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Abstract This paper introduces reduced order model (ROM) based Hessian approx-
imations for use in inexact Newton methods for the solution of optimization problems
implicitly constrained by a large-scale system, typically a discretization of a partial
differential equation (PDE). The direct application of an inexact Newton method
to this problem requires the solution of many PDEs per optimization iteration. To
reduce the computational complexity, a ROM Hessian approximation is proposed.
Since only the Hessian is approximated, but the original objective function and its
gradient is used, the resulting inexact Newton method maintains the first-order global
convergence property, under suitable assumptions. Thus even computationally inex-
pensive lower fidelity ROMs can be used, which is different from ROM approaches
that replace the original optimization problem by a sequence of ROM optimization
problem and typically need to accurately approximate function and gradient informa-
tion of the original problem. In the proposed approach, the quality of the ROM Hes-
sian approximation determines the rate of convergence, but not whether the method
converges. The projection based ROM is constructed from state and adjoint snap-
shots, and is relatively inexpensive to compute. Numerical examples on semilinear
parabolic optimal control problems demonstrate that the proposed approach can lead
to substantial savings in terms of overall PDE solves required.

Keywords Model reduction + Optimization - Hessian approximation - Newton
method

M. Heinkenschloss (B<1)
Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
e-mail: heinken@rice.edu

C. Magruder
MathWorks, Natick, MA, USA
e-mail: cmagrude @mathworks.com

© Springer Nature Switzerland AG 2022 335
C. Beattie et al. (eds.), Realization and Model Reduction of Dynamical Systems,
https://doi.org/10.1007/978-3-030-95157-3_18


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95157-3_18&domain=pdf
mailto:heinken@rice.edu
mailto:cmagrude@mathworks.com
https://doi.org/10.1007/978-3-030-95157-3_18

336 M. Heinkenschloss and C. Magruder

1 Introduction

We introduce reduced order model (ROM) based Hessian approximations for use in
inexact Newton methods for the solution of large-scale smooth optimization problems

min J(u) = J (y(u), w), (1)
ueR™”
where for given u € R™ the vector y(u) € R”" is the solution of

c(y(w), u) =0. @)

The optimization problem (1, 2) often comes from a discretization of optimal
control problems and in this case u € R™ is the discretized control, y € R" is the
discretized state, and (2) is the discretized state equation. Our approach can be easily
extended to a setting where the control space ¢/ and the state space ) are Hilbert
spaces, but because of space restrictions we limit ourselves to the finite dimensional
case. In our applications, the state Eq. (2) is a discretized parabolic partial differential
equation (PDE). In this case, each objective function (1) evaluation requires the solu-
tion of a discretized PDE, the evaluation of the objective function gradient requires
the solution of the (linear) adjoint PDE, and the evaluation of a Hessian-times-vector
multiplication requires the additional solution of two (linear) PDE. This is computa-
tionally expensive. In addition, the additional PDEs that have to be solved for gradient
and Hessian-times-vector computations depend on the solution of y(u) € R” of the
state equation, which for time dependent PDEs is also memory intensive. ROMs can
be used to reduce the computation time and memory requirements.

Previous approaches of using ROMs in optimization have approximated the map-
ping u — y(u) € R"” using a ROM applied to the state Eq. (2). Typically, the state
Eq. (2) is approximated by a projection based ROM

Vie(Vym),u) =0, (3)

where V € R"*" is a matrix with rank » << n. The ROM state solution is then used
to approximate (1) by
m];Rn J(Vy(u), u). €]
ucR”

For many problems, including example problems in Sect.4 of this paper, the
ROM approximation (4, 3) of the states implies via the optimality conditions that the
controls u are also contained in a low dimensional subspace related to V.

In special cases, one can extend ROM approaches for dynamical systems [5] to
find one ROM such that the solution of (4, 3) is a good approximation of the solution
of (1, 2). See, e.g., [2, 3], and the survey [7]. For general problems, however, the
ROM is only valid in a potentially small neighborhood of the current control u, and
corresponding state y. = y(u.). In this case trust-region based model management
approaches have been proposed. See [1, 10, 13, 16, 19, 20], and the surveys [7, 17].
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While in principle, one can use trust-region based model management approaches
that generate a new ROM at each new iterate, in practice their use is limited by the
computational cost of ROM generation versus the computational savings resulting
from that ROM.

