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Level structure, arithmetic representations, and
noncommutative Siegel linearization

By Borys Kadets at Athens, GA and Daniel Litt at Athens, GA

Abstract. Let £ be a prime, k a finitely generated field of characteristic different from £,
and X a smooth geometrically connected curve over k. Say a semisimple representation of
T[lét(X ) 1s arithmetic if it extends to a finite index subgroup of nlé‘(X ). We show that there
exists an effective constant N = N(X, £) such that any semisimple arithmetic representation
of nf‘(X ) into GL, (Zy), which is trivial mod £/, is in fact trivial. This extends a previous
result of the second author from characteristic zero to all characteristics. The proof relies on
a new noncommutative version of Siegel’s linearization theorem and the £-adic form of Baker’s
theorem on linear forms in logarithms.

1. Introduction

The main goal of this note is to analyze representations of arithmetic fundamental groups,
motivated by questions about level structure of Abelian varieties over function fields. Our main
result (Theorem 1.1.2) implies that there is an absolute bound on the maximum N such that
an Abelian scheme over a fixed curve over a field of characteristic prime to £ has full level
¢V _structure (Corollary 1.1.3). The contribution of this note is to show that this phenomenon,
which was already known to hold in characteristic zero (see [9, Theorem 1.2] and [10, Theo-
rem 1.1.13]) in fact holds in arbitrary characteristic. The proof in positive characteristic requires
significant input from non-Archimedean dynamics and transcendence theory: in particular,
a new noncommutative, non-Archimedean version of Siegel’s linearization theorem (Theo-
rem 3.2.1), which may be of independent interest, and the £-adic version of Baker’s theorem
on linear forms in logarithms (due to Kunrui Yu [15]).

1.1. Main results. In preparation for the statement of the main theorem, we recall the
definition of an arithmetic representation. The main interest in this notion stems from the fact
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that representations “arising from geometry” are arithmetic. (See, e.g., [10] for a discussion of
arithmeticity, its properties, and its consequences.)

Definition 1.1.1. Let k be a finitely generated field, and let X/ k be a variety. Let k%P be
a separable closure of k, and let X be a geometric point of X. Then a continuous representation

p i 7f (X, ) = GLa(Q)
is said to be semisimple arithmetic if
(i) pis semisimple, and
(ii) there exists a finite separable extension k’/ k and a representation
p 7 (Xpr, X) = GLn(Qy)

such that p|, (x,«,%) 1S conjugate to p.
Our main result about semisimple arithmetic representations is:

Theorem 1.1.2. Let k be a finitely-generated field, and let X /k be a smooth curve.
Let € be a prime not equal to the characteristic of k, and let kP be a separable closure of k.
Let X be a geometric point of X. There exists a positive constant N = N (X, £) such that if

p 1 7{ (Xjer. ) — GLa(Zy)
is a continuous representation such that
() p ® Qy is semisimple arithmetic, and
(ii) p is trivial modulo £V,

then p is trivial.

For a real number N we say that a representation is trivial modulo ¢V if it is trivial
modulo the ideal
{x € Zg | ve(x) = N}.

Theorem 1.1.2 immediately implies (by the Lang-Néron theorem, [3, Theorem 2.1]):

Corollary 1.1.3. Let X, N, { be as above, and let n be the function field of Xi. Then
for any integer M > N, and any Abelian scheme A/ X, the following holds: if the Abelian
variety Ay has full M _torsion (that is, A,,[EM](n) = A,,[KM](ﬁ)), then Ay is isogenous to an
isotrivial abelian variety over 1.

Remark 1.1.4. In fact, the conclusion of Corollary 1.1.3 is equivalent to the claim that
Ay is isogenous to Trn Ik (Ap)y. In characteristic zero, we may conclude that A, is in fact
isotrivial; this is not the case in positive characteristic. See, e.g., the well-known examples due
to Moret-Bailly [11,12].

Remark 1.1.5. The constant N in Theorem 1.1.2 and Corollary 1.1.3 is in principle
explicit: it depends only on £ and on the natural Galois representation

Gal(k*/ k) — GL(H ' (X}, Zy)).

See Section 5 for related questions.
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1.2. Relation to previous work. As far as we know, this is the first result of this form in
positive characteristic. In characteristic zero, Theorem 1.1.2 was already known by work of the
second author [9, Theorem 1.2]. In fact, more is known ([10, Theorem 1.1.13]): namely, that
for fixed X, the constants N (X, £) appearing in the statement of Theorem 1.1.2 may be taken to
go to zero as £ — oo. In positive characteristic we are unable to prove even that N(X, {) may
be bounded independent of £, as the existing bounds arising from the £-adic form of Baker’s
theorem on linear forms in logarithms get worse as £ — oo (see Question 5.3.1).

There is also related work of an analytic nature in characteristic zero; see, e.g., [1,2,7,13].

1.3. Outline of proof. We briefly sketch the idea of the proof of Theorem 1.1.2, which
broadly follows the strategy of the works [9, 10], but replaces the use of Galois homotheties
(arising from Bogomolov’s £-adic open image theorem) by the use of Frobenii, and replaces
the naive estimates there with more sophisticated estimates arising from our form of Siegel’s
theorem.

