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Level structure, arithmetic representations, and
noncommutative Siegel linearization

By Borys Kadets at Athens, GA and Daniel Litt at Athens, GA

Abstract. Let ` be a prime, k a finitely generated field of characteristic different from `,
and X a smooth geometrically connected curve over k. Say a semisimple representation of
�ét
1 .X Nk/ is arithmetic if it extends to a finite index subgroup of �ét

1 .X/. We show that there
exists an effective constant N D N.X; `/ such that any semisimple arithmetic representation
of �ét

1 .X Nk/ into GLn.Z`/, which is trivial mod `N , is in fact trivial. This extends a previous
result of the second author from characteristic zero to all characteristics. The proof relies on
a new noncommutative version of Siegel’s linearization theorem and the `-adic form of Baker’s
theorem on linear forms in logarithms.

1. Introduction

The main goal of this note is to analyze representations of arithmetic fundamental groups,
motivated by questions about level structure of Abelian varieties over function fields. Our main
result (Theorem 1.1.2) implies that there is an absolute bound on the maximum N such that
an Abelian scheme over a fixed curve over a field of characteristic prime to ` has full level
`N -structure (Corollary 1.1.3). The contribution of this note is to show that this phenomenon,
which was already known to hold in characteristic zero (see [9, Theorem 1.2] and [10, Theo-
rem 1.1.13]) in fact holds in arbitrary characteristic. The proof in positive characteristic requires
significant input from non-Archimedean dynamics and transcendence theory: in particular,
a new noncommutative, non-Archimedean version of Siegel’s linearization theorem (Theo-
rem 3.2.1), which may be of independent interest, and the `-adic version of Baker’s theorem
on linear forms in logarithms (due to Kunrui Yu [15]).

1.1. Main results. In preparation for the statement of the main theorem, we recall the
definition of an arithmetic representation. The main interest in this notion stems from the fact
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that representations “arising from geometry” are arithmetic. (See, e.g., [10] for a discussion of
arithmeticity, its properties, and its consequences.)

Definition 1.1.1. Let k be a finitely generated field, and letX=k be a variety. Let ksep be
a separable closure of k, and let Nx be a geometric point of X . Then a continuous representation

� W �ét
1 .Xksep ; Nx/! GLn.Q`/

is said to be semisimple arithmetic if

(i) � is semisimple, and

(ii) there exists a finite separable extension k0=k and a representation

z� W �ét
1 .Xk0 ; Nx/! GLn.Q`/

such that z�j�1.Xksep ; Nx/ is conjugate to �.

Our main result about semisimple arithmetic representations is:

Theorem 1.1.2. Let k be a finitely-generated field, and let X=k be a smooth curve.
Let ` be a prime not equal to the characteristic of k, and let ksep be a separable closure of k.
Let Nx be a geometric point of X . There exists a positive constant N D N.X; `/ such that if

� W �ét
1 .Xksep ; Nx/! GLn.Z`/

is a continuous representation such that

(i) �˝Q` is semisimple arithmetic, and

(ii) � is trivial modulo `N ,

then � is trivial.

For a real number N we say that a representation is trivial modulo `N if it is trivial
modulo the ideal

¹x 2 Z` j v`.x/ > N º:

Theorem 1.1.2 immediately implies (by the Lang-Néron theorem, [3, Theorem 2.1]):

Corollary 1.1.3. Let X;N; ` be as above, and let � be the function field of X Nk . Then
for any integer M > N , and any Abelian scheme A=X Nk , the following holds: if the Abelian
variety A� has full `M -torsion (that is, A�Œ`M �.�/ D A�Œ`M �.�/), then A� is isogenous to an
isotrivial abelian variety over �.

Remark 1.1.4. In fact, the conclusion of Corollary 1.1.3 is equivalent to the claim that
A� is isogenous to Tr

�= Nk
.A�/�. In characteristic zero, we may conclude that A� is in fact

isotrivial; this is not the case in positive characteristic. See, e.g., the well-known examples due
to Moret-Bailly [11, 12].

Remark 1.1.5. The constant N in Theorem 1.1.2 and Corollary 1.1.3 is in principle
explicit: it depends only on ` and on the natural Galois representation

Gal.ksep=k/! GL.H 1.X Nk;Z`//:

See Section 5 for related questions.
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1.2. Relation to previous work. As far as we know, this is the first result of this form in
positive characteristic. In characteristic zero, Theorem 1.1.2 was already known by work of the
second author [9, Theorem 1.2]. In fact, more is known ([10, Theorem 1.1.13]): namely, that
for fixedX , the constantsN.X; `/ appearing in the statement of Theorem 1.1.2 may be taken to
go to zero as `!1. In positive characteristic we are unable to prove even that N.X; `/ may
be bounded independent of `, as the existing bounds arising from the `-adic form of Baker’s
theorem on linear forms in logarithms get worse as `!1 (see Question 5.3.1).

There is also related work of an analytic nature in characteristic zero; see, e.g., [1,2,7,13].

1.3. Outline of proof. We briefly sketch the idea of the proof of Theorem 1.1.2, which
broadly follows the strategy of the works [9, 10], but replaces the use of Galois homotheties
(arising from Bogomolov’s `-adic open image theorem) by the use of Frobenii, and replaces
the naive estimates there with more sophisticated estimates arising from our form of Siegel’s
theorem.

A specialization argument reduces the theorem to the case where k is finite, X is affine,
and X.k/ is nonempty. Let x 2 X.k/ be a rational point and Nx an associated geometric point;
let �`1.Xk; Nx/ be the pro-` completion of the geometric étale fundamental group of X . The
pro-` group ring Z`hh�

`
1.X Nk; Nx/ii is (non-canonically) isomorphic to a ring of noncommutative

power series over Z`. Letting K be a finite extension of Q`, the completion Khh�`1.X Nk; Nx/ii
of Z`hh�

`
1.X Nk; Nx/ii ˝K at the augmentation ideal is (non-canonically) isomorphic to a ring of

noncommutative power series overK. For each positive real number 0 < r < 1 we introduce a
certain Banach sub-algebra K6rhh�`1.X Nk; Nx/ii of Khh�`1.X Nk; Nx/ii, containing Z`hh�

`
1.X Nk; Nx/ii,

with the following property: any representation � of �`1.X Nk; Nx/ into GLn.Z`/, which is triv-
ial modulo `N , extends canonically to a continuous homomorphism

e� W K6r 0
hh�`1.X Nk; Nx/ii ! Matn�n.Q`/

for every r 0 > `�N .
Our main technical result is that for some finite extension K of Q`, the eigenvectors of

the Frobenius action on the Banach algebra K6rhh�`1.X Nk; Nx/ii have dense span once r is suf-
ficiently small, say for 0 < r 6 r0. This follows from a noncommutative variant of Siegel’s
linearization theorem (Theorem 3.2.1), whose proof is a version of Newton’s method. The
hypotheses of the theorem follow in our case from the Weil conjectures for curves, the `-adic
form of Baker’s theorem on linear forms in logarithms (due to Kunrui Yu [15]), and a semisim-
plicity result proven in previous work of the second author [9, Theorem 2.20]. The introduction
of these dynamical techniques is the main innovation of this work.