Therefore, instead of generating ROMs for the optimization problem, we generate
ROM approximations of the Hessians. These ROMs are computationally cheaper
than a ROM that also has to approximate the objective function (1) and its gradient
over a range of controls. Ideally the ROM Hessians still generate optimization steps
that are close to the Newton steps, and therefore lead to fast local convergence of
the optimization algorithm at a fraction of the cost of a corresponding Newton-type
methods applied to the full order model (FOM) problem (1, 2).

In Sect. 2 we will outline our new approach and in Sect. 3 we will specify it further
for a discretized parabolic optimal control problem. We demonstrate our approach
on semilinear parabolic optimal control problems in Sect. 4.

2 Inexact Newton Methods and ROM Hessian
Approximations

This section provides a general outline of our proposed approach. We begin with a
review of gradient and Hessian computation and the line-search Newton- Conjugate-
Gradient (Newton-CG) method. Then we will present the general structure of our
ROM Hessian approximation, and a heuristic for choosing the ROM subspace within
this approximation.

Inexact Newton Method and ROM Hessian Approximation. To make the def-
inition of the objective function 7 and its gradient and Hessian calculation rigorous,
we make the following assumptions throughout.

(A1) Thereisanopenset D, C R™ suchthatforallu € D, the equationc(y, u) =0
has a unique solution y € R".

(A2) There exists an open set D, C R”" such that {y(uw) :u e D,} C D, and the
functions J and ¢ are twice continuously differentiable on D, x D,.

(A3) The inverse ¢y(y, u)~! exists for all (y,u) € {(y,u) C D, x D, :c(y,u) =
0}.

Here we use VyJ(y,u) € R", V,J(y, u) € R™ to denote the partial gradients and
cy(y,w) € R, ¢y(y, u) € R™™ to denote the partial Jacobians. Similar notation
is used for second derivatives.

The gradient of the objective J in (1, 2) can be computed using the so-called
adjoint equation approach. See, e.g., [12, Sect. 1.6]. Define the Lagrangian

L(y,u,}) :=J(y,u) + A c(y, 0)

corresponding to (I, 2). Given a control u and corresponding state y(u) the gradient
of the objective J is computed by first solving the adjoint equation
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¢y (y), w)' X = =V, J(y(u), u) (5a)

for A = A(u) and then setting
V() = VoJ (y@), u) + cu(y(w), W) A(u). (5b)

Given a control u, the corresponding state y(u), and the corresponding adjoint
A(u), the Hessian-times-vector product V27 (u) d is computed by solving the lin-
earized state equation

cy(y(u), w) w = ¢y (y(u), u)d (6a)

for w, then the second order adjoint equation
¢y (yw), w)'p =V, L(y(u), u, A(w))w — Vyu L(y(u), u, A(w))d  (6b)
for p, and then computing

V27 () d =cu(y(u), w)"p — Vyy L(y(u), u, A(u)) w
+ VaL(y(u), u, A(u)) d. (6¢)

For optimal control problems, the computation of y(u) requires the solution of
a nonlinear discretized PDE. The gradient computation requires the solution of a
linear discretized adjoint PDE to compute A (u). Each Hessian-times-vector operation
V27 (u) d requires the solution of two linear discretized PDEs to compute w and p,
respectively.

The problem (1) is solved using a line-search Newton-CG Method. However, a
trust-region method could be used as well, and the proposed ROM Hessian approx-
imation provides the same computational benefits in a trust-region setting.

Given a current iterate u, the line-search Newton-CG Method [15, Algorithm 7.1]
applies the truncated CG method to approximately solve the Newton subproblem

V2 (u)d = —VIu). (7)

Then it computes a suitable step-size o, € (0, 1] such that the sufficient decrease
condition R R R
J, +a.d) < J(u) + 10 *a.d" VI (u,) (8)

is satisfied. The new iterate is given by uy = u, + «.d.