A specialization argument reduces the theorem to the case where k is finite, X is affine,
and X (k) is nonempty. Let x € X (k) be a rational point and X an associated geometric point;
let Jrf(X;, X) be the pro-£ completion of the geometric étale fundamental group of X. The
pro-£ group ring Zy ((nf(X X)) is (non-canonically) isomorphic to a ring of noncommutative
power series over Zy. Letting K be a finite extension of Qg, the completion K ((nf(X X))
of Zy ((nf(X 7> X)) ® K at the augmentation ideal is (non-canonically) isomorphic to a ring of
noncommutative power series over K. For each positive real number 0 < r < 1 we introduce a
certain Banach sub-algebra Ksr((nf(Xlg, X)) of K((Jrf(Xl;, X)), containing Zg((nf(X,;, X)),
with the following property: any representation p of nf(X &> X) into GL, (Zy), which is triv-
ial modulo ¢V, extends canonically to a continuous homomorphism

7 K (f (X D) — Matuxn Qo)
for every r’ > £V,

Our main technical result is that for some finite extension K of Qy, the eigenvectors of
the Frobenius action on the Banach algebra K=" ((ﬂf(X 7> X)) have dense span once r is suf-
ficiently small, say for O < r < ro. This follows from a noncommutative variant of Siegel’s
linearization theorem (Theorem 3.2.1), whose proof is a version of Newton’s method. The
hypotheses of the theorem follow in our case from the Weil conjectures for curves, the £-adic
form of Baker’s theorem on linear forms in logarithms (due to Kunrui Yu [15]), and a semisim-
plicity result proven in previous work of the second author [9, Theorem 2.20]. The introduction
of these dynamical techniques is the main innovation of this work.

Now suppose we take N greater than —logrg/logf € R, and p is as in Theorem 1.1.2.
Then since ro > £~V , we obtain a canonical continuous map

7 K0 (X, 5)) = Matnn Qo)

extending p. The homomorphism p is equivariant for the action of some power of Frobenius
by arithmeticity of p ® Q. Now the finite-dimensionality of Mat,,x,, (Q;) implies that almost
all eigenvectors of the Frobenius action on K <70 ((nf(X 7> %)) are sent to zero by p; their den-
sity implies that some power of the augmentation ideal of K <70 ((nf(X 7> X)) and hence of
Zy ((nf(X 7»X) is sent to zero. Thus the representation p was unipotent, and any unipotent
semisimple representation is trivial, completing the proof.
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2. Notation and preliminaries

2.1. Notation. Throughout X will be a smooth, geometrically connected curve over
a field k, and £ will be a prime different from the characteristic of k. Fix an algebraic closure
k of k and a geometric point X of X. Let K denote a finite extension of Q;. We denote by
nf (X}, X) the pro-£ completion of nft(X > X). We denote by

Ze(mi(Xg. %)) = lim Z¢[H]

the Z¢-group ring of Jrf (X, X); the inverse limit is taken over all finite quotients of nf (Xg, X).
Let ¥ C Zy ((JTf(X 7> X)) be the augmentation ideal. Then we denote by

K {m{(Xz, %)) == lim(Z {nf (Xz. )/ " ® K)
n

the completion of Zg ((Jrf(X 7> X)) ® K at the augmentation ideal. We abuse notation and
denote the augmentation ideal of K ((nf(X > X)) by 7 as well.

The key ingredient of our argument is an analysis of the Frobenius action on the algebra
K ((nf (X%, X)) and related algebras. For X an affine curve, this ring is non-canonically isomor-
phic to a noncommutative power series ring in n variables x1, ..., x5, where x; = y; — 1 for
{y1,...,¥Yn} a minimal set of topological generators of the free pro-¢ group nf(X i»X)- Deal-
ing with coefficients of such noncommutative power series brings some notational difficulties.
In this section we introduce some conventions that somewhat simplify the notation.

We write X as a shorthand for x1, ..., x,, so that if X is affine, K((nf(X,;, X)) = K{x),

the non-commutative power series ring in xi,...,x,. If I = {i1,..., i} is a finite word
in the alphabet {1,...,n}, we write x! := Xj, -+ Xi,,. For an element f € K{X) we write
f =Y arx! suppressing that summation is to be taken over all finite words in {1,...,n}.

If I is a finite word, then | /| denotes its length. The weight of the monomial x7 is |].

Definition 2.1.1. A power series /' € K (X)) converges on a disk of radius 0 < r < 1 if

lim a7 =o0.
I|—o0

In this case we define the r-norm of f to be

1f = st;p|a1|r"'.

The set of convergent power series is denoted by K=" (x).

We think of these convergent power series as functions on a closed noncommutative
polydisk. From the point of view of this metaphor the Frobenius action is an automorphism
of the polydisk fixing zero. We think of our main result as saying that this automorphism
is conjugate to a linear map in a neighborhood of zero; the analogous result in holomorphic
dynamics on a complex polydisk is Siegel’s linearization theorem.

Proposition 2.1.2. The pair K" (X)), || - || is a Banach algebra.
Proof. The fact that || - || is a non-Archimedean norm follows from the fact that | - | is

a norm on K. For completeness, observe that a Cauchy sequence has to converge coefficient-
wise, and the resulting limit is also the limit in the norm. m)
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We similarly define K<" ((nf(X];, X)) to be the subring of K((nf(X,;, X)) consisting of
those elements f that satisfy

lim (7" inf{€* | € f € Ok ® Zg((nf(X,;,i))) mod J”H}) =0,
n—00
and define

| £llr = sup (" inf{e* | £ - f € Ok ® Zeff(Xg. D) mod #"H1)).

Under a choice of isomorphism K ((nf(X 7 %)) ~ K{x) arising from a minimal set of topo-
logical generators of nf(X 7> X) in the case X is affine, these two definitions are compatible,
i.e., the isomorphism induces an isomorphism K <" ((Jrf(X i X)) =~ KS"{X). Moreover, these
constructions are functorial: any endomorphism of nf(X > X) induces an endomorphism of
KsT ((nf(X];, %)) and hence of K=" (X)) when X is affine.

We denote by .7, the ideal of power series with zero constant term in K<7 (X); if the
radius 7 is clear from context, we write simply .#. To emphasize the analogy with analysis,
we write f = g+ O(x")tomean f — g € ",

2.2. Basic properties. We will study the dynamics of noncommutative power series on
a polydisk. We use End°? K (X)) to denote the monoid of n-tuples of power series

-

f:(fl”fn)EK«)_é»n

with no constant term and with composition given by ]7 o0g = (f1(2),..., fn(g)); elements
of End°®? K (X)) define endomorphisms of K{X)) that send x; to f;. Note that the order of
composition on End°? K (X)) is opposite of the natural composition on the endomorphisms,
hence the notation. Similarly we use End®® K=" (X)) for the n-tuples f = (fi,..., fu) of
power series in K <7 (%) with no constant term and such that || f;||, < r for all i. The norm of
f € End®® K=" (%) is defined by

1A 7 o= max | fil-

We think of an element ]7 € End®® K=" (X)) as a holomorphic map from the noncommutative
polydisk K7 (X)) to itself, fixing the origin.

