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Abstract. We calculate high-precision constraints on Natural Inflation relative to current
observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on
r and ng, including post-inflationary history of the universe. We find that, for conventional
post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater
than 95% confidence out by current data. If we assume protracted reheating characterized
by w > 1/3, Natural Inflation can be brought into agreement with current observational
constraints. However, bringing unmodified Natural Inflation into the 68% confidence region
requires values of T}, below the scale of electroweak symmetry breaking. The addition of a
SHOES prior on the Hubble Constant Hy only worsens the fit.
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1 Introduction

Inflationary cosmology, first proposed by Guth in 1980 [1-7], remains an widely studied and
successful approach for understanding the early universe, solving at a stroke the flatness
and horizon problems, as well as providing a mechanism to generate the observed primordial
power spectrum [8-16]. Inflation relates the evolution of the universe to one or more scalar in-
flaton fields, the properties of which dictate the dynamics of the period of rapidly accelerating
expansion which terminates locally in a period of reheating, followed by radiation-dominated
expansion. While we cannot precisely determine specific form of the potential for the in-
flaton field or field, different choices of potential result in different values for cosmological
parameters, which are distinguishable by observation [17, 18]. Recent data, in particular the
Planck measurement of Cosmic Microwave Background (CMB) anisotropy and polarization
[19-26] and the BICEP/Keck measurement of CMB polarization [27, 28] now place strong
constraints on the inflationary parameter space, falsifying many previously viable inflationary
potentials, including some of the simplest and most theoretically attractive models.

One such class of models is Natural Inflation, put forward in 1990 by Freese, Frieman
and Olinto [29] as a solution to certain theoretical challenges inherent to slow rolling inflation
models, which are limited by the fact that in order to generate an adequate amount of
inflation, the slope of the inflaton potential must be very nearly flat. This creates fine-tuning
problems, in particular, quantum corrections in the absence of a symmetry generically spoil
the flatness of the potential, which is known as the n-problem. Natural inflation (NI) models



avoid this by using an axionic field to drive inflation, where the term “axionic” refers in the
most general sense to a field which has a flat potential as a result of a shift symmetry. During
the early Universe, explicit breaking of the shift symmetry gives rise to slow-roll expansion In
this sense the inflaton in NI is a pseudo-Nambu-Goldstone boson, with a nearly flat potential,
exactly as inflation requires.

When Freese, Frieman and Olinto proposed their original model of Natural Inflation
in 1990, they modeled the inflaton field directly on the QCD axion, albeit with a different
mass scale. As with the QCD axion, the potential was an ordinary cosine, with a height
of ~ 100 GeV and a width of at least 1012 GeV, to match CMB observations [29, 30].
Subsequently, many other variants have been proposed, such as axion monodromy [31-33],
but for the purposes of this paper, we shall confine ourselves to discussing the original cosine
potential, though the principle can be extended to cover many other potentials.

The two primary observable parameters of the primordial power spectrum (as seen in
the CMB) used to determine the viability of inflationary models are: 1. r, the ratio of tensor
(gravitational wave) to scalar (density) perturbations, (r = Pr/Pg), and 2. ng, the spectral
index, which describes the degree of scale dependence of the fluctuation amplitude. While
neither of these carry any direct dependence on post-inflationary dynamics, they do depend
on the value of Nj, the number of e-folds of expansion between the point when fluctuation
modes on the pivot scale (generally taken to be k = 0.002 Mpc™!) exited the horizon and
the end of inflation. This is typically around 60 e-folds, but the actual value depends on
the evolution of the universe between the end of inflation and nucleosynthesis, a dependence
we explain in some detail in Sec. 2.2 of this paper. We find that, assuming conventional
post-inflationary dynamics, current observations entirely rule out standard Natural Inflation,
but that by positing a period between the end of inflation and nucleosynthesis during which
the universe expands at a rate slower than radiation domination, we can bring it back into
agreement with the data. (Other modifications to improve agreement with data have been
proposed, for example thermal dissipative effects [34] and non-minimal coupling to gravity
35].)