The ROM Hessian approximation is computed by applying a projection ROM to
the Eq. (6a, b). Let V € R, r <« n, with linearly independent columns such that
VTey(y(u), w)V is invertible.

The ROM Hessian-times-vector product is computed by first solving the projected
linearized state equation
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Viey(y(@), Ve = Veu(yw), wd (9a)
for W, then solving the projected second order adjoint equation
Vi, (y),w)’ Vp= V'V, L(y(u),u, A(w)) VW — V'V, L(y(u), u, »(u)) d

(9b)
for p, and then computing

V2T () d =cy(y(u), u)" VP — Viy L(y(w), u, A(w)) VW
+ Vuu L(y(w), u, A(w)) d. 9¢)
The ROM Hessian approximation (9) is used to compute the direction in the

inexact Newton method. Instead of solving (7), given a current iterate u, the direction
d is computed by using the truncated CG method to approximately solve

V27 (u)d = —VJ(u). (10)

The step size o, is computed as before using (8) with d replaced by d. The new
iterate is given by uy = u, + «a.d.

The global convergence of the original line-search Newton method and the line-
search Newton method with ROM Hessian approximation can be proven using stan-
dard arguments. See, e.g., [15, Theorem 3.2]. While first order global convergence
can be ensured under standard conditions if the ROM Hessian approximation is used,
the speed with which the inexact Newton method converges in this case depends on
the quality of the ROM Hessian approximation, and in particular on V. Next we
motivate our choice of V.

Basic Properties of the ROM Hessian. Using (0) it can be seen that the Hessian
of T is given by

V2T (u) = cy(y, wleu(y, w) ! VyyL(y, u, 1) VyuL(y,u, 1) [ cy(y, ) cu(y, w)
- I VayL(y, u, 1) VyuL(y, u, }) I ’
(11)

where we have set y = y(u) and A = A(u) to simplify notation. We will use this
simplified notation frequently during the remainder of this section.

Applying the Implicit Function Theorem to the state Eq. (2) shows that the sen-
sitivity of u — y(u) is given by

Yu() = ¢y(y, w) ey, u) € R, (12)

Similarly, applying the Implicit Function Theorem to the adjoint Eq. (5a) shows
that the derivative of u — A(u) is given by



340 M. Heinkenschloss and C. Magruder

-1
ha() = ¢y, ) T (VyyL(y, w, 1), VyuL(y, u, 1)) (“y(y’ W e “))

— u u nxm
= ¢y(y, w) " (VyyL(y,u, 1), Vyu L(y,u, 1)) (y ; )) e R™™,  (13)
Using these derivatives, the Hessian can be written as
27y _ T Yu (ll)
VI () = cu(y, W) Ag(u) + (VayL(y, u, 1), VauL(y, u, 1)) I . (14)

Using (9) it can be seen that the ROM Hessian approximation is given by

_ T
Vo) V(VTcy(y, u)V) Vieay,w ) [ VoyL(y.u.}) VyuL(y. u, })
- VuyL(y,u,X) VyuL(y,u, X)

I
T “yr
(V) V)
I
If we define
Ya(u) = V(VTcy(y, u)V)ilvTcu(y, u) € RV (16)

and

—~

—~— -T
@ =V(VewV) V7 (VyyLiy.uh), vyuuy,u,x))(y“I(“) e R,

a7
then the ROM Hessian approximation can be written as

V27 () = ea(y. W) Ay() + (VayL(y, w. 1), VauL(y.u, 1)) (y“ﬁ“)) . (8)

The next result ensures the positive definiteness of the Hessian and its ROM
approximation in situations that are often encountered in classes of applications,
such as those in Sect. 4.

Proposition 1 Let V € R"™" have rank r < n and satisfy that VTcy(y(u), wVis
invertible. If Vyy L(y, u, L) is positive definite, Vyy L(y, u, L) is positive semi-definite,
and VyL(y,u, L) = 0, then sz(u) and sz(u) are positive definite with smallest
eigenvalue bounded from below by the smallest eigenvalue of Vyu L(y, u, L).