The algebras K<" (X)) will be used to study representations trivial modulo £V with the
help of the following lemma. In the lemma, the £-adic valuation vy(A) of a matrix A4 is the
minimal valuation of its entries, and the £-adic norm is defined by |A| = £~v¢(4),

Lemma 2.2.1. Suppose p : Zy{(X) — Matyxn(Zy) is a continuous representation such
that |p(x;)| < C < lforalli. Then for any r > C the representation p extends to a continuous
representation py : Qf’ (X) — Matyx, (Qy).

Proof. Suppose [ =Y arx! e Qf’ {(x) is a power series. Then
larp@)!| < (£ lrr M,

Asr~1C < 1,theseries f(p(X)) converges, and if ¢ := max; r ' C’, then | f(p(X))| < || flI»
by the ultrametric inequality. Therefore the representation p; : Qf’ (x) — Mat,x, (Qy) given
by pr : f = f(p(X)) is a well-defined continuous extension of p. o
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Lemma 2.2.2. The monomials of degree = m have dense span in #" C K=" ((X)).

Proof. Let
f@ =3 ax!
|[I|=m
be an element of .#7. As |ay|r! — 0as r — oo, we have that, defining
Su =) arx’,
[I|=M
fm — 0as M — oo. Hence f = limps—o0 f — far. Now we have written f as a limit of
polynomials in the x;, as desired. O

3. Siegel’s linearization theorem

The goal of this section is to show that the Frobenius action on the convergent group ring
KST ((nf (X, x))) can be diagonalized once r is sufficiently small. To this end we prove a version
of Siegel’s linearization theorem for £-adic noncommutative multivariate power series. Our
argument is analogous to the one used in [6, Section 4], which itself is an £-adic version of
a classical argument of Riissmann, as generalized by Zehnder [14, 16]. That said, we require
these results without the “non-resonance” condition they impose. (In our application, this non-
resonance condition is replaced by the use of the semisimplicity of the Frobenius action on
the algebra K ((Jrf(X ,Xx)).) We start by establishing some simple lemmas on composition of
power series.

3.1. Some lemmas. The following lemma establishes basic analytic properties of the
set End® K=" ().

Lemma 3.1.1. The following statements hold:

(i) The set End®® K=" (X)) is a complete abelian group under the norm || - ||, with respect to
addition.

(ii) The group End®® K=" (X)) C End®® K (X)) is closed under composition.

(iii) Composition on End®® K=" (X)) is continuous and satisfies the inequalities
. |
Ifog=fohlr=_Iflrlg =7l

5 - - - 1 - N -
g o f=hoflr<_lflrlg =Rl
forall f,g,h € End® K=" (X).

(iv) For0 <ry <ra <1wehave KS2 (%) ¢ KS"(X) C K{X), and the inclusion is con-
tinuous. Given f € K="2 (X)), we have

- rl -
1A < =1 -
r2

Proof. (i) This follows from the completeness of K; if { Jii is a Cauchy sequence in
End® K< (X)), then the coefficients of x7 in each component of f; form a Cauchy sequence
themselves.
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(i) Given ]7 g € End® K=" (X)), we wish to show that || f;(g)||, < r for all ;. Writing
fi=> a’IxI ,gj = > by ;x', the coefficient of x7 in f;(g) is an integer linear combination
of aybr,,j, b1 ,.j,» where 3_; |1j| = [I]. Hence

= 1 J
”fl(g)”r < sup |a.]b11,j1"'bI‘J|,j|J||r| | Ssup|aj|r‘ | <r
1,J,1y,....1)7 J

as desired.
(iii) We prove the first inequality; the second is the special case where we apply the first
inequality to |[(g —h) o f — (g — h) o 0]|,. Setting

fi=Y arx's g =) brxt he=)erpx’,

we have that the coefficient of x’ in f;(3) — f; (fz) is an integer linear combination of

ay(br,,j, "'b1|J|,j|J| —CI, ) "'CI\J\,J'\J|)

with ) Iy = I. Using the telescoping sum

br, . j, "'bI|J|,j|J| —CI g S
J
= Zbll,jl wobr o1 (BLgs Js = €L i) CT s T CLdi
s=1

we have

. o L . |1]
|b11,11 bI|J|,J|J| CIy,j1 C1|J\,J\J\|r

o . P . S I
< s—rlnax|J| b1y, jy -+ b1y jomi (Bl Js = €I, j)CT g1 o €Ly T

s—1 |J]
S _max l_[ |b1t,jt|r|1t| ) |b1.v,js - CIs,fs|r|Is| ) l_[ |b1t,jt|r|1t|
s=1,...,|J| =1

t=s5+1

/A

1 J|-1
( max by, j, —ec1,.j|r! “')r' |
s=1,...,|J|

< g =AM,

But then
I - 7 J|-1
|aJ(b11,j| "'bI|J|,j|J| —CI,j; ..'CI‘J|,j|J|)|r| | < |Clj| ) ”g_h”rrl !
1 - R -
< ;”f”r”g_h”r
as desired.
(iv) The inequality

- rl -
If e < — 1S Mra
)

immediately implies that the inclusion K <72 (X)) C K="1((X) is continuous, so it suffices to
verify the inequality. Writing f; = > ay x', it is enough to show that

ri
sup|al|r|11| < —sup |a1|r£1|,
1 P |
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where the supremum is taken over / with |/| > 0. But for each / with || > 0, we have

1 I11-1
jarlry't < lag |y 7Y

which gives the claim. O
As a special case of Lemma 3.1.1 (iii) above, we have:

Lemma 3.1.2. For any f & € End® K=" (X)) with ||&|, < 1, and for any diagonal
matrix A = diag(A;) € Mat,x,(K), |Ai| < 1 the following estimate holds:

- R - 1 - R
1f (AX + &) = f(AD)llr < Il lEllr-
We will require a criterion for invertibility of certain elements of End® K< (¥):

Lemma 3.1.3. Suppose ¥ € End K7 (X) is of the form ¥ =X + ¥, ¥ = O(x?)
and |||, < & <r. Then w admits a two-sided compositional inverse ¢ = X + g and || g, < e.

