurements of the other agents.

In this paper, each legged agent is assumed to consist of
the 18-DOF quadrupedal robot Vision 60, manufactured by
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Ghost Robotics!, plus a 4-DOF Kinova arm (see Fig. 4) for
the locomotion and manipulation purposes. The total mass
of this augmented agent is 35 (kg). The DOFs on Vision
60 are composed of 6 underactuated DOFs for the absolute
position and orientation of the robot plus 12 actuated DOFs
associated with the legs. More specifically, each leg of the
robot consists of 3 actuated DOFs for the hip roll, hip pitch,
and knee joints. All DOFs of the Kinova arm are further as-
sumed to be actuated. The detailed view of the joint arrange-
ment and DOFs of the robot are represented in Fig. 4. In
our notation, the local configuration vector and local control
inputs (i.e., joint-level torques) for the agent i € 4V are de-
noted by g; := COl(ptorso,iz Otorso,is Qbody,i) € R?? and T € R!®,
respectively, where prorso.; € R? and Qyors; € R? describe the
absolute position and orientation of the torso for the agent i
with respect to the inertial frame (see Fig. 4). The remain-
ing portion, gpody; € R'® then represents the body variables
of the robot that form the shape of the robot. Finally, let
zi = col(g;,¢;) € R* and F; € R¥<i denote the local full-
order states and contact forces at the leg ends of the agent.
Here, /. ; represents the number of contacting legs with the
ground.

We now define the following local holonomic outputs to
be regulated for the motion control of the agent i

yi(Zi,l) = h()(qi)_hd,i(t)v (13)
where /iy (g;) represents the set of holonomic quantities to be
controlled, referred to as the controlled variables, and hdi(t)
denotes the desired evolution of the controlled variables. The
controlled variables, h(g;), are chosen as the orientation of
the agent (i.e., roll, pitch, and yaw) together with its COM
position, the Cartesian coordinates of the swing leg ends, and
the Cartesian coordinates of the manipulator’s EE in the in-
ertial world frame. The desired evolution of the COM po-
sition in hg;(t) is defined as a Bézier polynomial [44] that
passes through the discrete and optimal reduced-order trajec-
tory generated by the supervisory predictive control. In par-
ticular, we consider a Bézier polynomial whose coefficients
are solved via least-squares at the beginning of each domain
such that the polynomial has the best fit to the optimal COM
trajectory of the agent i for the current domain. For the swing
leg ends, hy;(t) is taken as a Bézier foot trajectory in the
task space starting from the previous foothold with zero ve-
locity and ending at the next preplanned foothold with zero
velocity. Finally, the desired evolution for the EE’s Cartesian
coordinates is chosen as the desired COM trajectory plus a
constant vector representing the EE’s position with respect
to the torso.

To compute the local control torques T;, we consider the
full-order and floating-base dynamics of the agent i without
considering the interaction forces arising from manipulation.
Although the low-level distributed controllers do not con-
sider the interaction forces amongst the EE and objects for
simplifying the controller synthesis, the full-order simula-
tion models of the cooperative locomotion in Section 5 will

Uhttps://www.ghostrobotics.io/
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consider these interacting forces to illustrate the validity of
this assumption and robustness of the proposed control algo-
rithms. We now consider the following local dynamics for
the controller synthesis

Di(qi) Gi + Hi(qi, i) :TiTi+J(Ii(6]i)Fi, (14)

where D;(g;) € R?>*?2 denotes the positive definite mass-
inertia matrix of the agent i, H;(g;,q;) € R?? represents the
Coriolis, centrifugal, and gravitational forces of the agent i,
and Y; € R??*16 is the input distribution matrix. Further-
more, J. ;(q;) € R3feix22 represents the contact Jacobian ma-
trix. For future purposes, the local dynamics (14) can be
written in the state-space form as follows:

. qi 0 4 0 .
Zi= [_DilHl} + [DilTl} Ti + |:Di1‘]c-|,—i] F;

=: fi(zi) + gi(z) v + wi(z) F;. (15)

Differentiating the local output y; in (13) along the full-order
dynamics of the agent i described in (15) results in the fol-
lowing output dynamics

Vi = LgLyi(zi,t) t + Ly, Lyyi(zi,t) F
oy,
+L7y(zit) + %(znt)