Now suppose we take N greater than � log r0=log ` 2 R, and � is as in Theorem 1.1.2.
Then since r0 > `�N , we obtain a canonical continuous map

e� W K6r0hh�`1.X Nk; Nx/ii ! Matn�n.Q`/

extending �. The homomorphisme� is equivariant for the action of some power of Frobenius
by arithmeticity of �˝Q`. Now the finite-dimensionality of Matn�n.Q`/ implies that almost
all eigenvectors of the Frobenius action on K6r0hh�`1.X Nk; Nx/ii are sent to zero bye�; their den-
sity implies that some power of the augmentation ideal of K6r0hh�`1.X Nk; Nx/ii and hence of
Z`hh�

`
1.X Nk; Nxii is sent to zero. Thus the representation � was unipotent, and any unipotent

semisimple representation is trivial, completing the proof.
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2. Notation and preliminaries

2.1. Notation. Throughout X will be a smooth, geometrically connected curve over
a field k, and ` will be a prime different from the characteristic of k. Fix an algebraic closure
Nk of k and a geometric point Nx of X . Let K denote a finite extension of Q`. We denote by
�`1.X Nk; Nx/ the pro-` completion of �ét

1 .X Nk; Nx/. We denote by

Z`hh�
`
1.X Nk; Nx/ii WD lim

 �
Z`ŒH �

the Z`-group ring of �`1.X Nk; Nx/; the inverse limit is taken over all finite quotients of �`1.X Nk; Nx/:
Let I � Z`hh�

`
1.X Nk; Nx/ii be the augmentation ideal. Then we denote by

Khh�`1.X Nk; Nx/ii WD lim
 �
n

.Z`hh�
`
1.X Nk; Nx/ii=I

n
˝K/

the completion of Z`hh�
`
1.X Nk; Nx/ii ˝K at the augmentation ideal. We abuse notation and

denote the augmentation ideal of Khh�`1.X Nk; Nx/ii by I as well.
The key ingredient of our argument is an analysis of the Frobenius action on the algebra

Khh�`1.X Nk; Nx/ii and related algebras. ForX an affine curve, this ring is non-canonically isomor-
phic to a noncommutative power series ring in n variables x1; : : : ; xn, where xi D 
i � 1 for
¹
1; : : : ; 
nº a minimal set of topological generators of the free pro-` group �`1.X Nk; Nx/. Deal-
ing with coefficients of such noncommutative power series brings some notational difficulties.
In this section we introduce some conventions that somewhat simplify the notation.

We write Ex as a shorthand for x1; : : : ; xn, so that ifX is affine,Khh�`1.X Nk; Nx/ii D KhhExii,
the non-commutative power series ring in x1; : : : ; xn. If I D ¹i1; : : : ; imº is a finite word
in the alphabet ¹1; : : : ; nº, we write xI WD xi1 � � � xim . For an element f 2 KhhExii we write
f D

P
aIx

I suppressing that summation is to be taken over all finite words in ¹1; : : : ; nº.
If I is a finite word, then jI j denotes its length. The weight of the monomial xI is jI j.

Definition 2.1.1. A power series f 2 KhhExii converges on a disk of radius 0 < r < 1 if

lim
jI j!1

jaI jr
jI j
D 0:

In this case we define the r-norm of f to be

kf kr WD sup
I

jaI jr
jI j:

The set of convergent power series is denoted by K6rhhExii.

We think of these convergent power series as functions on a closed noncommutative
polydisk. From the point of view of this metaphor the Frobenius action is an automorphism
of the polydisk fixing zero. We think of our main result as saying that this automorphism
is conjugate to a linear map in a neighborhood of zero; the analogous result in holomorphic
dynamics on a complex polydisk is Siegel’s linearization theorem.

Proposition 2.1.2. The pair K6rhhExii; k � kr is a Banach algebra.

Proof. The fact that k � kr is a non-Archimedean norm follows from the fact that j � j is
a norm on K. For completeness, observe that a Cauchy sequence has to converge coefficient-
wise, and the resulting limit is also the limit in the norm.
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We similarly define K6rhh�`1.X Nk; Nx/ii to be the subring of Khh�`1.X Nk; Nx/ii consisting of
those elements f that satisfy

lim
n!1

�
rn inf¹`s j `s � f 2 OK ˝ Z`hh�

`
1.X Nk; Nx/ii mod I nC1

º
�
D 0;

and define

kf kr WD sup
n

�
rn inf¹`s j `s � f 2 OK ˝ Z`hh�

`
1.X Nk; Nx/ii mod I nC1

º
�
:

Under a choice of isomorphism Khh�`1.X Nk; Nx/ii ' KhhExii arising from a minimal set of topo-
logical generators of �`1.X Nk; Nx/ in the case X is affine, these two definitions are compatible,
i.e., the isomorphism induces an isomorphism K6rhh�`1.X Nk; Nx/ii ' K

6rhhExii. Moreover, these
constructions are functorial: any endomorphism of �`1.X Nk; Nx/ induces an endomorphism of
K6rhh�`1.X Nk; Nx/ii and hence of K6rhhExii when X is affine.

We denote by Ir the ideal of power series with zero constant term in K6rhhExii; if the
radius r is clear from context, we write simply I . To emphasize the analogy with analysis,
we write f D g CO.xn/ to mean f � g 2 I n.

2.2. Basic properties. We will study the dynamics of noncommutative power series on
a polydisk. We use EndopKhhExii to denote the monoid of n-tuples of power series

Ef D .f1; : : : ; fn/ 2 KhhExii
n

with no constant term and with composition given by Ef ı Eg D .f1.Eg/; : : : ; fn.Eg//; elements
of EndopKhhExii define endomorphisms of KhhExii that send xi to fi . Note that the order of
composition on EndopKhhExii is opposite of the natural composition on the endomorphisms,
hence the notation. Similarly we use EndopK6rhhExii for the n-tuples Ef D .f1; : : : ; fn/ of
power series in K6rhhExii with no constant term and such that kfikr 6 r for all i . The norm of
Ef 2 EndopK6rhhExii is defined by

k Ef kr WD max
i
kfikr :

We think of an element Ef 2 EndopK6rhhExii as a holomorphic map from the noncommutative
polydisk K6rhhExii to itself, fixing the origin.

