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Abstract. The Loewner framework is extended to compute reduced
order models (ROMs) for systems governed by the incompressible Navier-
Stokes (NS) equations. For quadratic ordinary differential equations
(ODEs) it constructs a ROM directly from measurements of transfer
function components derived from an expansion of the system’s input-
to-output map. Given measurements, no explicit access to the system is
required to construct the ROM.

To extend the Loewner framework, the NS equations are transformed
into ODEs by projecting onto the subspace defined by the incompress-
ibility condition. This projection is used theoretically, but avoided com-
putationally. This paper presents the overall approach. Currently, trans-
fer function measurements are obtained via computational simulations;
obtaining them from experiments is an open issue. Numerical results
show the potential of the Loewner framework, but also reveal possi-
ble lack of stability of the ROM. A possible approach, which currently
requires access to the NS system, to deal with these instabilities is out-
lined.

Keywords: Model reduction · Loewner framework · Navier-Stokes
equations · Data-driven

1 Introduction

This paper extends the data-driven Loewner framework to construct a reduced
order model (ROM) for systems governed by the semi-discretized incompress-
ible Navier-Stokes (NS) equations. These computationally inexpensive ROMs
are useful in applications that require many queries of the system, such as opti-
mal design, optimal control, or uncertainty quantification, which would be pro-
hibitively expensive with the original, high dimensional, computationally expen-
sive full order model (FOM). The Loewner framework constructs a ROM that is
given by a Petrov-Galerkin projection of the FOM. However, unlike traditional
Petrov-Galerkin projection ROMs, the Loewner ROM is computed directly from
measurements of transfer function components associated with the FOM. In
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particular, the Loewner framework is non-intrusive. It only requires these trans-
fer function component measurements, but it does not need explicit access to
the FOM or explicit application of the Petrov-Galerkin projections. The trans-
fer function components of the Loewner ROM typically well approximate the
corresponding transfer function components of the FOM near the frequencies
at which measurements were taken to construct the Loewner ROM. Thus, the
overall quality of the Loewner ROM depends on the measurements on which
it is built. This is the first application of the Loewner framework to the semi-
discretized incompressible NS equations, which in the terminology of ROMs is
a quadratic semi-explicit differential algebraic equation (DAE) system.

The development of the Loewner framework started with the paper [16]. The
tutorial paper [6] and the book [2] provide the state-of-the-art of the Loewner
framework. The papers [5,12], extend the Loewner framework to so-called bilin-
ear and quadratic ordinary differential equation (ODE) systems, and [3] discusses
the application of the Loewner framework to systems governed by Burgers’ equa-
tion. The Loewner framework is extended in [4] to a class of linear semi-explicit
DAE systems, which includes the Oseen equations. This paper builds on [3,4].

To extend the existing Loewner framework to the semi-discretized NS equa-
tions we first project these equations onto the subspace defined by the dis-
crete incompressibility constraints to express the semi-discretized NS equations
as a quadratic ODE system. This projection has already been used, e.g., in
[1,4,7,9,14]. Then the quadratic ODE system is expanded into a system of
infinitely many linear equations. Such expansions are discussed, e.g., in the book
[17] and they have been applied to develop ROMs for bilinear or quadratic bilin-
ear systems in, e.g., [1,3,5,8–10,12,13]. The papers [3,5,8,10,12] consider ODE
systems, not DAEs. The papers [1,9] also consider projection based ROM for
the NS equations, and the ROMs are also designed to approximate transfer func-
tion components of the FOM. However, the transfer function components used
in [1,9] are different from those used here, and the ROM approaches in [1,9]
require explicit access to components of the NS equations and are intrusive.

This paper describes the extension of the Loewner framework to a class of
semi-discretized incompressible NS systems, and numerically explores potential
stability issues of the resulting Loewner ROM and possible modifications of this
ROM to avoid them.

2 Loewner Framework for the Navier-Stokes Equations

We state the semi-discretized NS system, and its projection onto the subspace
defined by the discrete incompressibility conditions. This projection transforms
the Navier-Stokes system into a quadratic ODE system. We then review the
Loewner framework for this projected ODE system.