Proof The statement follows immediately from (11) and (15).
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Comparing (14) with (18) shows that V27 (u) ~ V2J(u) if yu(u) & yu(u) and
Ay(u) & Ay (u). The latter two approximation conditions motivate our choice for the
ROM matrix V.

Proposition 2 Let V € R"*" have rank r < n and satisfy that VTcy(y(u), wV is
invertible. If y(u + d) € R(V) for all sufficiently small d, then

V(W) = yu(u). (19)

If, in addition, A(u + d) € R(V) for all sufficiently small d, then

—_~

(W) = Ag(u) and V2JT(u) = V2T (). (20)

Proof If y(u+ d) € R(V) for all sufficiently small d. Then y, (u)d € R(V) for all
d. Furthermore, for every u + d with d sufficiently small there exists ¥(u + d) such
that y(u + d) = Vy(u + d). Inserting this into the state Eq. (2) implies

Vie(Vyu+d),u+d) =0 forall sufficiently small d.

Applying the Implicit Function Theorem to this equation shows that
-1
Vo = (Vo,o@, wV) Ve m,w

and (16) can be written as y/u_(\lf) = Vy,(u). Since y(u +d) = Vy(u + d) for all
sufficiently small d,

Yu(@) = Viu(u) = yu(u),

which is (19).

If, in addition, A(u + d) € R(V) for all sufficiently small d, then we can use
similar argument to show the first equality in (20).

The second identity in (20) follows immediately from (14), (18), (19), and first
identity (20).

In general there is no matrix V € R"*" with small rank r <« n, such that the
conditions in Proposition 2 hold. However, if there exists V € R*™", r <« n, with
orthogonal columns such that the projections of y(u + d) and A(u + d) onto R(V)
are close to y(u + d) and A(u + d), respectively, or equivalently such that

[A=VV)yu+d)| <tol and [XI—VVD)A@m+d)| <tol (21)

for a smal tolerance tol <« 1, then we expect y,(u) ~ m, Au(u) = m, and

consequently that the ROM Hessian V2J(u)isa good approximation of the original
FOM Hessian V2J (u).
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However, finding V € R"*" such that (21) is guaranteed to hold for all sufficiently
small d would be computationally expensive. In practice we compute V € R"*" using
proper orthogonal decomposition (POD) applied to the state y (u) and the adjoint A (u)
at the current control.

ROM Hessians versus ROM Optimization Proposition 2 and even (21) describe
optimistic scenarios. If we were able to find a V such that (21) holds at the current
control u = u,, then it could be used to approximate the original problem (1, 2)
in a trust-region based model management framework and approximately solve (4,
3) over all u in a neighborhood (trust-region) around the current control u.. Rather
than using the ROM model u — J(Vy(u), u) in a neighborhood of the current
control u,, our approach lﬁeis/the approximate quadratic Taylor expansion d +—

Ju) + Yf(uc)Td +d’V2J(u,)d as a model at controls u = u, + d. The true
function J (u) and this Taylor model have the same function and gradient value at u,,

no matter how good V is. If V27 (u,) well approximates V27 (u,), we will essentially
compute a Newton step. If the resulting V is less good, our approach can still generate
a descent direction that is much better than a simple gradient step. Computationally
inexpensive, but possibly less accurate ROMs can still be used to accelerate the
overall optimization.

3 ROM Hessian Approximations for Discrete Time
Optimal Control Problems

In this section we apply the ROM Hessian approach to a minimization problem that
arises, e.g., from a discretized parabolic optimal control problem.

Model Problem. Given functions £ : R"”> - R, 0 : R™ — R, F: R"» — R™,
and G : R"™ — R™, and given yo € R"™ consider the following minimization prob-

lem in the variables u = (u{, ..., u) )" e R™", y = (y{,...,y )" e R»".
Minimize Z 0(yp) + o (up), (22a)
k=1

where y and u satisfy an implicit constraint,

M (yk+—lA: yk) +F(Yk+1) = G(uk+l)’ k = O, A (3 17 yO giVen.