Proof. We first find the left inverse. Set g7, = X — fﬁ\ + 1Z°2 — 1}"3 + ---. The sum con-
verges as ||1/A/||r < & < r, and hence by Lemma 3.1.1 (iii), ||$°”||r < r,f—'il, by induction on 7.
Thus || °"|| — 0asn — oco. Moreover, g7, := grL — X satisfies | ||» < & by the ultrametric
inequality. Thus it suffices to show g gL is inverse to w

To see that g7, is left inverse to w we simply evaluate g7, o w the sum telescopes.

The previous paragraphs shows that any tuple of power series 1// satisfying the conditions
of the lemma admits a left inverse g7.. Applying this to g7, shows that g; admits a left inverse.
Since g7, also has a right inverse, it follows that 1} is a two-sided inverse of g7, and gz is a
two-sided inverse of 1/7 O

Definition 3.1.4. An element f € End®® KS7 (X)) is semisimple if the operator given
by P+ P o f on KS"(X)/.#™ is semisimple for all m.

Remark 3.1.5.  The property of being semisimple is preserved under conjugation. For
all ¥’ < r an element f € End®® K=" (X)) is semlslmple as an element of End®® K=" (X)) if
and only if it is semisimple as an element of End®® K=" (%).

Lemma 3.1.6. Suppose f € End® KST(X) is semisimple, f = AX + O(x?), and A
is a diagonal matrix with coefficients A = (A1, ..., An). If I is a word and j is an index such
that M = ) i, then the coefficient of x!in J;j is zero.

Proof. The operator F — F o f on K (%)/.#!/1+1 is upper triangular in the monomial
basis. Therefore, since the diagonal entries corresponding to the coefficients of x. and x; are
equal and the operator is semisimple, the corresponding off-diagonal coefficient a; is zero. O

Definition 3.1.7. A tuple of numbers Ay,..., A, € @ is said to satisfy £-Siegel’s con-
dition with parameters c, i > 0 if the following condition holds: for any tuple of nonnegative
integers i1, ...,in with iy + -+ + i, = N and any index j such that A{' A% --- A # A;, the

following inequality holds:
o . N\ H
|/\11‘)L’22---)L£1"—)&j|>c(?) |
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Remark 3.1.8. Replacing A; with 1 and % with N leads to an equivalent definition with
different constants; the form given in Definition 3.1.7 is more convenient for our applications.

Siegel’s condition holds for algebraic A;, as the following proposition shows.

Proposition 3.1.9 (Linear forms in logarithms, [15]). Suppose A1, ..., A, € Qg are
algebraic numbers. Then there exist constants ¢, (v > 0 such that for any integers iy, ..., in, j
with Ay -+ A" # Aj the following inequality holds:

AL A 2] = (] A+ i) TR

Proof. After replacing the tuple Aq,...,A, with Aq,... ,/\n,)tl_l, .. ,)L;l it suffices
to prove the inequality for positive integers ij. Also, by changing ¢ to a different constant
it suffices to show that [A}' --- A5 — 1| = ¢((i1]| 4+ -+ + |in|)7#. This estimate is proved in
[15, Theorem 1°]. O

Our goal is to conjugate a (semisimple vector of) power series ]7 = AX + 0(x?) to its
linear part AX. We do so iteratively, on every step conjugating f by some other power series
so that the norm of f — AX on a slightly smaller disk becomes much smaller than before. The
key to the inductive step is Lemma 3.1.11, which itself uses the following simple estimate.

Lemma 3.1.10. Suppose n € (0, 1) and o > 0 are real numbers. Then

. —
sup (1 —n)'i* < (l) )

i€Z>0 7“

Proof. For every positive x we have

e% = ﬂ.
7
By convexity of log on (1, 2) we have log(1 + ) = g Therefore
elog(ijrz)x > e% > ﬂ
T
Since ﬁ > 1 — n inverting both sides, we get
7
P a-pi,
nx
or ;
x(1—pi < 2
n
Raising both sides to the power u gives
n\"*
xH(1—=n)* < (—) ) O
T

Lemma 3.1.11. Given 6 > 0, suppose ]7 € End® KT (X)) is such that

f=A%+ f(x). f=0(x? and |f|,<S.
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Suppose that f is semisimple, A is a diagonal matrix, and that the eigenvalues Ay, ..., Ay
of A satisfy [-Siegel’s condition with parameters ¢, [, |4 > % Suppose also |A;| < 1. Sup-
pose 1 € (0, 1) satisfies ¢ 1(7/1)”“ “H§ < r. Then there exists an invertible endomorphism
w € End® K<"U=m (%), with 1/f = X + O(x?), such that the following inequalities hold:

—u
19 = Flhray < 801 - 77)(%) <r(l=n)

and
2

s - 8
_1 -
197" 0 f o = ATl < 7O

Proof. Let ¥ be the solution to the equation (ﬂ\(Afc) AV (F) = £(%) With U= 0(x2).
This equation can be solved as A is d1agonal if af 1 is the coefficient of x! in /;j, then the
coefﬁ01ent of x! in v is ay T/ = i) if Al — A; is nonzero, and it is zero otherwise. (Note
that a? 7 = 0 whenever A= Aj by Lemma 3.1.6.) To check that w converges on the disk of
radius r (1 — 1), we use the Slegel condition:

) IN“
A= <50 - A -y 2 s - T o,

A — )\-

where we used Siegel’s property for (x). Similarly, we directly estimate the norm of 1} using
the Siegel condition as follows:

~ a
191 = sup | 57| —
< 85up(1 — AT — ;!
Lj
. iR -
<6 sup ¢ (1—mn) (5) (by Siegel’s property)
1
¢~ 18 max(sup(1 — ) (i — DM, (1 —n)2™%)
i=2
= ¢ 1§ max((1—1n) SEIl)(l —n)fi*, (1 —=1)27") (Index shift)
1=
n K
181 — n)(_u) (by Lemma 3.1.10).