2.1 Navier-Stokes System

Let v : (0, T ) → R
nv and p : (0, T ) → R

np be the semi-discretized velocities and
pressures, respectively. Furthermore, let E11 ∈ R

nv×nv be symmetric positive
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definite, A11 ∈ R
nv×nv , let AT

12 ∈ R
np×nv be of rank np < nv, b ∈ R

nv ,
Q ∈ R

nv×n2
v , and c ∈ R

nv . We consider the following system with input g :
(0, T ) → R and output y : (0, T ) → R,

E11
d

dt
v(t) =A11v(t) +Q(v(t) ⊗ v(t)) +A12p(t) + bg(t), t ∈ (0, T ), (1a)

0 =AT
12v(t), t ∈ (0, T ), (1b)

with homogeneous initial condition v(0) = 0, and with the output equation

y(t) = cTv(t), t ∈ (0, T ). (1c)

Semi-discretization of the Navier-Stokes equations leads to (1), but the Loewner
framework presented in this paper can, of course, be applied to any system
governed by DAEs (1). Because of page limitations we only consider single-
input-single-output (SISO) systems (1). We will elaborate elsewhere on how to
generalize the approach to multiple-input-multiple-output (MIMO) systems by
interpolating transfer function components along tangential directions.

2.2 Transformation into Quadratic ODE System

Next, we project (1) onto the subspace defined by the discrete incompressibility
conditions (1b) to write (1) as an ODE system. As in [14], define the projection

Π = I − A12(AT
12E

−1
11 A12)−1AT

12E
−1
11 .

It can be verified that Π2 = Π,ΠE11 = E11Π
T , null(Π) = range(A12),

and range(Π) = null(AT
12E

−1
11 ), i.e. Π is an E11-orthogonal projection. The

properties of Π imply that

AT
12v(t) = 0 if and only if ΠTv(t) = v(t). (2)

Next we express p in terms of v and project onto the constraint (1b). Specif-
ically, we premultiply (1a) by AT

12E
−1
11 , then use (1b) and solve the resulting

equation for p to obtain

p(t) = − (AT
12E

−1
11 A12)−1AT

12E
−1
11

(
A11v(t) +Q(v(t) ⊗ v(t)) + bg(t)

)
. (3)

Now insert (3) into (1), apply (2), and use ΠA12(AT
12E

−1
11 A12)−1 = 0 to write

(1) as

ΠE11Π
T d

dt
v(t) = ΠA11Π

Tv(t) + ΠQ(ΠTv(t) ⊗ ΠTv(t)) + Πbg(t), (4a)

y(t) = cT ΠTv(t), (4b)

with initial condition ΠTv(0) = 0. This is a dynamical system in the nv −
np dimensional subspace null(Π) and (4a,b) has to be solved for ΠTv = v.
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As in [14], this is made explicit by decomposing Π = ΘlΘ
T
r with Θl,Θr ∈

R
nv×(nv−np) satisfying ΘT

l Θr = I. Substituting this decomposition into (4) and
using the Kronecker product property

HX ⊗ KZ = (H ⊗ K)(X ⊗ Z) (5)

shows that ṽ = ΘT
l v ∈ R

nv−np satisfies

Ẽ
d

dt
ṽ(t) = Ãṽ(t) + Q̃(ṽ(t) ⊗ ṽ(t)) + b̃g(t), t ∈ (0, T ), (6a)

y(t) = c̃T ṽ(t), t ∈ (0, T ), (6b)

with initial conditions ṽ(0) = 0, where

Ẽ := ΘT
r E11Θr ∈ R

(nv−np)×(nv−np), Ã := ΘT
r A11Θr ∈ R

(nv−np)×(nv−np),

b̃ := ΘT
r b ∈ R

nv−np , c̃ := ΘT
r c ∈ R

nv−np ,

Q̃ := ΘT
r Q(Θr ⊗ Θr) ∈ R

(nv−np)×(nv−np)
2
.

Since Ẽ is invertible, (6) is an ODE. The DAE system (1) and the ODE
system (6) are equivalent. Specifically, the transfer function components of
(1) are identical to the transfer function components of (6). The matrices
Θl,Θr ∈ R

nv×(nv−np) are expensive to compute, and (6) is a dense large-scale
system. Therefore, (6) is used only theoretically. Ultimately, computations are
performed using quantities that arise in the original system (1).