The algebras K6rhhExii will be used to study representations trivial modulo `N with the
help of the following lemma. In the lemma, the `-adic valuation v`.A/ of a matrix A is the
minimal valuation of its entries, and the `-adic norm is defined by jAj D `�v`.A/.

Lemma 2.2.1. Suppose � W Z`hhExii ! Matn�n.Z`/ is a continuous representation such
that j�.xi /j 6 C < 1 for all i . Then for any r > C the representation � extends to a continuous
representation �r W Q6r

`
hhExii ! Matn�n.Q`/:

Proof. Suppose f D
P
aIx

I 2 Q6r
`
hhExii is a power series. Then

jaI�.x/
I
j 6 kf krr�jI jC jI j:

As r�1C < 1, the series f .�.Ex// converges, and if c WD maxi r�iC i , then jf .�.Ex//j 6 ckf kr
by the ultrametric inequality. Therefore the representation �r W Q6r

`
hhExii ! Matn�n.Q`/ given

by �r W f 7! f .�.Ex// is a well-defined continuous extension of �.
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Lemma 2.2.2. The monomials of degree > m have dense span in Im
r � K

6rhhExii:

Proof. Let
f .Ex/ D

X
jI j>m

aIx
I

be an element of Im
r . As jaI jrI ! 0 as r !1, we have that, defining

fM WD
X
jI j>M

aIx
I ;

fM ! 0 as M !1. Hence f D limM!1 f � fM : Now we have written f as a limit of
polynomials in the xi , as desired.

3. Siegel’s linearization theorem

The goal of this section is to show that the Frobenius action on the convergent group ring
K6rhh�`1.X; x/ii can be diagonalized once r is sufficiently small. To this end we prove a version
of Siegel’s linearization theorem for `-adic noncommutative multivariate power series. Our
argument is analogous to the one used in [6, Section 4], which itself is an `-adic version of
a classical argument of Rüssmann, as generalized by Zehnder [14, 16]. That said, we require
these results without the “non-resonance” condition they impose. (In our application, this non-
resonance condition is replaced by the use of the semisimplicity of the Frobenius action on
the algebra Khh�`1.X; x/ii.) We start by establishing some simple lemmas on composition of
power series.

3.1. Some lemmas. The following lemma establishes basic analytic properties of the
set EndopK6rhhExii.

Lemma 3.1.1. The following statements hold:

(i) The set EndopK6rhhExii is a complete abelian group under the norm k � kr with respect to
addition.

(ii) The group EndopK6rhhExii � EndopKhhExii is closed under composition.

(iii) Composition on EndopK6rhhExii is continuous and satisfies the inequalities

k Ef ı Eg � Ef ı Ehkr 6
1

r
k Ef krkEg � Ehkr ;

kEg ı Ef � Eh ı Ef kr 6
1

r
k Ef krkEg � Ehkr

for all f; g; h 2 EndopK6rhhExii:

(iv) For 0 < r1 < r2 < 1 we haveK6r2hhExii � K6r1hhExii � KhhExii, and the inclusion is con-
tinuous. Given Ef 2 K6r2hhExii; we have

k Ef kr1 6
r1

r2
k Ef kr2 :

Proof. (i) This follows from the completeness of K; if ¹ Efj º is a Cauchy sequence in
EndopK6rhhExii, then the coefficients of xI in each component of Efj form a Cauchy sequence
themselves.
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(ii) Given Ef ; Eg 2 EndopK6rhhExii, we wish to show that kfi .Eg/kr 6 r for all i . Writing
fi D

P
aiIx

I , gj D
P
bI;jx

I , the coefficient of xI in fi .Eg/ is an integer linear combination
of aJ bI1;j1 � � � bIjJ j;jjJ j , where

P
j jIj j D jI j. Hence

kfi .Eg/kr 6 sup
I;J;I1;:::;IjJ j

jaJ bI1;j1 � � � bIjJ j;jjJ j jr
jI j 6 sup

J

jaJ jr
jJ j 6 r

as desired.
(iii) We prove the first inequality; the second is the special case where we apply the first

inequality to k.Eg � Eh/ ı Ef � .Eg � Eh/ ı E0kr . Setting

fi D
X

aIx
I ; gj D

X
bI;jx

I ; hk D
X

cI;kx
I ;

we have that the coefficient of xI in fi .Eg/ � fi .Eh/ is an integer linear combination of

aJ .bI1;j1 � � � bIjJ j;jjJ j � cI1;j1 � � � cIjJ j;jjJ j/

with
P
s Is D I . Using the telescoping sum

bI1;j1 � � � bIjJ j;jjJ j � cI1;j1 � � � cIjJ j;jjJ j

D

JX
sD1

bI1;j1 � � � bIs�1;js�1.bIs ; js � cIs ;js /cIsC1;jsC1 � � � cIjJ j;jjJ j ;

we have

jbI1;j1 � � � bIjJ j;jjJ j � cI1;j1 � � � cIjJ j;jjJ j jr
jI j

6 max
sD1;:::;jJ j

jbI1;j1 � � � bIs�1;js�1.bIs ; js � cIs ;js /cIsC1;jsC1 � � � cIjJ j;jjJ j jr
jI j

6 max
sD1;:::;jJ j

 
s�1Y
tD1

jbIt ;jt jr
jIt j

!
� jbIs ;js � cIs ;js jr

jIs j �

 
jJ jY

tDsC1

jbIt ;jt jr
jIt j

!
6
�

max
sD1;:::;jJ j

jbIs ;js � cIs ;js jr
jIs j
�
r jJ j�1

6 kEg � Ehkrr jJ j�1:

But then

jaJ .bI1;j1 � � � bIjJ j;jjJ j � cI1;j1 � � � cIjJ j;jjJ j/jr
jI j 6 jaJ j � kEg � Ehkrr jJ j�1

6
1

r
k Ef krkEg � Ehkr

as desired.
(iv) The inequality

k Ef kr1 6
r1

r2
k Ef kr2

immediately implies that the inclusion K6r2hhExii � K6r1hhExii is continuous, so it suffices to
verify the inequality. Writing fi D

P
aIx

I , it is enough to show that

sup
I

jaI jr
jI j
1 6

r1

r2
sup
I

jaI jr
jI j
2 ;
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where the supremum is taken over I with jI j > 0. But for each I with jI j > 0, we have

jaI jr
jI j
1 6 jaI jr1r jI j�12 ;

which gives the claim.