In the last inequality we have used the condition u > % to resolve the maximum. Note that by
our choice of 1, we thus have ||w||,(1_ﬂ) < r(l n), and o) w is in End®P K<7(1=m) (%)),

We now show that the function ¢ = X + w satisfies the conditions of the lemma. Note
that w is invertible by Lemma 3.1.3, again as ||1ﬁ lr(i—n) < r(l —1). _We need to estimate the
norm ||1p 1of 1/f AX|ra—y)-Let g denote the function w of w and write g = AX+ 2.
We now use the functional equation for w to derive an equation for g:

VE®) = AV E) + f (W),
GE) + V(AT +8(X) = AY(X) + (3 + ¥(F)).
EE) + P (AT + §(X) = ¥(A%) — () + [ G + ¥ (),
E(F) = [J(A%) = Y (AT + EEN] + [[ G + ¥ (X)) - F@)].



Kadets and Litt, Level structure for arithmetic representations 229

The right-hand side of the last equation is visibly “small”; if G = ||g|,1—y). then applying
Lemma 3.1.2 and the ultrametric inequality we get

1 ~ ~ ~
G < mmax{”l/f”r(l—n)a L/ = I Nl =y}

1 ~ ~
< —- .
<X r(l — 7)) ”f”r(l—n)”l/f”r(l—n)

Here the last inequality holds because G < (1 o ||1ﬂ||r(1 7)G is impossible, unless G = 0,
since - (1 0 ||W||r(1 —n) < Liandif G = 0, the inequality holds in any case. Using the estimates

[ P e e/ G ) U
and || fll-1i—n) < I fllr <8, we get
cHTp)tsEg

G < . O
r

To apply Lemma 3.1.11, we will need the following simple estimate.

Lemma 3.1.12. Letu € (0, %) and o > 1 be real numbers. Then

Proof. For x € (0, %) we have log(1 — x) > —2x. Taking the logarithm of the product
and applying this inequality to every term gives

o0 u o0 1 o a
og( cx”)> ! (a") ua—l a—1 N

3.2. The linearization theorem. We are now ready to prove the main result of this
section.

Theorem 3.2.1 (noncommutative, non-archimedean Siegel hnearlzatlon) Suppose that
f AX + f (x) is an element of End®P K< (( ). Suppose that f is semisimple, A is a diag-

onal matrix, and that the eigenvalues A1, ..., A, of A satisfy Siegel’s condition with parame-
ters c, JL. Suppose |A;| < 1. Then there exzsts a radius roo < r < 1 and an invertible function
Y € Bnd® K7 (%) such that ¥~ ! o f = AX.

Proof. The idea is to apply Lemma 3.1.11 iteratively, at every step conjugating f closer
and closer to its linear part. At each step we are given a conjugate f, of f on a disk of
radius r, with || fn — AX||;, = 8, < 1, and we have to choose a suitable value of 7, to apply
Lemma 3.1.11 and obtain a new conjugate ﬁH on the disk of radius 7,41 = rn (1 —ny,). We
make these choices so that the distance between f; and its linear part tends to zero with n,
and the radii of the relevant disks remains bounded away from zero. On each step we make the

choice n, ~ 81/ (k+1) , then the numerics of Lemma 3.1.11 show that
§2 1+
Sut1 S a8, T
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so that the sequence §, converges to zero super-exponentially. As 1, =~ 8,1/ (u +1), the sequence
nn will converge to zero super-exponentially as well, and so 7 [ [,,(1 — 1) > 0; by taking limits
we will show that ]; is conjugate to AX on the disk of radius rI1,(1—nn).

After increasing p if necessary we can assume y > 5 (thlS is a condition necessary to
apply Lemma 3.1.11). Before starting the iterative process, we need to (possibly) shrink the disk
to make the norm of f — AX small enough so that on every step of the iteration Lemma 3.1.11

can be applied.

Let § denote || f AX||y. We choose a large positive constant B (to be determined
later) and let r1 := . Then since f AX has no linear term, the norm §; := ||f AX|lr,
satisfies 61 < —5. We now choose B large such that the following inequality holds:

1 o/ u+D

(3.2.2) Y834 < Sre 21/ wFD T |

which is possible as §; scales as O( B2) while 7y scales as ~ %.
We will produce a sequence of constants 7y, 8, ry and elements Wn € End® KS7n+1 (%),
fn € End® K< ((x)), with 1/fn invertible, and such that

. ﬁ . I
fi=f€End® KS(X), & =|f—AX|r., m ==

3
We will have
fn+1 = wn_l o fn o Yn,
m = (1 - Un—l)rn—l,
- - —1
Sn =l fn _Ax”rn < n2 )
¥ — %||rn+1 < c_lgn(l — ) (T, ",
and 5,
1
TIZH_ - 'U“+18 (O 1)

Indeed, iteratively apply Lemma 3.1.11 to f W, 'n, n. For the lemma to be applicable we need
to check two conditions: 1, € (0,1) and ¢~ '(7)*n;,, "8, < rn. The first condition follows

since §,, < &1 and so
8, \EF 1
nn_(3u+181) <§

For the second condition, we have

M
_ Sn Tu+t
= () o

1

= T (3 g
o

< (T3S

= §;3".

Thus it is enough to show
YA 813% < 1.
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We estimate r;,, from below using the estimate §, < § 12~ (=),

n—1
(3.2.3) rm=r1 [[(1=n)

i=1

|
= 1—-27ut!
QUGN
=0
i 1
>r[] (1 —~ —2‘“)
=0
_ ol/wAD
> rie 2V/w+b-1  (by Lemma 3.1.12).

Therefore using inequality (3.2.2) and the previous estimate, we get

: 1 vt
¢ (Tu)Hé31 < Sre 2VWFD—1 < rp.