= —Kpyi —Kpyi, (16)

where Lg, Lz, Ly, Lzyi, and L%,y,' are Lie derivatives that
are used for I-O linearization [21], and Kp and Kp are pos-
itive definite matrices. Closed form expressions for the Lie
derivatives can be found in Appendix 8.2. In addition, the
local controller assumes a rigid contact model between the
stance leg ends of the agent and the ground. In particular,
the acceleration of the stance leg ends is assumed to be zero
which can be expressed as

0
pi=Jei(qi) Gi + @(Jc,i(qi) 4i)4i =0, 17

where p; denotes the Cartesian coordinates of the stance leg
ends. The condition in (17) along with the local dynamics
(14) yields the following affine condition in (t;, F;)

Pi = Lo Lgpi(zi) T+ Lu Lspi(zi) Fi+ L7 pi(zi) = 0. (18)

The closed form of the Lie derivatives in (18) can be found
in Appendix 8.2. In order to solve for the local torques t;, we
are interested in solving for (t;, F;) subject to (16) and (18)
such that 1) the contact forces belong to the friction cone
(i.e., F; € F C) while having feasible torques (i.e., Tpin < T <
Tmax), and 2) the local torques are minimum 2-norm. Hence,
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we set up the following set of distributed real-time QPs that
can be solved at 1kHz

o1 2 @
Shll=+ 5118 19
min S+ S (19)
2 %y
s.t. Lg,-Lf,‘)’iTi +Lw,~Lf,-yiFi +Lfl.y,- + ﬁ + 0
= —Kpyi —Kpyi
LgLy,piTi+ L Lspi Fi+ L7 pi =0
FEFC, Tumin <7< Tmax-

Here, 8 is a defect variable added to the output dynamics
(16) to guarantee the existence of a feasible solution in two
different scenarios. 1) If the coefficient matrix loses rank at
particular configurations, there may not be a pair of control
torques and GRFs, i.e., (T;, F;), that satisfies (16) and (18). To
tackle this issue, we introduce the defect variable & to make
the equality constraints feasible. 2) If the torques and GRFs,
i.e., (1;, F;), do not belong to the admissible sets (i.e., the in-
equality constraints are violated), the defect variable 0 can
again help us to find a feasible solution. To reduce the effect
of the defect variable & on the output dynamics, we minimize
its 2-norm via a large weighting factor in the cost function.
More specifically, the cost function (19) tries to minimize a
weighted sum of the 2-norms of the local torques and the
defect variable, where ® > 0 is the weighting factor. We re-
mark that using the defect variable J, the output dynamics
become ¥; + Kpy; + Kpy; = —d(¢), which is input-to-state
stable (ISS) [45]. Hence, if 8(¢) remains bounded, the out-
put profile y(¢) will be also bounded. This will be analyzed
more in the numerical simulations of Section 5. The optimal
solutions of these QPs are finally denoted by t; = I';(z,z;) for
i € V and are employed as local whole-body motion con-
trollers.