As a special case of Lemma 3.1.1 (iii) above, we have:

Lemma 3.1.2. For any Ef ; E" 2 EndopK6rhhExii with kE"kr < 1, and for any diagonal
matrix A D diag.�i / 2 Matn�n.K/, j�i j 6 1 the following estimate holds:

k Ef .AEx C E"/ � Ef .AEx/kr <
1

r
k Ef krkE"kr :

We will require a criterion for invertibility of certain elements of EndopK6rhhExii:

Lemma 3.1.3. Suppose E 2 EndopK6rhhExii is of the form E D Ex C y , y D O.x2/
and k y kr < "< r . Then E admits a two-sided compositional inverse Eg D ExC yg and kygkr < ":

Proof. We first find the left inverse. Set EgL D Ex � y C y ı2 � y ı3 C � � � . The sum con-
verges as k y kr < " < r , and hence by Lemma 3.1.1 (iii), k y ınkr < "n

rn�1
, by induction on n.

Thus k y ınkr ! 0 as n!1. Moreover, ygL WD EgL � Ex satisfies kygLkr < " by the ultrametric
inequality. Thus it suffices to show EgL is inverse to E .

To see that EgL is left inverse to E , we simply evaluate EgL ı E ; the sum telescopes.
The previous paragraphs shows that any tuple of power series E satisfying the conditions

of the lemma admits a left inverse EgL. Applying this to EgL shows that EgL admits a left inverse.
Since EgL also has a right inverse, it follows that E is a two-sided inverse of EgL, and EgL is a
two-sided inverse of E .

Definition 3.1.4. An element Ef 2 EndopK6rhhExii is semisimple if the operator given
by P 7! P ı Ef on K6rhhExii=Im is semisimple for all m.

Remark 3.1.5. The property of being semisimple is preserved under conjugation. For
all r 0 < r an element Ef 2 EndopK6rhhExii is semisimple as an element of EndopK6rhhExii if
and only if it is semisimple as an element of EndopK6r 0hhExii.

Lemma 3.1.6. Suppose Ef 2 EndopK6rhhExii is semisimple, Ef D AEx CO.x2/, and A
is a diagonal matrix with coefficients E� D .�1; : : : ; �n/. If I is a word and j is an index such
that E�I D �j , then the coefficient of xI in fj is zero.

Proof. The operator F 7! F ı Ef onKhhExii=I jI jC1 is upper triangular in the monomial
basis. Therefore, since the diagonal entries corresponding to the coefficients of xI and xj are
equal and the operator is semisimple, the corresponding off-diagonal coefficient ajI is zero.

Definition 3.1.7. A tuple of numbers �1; : : : ; �n 2 Q` is said to satisfy `-Siegel’s con-
dition with parameters c; � > 0 if the following condition holds: for any tuple of nonnegative
integers i1; : : : ; in with i1 C � � � C in D N and any index j such that �i11 �

i2
2 � � ��

in
n ¤ �j , the

following inequality holds:

j�
i1
1 �

i2
2 � � ��

in
n � �j j > c

�
N

2

���
:
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Remark 3.1.8. Replacing �j with 1 and N
2

withN leads to an equivalent definition with
different constants; the form given in Definition 3.1.7 is more convenient for our applications.

Siegel’s condition holds for algebraic �i , as the following proposition shows.

Proposition 3.1.9 (Linear forms in logarithms, [15]). Suppose �1; : : : ; �n 2 Q` are
algebraic numbers. Then there exist constants c; � > 0 such that for any integers i1; : : : ; in; j
with �i11 � � ��

in
n ¤ �j the following inequality holds:

j�
i1
1 � � ��

in
n � �j j > c.ji1j C � � � C jinj/

��:

Proof. After replacing the tuple �1; : : : ; �n with �1; : : : ; �n; ��11 ; : : : ; ��1n it suffices
to prove the inequality for positive integers ij . Also, by changing c to a different constant
it suffices to show that j�i11 � � ��

in
n � 1j > c.ji1j C � � � C jinj/

��: This estimate is proved in
[15, Theorem 1’].

Our goal is to conjugate a (semisimple vector of) power series Ef D AEx CO.x2/ to its
linear part AEx. We do so iteratively, on every step conjugating f by some other power series
so that the norm of Ef � AEx on a slightly smaller disk becomes much smaller than before. The
key to the inductive step is Lemma 3.1.11, which itself uses the following simple estimate.

Lemma 3.1.10. Suppose � 2 .0; 1/ and � > 0 are real numbers. Then

sup
i2Z>0

.1 � �/i i� 6
�
�

7�

���
:

Proof. For every positive x we have

e
�x
7� >

�x

7�
:

By convexity of log on .1; 2/ we have log.1C �/ > �
7

. Therefore

e
log.1C�/
�

x > e
�x
7� >

�x

7�
:

Since 1
1C�

> 1 � � inverting both sides, we get

7�

�x
> .1 � �/

x
� ;

or
x.1 � �/

x
� 6

7�

�
:

Raising both sides to the power � gives

x�.1 � �/x 6
�
�

7�

���
:

Lemma 3.1.11. Given ı > 0, suppose Ef 2 EndopK6rhhExii is such that

Ef D AEx C yf .x/; yf D O.x2/ and k yf kr < ı:
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Suppose that Ef is semisimple, A is a diagonal matrix, and that the eigenvalues �1; : : : ; �n
of A satisfy `-Siegel’s condition with parameters c; �, � > 2

7
. Suppose also j�i j 6 1. Sup-

pose � 2 .0; 1/ satisfies c�1.7�/����ı < r . Then there exists an invertible endomorphism
E 2 EndopK6r.1��/hhExii, with E D Ex CO.x2/, such that the following inequalities hold:

k E � Exkr.1��/ 6 c�1ı.1 � �/

�
�

7�

���
< r.1 � �/

and

k E �1 ı Ef ı E � AExkr.1��/ 6 c�1.7�/�
ı2

��r
:

Proof. Let y be the solution to the equation y .AEx/�A y .Ex/D yf .Ex/ with y DO.x2/.
This equation can be solved as A is diagonal: if ajI is the coefficient of xI in fj , then the
coefficient of xI in  j is ajI =.�

I � �j / if �I � �j is nonzero, and it is zero otherwise. (Note
that ajI D 0 whenever �I D �j by Lemma 3.1.6.) To check that y converges on the disk of
radius r.1 � �/, we use the Siegel condition:ˇ̌̌̌

a
j
I

�I � �j

ˇ̌̌̌
r jI j.1 � �/jI j 6 ı.1 � �/jI jj�jI j � �j j

�1
.�/
6 c�1ı.1 � �/jI j

�
jI j

2

��
�����!
jI j!1

0;

where we used Siegel’s property for (�). Similarly, we directly estimate the norm of y using
the Siegel condition as follows:

k y kr.1��/ D sup
I;j

ˇ̌̌̌
a
j
I

�I � �j

ˇ̌̌̌
r jI j.1 � �/jI j

6 ı sup
I;j

.1 � �/jI jj�I � �j j
�1

6 ı sup
i

c�1.1 � �/i
� i
2

��
(by Siegel’s property)