(22b)
It is easily possible to extent our ROM Hessian approach to generalizations of (22),

e.g., replace £(y;) and G (uy) by £(yx, ui) and G(y, uy). We consider (22) to simplify
notation.
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Throughout this section we make the following assumptions, which are adapta-
tions of the assumptions (A1)—(A3) to the problem (22).

(A1) Thereexistsanopenset D, C R™" suchthatforeveryu = (uf,...,u!)" € D
the state Eq. (22b) has a unique solution y(u) = (y;(w)’, ..., y, w77,

(A2’) There exists an open set D, C R™" such that {y(u) : u € D,} C D,, and the
functions £ : Dy - R, 0 : D, - R, F: D, - R", and G: D, — R" are
twice continuously differentiable.

(A3’) Foreveryy = (y{,...,y})" €e{y(w):ue D,}andeveryry,...,r, €R"
there exists a unique solution wy, ..., w,, € R™ of the equations

wo=0, Wi — W =ArF, (Y)Wt +Txr1, k=0,...,n,— L

Under the assumptions (A1’)-(A3’) we can define the function J: D, - R,
JA(u) = Zle £(yx () + o (wy), so that (22), is a special case of (1, 2).

Gradient and Hessian Computation. Under the assumptions (A1°)—(A3’) the
function J : D, — R is twice continuously differentiable. Its gradient can be com-
puted using the adjoint equation approach in Algorithm 1. Hessian-times-vector
operations are computed using Algorithm 2.

Algorithm 1: Gradient Computation

1: Givenu = (ulT ..... uZ[)T lety = (le ..... yZI)T solve the state Eq. (22b).

2: Solve the adjoint equations for A, , ..., Al
M+ At Fy (yu)1" Ay, = —Vyl(¥n,), (23a)
M+ ArFy (vl M = MAgyr — Vyl(ye), k=n,—1,....1. (23b)

3: Compute the gradient
Vo (uy) — At Gy ()71

VJ@) = :
Vua(un,) — At Gu (un,)Tln,

Note that since the objective function and the implicit constraints in the model
problem (22) are separable, Vyy L(y,u, 1) = 0.

Hessian Approximation by Model Order Reduction. As mentioned towards
the end of Sect. 2, we compute a ROM from state y and adjoint A information. In this
example the state y and the adjoint A are vectors of vectors y; € R" and A, € R™
respectively. We compute a matrix V € R™ " such that the components y; and A, are
approximately contained in the range of V (this V is a component of the projection
matrix in Sect.2) The projection matrix for y and A is the n,n, x n,r block diagonal
matrix with identical diagonal blocks given by V.
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Algorithm 2: Hessian-Times-Vector Computation — V27T (n)v

1: Given u = (ulT, oul)T et y= (le, e y,{I)T solve the state Eq. (22b) and let A =

N | =

(. ....A)T solve the adjoint Eq. (23).
2: Set wg = 0 and solve the linearized state equation wy, ..., Wy, :

M + AtFy (YerDIWir1 = Mwg + At Gy (g ) Vi1,  k=0,...,n, — L.

3: Solve the second order adjoint equations for py,, ..., p1.

M+ At Fy (Va1 Pu, = — [AL ] F(y0,))yy + Loy (¥,) Wi,

M + At Fy (vl  pe =Mprrt — [Ar A F(yi))yy + Loy (v Wk, k=n, — 1,..., 1.

4: Compute the action of the Hessian
—At Gy (ul)Tpl + [owu(a1) — At O‘{G(ul))uu]vl
V2 wyv = ;
— A1 Gy () Py + [0wu (Wn,) — At (A G(Wn,)) 1V,

We apply POD to the computed state and adjoint to compute V € R™*". Since
states and adjoint typically have very different scales, we do not apply POD to the
combined snapshots, but individually, as stated in Algorithm 3.