5 NUMERICAL SIMULATIONS

The objective of this section is to numerically verify the
effectiveness of the proposed hierarchical control algorithm
for cooperative transportation of objects by a team of com-
posite robotic agents as shown in Fig. 1. We study both
reduced- and full-order coupled models of legged agents to
show the stability of locomotion patterns for the closed-loop
system. We further investigate the robustness of the closed-
loop system in the presence of unknown payloads and uncer-
tainty in the ground height profile.
Control Parameters: We consider the cooperative locomo-
tion of two and three agents with trot gaits including start
and stop domains. We have observed that for every sam-
pling time 7 in [60,80] (ms) with n, = 4 grids per do-
main, the proposed control scheme can stabilize the loco-
motion patterns. Here, we choose Ty = 80 (ms). The con-
trol horizon for the supervisory predictive control is taken as
Nj, = npng = 4 which considers one domain ahead. The other
parameters for the supervisory predictive control are tuned as
P =103 Iyyan, Q = Livsan, R = 10710%y, oy which stabi-
lize the cooperative motion. We have numerically observed
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that for / € [0.35,0.55] (m), the robots behave safely, and the
joint-level torques remain in an acceptable range. For the
purpose of this paper, we choose [ = 0.5 (m). The friction
coefficient is assumed to be u = 0.6. The supervisory pre-
dictive control is solved in an event-based manner (i.e., at
the beginning of each domain), that is approximately every
ngTy = 0.32 seconds. Analogous to [33, Remark 1], we make
use of a sparse QP structure to effectively solve the MPC
(12). We can show that the number of decision variables for
the sparse QP are 8NN, and 10NN}, during the middle and
start/stop domains, respectively.
Reduced-Order Coupled Models: The evolution of the
COM and COP for forward trot gaits of the individual
agents in the interconnected LIP dynamics with N = 2 and
N = 3 agents is depicted in Fig. 5(a)-(b) and Fig. 5(c)-
(e), respectively. Here we make use of MATLAB for sim-
ulating the interconnected LIP dynamics (7) subject to the
holonomic constraints and the supervisory predictive control
(12). The initial configurations of the LIP models are cho-
sen as r1[0] = (0,0) " (m) and r,[0] = (0,1) T (m) for N =2
agents. Moreover, the initial positions of the LIP models
are taken as r([0] = (0.2,1)"(m), r2[0] = (0,0) (m), and
r3[0] = (—0.5,—1) " (m) for N = 3 agents. The step length for
N =2and N =3ischosen as (0.05,0)(m) and (0.03,0)(m) in
RR?, respectively. The target points are taken as the geomet-
ric center of the contact points in the last (i.e., stop) domain.
Convergence to the target points with different number of
agents and after my = 20 continuous-time domains is clear.
Full-Order Coupled Models: Next, we study the full-order
complex model of cooperative locomotion with the pro-
posed hierarchical control algorithm over my; = 50 domains
in RaiSim [46]. Here, we assume massless bars to be car-
ried by the EEs of Vision 60 agents augmented with Kinova
arms as shown in Fig. 1. The contact between the bar and
the EE of Kinova arm is considered as a point contact. Based
on this contact condition, the wrench between the object and
EE of the arm only consists of the interaction forces. The QP
arising from the supervisory predictive control is solved with
gpSWIFT [47]. The average computation time of the higher-
level QP on a laptop computer with an Intel(R) Core(TM)
17-10750H CPU 2.60GHz and 16GB RAM is 0.35 (ms) and
0.59 (ms) for N =2 and N = 3 agents, respectively. The dis-
tributed and low-level controllers of (19) are also solved with
gpSWIFT in 1kHz and the weighting factor ® is chosen as
107

The numerical simulation results for the stable coopera-
tive locomotion of robots are provided in Figs. 6 and 7. Fig-
ures 6(a)-(d) and Figs. 7(a)-(c) illustrate the evolution of the
virtual constraints and torque inputs for the individual agents
during collaborative and forward trot gaits with N = 2 and
N = 3 agents, respectively. Here, the speed of cooperative
locomotion for two and three agents is 0.15 (m/s) and 0.1
(m/s). From these figures, we observe that the control inputs
(joint-level torques) for all agents are bounded. In addition,
the outputs (i.e., virtual constraints) remain bounded during
the cooperative locomotion. We remark that Figs. 6 and 7
depict the first three components of the virtual constraints
(i.e., ¥x, Yy, and y; ) that represents the COM tracking er-
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Fig. 5. COM and COP trajectories of the individual agents in the interconnected LIP dynamics (7) during forward trot gaits with N = 2
agents ((a) and (b)) and N = 3 agents ((c)-(e)). Here, the optimal control inputs (i.e., COPs) are computed via the supervisory predictive

control (12). The sampling time for the supervisory predictive control in (a)-(e) are assumed to be T; = 80 (ms).
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Fig. 6. Evolution of the virtual constraints and torque inputs in RaiSim for stable forward trot gait with N = 2 agents. Subplots (a) and
(c) illustrate the evolution of outputs whereas subplots (b) and (d) depict the evolution of torque inputs. Here, yx, yy, ¥, denote the virtual
constraints corresponding to the absolute position (i.e., x, y, and z) of the agent. In addition, the subscript “rFHip”, “pFHip”, and “FKnee” in

)

the torque plots represent the roll torque of the front hip, pitch torque of the front hip, and pitch torque of the front knee for the left side of the

robot, respectively.

ror. In particular, these figures show that the COM of the
full-order dynamical model of each agent tracks the optimal
and reduced-order COM trajectory generated by the supervi-
sory MPC. We also remark that the range of the control in-
puts (torques) is bounded between —5 (Nm) and 5 (Nm) by
the low-level nonlinear controller. Finally, the control inputs
in Figs. 6 and 7 depict the motor torques before the gear-
box system. Figure 8 depicts the evolution of the 2-norm of
the defect variable d for the cooperative locomotion of two
agents. From this figure, we observe that & remains very
small.