6 c�1ımax.sup
i>2

.1 � �/i .i � 1/�; .1 � �/2��/

D c�1ımax..1 � �/ sup
i>1

.1 � �/i i�; .1 � �/2��/ (Index shift)

6 c�1ı.1 � �/

�
�

7�

���
(by Lemma 3.1.10):

In the last inequality we have used the condition � > 2
7

to resolve the maximum. Note that by
our choice of �, we thus have k y kr.1��/ < r.1 � �/, and so y is in EndopK6r.1��/hhExii:

We now show that the function E D Ex C y satisfies the conditions of the lemma. Note
that E is invertible by Lemma 3.1.3, again as k y kr.1��/ < r.1 � �/. We need to estimate the
norm k E �1ı Ef ı E �AExkr.1��/. Let Eg denote the function E �1ı Ef ı E , and write EgDAExCyg.
We now use the functional equation for y to derive an equation for yg:

E .Eg.Ex// D A E .Ex/C yf . E .Ex//;

yg.Ex/C y .AEx C yg.Ex// D A y .Ex/C yf .Ex C y .Ex//;

yg.Ex/C y .AEx C yg.Ex// D y .AEx/ � yf .Ex/C yf .Ex C E .Ex//;

yg.Ex/ D Œ y .AEx/ � y .AEx C yg.Ex//�C Œ yf .Ex C y .Ex// � yf .Ex/�:
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The right-hand side of the last equation is visibly “small”; if G D kygkr.1��/, then applying
Lemma 3.1.2 and the ultrametric inequality we get

G 6
1

r.1 � �/
max¹k y kr.1��/G; k yf kr.1��/k y kr.1��/º

6
1

r.1 � �/
k yf kr.1��/k y kr.1��/:

Here the last inequality holds because G 6 1
r.1��/

k y kr.1��/G is impossible, unless G D 0,
since 1

r.1��/
k y kr.1��/ < 1; and ifG D 0, the inequality holds in any case. Using the estimates

k y kr.1��/ 6 c�1.7�/�ı.1 � �/���

and kf kr.1��/ 6 kf kr < ı, we get

G 6
c�1.7�/�ı2���

r
:

To apply Lemma 3.1.11, we will need the following simple estimate.

Lemma 3.1.12. Let u 2 .0; 1
2
/ and ˛ > 1 be real numbers. Then
1Y
nD0

�
1 �

u

˛n

�
> e�

˛
˛�1 :

Proof. For x 2 .0; 1
2
/ we have log.1 � x/ > �2x. Taking the logarithm of the product

and applying this inequality to every term gives
1X
nD0

log
�
1 �

u

˛n

�
> �2u

1X
nD0

�
1

˛n

�
D �2u

˛

˛ � 1
> �

˛

˛ � 1
:

3.2. The linearization theorem. We are now ready to prove the main result of this
section.

Theorem 3.2.1 (noncommutative, non-archimedean Siegel linearization). Suppose that
Ef D AEx C yf .x/ is an element of EndopK6rhhExii. Suppose that Ef is semisimple, A is a diag-

onal matrix, and that the eigenvalues �1; : : : ; �n of A satisfy Siegel’s condition with parame-
ters c; �. Suppose j�i j 6 1: Then there exists a radius r1 < r < 1 and an invertible function
E 2 EndopK6r1hhExii such that E �1 ı Ef ı E D AEx.

Proof. The idea is to apply Lemma 3.1.11 iteratively, at every step conjugating Ef closer
and closer to its linear part. At each step we are given a conjugate Efn of Ef on a disk of
radius rn with k Efn � AExkrn D ın < 1, and we have to choose a suitable value of �n to apply
Lemma 3.1.11 and obtain a new conjugate EfnC1 on the disk of radius rnC1 WD rn.1 � �n/. We
make these choices so that the distance between Efn and its linear part tends to zero with n,
and the radii of the relevant disks remains bounded away from zero. On each step we make the
choice �n � ı

1=.�C1/
n , then the numerics of Lemma 3.1.11 show that

ınC1 /
ı2n

�
�
n

� ı
1C 1

�C1

n ;
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so that the sequence ın converges to zero super-exponentially. As �n � ı
1=.�C1/
n , the sequence

�n will converge to zero super-exponentially as well, and so r
Q
n.1 � �n/ > 0; by taking limits

we will show that Ef is conjugate to AEx on the disk of radius r
Q
n.1 � �n/.

After increasing � if necessary we can assume � > 2
7

(this is a condition necessary to
apply Lemma 3.1.11). Before starting the iterative process, we need to (possibly) shrink the disk
to make the norm of Ef � AEx small enough so that on every step of the iteration Lemma 3.1.11
can be applied.

Let ı denote k Ef � AExkr . We choose a large positive constant B (to be determined
later) and let r1 WD r

B
. Then since Ef � AEx has no linear term, the norm ı1 WD k Ef � AExkr1

satisfies ı1 6 ı
B2

. We now choose B large such that the following inequality holds:

(3.2.2) c�1.7�/�ı13
� <

1

2
r1e
� 21=.�C1/

21=.�C1/�1 ;

which is possible as ı1 scales as O. 1
B2
/, while r1 scales as � 1

B
.

We will produce a sequence of constants �n; ın; rn and elements E n 2 EndopK6rnC1hhExii,
Efn 2 EndopK6rnhhExii, with E n invertible, and such that

Ef1 D Ef 2 EndopK6r1hhExii; ı1 D k Ef � AExkr1 ; �1 D
1

3
:

We will have
EfnC1 D E 

�1
n ı

Efn ı E n;

rn D .1 � �n�1/rn�1;

ın WD k Efn � AExkrn <
ın�1

2
;

k E n � ExkrnC1 < c
�1ın.1 � �n/.7�/

����n ;

and

��C1n D
ın

3�C1ı1
2 .0; 1/:

Indeed, iteratively apply Lemma 3.1.11 to Efn; rn; �n. For the lemma to be applicable we need
to check two conditions: �n 2 .0; 1/ and c�1.7�/����n ın < rn. The first condition follows
since ın < ı1 and so

�n D

�
ın

3�C1ı1

� 1
�C1

<
1

3
:

For the second condition, we have

���n ın D

�
ın

3�C1ı1

�� �
�C1

ın

D ı
1

�C1

n .3�C1ı1/
�
�C1

< ı
1

�C1

1 3�ı
�
�C1

1

D ı13
�:

Thus it is enough to show

c�1.7�/�ı13
� < rn:
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We estimate rn from below using the estimate ın < ı12�.n�1/:

rn D r1

n�1Y
iD1

.1 � �i /(3.2.3)