2.3 Expansion of Quadratic ODE System into a Linear System

Now we expand the quadratic ODEs (6) into a system of infinitely many linear
ODEs. The approach used is the so-called variational approach in [17, Ch. 3].

Let ṽ(g; ·) denote the solution of (6a,b) with input g. The variational app-
roach computes an expansion of the solution in terms of its derivatives with
respect to g. The solution of (6a,b) with input αg, α ∈ R, is given by

ṽ(αg; ·) = ṽ(0+ αg; ·) = ṽ(0; ·) +
∞∑

l=1

αlṽl =
∞∑

l=1

αlṽl, (7)

where ṽl is the l-th derivative of the solution map g �→ ṽ(g; ·) at 0 evaluated
in the direction g, and we have used that the solution with zero input is zero,
ṽ(0; ·) = 0. The proof that the series in the right hand side of (7) converges and
is equal to ṽ(αg; ·) is given, e.g., in [17, Appendix 3.1].

Consider (6) with g replaced by αg and insert the expansion (7) to arrive at

∞∑
l=1

αlẼ
d

dt
ṽl(t) =

∞∑
l=1

αlÃṽl(t) + αb̃g(t) +
∞∑

m,l=1

αl+mQ̃(ṽl(t) ⊗ ṽm(t)), (8a)

y(t) =
∞∑

l=1

αlc̃T ṽl(t), (8b)
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and
∑∞

l=1 αlṽl(0) = 0. Equating powers of α gives the infinite system of ODEs

Ẽ
d

dt
ṽ1(t) = Ãṽ1(t) + b̃g(t), ṽ1(0) = 0, (9a)

Ẽ
d

dt
ṽl(t) = Ãṽl(t) +

l−1∑
j=1

Q̃(ṽj(t) ⊗ ṽl−j(t)), ṽl(0) = 0, l ≥ 2, (9b)

with output equations

y1(t) = c̃T ṽ1(t), yl(t) = c̃T ṽl(t), l ≥ 2. (9c)

Recall that the solution of the ODE

Ẽ
d

dt
ṽ(t) = Ãṽ(t) + f(t), t ∈ (0, T ), ṽ(0) = 0

is given by ṽ(t) =
∫ t

0
e

˜E−1
˜A(t−τ)Ẽ−1f(τ)dτ =

∫ t

0
e

˜E−1
˜Aτ Ẽ−1f(t − τ)dτ

=
∫ t

0
Ẽ−1e

˜A˜E−1τ f(t − τ)dτ . Applying this to (9a,b) yields

ṽ1(t) =
∫ t

0

Ẽ−1e
˜A˜E−1t1 b̃g(t − t1)dt1, (10a)

ṽl(t) =
∫ t

0

Ẽ−1e
˜A˜E−1tl

l−1∑
j=1

Q̃
(
ṽj(t − tl) ⊗ ṽl−j(t − tl)

)
dtl, l ≥ 2. (10b)

Next we use (9c) and (10) to write y in terms of g. We focus on the first two
terms in the series, as the resulting expressions become increasingly complex and
tedious to compute. Using (10) and the Kronecker product property (5) gives

ṽ2(t) =
∫ t

0

Ẽ−1e
˜A˜E−1t2Q̃(ṽ1(t − t2) ⊗ ṽ1(t − t2))dt2

=
∫ t

0

∫ t−t2

0

∫ t−t2

0

Ẽ−1e
˜A˜E−1t2Q̃

(
Ẽ−1e

˜A˜E−1t1 b̃ ⊗ Ẽ−1e
˜A˜E−1t3 b̃

)

×
(
g(t − t1 − t2) ⊗ g(t − t2 − t3)

)
dt1dt3dt2. (11)

Substituting (10a) and (11) into the output equation (8c) yields

y1(t) =
∫ t

0

h1(t1)g(t − t1)dt1,

y2(t) =
∫ t

0

∫ t−t3

0

∫ t−t3

0

h2(t1, t2, t3)
(
g(t − t1 − t2) ⊗ g(t − t2 − t3)