Paper DS-21-1157

Robustness Analysis: To demonstrate the robustness of the
proposed control algorithm against uncertainties, we assume
that the mass of the bars between the adjacent agents’ EEs
is increased to 0.5 (kg) which is unknown for the controller.
We further assume that additional unknown payloads of 20
(kg), 34(kg), and 48(kg) are cooperatively transported by
two, three, and four agents on their torsos, respectively. Fig-
ure 9(a)-(d) and Fig. 10(a)-(c) depict the evolution of the vir-
tual constraints and torque inputs for N =2 and N = 3 agents,
respectively. Furthermore, Fig. 11(a)-(d) shows the evolu-
tion of the virtual constraints and torque inputs for N = 4
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Fig. 7. Plot of the virtual constraints and torque inputs in RaiSim for stable forward trot gait with N = 3 agents. Subplots (a), (b), and (c)
correspond to the agents 1, 2, and 3, respectively. Subplots in the first and second rows correspond to the virtual constraints and torque

inputs of each agent, respectively.
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Fig. 8. Evolution of the 2-norm of the defect variable 0 in RaiSim for
N = 2 agents. Subplots illustrate the evolution for each agent.

agents. From these figures, it is observed that the control
inputs (i.e., torques) and outputs (i.e., virtual constraints) re-
main bounded during the cooperative locomotion with uncer-
tainties. Hence, the proposed control algorithm is capable of
addressing the uncertainty arising from the payload mass. To
demonstrate the effectiveness of the proposed control algo-
rithms based on the interconnected LIP dynamics, we study
the same numerical simulations with the MPC control algo-
rithm of [33], in which the MPC is designed for individual
robots without considering the interconnected LIP dynamics.
Snapshots of the simulation results for cooperative locomo-
tion of agents with and without the proposed approach of this
paper are depicted in Figs. 12, 13, and 14 to visualize the
successes and failures. It is clear that the agents cannot have
robustly stable cooperative locomotion while using their own
MPC without considering the interconnected LIP dynamics.

To show the robustness of the controller against the
change in the ground height profile, we study the cooperative
locomotion with N = 2 and N = 3 agents on uneven terrain.
Here, we assume that the ground height profile changes in a
random manner in the discrete set {£1,+2} (cm). The evo-
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lution of the virtual constraints and torque inputs together
with the convergence of the robots to the target points is
depicted in Figs. 15 and 16 for two and three agents, re-
spectively. From the figures, it is observed that the control
inputs and outputs remain bounded during the cooperative
locomotion. Figures 17 and 18 depict the snapshots of the
cooperative locomotion patterns with the proposed control
algorithm. In addition, Figs. 17 and 18 compare the robust-
ness and performance of the proposed control solutions with
the individual MPC algorithms that do not consider the in-
teraction forces for the path planning. Animations of these
simulations can be found online?.

6 DISCUSSION

The numerical simulations of the reduced- and full-order
models show the effectiveness of the proposed supervisory
predictive control algorithm in generating stable cooperative
locomotion patterns for multi-agent legged robots. The pro-
posed hierarchical control algorithm developed based on the
interconnected LIP dynamics allows robustly stable coopera-
tive locomotion of multi-agent legged robots subject to holo-
nomic constraints whereas the same legged machines cannot
perform stable cooperative locomotion patterns without the
proposed algorithm. The objective of this section is to ana-
lyze the results and to discuss the limitations of the proposed
control approach.

6.1 Robustness against uncertainties

The developed control algorithm enhances the level
of robustness of the coupled full-order dynamical systems
against uncertainties arising from the unknown payloads as
well as ground height profile changes. Here, we make use
of the number of steps that the robots can take as metrics to

Zhttps://youtu.be/8G 1tniNW7jg ) )
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constraints and torque inputs of each agent, respectively.

evaluate the performance of the closed-loop system. In par-
ticular, success occurs if the robots can reach the target points
in a specified number of domains, denoted by m,. Otherwise,
it is a “failure (instability)” (e.g., the robots may fall before
reaching the target point or in a number of domains less than
md).