Thus, we can apply Lemma 3.1.11 with f = fn, r = rp and n = n, to produce &n and

fn+1:wn_1°fn°wn

such that
IVn — X, < ¢ 18, (1 - M) (T, "
and
82
Sng1 < A2
NMn'n

1
= T TP I 3y 1S,

< c Y TwH813%r, 18,

21/(u+1)

< c VTt 3t leal7@FD-16,  (by (3.2.3))
1

< 55,, (by (3.2.2).

Thus the infinite sequence f; can be constructed as claimed. .
The sequence §, converges to zero (at least) exponentially. Since 7, = %(?—’f)m, the
product [ [, (1 — n,) converges. Let

roo 1= r1 [ J(1 = mn).

By Lemma 3.1.1 (iv), we have || j7n — AX||yo, < én, and so the sequence of conjugates ﬁ
converges to the function AX on the disk of radius 7.
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We now show that the limit of fn is also a conjugate of f Let ¥, = Wl -0 g/?n Then
U, € End® K<ree {(x) is invertible, and \If lo f o, = fn By construction,

1Vn = Xllree < ¢80 (1 = 0a) (Tp) ™
= 3T T (1 = 1) S17n
< 3L L T8,
= Qn,

where O > 0 does not depend on n. We have by Lemma 3.1.2
[Wnt1 = VYnllreo = 1Wn(¥n+1(x) = ¥n(x)llrs
1 - - -
< —[¥nllre l¥n+1 — Xl
T'oo

Q o
< — ¥ llroe Mn+1-
oo

Since 7 converges to zero, it follows that the sequence \Iln is Cauchy, and thus has a limit 0.
Since fn = \If ) f \Iln, we have U1 o f ol = AX, using continuity of composition (see
Lemma 3.1.1 (iii)). D

Corollary 3.2.4. Suppose F € End®® K=" (X)) is a semisimple endomorphism. Suppose
the eigenvalues A; of the action of F on . | 2 are elements of K with |A;| < 1 that satisfy
Siegel’s condition with parameter w. Then there exists a radius r' < r and a collection of
elements y1, ..., yn € K" (X)) with the following two properties:

() IfA1,..., A € Qg are eigenvalues of F on .9 | 72, then Fy; = A; y;.

(ii) For any integer m the monomials in y; of degree at least m have dense span in .77

Proof. After replacing r with a smaller radius 7 we can do a linear change of variables
x’ = MX to make the action of F on .%/.%? diagonal in the basis ¥’. We can therefore

assume that F = AX' + O(x?), where A is a dlagonal matrix A = dlag()tl, ces An). We can
now apply Theorem 3.2.1: there exists a radius r' <7 and an element ¥ € EndOp K< (%)
such that Y"1 o F oy = A¥. Let y; = v 1(X'); then Fy; = y;(F(x')) = Ay. The span

of the monomlals in the x; of degree m or larger is dense in .#" by Lemma 2.2.2. Since
xX'= w(y) any monomlal in x] of degree m is a (convergent) sum of monomials in y; of
degree at least m. Hence monomlals in y; of degree m or larger have dense span in .#7". O

4. Main theorem

Having proven Theorem 3.2.1 and Corollary 3.2.4, we move on to the proof of Theo-
rem 1.1.2, which is a straightforward application.

Proof of Theorem 1.1.2 (compare to [9, Proof of Theorem 1.2]). We first observe that it
suffices to consider the case where X is affine and k is finite. Indeed, we may take X to be affine
by deleting any closed point of X, which does not affect the hypotheses of the theorem. To see
that we may reduce to the case where k is finite, choose a finitely-generated integral Z-algebra
R in which £ is invertible, a smooth proper R-curve y, a divisor D in 2~ étale over R, and an
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isomorphism Frac(R) = k such that (2" \ D) is isomorphic to X. Now for any geometric
point p lying over a closed point p € Spec(R) with residue field k(p) of characteristic prime
to £, the specialization map
7 (Xp) = 71 ((Z\ D))

is an isomorphism. Moreover, any semisimple arithmetic representation of nf(X ) remains
semisimple arithmetic when viewed as a representation of nf((y\ D)), by the argument
of [10, Proof of Theorem 1.1.3, Step 2]. Thus it suffices to prove the theorem for (2" \ D),
which is by construction a smooth affine curve over a finite field.

For the rest of the argument we assume k is finite of characteristic different from ¢, and
X/k is a smooth affine curve. Let k be an algebraic closure of k. We may, after replacing k
with a finite extension, assume that X has a k-rational point x; we let X be the geometric point
obtained from x via our choice of algebraic closure k of k. In this case nf(X i»X) is a free
pro-£ group, and hence Z; ((nf(X 7> X)) is (non-canonically) isomorphic to a noncommutative
power series ring over Zy; fix such an isomorphism. As X was obtained from a rational point
of X, the absolute Galois group of k acts naturally on Z, ((Jrf(X [2E9)

Let F be the Frobenius element in the absolute Galois group of k. Consider the action
of F onQ e((nf(X 7> X)). By [9, Theorem 2.20] the action of F' is semisimple in the sense
of Definition 3.1.4. By the Weil conjectures for curves, the eigenvalues Aj,..., A, of the
action of F on .# /.92 = HY(X ];,QTZ)V (see [9, Proposition 2.4]) are g-Weil numbers of
weights —1 and —2. In particular, they are algebraic and therefore by Proposition 3.1.9 they
satisfy Siegel’s condition for some parameters c, u. Let K/Qy be a finite extension that con-
tains all A;. By Theorem 3.2.1 and Corollary 3.2.4 there exists a radius r such that the ideal
I C KST ((nf‘(Xf, X)) is (topologically) spanned by F-eigenvectors for all n = 0. These
eigenvectors are monomials in the elements yq,...,y, € % provided by Corollary 3.2.4,
where the eigenvalue A; corresponding to y; also appears as an eigenvalue of the Frobenius
action on H!(X i K)V, and hence is a g-Weil number of weight —1 or —2. In particular,
S is topologically spanned by F-eigenvectors whose corresponding eigenvalues are ¢-Weil
numbers of weight < —n.