)
dt1dt2dt3,

etc., where

h1(t1) = c̃T Ẽ−1e
˜A˜E−1t1 b̃, (12a)

h2(t1, t2, t3) = c̃T Ẽ−1e
˜A˜E−1t3Q̃(Ẽ−1e

˜A˜E−1t1 b̃ ⊗ Ẽ−1e
˜A˜E−1t2 b̃), (12b)
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etc. Lastly we take the (multidimensional) Laplace transforms of the kernel func-
tion components (12) to compute the transfer function components

H1(s1) = c̃T Φ̃(s1)b̃, H2(s1, s2, s3) = c̃T Φ̃(s1)Q̃
(
Φ̃(s2)b̃ ⊗ Φ̃(s3)b̃

)
, (13)

where Φ̃(s) := (sẼ − Ã)−1.

2.4 Transfer Function Interpolation for Quadratic ODE Systems

The Loewner framework is related to interpolation based ROM approaches that
construct a ROM whose transfer function components interpolate the FOM
transfer function components at desired points. See, e.g., [1,2,8,10,12,13]. A
review of these interpolation based ROM approaches is useful to understand the
Loewner framework. Different transfer function components are interpolated in
[1,8,10,12,13]. We follow [12].

We truncate the expansion (8) after l = 2 terms, and we seek a ROM so that
the FOM transfer function components (13) that correspond to this truncation
are interpolated at selected points by the corresponding ROM transfer function
components. These interpolation conditions are derived for linear systems, e.g.,
in [2, Sect. 3.3], and for quadratic bilinear systems in [12]. They require a partic-
ular grouping of the frequencies at which the transfer functions are interpolated.
Some benefits of this grouping are only reaped in the MIMO case (not consid-
ered in this paper) in which the transfer functions (13) are matrix valued, and
interpolation conditions hold for the matrices multiplied from the left or from
the right by so-called tangential directions, but not for the entire matrix valued
transfer functions. To be consistent with the literature, e.g., [2,12], we apply
these groupings even though we only consider the SISO case.

We assume that the total number of frequencies is a multiple of four, 4k̄,
and we split the interpolation points into two disjoint sets Sμ ⊂ C and Sλ ⊂ C,
each containing k = 2k̄ points. This split could be avoided in the SISO case, but
is needed in the MIMO case where the frequencies in Sμ and Sλ are associated
with the left and the right tangential directions respectively. Within Sμ and Sλ

we arrange the interpolation points as

Sμ = ∪1≤j≤k̄{μ
(j)
1 , μ

(j)
2 }, Sλ = ∪1≤j≤k̄{λ

(j)
1 , λ

(j)
2 }. (14)

For each j, we will obtain interpolation conditions at combinations of μ
(j)
1 , μ

(j)
2 ,

λ
(j)
1 , λ

(j)
2 . See (22) below.

The ROM is constructed using a Petrov-Galerkin projection with projec-
tion matrices given by the so-called generalized controllability and generalized
observability matrices. The generalized controllability matrix is

R̃ =
[
R̃(1), R̃(2), · · · , R̃(k̄)

]
∈ C

(nv−np)×k, (15)

where

R̃(j) =
[
Φ̃(λ(j)

1 ) b̃, Φ̃(λ(j)
2 )Q̃

(
Φ̃(λ(j)

1 )b̃ ⊗ Φ̃(λ(j)
1 )b̃

)] ∈ C
(nv−np)×2, (16)
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j = 1, . . . , k̄. The generalized observability matrix is

Õ =
[(Õ(1)

)T
,

(Õ(2)
)T

, . . . ,
(Õ(k̄)

)T
]T

∈ C
k×(nv−np), (17)

where, for j = 1, . . . , k̄,

Õ(j) =

[
c̃T Φ̃(μ(j)

1 )
c̃T Φ̃(μ(j)

1 ) Q̃
(
Φ̃(λ(j)

1 )b̃ ⊗ Φ̃(μ(j)
2 )

)
]

∈ C
2×(nv−np). (18)

Projecting (6) from the left and the right by the generalized observability
matrix (17) and the generalized controllability matrix (15), respectively, gives a
ROM whose transfer function components have the desired interpolation prop-
erties. Consider the ROM

̂̃E d

dt
̂̃v(t) = ̂̃Ẫv(t) + ̂̃Q(̂̃v(t) ⊗ ̂̃v(t)) + ̂̃bg(t), (19a)