Algorithm 3: Construction of POD Subspace

1: Collate the solution yi, ..., Yy, to the state equation and he solution A1, ..., 4, to the
adjoint equation into snapshot matrices,

Y=[Y1,-.~,Yn,], A=[)~1~--axn,]~

2: Construct by truncated SVD matrices V, € R™>*’ and V; € R"*" so that

I@X—V,VHY| L=V, VD A
————— <tolpop and —*——

< tolpop.
Y1l Al

3: Orthogonalize. orth([Vy V;]) — V.

The ROM Hessian-time-vector computation is specified in Algorithm 4. The sub-
space matrix V € R™>*" used in steps 2 and 3 is computed via Algorithm 3.

Computational Efficiency of ROM Hessian. While matrices like VI'F (y;)V in
the ROM Hessian computation are smaller than F, (yy), the dependence of F, on yy,
which changes with time step k makes the computation of VTF}, (yx)V expensive.
This well-known issue [4, 6, 9, 11, 18] is addressed via hypereduction. Specifically,
we use a so-called unassembled form of the Discrete Empirical Interpolation Method
(DEIM), which originates from the (D)EIM [6, 9] and is described in more detail
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Algorithm 4: ROM Hessian-Times-Vector Computation—sz (w)v
1: Givenu=(uf,....,ul)" lety = (y{,...,y!)" be the solution of the state Eq. (22b)

> Yy

andletA = (A],....A] )T be the solution of the adjoint Eq. (23).
2: Set Wy = 0 and solve the POD linearized state equation for Wy,

[L+ At VIFy (v ) VIWet1 = Wi + AtV Gy (e 1)Vis1, k=0,...,n — L.
3: Solve the POD second order adjoint equation for py,

L+ At VIF (v )V Pu, = — VIIAL W] F(yn,))yy + Lyy (90, )1V W0,

I+ At VIF, (yO VI Pr =Prs1 — VI [AL AL F(i))yy + Ly (yi) VW,
k=n,—1,...,1.

4: Compute the approximation to the action of the Hessian,

—At Gy (uI)TVﬁl + [owu (u1) — At (XlTG(ul))uu]Vl

V2] (u)v = :
—At Gu(“nft)TVﬁn, + [ouu (un,) — At (A{G(ul))uu]vm

in [4, 18]. This leads to a further approximation of the ROM Hessian computed by
Algorithm 4. The error in this additional approximation is controlled by the tolerance
tolpgmv ) used in DEIM. We refer to [ 14, Sects. 5.4, 6.2] for further details. We will use

V27 (u) to denote the final ROM Hessian approximation. We can replace y; ~ V¥,
where J, = V'y, € R”, and A; ~ VA, where A, = V'L, € R to reduce storage
requirements.

4 Numerical Results

We apply the ROM Hessian approximation to semi-linear parabolic optimal control
problems of the form

1 1 1
min -f /(y(x,t; ) — ya(x, t))zdxdt—i—g/ /u(x, 2dxdt,
wer2@x0.1) 2 Jo Ja 2o Ja
(252)

where for given function u € L*(Q2 x (0, 1)) the function y(-, -; u) is the solution of

yi(X, 1) — Ay(x, 1) + F(y(X, 1) = u(x, 1) (x,1) € 2 x(0,T), (25b)
y(x,1) =0 (x,1) € dQ x (0,T),  (25¢)
(X, 0) = yo(x) xeQ, (25d)
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Table 1 Example 1. Optimization using FOM Hessian (left) and BOM Hessian tolpop = 1073,
tolpgv = 1073 (right). Stopping criteria in both approaches ||[VJ(u)|| < 10~7. Both optimiza-
tion approaches show nearly identical convergence behavior. Iteration 7, objective function value
(| J (w)]|), gradient norm (|| VJ (w)]), step-size (), and number of CG iterations (CG) are shown

i J(u;) VT )|l o CG
0 4.397932 2.7878e-04 1.00 18
1 1.665062 2.5098e-05 1.00 20
2 1.598802 4.7573e-06 1.00 25
3 1.595127 2.9272e-07 1.00 35
4 1.595110 1.4527e-09