Let N(X,{) be an arbitrary real number strictly larger than —log(r)/log(f) € R. Now
suppose p is a semisimple arithmetic representation trivial modulo ¢V (X ) There exists a finite
extension k’/k such that p extends to a representation p : 7$(Xy/, ¥) — GL(Zy) of the
arithmetic fundamental group of X. There exists an integer m such that F™ lifts to an element
of 78 (Xys, X). Let A € GL,(Zy) be the matrix A := p'(F™). Since the representation p is
trivial modulo £V (X0 > %, it extends to a continuous representation

p: K=" (7 (Xp, X)) — Matyxn (Qp)
by Lemma 2.2.1. Moreover, by arithmeticity,
P(F™(g)) = Ap(g)A™"  forevery g € K= (m{'(Xg. ¥)).

Let w’ denote the most negative weight of an eigenvalue of the conjugation action of 4 on
Mat,», (Qyg), if any such exist, and 0 otherwise. Let w = max(—w’, 0). Every monomial
Y € #¥ 1 in the y; satisfies

AP)A™" = up(Y)

for a g-Weil number u of weight less than —w. Since no such numbers are eigenvalues of the
conjugation action of 4 on Mat,x,(Qy), the image of every monomial in .#**! under p is
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zero. As such monomials topologically span .#**1 by Corollary 3.2.4, we have p(£»*1) = 0
and hence that
p(AP TN Ly} (X, D)) = 0.

But S¥ N Z(mf(Xg. %)) is #¥ T, where . is the augmentation ideal of Z (7{ (X7, X)).
Therefore, p is unipotent. But a unipotent semisimple representation is trivial. O

Remark 4.0.1. In the course of the proof, we show that for X a smooth affine curve
over a finite field k, and £ a prime different from the characteristic of k, there exists a finite
extension K of Qg and an r > 0 such that the Banach algebra Kgr((nf(X,;, X)) is topologi-
cally spanned by Frobenius eigenvectors. In fact, the same statement for smooth proper curves
follows immediately, as if X is smooth and proper and y € X is a closed point, the map

X\ »)p) = 7i(Xp)

is surjective.

Proof of Corollary 1.1.3.  As in the statement, we let X /k be a curve over a finitely-
generated field, and A/ X} an Abelian scheme. Suppose that A; had full (M _torsion. Then the
natural geometric monodromy representation

m{(X;. %) — GL(T¢(Az))

is trivial modulo £M for any geometric point X of Xz. As this representation is semisimple
arithmetic (as are all representations arising from geometry — semisimplicity follows from
[4, 3.4.1 (iii)], and arithmeticity by spreading out), Theorem 1.1.2 implies that it is trivial, and
in particular every £-power torsion point of A, is rational. Thus by the Lang—Néron theorem
[3, Theorem 2.1], the natural map

v Try, p(An)y — Ay

had image containing all the £-power torsion points of A;. As the £-power torsion is Zariski-
dense, this implies that t is surjective and hence an isogeny for dimension reasons, proving the
statement. O

5. Remarks and extensions

5.1. A suggestive correspondence. Let X be a smooth proper curve over a finite field &
and ¢ a prime different from the characteristic of k. Let x € X (k) be a rational point, and X the
geometric point of X associated to x by a choice of algebraic closure of k. Let N = N(X,¥)
be as in Theorem 1.1.2. One consequence of Theorem 3.2.1 is a Galois-equivariant description
of the category of lisse Q-sheaves on X 7 admitting lattices which are trivial mod ¢V in terms
of linear algebra data. We view this as a (very weak) £-adic analogue of non-abelian Hodge
theory.

Definition 5.1.1. Let 577(X) be the category whose objects consist of pairs

(V.0:V — V& H (X;,Qy),
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where V is a finite-dimensional Q-vector space and 6 is a linear map. A morphism between
(V,0) and (V',0’) is a linear map f : V — V' so that the diagram

Vv e HY (X, Q)
f lf@id
v vie HY(X;, Q)

commutes.

Let Shy n (X}) be the full subcategory of the category of continuous representations
p (X, %) —> GL(V),

where V is a finite-dimensional Q-vector space, such that there exists a Z-sublattice W of V/,
stable under the action of nf (X%, X), and such that nf(X 7> X) actson W/ (ENYW trivially. We
now construct a functor

H : Shy y(Xf) — H(X).

Let K, r be as in the proof of Theorem 1.1.2 and Remark 4.0.1, so that Frobenius acts diag-
onalizably on K=" ((nf(XE, x)). Letting .%, C K=" ((nf(Xf, X)) be the augmentation ideal,
note that the natural map
I = Ip | I}~ H (X;, K)Y

admits a unique Frobenius-equivariant splitting, given by the span of the weight —1 Frobenius-
eigenvectors. Thus the span of the weight —1 eigenvectors yields a copy of H'(X i K)Y
inside of K=" ((nf(X,;, x))). Now let V' be an object of Shy y (Xf). By Lemma 2.2.1, we have
a natural action of K=" ((nf(XE, X)) on V, and thus viewing HI(X,;, K)V as subspace of
KST ((nf(XE, X)), we obtain a natural map

HY (X K)Y @k V — V.
By adjointness we thus obtain an object
V—>VeH (X;.Qp

of 7(X).

This construction is evidently functorial. One can verify from the definition that the func-
tor H is fully faithful. Moreover, there is a natural Frobenius action on the set of isomorphism
classes of objects of .77(X) (via the action of Frobenius on H (X IE’@))’ and H induces
a Frobenius-equivariant map from isomorphism classes of objects of Shy x(X}) to isomor-
phism classes of objects of .77 (X ). We can interpret Theorem 1.1.2 as the full faithfulness of
this functor, combined with the fact that any object of .77 (X), fixed up to isomorphism by the
action of Frobenius, is nilpotent, in the sense that for n > 0, the composition

0"V >V H' (X;.Q)®"

is zero.