̂̃y(t) = ̂̃cT ̂̃v(t) (19b)

of state dimension k, where

̂̃E = ÕẼR̃,
̂̃A = ÕẼR̃,

̂̃Q = ÕQ̃
(R̃ ⊗ R̃)

,
̂̃b = Õ b̃, ̂̃c = R̃T c̃. (20)

Analogous to (13), the first two transfer function components of (19) are

Ĥ1(s1) = ̂̃cT ̂̃
Φ(s1)

̂̃b, Ĥ2(s1, s2, s3) = ̂̃cT ̂̃
Φ(s1)

̂̃Q
(̂̃
Φ(s2)

̂̃b ⊗ ̂̃
Φ(s3)

̂̃b
)
, (21)

where ̂̃
Φ(s) = (s ̂̃E − ̂̃A)−1. If s

̂̃E − ̂̃A is invertible for all s ∈ Sμ ∪ Sλ, then the
interpolation conditions

H1

(
λ
(j)
1

)
= Ĥ1

(
λ
(j)
1

)
, H1

(
μ
(j)
1

)
= Ĥ1

(
μ
(j)
1

)
, (22a)

H2

(
λ
(j)
2 , λ

(j)
1 , λ

(j)
1

)
= Ĥ2

(
λ
(j)
2 , λ

(j)
1 , λ

(j)
1

)
, (22b)

H2

(
μ
(j)
1 , λ

(j)
1 , μ

(j)
2

)
= Ĥ2

(
μ
(j)
1 , λ

(j)
1 , μ

(j)
2

)
, (22c)

for all j = 1, . . . , k, and additional interpolation conditions are satisfied. This
fact follows from [12, Lemma 3.1].

2.5 The Loewner Framework for Quadratic ODE Systems

As written, the ROM (19) requires the explicit projection by Õ and R̃. The
crucial observation that underlies the Loewner framework is that the matrices
in (20) can be computed directly from measurements of the transfer function
components, but without explicit projection.

The Loewner matrix L and the shifted Loewner matrix Ls are defined as

L = −Õ Ẽ R̃ ∈ C
k×k, Ls = −Õ Ã R̃ ∈ C

k×k (23)
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and can be expressed directly in terms of measurements. Unfortunately, the
expression of all terms in L and Ls becomes involved very quickly. Therefore
we only consider one case to illustrate the idea and refer to [12] for a detailed
discussion. Recall (15)–(18). The Loewner matrix L in (23) contains entries

c̃T (μ(j)
1 Ẽ − Ã)−1Ẽ (λ(l)

1 Ẽ − Ã)−1b̃

=
1

μ
(j)
1 − λ

(l)
1

(
c̃T (μ(j)

1 Ẽ − Ã)−1(μ(j)
1 − λ

(l)
1 )Ẽ (λ(l)

1 Ẽ − Ã)−1b̃
)

=
1

μ
(j)
1 − λ

(l)
1

(
c̃T (μ(j)

1 Ẽ − Ã)−1
(
(μ(j)

1 Ẽ − Ã) − (λ(l)
1 Ẽ − Ã)

)
(λ(l)

1 Ẽ − Ã)−1b̃
)

=
1

μ
(j)
1 − λ

(l)
1

(
H1(λ

(l)
1 ) − H1(μ

(j)
1 )

)
,

which are written in terms of measurements of the transfer function component
H1. As mentioned before, the representation of other entries of L and entries of
Ls follows the same ideas, but is more involved. See [12] for details.

So far we assumed that the ‘right’ amount of data is available so that Õ and
R̃ have full row and column rank, respectively, and the ROM (19) is well-posed.
Another advantage of the Loewner framework is that larger amounts of data
can be used. Since the ROMs can be directly computed from data, using all
the measurements available intuitively leads to a better ROM. Specifically, the
Loewner and shifted Loewner matrices L,Ls ∈ C

k×k are computed from data
and the SVD is used to extract the relevant data. Consider the (short) SVDs

[L Ls] = Y1Σ1X∗
1,

[
L

Ls

]
= Y2Σ2X∗

2, (24)

where Σ1 ∈ R
k×2k, Σ2 ∈ R

2k×k, Y1,X2 ∈ C
k×k. The matrices Y,X ∈ C

k×r are
obtained by selecting the first r columns of the matrices Y1 and X2, we define