i T () VT )|l a CG
0 4.397932 2.7878e-04 1.00 18
1 1.665253 2.5120e-05 1.00 20
2 1.598817 4.7625e-06 1.00 25
3 1.595127 2.9294e-07 1.00 39
4 1.595110 1.7659¢-08

and Q = (0, 1)>. The problem is discretized in space using piecewise linear finite
elements on a triangulation obtained by dividing Q = (0, 1)? into 40 x 40 squares
and then dividing each square into two triangles. This results in a semi-discretization
with n, = 1681 and n, = 1521 degrees of freedom in the control and state respec-
tively. The resulting semi-discretization is then discretized in time using the backward
Euler method using n, = 100 times steps. This results in a problem of the type (22)
with G(u;) = M, u; and o (w;) = (/ 2)u,fMuuk, where M,, is the mass matrix, and
L(yr) = (Y — yk,d)TM(yk — Vi.a), where M is the mass matrix that also appears in
(22b) (M,, and M differ in size because of bounday conditions for y) and y; ; comes
from a discretization of the desired state y,; in (25a).

All optimization runs are initialized at u = 0. The truncated CG is stopped when
negative curvature is detected or when the CG residual satisfies

IH; d + V()| < min{|V7(u;)]?, 0.01]VJ (u))]},

—_—~—

H;, = V2] (u;) or V2] (u;) depending on whether a FOM or ROM Hessian is used.
Example 1: Cubic Reaction. In the first example the nonlinearity in (25b) is cubic,
f(y) = y>. The desired state is y;(x, 1) = 2¢' + 2x;(x; — 1) 4 2x5(x; — 1), the ini-
tial state is yo(X, t) = sin(2wXx;), and the control penalty is ¢ = 1074,

Both optimization with FOM Hessians and with ROM Hessians converged to
virtually the same solution. The computed optimal control u at + = 0.1,0.5, 1 is
shown in Fig. 2. Table 1 shows that the optimization histories for the two approaches
are nearly the same.

While the optimization histories for the two approaches are nearly the same, the
ROM Hessian approach is much faster as shown in Table2. The timing reported
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Table 2 Example 1. The FOM Hessian approach requires 2*98 PDE solves, which are replaced
by 2*102 ROM PDE solves in the ROM Hessian approach, resulting in an overall speedup of 5.5

FOM ROM

State solves 5 5
Adjoint solves 5 5
Hess-Vec mult 98 102
Total time (s) 410.42 74.13

10™ 107

10~ 107+

107 105
g 10°® ? 107
s =
TR = 0

107 108

107 107

0 0.5 1 1.5 2 25 3 3.5 4 0 20 40 60 80 100 120 140 160 180 200
Iterations FOM PDE Solves

‘ ~O~ Newton =}~ Newton (ROM Hessian), tol = 10~ ‘

Fig. 1 Convergence history for Newton-CG with and without POD+DEIM approximations in the
Hessian-vector computation

in Table2 is for computations using MATLAB running on a MacBook Pro (13-
inch, Retina, Mid 2014). The difference in computing time is due to the cost of
Hessian-times-vector multiplications. In this example, using FOM Hessian requires
98 Hessian-times-vector multiplications and therefore 196 linear discretized PDE
solves. In contrast, using ROM Hessian requires 102 Hessian-times-vector multipli-
cations and therefore 204 linear ROM PDE solves.

Figure 1 is another presentation of the convergence results in Tables 1 and 2.

The left plot shows that both approaches have nearly the same iteration his-
tory. However, when convergence history is plotted against computational work per-
formed, measured in terms of PDE solves, the ROM Hessian approach is much faster.
Note that here we do not differentiate between the nonlinear state PDE solve and
the linear PDE solves needed for gradient, adjoint and FOM Hessian-times-vector
computations. While the discretized state Eq. (22b) is nonlinear and computing y
is performed via Newton’s method, only 1-2 Newton iterations per time step in the
state computation are needed in this example. Therefore the difference between a
nonlinear state PDE solve and linear PDE solve is small.