Unknown payloads: For the payload simulations, we con-
sider cooperative locomotion over my; = 50 continuous-time
domains. The objective is to evaluate the performance of co-
operative locomotion for a team of N € {2,3,4} agents. As
described in Section 5 and Figs. 9-14, the developed con-
trol algorithms allow transporting unknown and much heav-
ier objects than the maximum payload of a single agent (i.e.,
12 (kg)). More specifically, legged co-robots can coopera-
tively carry the payloads and arrive at the target positions
in 50 domains. In contrast, the same interconnected agents
without the supervisory MPC cannot depart from the initial
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positions due to the lack of consideration of the interaction
forces at the planner level. Our numerical studies show that
the cooperative system with the supervisory MPC algorithm
can transport 20 (kg), 34 (kg), and 48 (kg) with two, three,
and four agents, respectively. In other words, the agents can
transport unknown payloads whose masses are up to 57%,
97%, and 137% of a singles agent’s mass with a team of two,
three, and four legged co-robots.

In addition to the payloads mentioned above on the
agents’ torso, we consider payloads amongst the EEs in Sec-
tion 5. The maximum weight for this load follows the Ki-
nova arm’s payload limitation (i.e., 0.5 (kg)). If we do not
consider this limitation, our numerical simulations show that
the proposed control algorithm can transport payloads of 4.5
(kg), 9 (kg), and 13.5 (kg) between EEs with a team of two,
three, and four co-robots, respectively.

Varying ground height profiles: For this set of simula-
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(a) Snapshots of the unstable cooperative locomotion of 2 agents with the individual predictive control of [33] for agents in RaiSim.

Here, each agent makes use of MPC for its own LIP dynamics without considering the interaction forces. (b) Snapshots of the robustly stable
cooperative locomotion of 2 agents with the proposed supervisory predictive control in the presence of a 20 (kg) payload.

tions, we study cooperative locomotion on uneven terrains
over my = 100 continuous-time domains. The objective is
to evaluate the performance of cooperative locomotion for
a team of N € {2,3} agents. Our numerical studies show
that the proposed control algorithm can result in stable coop-
erative locomotion on unknown terrains with ground height
changes in the discrete set {£1,42} (cm). In particular, we
simulated 100 different ground height profiles with disconti-
nuities within the above set. In all of these simulations, the
agents can successfully reach the final target in the specified
number of domains. In contrast, the interconnected system
without the supervisory MPC algorithm always fails on these
terrains.

6.2 Limitations and Analysis of Results

Linearization of the interconnected LIP dynamics: The
interconnected LIP dynamics in (6) are nonlinear. In order
to formulate a convex optimal control problem, the supervi-
sory control algorithm first linearizes the dynamics, and then
solves an MPC problem for the linearized dynamics. Our
numerical simulations in Fig. 5 depict the behavior of the
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nonlinear dynamics subject to the supervisory MPC. From
this figure, we observe that the optimal control problem, for-
mulated for the linearized dynamics, can stabilize the tar-
get points for the original and interconnected LIP dynam-
ics. In particular, the states of the nonlinear system remain
bounded and asymptotically converge to the target points.
We also remark that the supervisory MPC does not use a
constant Jacobian linearization for the entire period of loco-
motion. Instead, it linearizes the dynamics around the cur-
rent point at the beginning of each continuous-time domain.
This makes the linearization error zero (i.e., resets it) at the
beginning of each domain, which in turn reduces the gap be-
tween the states of the linearized and nonlinear dynamics.
Furthermore, the adequacy of this linearization technique is
validated in the full-order and complex models of coopera-
tive locomotion. In particular, the virtual constraint plots in
Figs. 6 and 7 show that the actual COM positions of the
agents follow the desired COM trajectories, based on the lin-
earized dynamics, and the error remains bounded. For future
research, we will investigate nonlinear MPC algorithms that
can address the path planning problem for the interconnected
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(a) Snapshots of the unstable cooperative locomotion of 3 agents in RaiSim, in which each agent makes use of its own MPC without
considering the interaction forces between agents in the interconnected LIP dynamics.

(b) Snapshots of the robustly stable cooperative

locomotion of 3 agents with the proposed supervisory predictive control in the presence of a 32 (kg) payload.
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Fig. 14.

reduced-order models without linearization.