Ṽ = R̃X ∈ C
(nv−np)×r, W̃ = Õ∗Y ∈ C

(nv−np)×r, (25)

The reduced order model that matches the desired interpolation/approximation
property of the transfer function components is

̂̃E = −Y∗
LX = W̃∗ẼṼ,

̂̃A = −Y∗
LsX∗ = W̃∗ÃṼ, (26a)

̂̃Q = W̃∗Q̃
(
Ṽ ⊗ Ṽ

)
,

̂̃b = W̃∗ b̃, ̂̃cT = c̃T Ṽ. (26b)

We have written (26) in terms of projections with Ṽ,W̃, but these quantities
can be computed from measurements and Y,X. See [12].

2.6 Computational Details

The projection matrices Ṽ,W̃ and the ROM (26) are complex, but we can obtain
real projection matrices Ṽ,W̃ and corresponding ROMs if the sets of interpo-
lation points Sμ ⊂ C and Sλ ⊂ C contain also the conjugate complex data. See
[2, Appendix A.1] or [6, p. 360]. This is what we do in our implementation.
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As we have mentioned earlier, the projection of the Navier-Stokes system (1)
to obtain the ODE system (6) is a theoretical tool, but this projection is not
carried out explicitly. The approaches in [3,4,14] can be extended to our case,
and this extension is applied in the following computations. Because of space
limitations, we will expand on these computational details elsewhere.

0 1 2 3 4 5 6 7 8
0

0.5

1

Fig. 1. Channel with backward facing step and coarse grid

3 Numerical Example

We extend an example modeled after [4,14], where model reduction of the Oseen
equation is considered. Let Ω ⊂ R

2 be the backward facing step geometry shown
in Fig. 1. The boundary is decomposed into segments Γout, Γd, Γin, where Γout =
{8}× (0, 1) is the outflow boundary, inputs are applied on Γin = {0}× (1/2, 1)∪
{1} × (0, 1/2), and the velocities are set to zero on ΓD = ∂Ω \ (Γin ∪ Γout).
Consider the Navier-Stokes equations

∂tv(x, t) − νΔv(x, t) + v(x, t) · ∇v(x, t) + ∇p(x, t) = 0, in Ω × (0, T ), (27a)
∇ · v(x, t) = 0, in Ω × (0, T ), (27b)

(∇v(x, t) − p(x, t)I)n(x) +
1
δ
v(x, t) =

1
δ
gin(x, t), on Γin × (0, T ), (27c)

v(x, t) = 0, on ΓD × (0, T ), (27d)
(∇v(x, t) − p(x, t)I)n(x) = 0, on Γout × (0, T ), (27e)

where ν > 0 is the viscosity and δ > 0. The Robin boundary condition (27c) can
be viewed as penalized version of a Dirichlet boundary condition as δ → 0.

We assume that the boundary input in (27c) is parameterized as

gin(x, t) = g1(t)
(
sin(2π(x2 − 1/2))

0

)
on {0} × (1/2, 1) (28)

and gin(x, t) = 0 on {1} × (0, 1/2).
Our output is the integral of the curl of the velocity, often used in the context

of control of vorticity,

y(t) =
∫

Ωobs

−∂x2v1(x, t) + ∂x1v2(x, t)dx
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over the subdomain Ωobs = (1, 3) × (0, 1/2) behind the backward facing step.
We use a P1 − P2 Taylor-Hood discretization (see, e.g., [11]) to arrive at the

semi-discrete equations (1). The grid used in our computations is obtained from
the coarse grid shown in Fig. 1 by uniform refinement. The used grid leads to
nv = 11, 489, np = 2, 929 degrees of freedom for the velocities and pressures,
respectively. We use a viscosity of ν = 1/50.