Example 2: Solid Fuel Ignition Model. This example is modeled after [8]. The
nonlinearity in (25b) is f(y) = —8e” with § = 5. The desired state is y;(x, t) = 72
sin(x;) sin(wX;), the initial state is yy = 0, and the penalty isa = 5 - 1073.

The numerical results for this example mirror those of the previous example.
Optimization with FOM Hessians and with ROM Hessians converged to virtually
the same solution, and the optimization histories for the two approaches are nearly
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Fig. 2 Optimal control # at ¢ = 0.1, 0.5, 1 for Example 1

Table 3 Example 2. Optimization using FOM Hessian (left) and and ROM Hessian tolpop = 103
tolpgpy = 1073 (right). Stopping criteria in both approaches ||VJ (W] < 1073, Both 0pt1mlza-
tion approaches show nearly identical convergence behavior. Iteration 7, objetive function value
Al T (w)])), gradient norm (||VJ (w)|]), step-size (), and number of CG iterations (CG) are shown

i J(ul) ||VJ(u,)|| o CG
0 2.6981e-02 4.5436e-05 1.00 9

1 1.3028e-02 3.8587e-06 1.00 12
2 1.2917e-02 2.6076e-08 1.00 27
3 1.2917e-02 1.2552e-12

i Tu) IV 7 (u))l a CG
0 2.6981e-02 4.5436e-05 1.00 9

1 1.3028e-02 3.8601e-06 1.00 12
2 1.2917e-02 2.6116e-08 1.00 28
3 1.2917e-02 2.4637e-12

Table 4 Example 2. The FOM Hessian approach requires 2*48 PDE solves, which are replaced
by 2*49 ROM PDE solves in the ROM Hessian approach, resulting in an overall speedup of 4

FOM ROM
State solves 4 4
Adjoint solves 4 4
Hess-Vec mult 48 49
Total time (s) 234,78 56.73

the same, as shown in Table 3. The computed optimal control u at t = 0.1, 0.5, 1 is
shown in Fig. 4.

The ROM Hessian approach is much faster as shown in Table 4. Again, the timing
reported in Table4 is for computations using MATLAB running on a MacBook Pro
(13-inch, Retina, Mid 2014) and the reason for the difference in computing time
is the cost of Hessian-times-vector multiplications. The ROM Hessian requires 96
ROM PDE solves for ROM Hessian-vector operations in contrast to the 96 FOM
PDE solves in the FOM Hessian approach.
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Fig. 3 Convergence history for Newton-CG with and without POD+DEIM approximations in the
Hessian-vector computation
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Fig. 4 Optimal control u atr = 0.1, 0.5, 1 for Example 2

Figure 3 shows that when convergence history is plotted not against iteration count,
but against computational work performed, measured in terms of PDE solves, the
ROM Hessian approach is much faster.

5 Conclusions

We have introduced ROM Hessian approximations for use in inexact Newton meth-
ods for large-scale smooth optimization problems obtained from discretizations of
optimal control problems governed by parabolic PDEs. In contrast to other ROM
approaches, which approximate the optimization problem, our approach retains the
original FOM objective function and gradient. The Hessian ROM is computed by
applying POD to state and adjoint snapshots that have to be computed anyway, and
therefore ROM computation is relatively inexpensive. Since original objective func-
tions and gradients are used, the qualitative global convergence properties of the
original line-search Newton method and the line-search Newton method with ROM
Hessian approximation are the same. However, since Hessian approximations are
significantly cheaper, the ROM Hessian approach can lead to substantial savings.
This is confirmed by numerical experiments with two semilinear parabolic optimal
control problems. The two optimization approaches had essentially the same conver-
gence behavior, but the ROM Hessian approach had a factor 5-8 speedup because
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of computational savings due to the Hessian approximations. However, it is possible
to construct examples, where the ROM Hessian approach does not lead to com-
putational savings. When the ROM Hessian too poorly approximates the true one,
the ROM Hessian approach can require substantially more optimization iterations,
which erase savings enjoyed within an optimization iteration. Additional analysis
and numerical tests are part of future work.
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