The structure of this paper is as follows: in Sec. 2, we cover inflationary theory, first
in terms of the mechanics of Natural Inflation, and then explain how the inflationary epoch
parameters relate to modern-day observables; in Sec. 3, we discuss the way the reheating
parameters influence these observables, and then the methodology of our calculations; Sec.
4 presents our results, first in the conventional case and then in the more general scenario,
and we present our conclusions in Sec. 5.

2 Theory

2.1 Natural Inflation

In order to generate sufficient inflation while still satisfying observational constraints on
anisotropy in the cosmological microwave background (CMB), the inflaton field must be
characterized by an extremely flat potential; assuming a single-field inflationary model, the
ratio of the potential’s height to its width must satisfy [36]

(2;/)4 <0(107%-107%), (2.1)
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where AV is the change in the inflationary potential V(¢) and A¢ is the change in the
inflaton field ¢ during the slow roll portion of the inflationary period. The inflaton self-
coupling must therefore be exceedingly weak, with an effective quartic self-coupling constant
Ay < 10712 for reasonable models. [30] This extreme ratio between mass scales is referred to
as the “fine-tuning” problem in inflation, a review of which can be found in Ref. [37-39].

Natural Inflation approaches this problem by positing that the inflaton potential is flat
due to the presence of a shift symmetry, that is, V(¢) = V(¢ + const.) If the symmetry were
perfect, such an inflaton could not roll and drive inflation, so we require a further explicit
symmetry breaking, rendering the inflatons pseudo-Nambu Goldstone bosons (PNGBs) with
the desired very nearly (but not ezactly) flat potential. Such a model naturally generates
the small mass scale ratio specified in equation 2.1; for comparison, the QCD axion has a
corresponding ratio of order 107%4, significantly smaller than inflation requires. [30] Further-
more, this ratio of scales is stable to radiative corrections because of the underlying global
symmetry of the Lagrangian.

The original NI model, which we address in this paper, is characterized by a potential
of the form [29]

V(9) = A*[1 % cos (No/f)] (2.2)

where we will be considering the positive root, and defining % = u, both of which can be

done without loss of generality. Thus, the actual form of the potential we will be discussing
is

V(6) = A*[1+ cos (¢/n)]. (2.3)

Given appropriate scales for A and p (= mgur and ~ mp, respectively), such an inflaton
potential can drive inflation, producing an appropriately small value of y to satisfy 2.1 with
an inflaton mass of my = A?/p ~ O (10! — 10'% GeV). [30]

2.2 The Generation of Observables

As the inflaton field rolls along the potential, quantum fluctuations generate perturbations
in the metric, which rapidly increase in size until their wavelength exceeds the horizon size,
at which point they ‘freeze out’ and cease to evolve until they re-enter the horizon after
inflation ends. The two primary types of perturbations are scalar modes, which represent
fluctuations in density, and tensor modes, which represent gravitational wave fluctuations.
The perturbation amplitude of these two types of fluctuations are given by

H? (k
P2 k) = 10, 2.4)
27y
for scalar modes, and
_AH(K)

Py (k) (2.5)

-~ ampy
for tensor modes. In both cases, the left-hand side of the equation denotes the perturbation
amplitude when a specific wavelength (pivot scale k) re-enters the Hubble radius after in-
flation, while the right-hand side is evaluated at the point during inflation where that same
comoving wavelength froze out. [30] These two amplitudes are critical for evaluating the



viability of inflationary models, as (under the slow roll approximation) Pgr[k = 0.002] = A,
fixes the height of the inflationary potential,

H2
= _ 2.6
* o 8miMEe|j_un’ (2:6)
and the spectral index ng reflects the scale dependence of Pgr,
dlIn P’R
—1= 2.
s Ink ’ (2.7)

while the tensor amplitude is generally expressed in terms of the ratio between it and the
scalar amplitude, r = Py /Pg.

Since we use A to normalize our potential, this leaves us r and ng as observables whose
values we can use to determine the viability of our models.