To generate the Loewner ROMs we use sets Sμ ⊂ C and Sλ ⊂ C of left
and right interpolation points with either k = 50 or k = 100 samples in each
set. The frequencies are computed as follows: We first generate k real numbers
ω1, . . . , ωk ∈ R, logarithmically spaced between 10 and 103, and then set Sμ =
{±ω2j−1i : j = 1, . . . k/2} and Sλ = {±ω2ji : j = 1, . . . k/2}. The pairings
of left interpolation points shown in (14) are as follows: μ

(1)
1 , μ

(1)
2 = ω1i, ω3i,

μ
(2)
1 , μ

(2)
2 = −ω1i,−ω3i, μ

(3)
1 , μ

(3)
2 = ω5i, ω7i, μ

(4)
1 , μ

(4)
2 = −ω5i,−ω7i, etc. The

right interpolation points are paired analogously.
The transfer function measurements are obtained via computational simula-

tions; obtaining them from experiments is an open issue. Actually, in our com-
putations we generate the generalized controllability and observability matri-
ces. However, we do not generate them from (15), (17) but instead extend the
approaches in [14] to compute them in terms of the original system (1).

Figure 2 shows the normalized singular values σ
(1)
j /σ

(1)
1 and σ

(2)
j /σ

(2)
1 of the

matrices in (24) generated with k = 50 and with k = 100 frequency samples. For
Loewner matrices generated with fixed number k of frequency samples the nor-
malized singular values σ

(1)
j /σ

(1)
1 and σ

(2)
j /σ

(2)
1 are very similar, which has also

been observed in other applications. Also, the decay of the normalized singular
values for the matrices (24) generated with k = 50 and with k = 100 frequency
samples is similar.

Fig. 2. Normalized singular values of the matrices (24) generated with k = 50 (left
plot) and k = 100 (right plot) frequency samples each in Sμ and in Sλ. Solid line
indicates tol = 10−11 used to determine Loewner ROMs.

The size of the Loewner ROM is computed as the smallest r such that

σ
(1)
r+1/σ

(1)
r+1 ≤ tol.
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We use tol = 10−11 which gives Loewner ROM sizes r = 45 when k = 50 samples
are used and r = 51 when k = 100 samples are used to generate the data.

To compare the FOM (1) and with the ROM (26) we perform time domain
simulations over [0, T ] = [0, 2π] with input g1(t) = sin(t). The FOM and the
ROM are solved numerically using the backward Euler method in time with
time step size T/100.

Fig. 3. System outputs computed with the standard Loewner Petrov-Galerkin ROMs
generated from k = 50 (left plot) and k = 100 (right plot) frequency samples.

Figure 3 compares the FOM output against the outputs of the Loewner ROMs
generated with k = 50 and with k = 100 frequency samples, respectively. The
output of the Loewner ROM generated with k = 50 frequency samples is in excel-
lent agreement with the FOM output (left plot). However, interestingly, when
more data, i.e., k = 100 frequency samples are used to generate the Loewner
ROM, then the ROM and FOM outputs begin to differ around t = 3.5. In fact,
at time t70 ≈ 4.34 Newton’s method used to solve the equation in the backward
Euler time stepping for the ROM fails to converge, and the ROM simulation
is terminated (right plot in Fig. 3). It is illustrative to look at the velocities
generated by the FOM and the Loewner ROMs. The magnitude of the veloci-
ties generated by the FOM and the Loewner ROMs are shown in Fig. 4. These
plots indicate that the Loewner ROM generated with k = 100 frequency samples
becomes unstable (right column in Fig. 4). There are also noticeable differences
between the velocities generated by the FOM and by the Loewner ROM gener-
ated with k = 50 frequency samples (middle column in Fig. 4). However, since
the Loewner ROM aims to approximate the input-to-output map g �→ y of the
system, only the state information (here the velocities) needed in the input-to-
output map is well approximated, but the entire system states may not be well
approximated.