Using the semisimplicity of the Frobenius action on Qg ((nlét(Xf, X)) (see [9, Theo-
rem 2.20]), one may extend this correspondence to the case of non-proper X, though doing
so seems to depend on some choices. It would of course be very interesting to find a variant of
this construction for residually nontrivial representations.
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5.2. Residually nontrivial representations. It is natural to ask if results similar to
Theorem 1.1.2 hold for residually nontrivial arithmetic representations. Indeed, a version of
Theorem 3.2.1 in the commutative setting (that is, a mild generalization of the main result
of [6, Section 4], allowing “resonance’), with an identical proof, implies:

Theorem 5.2.1. Let X be a smooth curve over a finite field k, X a geometric point of X,
and
p: (X, %) — GL,(Fyr)

a representation which is absolutely irreducible when restricted to 7r1’ (Xg, x), with £ different
from the characteristic of k. Let Rg be the deformation ring of p|, n (X %) and let Ug be its
rigid generic fiber. Let K be an E-adic field with residue field Fyr, and let

p: (X, %) — GL,(Ok)

be a continuous llft of p; let [p] € Ug be the point corresponding to pl 2 (X e %) If the action
of Frobenius on H' Xp p® oY) is semisimple, there exists an open nelghborhood V oof [p] in
Uz such that the Frobenius action on V' is conjugate to a linear map.

In dynamics, a neighborhood V' as above is referred to as a Siegel disk. Note that the
hypothesis on the semisimplicity of the Frobenius action on H (X 7P ® p) would follow for
all p from the Tate conjecture, by L. Lafforgue’s work on the Langlands program: [8, Corol-
laire VII.8] implies that p ® p “arises from geometry”, whence the Tate conjecture would
imply that the Frobenius action on its cohomology groups is semisimple.

As a corollary of Theorem 5.2.1, one obtains that for p as in the theorem statement, there
exists a neighborhood of [p] containing no Frobenius-periodic points aside from [p] (that is, no
arithmetic representations). This is proven unconditionally in [10, Theorem 1.1.3]. That said, it
would in our view be quite interesting to understand Siegel disks in Up; for example, if U was
covered by Siegel disks for iterates of Frobenius, the Hard Lefschetz theorem would follow for
all lifts of p, by the strategy of [5].

Sketch proof of Theorem 5.2.1. The proof of Theorem 3.2.1 works verbatim in the com-
mutative setting, giving the following result. Let K be an £-adic field, R a Tate algebra over K,
and F' : R — R a continuous endomorphism. Suppose F preserves a maximal ideal mt of R,
and acts semisimply on the completion R of R at m (i.e., F acts semisimply on the finite-
dimensional K-vector spaces R/m” for all n). Suppose moreover that the action of F on
m/m? has eigenvalues satisfying £-Siegel’s condition with parameters c, p for some ¢, i > 0.
Then there exists an affinoid neighborhood of [m] € Sp(R) on which F is conjugate to a lin-
ear map.

We now choose a Frobenius-stable open ball U containing [p] in the rigid generic fiber
of Rj; as Rj is a power series ring over W(k) by the absolute irreducibility of p, we may
choose U to be the spectrum of a Tate algebra R. Thus it is enough to check the hypotheses
of the result of the previous paragraph, taking F' to be the Frobenius automorphism of R and
m to be the maximal ideal corresponding to p. The semisimplicity hypothesis follows from the
assumption of the semisimplicity of the Frobenius action on H ! (X pP®pY) = (u/ m?)Y by
an argument identical to the proof of [10, Theorem 5.1.8]. And [8, Corollaire VII.8] implies
that the eigenvalues of the Frobenius action on m/m? are Weil numbers, hence algebraic; thus
they satisfy £-Siegel’s condition for some p by Proposition 3.1.9. O
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Question 5.2.2. Let U; be as in the statement of Theorem 5.2.1. Is U; covered by
Siegel disks for iterates of Frobenius? That is, for each point v of Up, does there exist a finite
extension k’ of k, a representation p,, : nié‘(X x> X) — GL, (0r) lifting p (with L an £-adic
field with residue field IFyr), and a neighborhood V of [p,] containing v, such that the action of
the Frobenius of k’ on V is conjugate to a linear map?

We view our proof of Theorem 1.1.2 as showing that the trivial representation is contained
in a “noncommutative Siegel disk”.

5.3. Other questions. Theorem 1.1.2 is unsatisfying in a number of ways. First, it is
natural to ask if the constant N (X, £) appearing in the statement of the theorem may be taken to
tend to zero as £ — o0o; as remarked in the introduction, this is known in characteristic zero by
[10, Theorem 1.1.13]. It is not clear to us if there is a plausible improvement of the £-adic form
of Baker’s theorem on linear forms in logarithms which would, by our method, imply that one
may take N(X,{) — 0 as £ — oo, but the following would imply that one may take N (X, {)
to be independent of £:

Question 5.3.1. LetAq,..., 4, € @ be a collection of algebraic numbers, stable under
the action of Gal(Q/Q). For each prime £, the {-adic form of Baker’s theorem yields con-
stants ¢y, (g such that the A; satisfy £-Siegel’s condition with parameters ¢y, iz, as in Defini-
tion 3.1.7. Is it true that the constants ¢y, ;g may be taken to be independent of £?

It is also natural to ask for an analogue of Theorem 1.1.2 with better uniformity in e.g. the
genus or gonality of the curve X, or one which depends only on the function field k(X). For
example, the geometric torsion conjecture [2] predicts that in the case that p arises from the
{-adic Tate module of a traceless Abelian scheme A, there is a bound on the torsion

e _ =
(p ® Qp/Zg)™1 Xi®)

depending only on the gonality of X and the rank of p (here (p ® Q¢/Z¢)™ T(XE%) i naturally
isomorphic to the rational £-power torsion of the generic fiber of A). A weaker question, plau-
sibly approachable via the methods of this paper, is to ask for a bound on N depending only
on the function field k(X)) and not on X itself.
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