3 After Natural Inflation

Standard inflationary cosmology assumes that at the end of inflation, the universe is charac-
terized by a temperature of approximately O (1016 GeV) and equation of state w = —1/3,
after which the universe undergoes a period of reheating, during which the inflaton field
decays. Reheating can be instantaneous or protracted, and is generally defined by two pa-
rameters, the average equation of state, w, and either the number of e-folds before the the
universe enters a thermal equilibrium, radiation-domination epoch, Ny, or, equivalently, the
temperature at which this transition occurs, T1.. This transition necessarily occurs before big
bang nucleosynthesis (BBN), and therefore Ty, > O (1 MeV).! However, while BBN bounds
place a lower bound on the onset of radiation domination at a temperature of Tyc = 1 MeV,
unconventional dynamics below the scale of electroweak symmetry breaking at about 100 GeV
could potentially have interesting implications for baryogenesis, and thus values of T, below
100 GeV should be handled with some caution, particularly if the equation of state during
reheating is greater than 1/3 [42, 43]. Standard reheating assumes the weakly coupled decay
of an oscillatory inflaton field at the end of inflation, and thus a reheating period charac-
terized by w = 0, but many more complex models have been put forward [42, 44-50]. For
such models, the average equation of state W can go as high as w = 1, though any equation
of state greater than 1 requires violating the dominant energy condition of general relativ-
ity /causality, and thus we only consider w < 1. For our purposes, we make the simplifying
assumption the equation of state is functionally constant, or at least that we can approximate
it as holding constant at the average value.

To determine the viability of inflationary models, we must relate present day observa-
tions to the dynamics of the inflaton field during the inflationary period. This is done by
relating a comoving scale, k, observed today, to the point during inflation when fluctuations
on that scale exited the horizon, defined by

N, =1In (““d> (3.1)

aj

'This is a rough estimate. For a more accurate treatment, see Refs. [40, 41].



To find the relationship between scale k and Ni, we begin with the expression relating a given
wavenumber k to the size of the sound horizon, (aH), when it froze out during inflation,
k = (aH),. We rewrite this as

i () = e o () o

expanding the log to cover the various evolutionary epochs as

k (aH) (aH) (aH) (aH),
In < > =In <k) +1In <end +1In RD | 1 n ), (3.3)
aoHo (aH)epq (aH)gp (aH)eq (aH),
where the subscript “end” represents the value at the end of inflation, the subscript “RD”
is equivalent to “re”, indicating the value at the end of reheating/the beginning of radiation

domination, and “eq” indicates the value at matter-radiation equality. Assuming a constant
equation of state, we next use the identity

aH o o~ (1H3w)/2) (3.4)

and the definition of Ny given in Eq. 3.1. Substituting these two identities into 3.3, we have

k H, 1+ 3w (aH )y,
1 = —N, 1 Nie — N \ . 3.5
n<aoH0> L n<Hend>+< 2 > RD + n<(aH)o (3:5)

Here, Ngrp is the number of e-folds of expansion between the onset of radiation domination
and matter-radiation equality. To evaluate this, we rewrite it as

arD Tre 1 gxS [Tre]
NRD:1n< )z—ln( >—ln< . 3.6
Qeq Teq 3 9+ [Teq] (30
From the Planck values for the matter and photon densities, [22], we can write the redshift
of matter/radiation equality as

a Teq th2
1 e pr— — pr— pu— p— 4 4’ .
e (aeq> <T0> <Q'yh2 340 3.7)

Teq = 3404Tp = 9295K = 8.01 x 107! GeV. (3.8)

so that

We next derive an equation for (aH), /(aH), from the Friedmann equation, H2/HZ =
Qa3+ Q,ya_4 + Qa,

(aH)? 1
(aH)? T (1+2)2 [Quno(1+2)° + Qo(1+2)* + Qo] - (3.9)
0
Taking z = zeq = 3404, {2,,,0 = 0.3166, 2,0 = 9.32 X 107%, and Qa9 = 1— Qo — Q0 = 0.6833,
we find
n <(aH)e‘1> = 3.839 (3.10)
(aH),