The stability properties of the Loewner ROM, and the source of the instabil-
ity of the Loewner ROM in this case are still under investigation. However, insta-
bility in the Loewner ROM when applied to Burgers’ equation was also observed
in [3]. The standard Loewner approach is based on a Petrov-Galerkin projection
with projection matrices Ṽ �= W̃. In [3] it was demonstrated that the stability
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Fig. 4. Magnitudes of the velocity computed with the FOM (left column) and with
the standard Loewner Petrov-Galerkin ROMs generated from k = 50 (middle column)
and k = 100 (right column) frequency samples. Magnitudes of the velocities at times
t = 1.19, t = 1.82, t = 2.45, t = 3.08, t = 3.71 are shown top to bottom.

properties can be maintained if the projection matrices Ṽ,W̃ ∈ R
(nv−np)×r

are merged into one larger matrix [Ṽ,W̃] ∈ R
(nv−np)×2r (more precisely, an

orthonormal basis of the columns of [Ṽ,W̃] is computed to ensure that the
resulting matrix is full rank), and this matrix is used to construct a Galerkin
ROM. This resulting ROM is referred to as a Loewner Galerkin ROM. Actu-
ally, in the context of the Navier-Stokes equations the use of Galerkin ROMs
may allow the extension of stability estimates for semidiscrete finite element
approximations (see, e.g., [15, Sect. 9.2]) to the Galerkin ROM.

We merge the matrices Ṽ �= W̃ computed using the standard Loewner
approach with k = 100 frequency samples into a projection matrix [Ṽ,W̃] ∈
R

(nv−np)×2r and construct a Loewner Galerkin ROM of size 2r = 102. Figure 5
shows that the output of the Loewner Galerkin ROM is in excellent agreement
with the output of the FOM.

The magnitude of the velocities generated by the FOM and the Loewner
ROMs are shown in Fig. 4. In this case the velocities of the Loewner Galerkin
ROM approximate the FOM velocities well at all simulation times.

While these results indicate that the Loewner Galerkin ROM performs well
when the standard Loewner Petrov-Galerkin ROM suffers from instabilities, the
computation of the Loewner Galerkin ROM is intrusive and requires projection
of the system with [Ṽ,W̃]. Analysis of the source of instability in the standard
Loewner Petrov-Galerkin ROM and possible remedies, which preserve the non-
intrusive data-driven nature of this approach, are part of ongoing research.
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Fig. 5. System output computed with the Loewner Galerkin ROM generated from
k = 100 frequency samples is in excellent agreement with the FOM output.

Fig. 6. Magnitudes of the velocity computed with the FOM (left column) and with the
Loewner Galerkin ROMs generated from k = 100 (right column) frequency samples.
Magnitudes of the velocities at times t = 1.19, t = 1.82, t = 2.45, t = 3.08, t = 3.71
are shown top to bottom.

4 Conclusions and Future Work

We have presented an extension of the Loewner framework to compute ROMs of
quadratic-bilinear systems arising from semi-discretized incompressible Navier-
Stokes equations.

The application to the Navier-Stokes equations showed the potential of the
Loewner framework, but also raises a number of important questions that still
need to be addressed. One question is data generation. Currently, transfer
function component measurements are obtained via computational simulations;
obtaining them from experiments is an open issue. The most important issue
is stability. Our numerics have shown that the standard Loewner framework,
which generates a Petrov-Galerkin reduced order model, W̃ �= Ṽ, may not be
stable. We note that [8, page B255] also report instability of their ROM based
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on Petrov-Galerkin and interpolation when applied to Burgers’ equation with
smaller viscosity. In our experiments, combining the projection matrices W̃, Ṽ
generated by the standard Loewner framework and applying a Galerkin pro-
jection with the larger projection matrix [W̃, Ṽ] gave good results. However,
using this Galerkin projection destroys the purely data driven aspect, since this
Galerkin projection ROM is computed by explicitly projecting the FOM, while
standard Loewner Petrov-Galerkin ROM can be computed from data alone.

The specific incompressible Navier-Stokes system (1) is somewhat limiting.
First, the output (1c) does not depend on pressure. Extending the output to
y(t) = C1v(t) + C2p(t) leads to an output of the type y(t) = C3Θrṽ(t) +
C4Q(Θrṽ(t) ⊗ Θrṽ(t)) in the resulting projected system corresponding to (6).
Thus in addition to the quadratic term in (6a) another quadratic term appears
in the output. Incorporation of quadratic terms in the output equation is under
investigation. Moreover, Dirichlet boundary condition inputs lead to inputs given
by g as well as its derivative d

dtg. These derivative terms leads to additional
terms in projected equations and in the transfer function. They also impact the
behavior of transfer function components at infinity, which has to be addressed
by extending the approach in [4] for systems governed by the Oseen equation.
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