Limitations of the reduced-order LIP dynamics: In this
paper, we make use of the LIP dynamics to form the inter-
connected reduced-order network. One of the limitations of
the LIP model is that it cannot capture moments about the
COM. Hence, the arms model is not used in the intercon-
nected LIP dynamics as the forces generated by the grippers
due to the holonomic constraints can create moments about
the COMs. Consequently, the holonomic constraints are rep-
resented amongst the COMs in the reduced-order model.
However, we remark that the actual holonomic constraints
are imposed between the EEs in the full-order simulations of
Section 5. In the numerical simulations of Section 5, the arm
joints are not locked. However, we define some virtual con-
straints to control the EE’s Cartesian coordinates in the task
space. The desired trajectory for the EE’s position is taken
as the desired COM trajectory, generated by the supervisory
MPC, plus a constant value that represents the relative mo-
tion of the EE with respect to the body. Hence, the EE’s rel-
ative motion with respect to the body becomes almost static.
Consequently, the process of initiating the grasping motion
is not addressed in this work. This can limit the general prob-
lem of loco-manipulation during cooperative locomotion of
multi-agent robots. For future research, we will investigate
alternative networks of reduced-order models that can be in-
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(a) Snapshots of the unstable cooperative locomotion of 4 agents in RaiSim, in which each agent makes use of its own MPC without
considering the interaction forces in the interconnected LIP dynamics. (b) Snapshots of the robustly stable cooperative locomotion of 4 agents
with the proposed supervisory predictive control in the presence of a 48 (kg) payload.

tegrated with simple arm models for manipulation purpose.

The alternative limitation of the LIP model is that it can-
not address dynamic locomotion. Furthermore, the height
of the COM is assumed to be constant in the LIP dynam-
ics that can limit locomotion on rough terrains. This moti-
vates the use of alternative reduced-order models for future
research. However, this may also increase the complexity of
the reduced-order models and the computational burden of
the supervisory MPC.

Considerations for the real-world implementation: The
proposed controllers of this work assume that the agents can
share their “reduced-order” states for the path planning pur-
pose. In particular, the higher level of the control algorithm
(i.e., supervisory MPC) is assumed to have access to all
the reduced-order states of the agents (i.e., positions of the
COMs). This can be realized via a direct communication net-
work [1]. However, the low-level controllers for the whole-
body motion control are distributed and do not require full-
order state sharing. Our recent preliminary work [48, Chap.
4] shows that the QP-based low-level controllers can stabi-
lize the locomotion of single-agent legged robots in prac-
tice. We will experimentally evaluate the performance of the
proposed controllers for multi-agent legged robots in future
work.

Dynamic locomotion: The numerical simulations of this pa-
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per have shown that the interconnected LIP dynamics and
the event-based supervisory MPC are sufficient to have ro-
bustly stable cooperative locomotion of legged robots. Al-
though state-of-the-art single quadrupedal robots have dy-
namic gaits, the nature of single-agent locomotion and col-
laborative locomotion of multi-agent systems for cooperative
transportation is completely different. Hence, the proposed
control algorithms are validated for cooperative locomotion
with quasi-static gaits but not dynamic gaits. The developed
control approach would likely need to be altered to address

more agile locomotion patterns in complex environments for
future work.

7 CONCLUSION

This paper presented a hierarchical nonlinear control
algorithm for the real-time planning and control of legged
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robots that collaboratively carry objects. We presented an
innovative network of reduced-order models subject to holo-
nomic constraints, referred to as the interconnected LIP dy-
namics, to address the motion planning problem of cooper-
ative locomotion. The properties of the interconnected LIP
dynamics were studied to formulate a supervisory control as
the higher-level planner in the proposed control algorithm.
The supervisory control is formulated as an event-based pre-
dictive control to steer the interconnected LIP dynamics sub-
ject to the feasibility of the net GRFs of individual agents. At
the lower level of the proposed control scheme, distributed
nonlinear controllers, based on QP and virtual constraints,
were developed to impose the full-order dynamical model of
each agent to asymptotically track the optimal reduced-order
trajectories, prescribed by the supervisory predictive control,
while having feasible contact forces at the leg ends. The ef-
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Fig. 17. (a) Snapshots of the unstable cooperative locomotion of 2 agents over an unknown terrain, where each agent makes use of its own
MPC algorithm without considering the interaction forces. (b) Snapshots of the robustly stable cooperative locomotion of 2 agents over the

same terrain with the proposed supervisory predictive control based on the interconnected LIP dynamics.

Fig. 18.

fectiveness and robustness of the proposed nonlinear control
scheme were demonstrated and investigated via full-order
numerical simulations of a team of two, three, and four col-
laborative quadrupedal robots, each with a total of 22 DOFs,
while carrying different objects in the presence of uncertain-
ties.