D r1

n�1Y
iD1

�
1 �

�
ıi

3�C1ı1

� 1
�C1

�

> r1

n�1Y
iD1

�
1 �

1

3
2�

i�1
�
C1

�

D r1

n�1Y
iD0

�
1 �

1

3
2�

i
�
C1

�

> r1

1Y
iD0

�
1 �

1

3
2�

i
�
C1

�
> r1e

� 21=.�C1/

21=.�C1/�1 (by Lemma 3.1.12):

Therefore using inequality (3.2.2) and the previous estimate, we get

c�1.7�/�ı13
� <

1

2
r1e
� 21=.�C1/

21=.�C1/�1 < rn:

Thus, we can apply Lemma 3.1.11 with Ef D Efn, r D rn and � D �n to produce E n and

EfnC1 D E 
�1
n ı

Efn ı E n

such that
k E n � ExkrnC1 < c

�1ın.1 � �n/.7�/
����n

and

ınC1 < c
�1.7�/�

ı2n

�
�
n rn

D c�1.7�/�ı
1

�C1

n ı
�
�C1

1 3�r�1n ın

< c�1.7�/�ı13
�r�1n ın

< c�1.7�/�ı13
�r�11 e

21=.�C1/

21=.�C1/�1 ın (by (3.2.3))

<
1

2
ın (by (3.2.2):

Thus the infinite sequence Efn can be constructed as claimed.
The sequence ın converges to zero (at least) exponentially. Since �n D 1

3
. ın
ı1
/

1
�C1 , the

product
Q
n.1 � �n/ converges. Let

r1 WD r1
Y
n

.1 � �n/:

By Lemma 3.1.1 (iv), we have k Efn � AExkr1 < ın, and so the sequence of conjugates Efn
converges to the function AEx on the disk of radius r1.
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We now show that the limit of Efn is also a conjugate of Ef . Let E‰n D E 1 ı � � � ı E n. Then
E‰n 2 EndopK6r1hhExii is invertible, and E‰�1n ı Ef ı E‰n D Efn. By construction,

k E n � Exkr1 < c�1ın.1 � �n/.7�/
����n

D 3�C1c�1.7�/�.1 � �n/ı1�n

< 3�C1c�1.7�/�ı1�n

D Q�n;

where Q > 0 does not depend on n. We have by Lemma 3.1.2

k E‰nC1 � E‰nkr1 D k
E‰n. E nC1.x// � E‰n.x/kr1

<
1

r1
k E‰nkr1k

E nC1 � Exkr1

<
Q

r1
k E‰nkr1�nC1:

Since �n converges to zero, it follows that the sequence E‰n is Cauchy, and thus has a limit E‰.
Since Efn D E‰�1n ı Ef ı E‰n, we have E‰�1 ı Ef ı E‰ D AEx, using continuity of composition (see
Lemma 3.1.1 (iii)).

Corollary 3.2.4. Suppose F 2 EndopK6rhhExii is a semisimple endomorphism. Suppose
the eigenvalues �i of the action of F on I =I 2 are elements of K with j�i j 6 1 that satisfy
Siegel’s condition with parameter �. Then there exists a radius r 0 < r and a collection of
elements y1; : : : ; yn 2 K6r 0hhExii with the following two properties:

(i) If �1; : : : ; �n 2 Q` are eigenvalues of F on I =I 2, then Fyi D �iyi .

(ii) For any integer m the monomials in yi of degree at least m have dense span in Im
r 0 .

Proof. After replacing r with a smaller radius zr we can do a linear change of variables
Ex0 DM Ex to make the action of F on Izr=Izr

2 diagonal in the basis Ex0. We can therefore
assume that F D AEx0 CO.x2/, where A is a diagonal matrix A D diag.�1; : : : ; �n/. We can
now apply Theorem 3.2.1: there exists a radius r 0 < zr and an element E 2 EndopK6r 0hhEx0ii

such that E �1 ı F ı E D AEx0. Let yi D  �1i .Ex0/; then Fyi D yi .F.Ex0// D A Ey. The span
of the monomials in the x0i of degree m or larger is dense in Im

r 0 by Lemma 2.2.2. Since
Ex0 D E . Ey/, any monomial in x0i of degree m is a (convergent) sum of monomials in yi of
degree at least m. Hence monomials in yi of degree m or larger have dense span in Im

r 0 .

4. Main theorem

Having proven Theorem 3.2.1 and Corollary 3.2.4, we move on to the proof of Theo-
rem 1.1.2, which is a straightforward application.

Proof of Theorem 1.1.2 (compare to [9, Proof of Theorem 1.2]). We first observe that it
suffices to consider the case whereX is affine and k is finite. Indeed, we may takeX to be affine
by deleting any closed point of X , which does not affect the hypotheses of the theorem. To see
that we may reduce to the case where k is finite, choose a finitely-generated integral Z-algebra
R in which ` is invertible, a smooth proper R-curve X , a divisorD in X étale over R, and an
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isomorphism Frac.R/ ��! k such that .X nD/k is isomorphic to X . Now for any geometric
point Np lying over a closed point p 2 Spec.R/ with residue field k.p/ of characteristic prime
to `, the specialization map

�`1.X Nk/! �`1..X nD/ Np/

is an isomorphism. Moreover, any semisimple arithmetic representation of �`1.X Nk/ remains
semisimple arithmetic when viewed as a representation of �`1..X nD/ Np/, by the argument
of [10, Proof of Theorem 1.1.3, Step 2]. Thus it suffices to prove the theorem for .X nD/p,
which is by construction a smooth affine curve over a finite field.

For the rest of the argument we assume k is finite of characteristic different from `, and
X=k is a smooth affine curve. Let Nk be an algebraic closure of k. We may, after replacing k
with a finite extension, assume that X has a k-rational point x; we let Nx be the geometric point
obtained from x via our choice of algebraic closure Nk of k. In this case �`1.X Nk; Nx/ is a free
pro-` group, and hence Z`hh�

`
1.X Nk; Nx/ii is (non-canonically) isomorphic to a noncommutative

power series ring over Z`; fix such an isomorphism. As Nx was obtained from a rational point
of X , the absolute Galois group of k acts naturally on Z`hh�

`
1.X Nk; Nx/ii.