In this work, we considered path graphs to describe the
shape of the objects to be carried. For future work, we
will investigate more sophisticated shapes and graphs sub-
ject to holonomic constraints. In addition, we will inves-
tigate the design of distributed predictive controllers at the
higher level of the proposed control scheme to reduce the
computational burden further. This work also focused on
the cooperative locomotion of legged robots, and the ma-
nipulators were used to enable the agents’ holonomic con-
straints. Hence, the robotic manipulators’ grasping mech-
anism was not studied. For future work, we will investi-
gate alternative networks of reduced-order models that can
represent the interaction wrenches for the loco-manipulation
purpose. Furthermore, we will extend the desired foothold
planning framework to more agile cooperative locomotion in
aggressive environments.

Paper DS-21-1157

(a) Snapshots of the unstable cooperative locomotion of 3 agents, where each agent makes use of its own MPC algorithm without
considering the interaction forces. (b) Snapshots of the robustly stable cooperative locomotion of 3 agents over an unknown terrain with the
proposed supervisory predictive control.
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Nomenclature
A, B, d Jacobian linearization of the interconnected LIP
dynamics
Mass-inertia matrix, Coriolis, centrifugal, and
gravitational terms
F  Discrete-time dynamics for the network of LIPs

D), Hy,

F;  Ground reaction forces on the agent i
9 Vertices set of the open path graph for the intercon-
nected LIP dynamics

Gw, Vi, E Directed graph of the locomotion pattern, Ver-

tices set, and Edges set
Controlled variables for the agent i, and De-
sired evolution of the controlled variables
for the agent i

LyLy,Ly,L me%- Lie derivatives along the full-order

floating-base dynamics of the agent i

ho(qi), hai(t)
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£c; Number of the contacting legs with the ground for the
agent i

Total number of continuous-time domains, Number
of grid points for each continuous-time domain

mgq, Ng

N Total number of agent

ny, N, Number of continuous-time domains to plan over,

control horizon

pi Cartesian coordinates of the stance leg ends of the agent
i

Absolute position of the torso of the agent i with
respect to the inertial frame

Prorso,i

q; Configuration vector of the agent i consisting of piorsoi
¢torso,i , and gbody,i

Shape (body) variables of the agent i

4body,i

ri, r Cartesian coordinates of the COM of the agent i, Col-
umn vector consisting of all r;s

T, Time step between grid points known as the sampling
time

u;, u Cartesian coordinates of the COP of the agent i, Col-
umn vector consisting of all u;s

x Augmented state vector of the interconnected LIP dy-
namics consisting of r and 7

vi Local outputs of the agent i
z; Full state variables of the agent i consisting of ¢; and ¢;
0 Defect variable for the low-level QP

C(k), ‘llé( y) Current domain indicator function for the sam-

ple time k, and Convex hull of the contacting
points with the ground for the agent i

Aij, A Lagrange multipliers between agents i and j, Col-
umn vector consisting of independent A; ;s

T; Local torque inputs for the agent i

Y(), Jo() Input distribution matrix, and Contact Jacobian
matrix
Owors0,i  Absolute orientation of the torso of the agent i with

respect to the inertial frame
o Weighting factor of the low-level QP
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8 Appendices
8.1 Proof of Theorem 1

Let us take an arbitrary nonzero vector o :=
col(o,---,0v_1). Then, a” Ay o can be expanded as

a'Ayo

= llewal*od + len—1.x1P 0y
R 2.0 T
+) {||€k.,k+1H Ot — 2 oy 1 €h+1,k+2 Otk Olg 1
=1
+ Hek+1,k+z||20€ﬁ+1}
> [leralPoi + llen—1n | oR
N-2 )
+ Y { lexss1 1170 = 2l exnrtlllexs 1ozl oot
=1
=+ ||€k+17k+2||20‘i+1}
= llewal*od + len— 1170y
N-2

2
+ ) Ulexastlllow| = llexrar2lloer1])
k=1

>0, (20)

where in the fifth line, we have made use of the
norm property, that is, elzk 1€k k20 Oy <
llexk+1 1l exs1 k2 || Ok || Okt 1|. We remark that the last result
in (20) is indeed positive. To clarify this point, let us assume

that the Joy| = 71553 oy | forall k=1, N —2. Then

2t (llew i lllow] = llexs1 kralllowsi])* = 0. However, be-
cause of the term [|e12]|?0f + [len—1.n]/>0%,_;, the quadratic
function o' Ay o is strictly positive which completes the
proof.