Let F be the Frobenius element in the absolute Galois group of k. Consider the action
of F on Q`hh�

`
1.X Nk; Nx/ii. By [9, Theorem 2.20] the action of F is semisimple in the sense

of Definition 3.1.4. By the Weil conjectures for curves, the eigenvalues �1; : : : ; �n of the
action of F on I =I 2 D H 1.X Nk;Q`/

_ (see [9, Proposition 2.4]) are q-Weil numbers of
weights �1 and �2. In particular, they are algebraic and therefore by Proposition 3.1.9 they
satisfy Siegel’s condition for some parameters c; �. Let K=Q` be a finite extension that con-
tains all �i . By Theorem 3.2.1 and Corollary 3.2.4 there exists a radius r such that the ideal
I n
r � K

6rhh�ét
1 .Xk; Nx/ii is (topologically) spanned by F -eigenvectors for all n > 0. These

eigenvectors are monomials in the elements y1; : : : ; yn 2 Ir provided by Corollary 3.2.4,
where the eigenvalue �i corresponding to yi also appears as an eigenvalue of the Frobenius
action on H 1.X Nk; K/

_, and hence is a q-Weil number of weight �1 or �2. In particular,
I n
r is topologically spanned by F -eigenvectors whose corresponding eigenvalues are q-Weil

numbers of weight 6 �n.
Let N.X; `/ be an arbitrary real number strictly larger than � log.r/=log.`/ 2 R: Now

suppose � is a semisimple arithmetic representation trivial modulo `N.X;`/. There exists a finite
extension k0=k such that � extends to a representation �0 W �ét

1 .Xk0 ; Nx/! GLn.Z`/ of the
arithmetic fundamental group ofXk0 . There exists an integerm such that Fm lifts to an element
of �ét

1 .Xk0 ; Nx/. Let A 2 GLn.Z`/ be the matrix A WD �0.Fm/. Since the representation � is
trivial modulo `N.X;`/ > 1

r
, it extends to a continuous representation

y� W K6r
hh�`1.Xk; Nx/ii ! Matn�n.Q`/

by Lemma 2.2.1. Moreover, by arithmeticity,

y�.Fm.g// D Ay�.g/A�1 for every g 2 K6r
hh�ét
1 .Xk; Nx/ii:

Let w0 denote the most negative weight of an eigenvalue of the conjugation action of A on
Matn�n.Q`/; if any such exist, and 0 otherwise. Let w D max.�w0; 0/: Every monomial
Y 2 I wC1

r in the yi satisfies
Ay�.Y /A�1 D uy�.Y /

for a q-Weil number u of weight less than �w. Since no such numbers are eigenvalues of the
conjugation action of A on Matn�n.Q`/; the image of every monomial in I wC1

r under y� is
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zero. As such monomials topologically span I wC1
r by Corollary 3.2.4, we have y�.I wC1

r / D 0

and hence that
�.I wC1

r \ Z`hh�
`
1.X Nk; Nx/ii/ D 0:

But I wC1
r \Z`hh�

`
1.X Nk; Nx/ii is I wC1, where I is the augmentation ideal of Z`hh�

`
1.X Nk; Nx/ii.

Therefore, � is unipotent. But a unipotent semisimple representation is trivial.

Remark 4.0.1. In the course of the proof, we show that for X a smooth affine curve
over a finite field k, and ` a prime different from the characteristic of k, there exists a finite
extension K of Q` and an r > 0 such that the Banach algebra K6rhh�`1.X Nk; Nx/ii is topologi-
cally spanned by Frobenius eigenvectors. In fact, the same statement for smooth proper curves
follows immediately, as if X is smooth and proper and y 2 X is a closed point, the map

�`1..X n y/ Nk/! �`1.X Nk/

is surjective.

Proof of Corollary 1.1.3. As in the statement, we let X=k be a curve over a finitely-
generated field, and A=X Nk an Abelian scheme. Suppose that A� had full `M -torsion. Then the
natural geometric monodromy representation

�ét
1 .X Nk; Nx/! GL.T`.A Nx//

is trivial modulo `M for any geometric point Nx of X Nk . As this representation is semisimple
arithmetic (as are all representations arising from geometry – semisimplicity follows from
[4, 3.4.1 (iii)], and arithmeticity by spreading out), Theorem 1.1.2 implies that it is trivial, and
in particular every `-power torsion point of A� is rational. Thus by the Lang–Néron theorem
[3, Theorem 2.1], the natural map

� W Tr
�= Nk
.A�/� ! A�

had image containing all the `-power torsion points of A�. As the `-power torsion is Zariski-
dense, this implies that � is surjective and hence an isogeny for dimension reasons, proving the
statement.

5. Remarks and extensions

5.1. A suggestive correspondence. LetX be a smooth proper curve over a finite field k
and ` a prime different from the characteristic of k. Let x 2 X.k/ be a rational point, and Nx the
geometric point of X associated to x by a choice of algebraic closure of k. Let N D N.X; `/
be as in Theorem 1.1.2. One consequence of Theorem 3.2.1 is a Galois-equivariant description
of the category of lisse Q`-sheaves on X Nk admitting lattices which are trivial mod `N in terms
of linear algebra data. We view this as a (very weak) `-adic analogue of non-abelian Hodge
theory.

Definition 5.1.1. Let H`.X/ be the category whose objects consist of pairs

.V; � W V ! V ˝H 1.X Nk;Q`//;
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where V is a finite-dimensional Q`-vector space and � is a linear map. A morphism between
.V; �/ and .V 0; � 0/ is a linear map f W V ! V 0 so that the diagram

V
� //

f

��

V ˝H 1.X Nk;Q`/

f˝id
��

V 0
� 0 // V 0 ˝H 1.X Nk;Q`/

commutes.

Let Sh`;N .X Nk/ be the full subcategory of the category of continuous representations

� W �`1.X Nk; Nx/! GL.V /;

where V is a finite-dimensional Q`-vector space, such that there exists a Z`-sublatticeW of V ,
stable under the action of �`1.X Nk; Nx/, and such that �`1.X Nk; Nx/ acts on W=.`N /W trivially. We
now construct a functor

H W Sh`;N .X Nk/!H`.X/:

Let K; r be as in the proof of Theorem 1.1.2 and Remark 4.0.1, so that Frobenius acts diag-
onalizably on K6rhh�`1.Xk; Nx/ii. Letting Ir � K6rhh�`1.Xk; Nx/ii be the augmentation ideal,
note that the natural map

Ir ! Ir=I
2
r ' H

1.X Nk; K/
_

admits a unique Frobenius-equivariant splitting, given by the span of the weight �1 Frobenius-
eigenvectors. Thus the span of the weight �1 eigenvectors yields a copy of H 1.X Nk; K/

_

inside of K6rhh�`1.X Nk; Nx/ii. Now let V be an object of Sh`;N .X Nk/. By Lemma 2.2.1, we have
a natural action of K6rhh�`1.Xk; Nx/ii on V , and thus viewing H 1.X Nk; K/

_ as subspace of
K6rhh�`1.Xk; Nx/ii; we obtain a natural map

H 1.X Nk; K/
_
˝K V ! V:

By adjointness we thus obtain an object

V ! V ˝H 1.X Nk;Q`/

of H`.X/.
This construction is evidently functorial. One can verify from the definition that the func-

tor H is fully faithful. Moreover, there is a natural Frobenius action on the set of isomorphism
classes of objects of H`.X/ (via the action of Frobenius on H 1.X Nk;Q`/), and H induces
a Frobenius-equivariant map from isomorphism classes of objects of Sh`;N .X Nk/ to isomor-
phism classes of objects of H`.X/. We can interpret Theorem 1.1.2 as the full faithfulness of
this functor, combined with the fact that any object of H`.X/, fixed up to isomorphism by the
action of Frobenius, is nilpotent, in the sense that for n� 0, the composition

�n W V ! V ˝H 1.X Nk :Q`/
˝n

is zero.
Using the semisimplicity of the Frobenius action on Q`hh�

ét
1 .Xk; Nx/ii (see [9, Theo-

rem 2.20]), one may extend this correspondence to the case of non-proper X , though doing
so seems to depend on some choices. It would of course be very interesting to find a variant of
this construction for residually nontrivial representations.
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5.2. Residually nontrivial representations. It is natural to ask if results similar to
Theorem 1.1.2 hold for residually nontrivial arithmetic representations. Indeed, a version of
Theorem 3.2.1 in the commutative setting (that is, a mild generalization of the main result
of [6, Section 4], allowing “resonance”), with an identical proof, implies:

Theorem 5.2.1. LetX be a smooth curve over a finite field k, Nx a geometric point ofX ,
and

� W �ét
1 .X; Nx/! GLn.F`r /

a representation which is absolutely irreducible when restricted to �ét
1 .X Nk; Nx/, with ` different

from the characteristic of k. Let R� be the deformation ring of �j�ét
1 .X Nk ; Nx/

, and let U� be its
rigid generic fiber. Let K be an `-adic field with residue field F`r , and let

� W �ét
1 .X; Nx/! GLn.OK/

be a continuous lift of �; let Œ�� 2 U� be the point corresponding to �j�ét
1 .X Nk ; Nx/

. If the action
of Frobenius on H 1.X Nk; �˝ �

_/ is semisimple, there exists an open neighborhood V of Œ�� in
U� such that the Frobenius action on V is conjugate to a linear map.

In dynamics, a neighborhood V as above is referred to as a Siegel disk. Note that the
hypothesis on the semisimplicity of the Frobenius action onH 1.X Nk; �˝ �

_/ would follow for
all � from the Tate conjecture, by L. Lafforgue’s work on the Langlands program: [8, Corol-
laire VII.8] implies that �˝ �_ “arises from geometry”, whence the Tate conjecture would
imply that the Frobenius action on its cohomology groups is semisimple.

As a corollary of Theorem 5.2.1, one obtains that for � as in the theorem statement, there
exists a neighborhood of Œ�� containing no Frobenius-periodic points aside from Œ�� (that is, no
arithmetic representations). This is proven unconditionally in [10, Theorem 1.1.3]. That said, it
would in our view be quite interesting to understand Siegel disks in U N�; for example, if U N� was
covered by Siegel disks for iterates of Frobenius, the Hard Lefschetz theorem would follow for
all lifts of N�, by the strategy of [5].

Sketch proof of Theorem 5.2.1. The proof of Theorem 3.2.1 works verbatim in the com-
mutative setting, giving the following result. LetK be an `-adic field, R a Tate algebra overK,
and F W R! R a continuous endomorphism. Suppose F preserves a maximal ideal m of R,
and acts semisimply on the completion bR of R at m (i.e., F acts semisimply on the finite-
dimensional K-vector spaces R=mn for all n). Suppose moreover that the action of F on
m=m2 has eigenvalues satisfying `-Siegel’s condition with parameters c; � for some c; � > 0.
Then there exists an affinoid neighborhood of Œm� 2 Sp.R/ on which F is conjugate to a lin-
ear map.

We now choose a Frobenius-stable open ball U containing Œ�� in the rigid generic fiber
of R N�; as R N� is a power series ring over W.k/ by the absolute irreducibility of N�, we may
choose U to be the spectrum of a Tate algebra R. Thus it is enough to check the hypotheses
of the result of the previous paragraph, taking F to be the Frobenius automorphism of R and
m to be the maximal ideal corresponding to �. The semisimplicity hypothesis follows from the
assumption of the semisimplicity of the Frobenius action onH 1.X Nk; �˝ �

_/ D .m=m2/_ by
an argument identical to the proof of [10, Theorem 5.1.8]. And [8, Corollaire VII.8] implies
that the eigenvalues of the Frobenius action on m=m2 are Weil numbers, hence algebraic; thus
they satisfy `-Siegel’s condition for some � by Proposition 3.1.9.
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Question 5.2.2. Let U N� be as in the statement of Theorem 5.2.1. Is U N� covered by
Siegel disks for iterates of Frobenius? That is, for each point � of U N�, does there exist a finite
extension k0 of k, a representation �� W �ét

1 .Xk0 ; Nx/! GLn.OL/ lifting N� (with L an `-adic
field with residue field F`r ), and a neighborhood V of Œ�� � containing �, such that the action of
the Frobenius of k0 on V is conjugate to a linear map?

We view our proof of Theorem 1.1.2 as showing that the trivial representation is contained
in a “noncommutative Siegel disk”.

5.3. Other questions. Theorem 1.1.2 is unsatisfying in a number of ways. First, it is
natural to ask if the constantN.X; `/ appearing in the statement of the theorem may be taken to
tend to zero as `!1; as remarked in the introduction, this is known in characteristic zero by
[10, Theorem 1.1.13]. It is not clear to us if there is a plausible improvement of the `-adic form
of Baker’s theorem on linear forms in logarithms which would, by our method, imply that one
may take N.X; `/! 0 as `!1, but the following would imply that one may take N.X; `/
to be independent of `:

Question 5.3.1. Let �1; : : : ; �n 2 Q be a collection of algebraic numbers, stable under
the action of Gal.Q=Q/. For each prime `, the `-adic form of Baker’s theorem yields con-
stants c`; �` such that the �i satisfy `-Siegel’s condition with parameters c`; �`, as in Defini-
tion 3.1.7. Is it true that the constants c`; �` may be taken to be independent of `?

It is also natural to ask for an analogue of Theorem 1.1.2 with better uniformity in e.g. the
genus or gonality of the curve X , or one which depends only on the function field Nk.X/. For
example, the geometric torsion conjecture [2] predicts that in the case that � arises from the
`-adic Tate module of a traceless Abelian scheme A, there is a bound on the torsion

.�˝Q`=Z`/
�`1 .X Nk ; Nx/

depending only on the gonality of X and the rank of � (here .�˝Q`=Z`/
�`1 .X Nk ; Nx/ is naturally

isomorphic to the rational `-power torsion of the generic fiber of A). A weaker question, plau-
sibly approachable via the methods of this paper, is to ask for a bound on N depending only
on the function field k.X/ and not on X itself.
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