8.2 Closed Form Expressions for the Lie Derivatives

oho(q:)

Lo Lyyi(zi) = 7 D7 (g) Y
1
aho(ql') _
Ly Lgyi(zi) = o D7 (gi) T i(q)
1

oho(qi)
9q;

oho(g;i) ]
41‘)4:‘ O(q)D "H(qi,4:)

20.(n - ;
Lﬁ)’z(Zz) P ( aq:‘ i

d

qi
L, Lspi(zi) = J. ,i(Qi)D;](Qi)Yi
Ly, Ly pi(zi) = Jei(gi) D () I i(ai)

d _ .
Lipi(z) = 5, Weil@i)di) i Jei(ai) D; ") H (g1, 4i)-

1
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Illustration of 22 DOFs for the full-order
model of each robotic agent. The agents are
composed of the 18-DOF quadrupedal robot
Vision 60 plus the 4-DOF Kinova arm. Six
unactuated DOFs are associated with the ab-
solute position and orientation of the torso
frame with respect to an inertial world frame.
Each leg of the robot then consists of three
actuated joints as hip roll, hip pitch, and knee
joints. The arm is finally composed of four
actuated joints. The axis of actuation for ac-
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where the axes with circle ends, axes with
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the supervisory predictive control in (a)-(e)
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Evolution of the virtual constraints and
torque inputs in RaiSim for stable forward
trot gait with N = 2 agents. Subplots (a) and
(c) illustrate the evolution of outputs whereas
subplots (b) and (d) depict the evolution of
torque inputs. Here, yy, y,, y, denote the
virtual constraints corresponding to the ab-
solute position (i.e., x, y, and z) of the agent.
In addition, the subscript “rFHip”, “pFHip”,
and “FKnee” in the torque plots represent the
roll torque of the front hip, pitch torque of
the front hip, and pitch torque of the front
knee for the left side of the robot, respectively.

Plot of the virtual constraints and torque in-
puts in RaiSim for stable forward trot gait
with N = 3 agents. Subplots (a), (b), and
(c) correspond to the agents 1, 2, and 3, re-
spectively. Subplots in the first and second
rows correspond to the virtual constraints
and torque inputs of each agent, respectively.

Evolution of the 2-norm of the defect vari-
able § in RaiSim for N = 2 agents. Subplots
illustrate the evolution for each agent.

Evolution of the virtual constraints and
torque inputs in RaiSim for robust trot gait
subject to a payload with N =2 agents. Sub-
plots (a) and (c) illustrate the evolution of
outputs whereas subplots (b) and (d) depict
the evolution of torque inputs.
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Plot of the virtual constraints and torque in-
puts in RaiSim for robust forward trot gait
subject to a payload with N = 3 agents.
Subplots (a), (b), and (c) correspond to the
agents 1, 2, and 3, respectively. Subplots in
the first and second rows correspond to the
virtual constraints and torque inputs of each
agent, respectively. . . . .. ... ... ...
Plot of the virtual constraints and torque in-
puts in RaiSim for robust trot gait subject to a
payload with N = 4 agents. Subplots (a), (b),
(c), and (d) correspond to the agent 1, 2, 3,
and 4, respectively. Subplots in the first and
second rows correspond to the virtual con-
straints and torque inputs of each agent, re-
spectively. . . . . .. ...

(a) Snapshots of the unstable cooperative lo-
comotion of 2 agents with the individual pre-
dictive control of [33] for agents in RaiSim.
Here, each agent makes use of MPC for its
own LIP dynamics without considering the
interaction forces. (b) Snapshots of the ro-
bustly stable cooperative locomotion of 2
agents with the proposed supervisory predic-
tive control in the presence of a 20 (kg) pay-

(a) Snapshots of the unstable cooperative lo-
comotion of 3 agents in RaiSim, in which
each agent makes use of its own MPC with-
out considering the interaction forces be-
tween agents in the interconnected LIP dy-
namics. (b) Snapshots of the robustly sta-
ble cooperative locomotion of 3 agents with
the proposed supervisory predictive control
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(a) Snapshots of the unstable cooperative lo-
comotion of 4 agents in RaiSim, in which
each agent makes use of its own MPC with-
out considering the interaction forces in the
interconnected LIP dynamics. (b) Snapshots
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of 4 agents with the proposed supervisory
predictive control in the presence of a 48 (kg)

Evolution of virtual constraints and control
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