Plugging these values into 3.5, we find a straightforward equation for N,

k Tre 1 gxS {Tre] 1+ 3w Hk
Ny =—1In <a0H0> +1In (1025eV> +§ In (g*s[Teq]> + < 5 ) Nie+1n <Hend> +61.62,
(3.11)
an equation which explicitly shows the dependence of Nj on the reheating epoch. Since the
values of 7, ng, and the normalization of the potential (and therefore V,q) all depend on
evaluating certain inflationary parameters at the point when the pivot-scale modes froze out,
changing N changes that evaluation point, and results in shifting all of these, shifts which
need to be taken into account when evaluating the observable parameters of inflationary
models.

3.1 The effects of w and Tic.

In this section, we discuss how w influences Ny (and consequently r and ng) in terms of two
cases: W > 1/3 and w < 1/3. This distinction reflects the fact that @w = 1/3 corresponds to
instantaneous reheating followed by radiation domination, as it implies that we have radiation
domination for the entire period between the end of inflation and BBN. The cases w < 1/3 and
w > 1/3 exhibit drastically different behaviors, which require separate discussions. While
it does not have any other direct impact, increasing the length of the transition period
(by decreasing T}.) increases the effect relative to instantaneous reheating by increasing the
duration of the period of expansion with equation of state .

To obtain a bound, we take the limit of the longest possible w-period, so that T, =
TseN. The first equation we use to parametrize this period is:

pad_ (s ) 512)
PBBN GBBN

We further take equations for penq and pppn [42]:

3
Pend = ivend, (3.13)
and
2
™ 4
PBBN = %QBBNTBBNa (3.14)

Y

where “gppn” represents the number of relativistic degrees of freedom at BBN. While the
value of V4 depends on both the model and the number of e-folds of inflation, for simplicity
we first hold it constant, so we can substitute these into Equation (3.12). For ease of notation,
we define a parameter I' = peng/pBBN, and combine Egs. (3.12), (3.13), and (3.14):

Pend %Venda _ < Qend >3(1+w) -7

- 2
PBBN  Z=geBNTHpEN- aBBN

(3.15)

Meanwhile, we know that (aH )_1 o aIT3)/2 56 that we can define the change in the size
of the comoving horizon during the transition period as

(aH) |y (aBBN> 3(1+30)
(aH)_l |end ‘

(3.16)

Gend



Number of e-folds of inflation as a function of w for Natural Inflation
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Figure 1. Number of e-folds of inflation vs equation of state during w period.

By combining equations 3.15 and 3.16, we write the change in (aH )_1 during the w period
as

-1 _
M = F61(ILEE) =TI'w, (3.17)
(aH) ™" [ena

which we can compare to instantaneous reheating by taking the ratio of I'z; to I'y (the value
of I assuming instantaneous reheating and subsequent radiation domination):
o _ pd(eE-9), (3.18)
Iy
Examining this expression, we can see that, for any fixed value of ', having w > 1/3 leads
to increased change in the size of the horizon between the end of inflation and Big Bang
Nucleosynthesis, whereas W < 1/3 results in a reduced change in the size of the horizon
during this period. This explains the impact w has on Ni, and consequently ng and r: our
reconstruction of the horizon size at the end of inflation depends on the evolution of the
horizon between the end of inflation and BBN, and relate to match the pivot scale, w > %
requires more e-folds, while w < % requires fewer e-folds, as shown in Figure 1.

3.2 Methodology

In order to exactly calculate the r and ng values generated by each combination of inflationary
potential and set of reheating parameters, we created a Mathematica code which takes an
un-normalized inflationary potential and a corresponding mass scale p (in this case, V(0) =



1+cos @, where 0 = ¢/u1) and the two reheating parameters (average equation of state during
reheating, w, and the temperature at the onset of radiation domination, T;.) and outputs
predicted values of Ni, r and ng.

For the first step, the desired output is the potential at the end of inflation (Vg,q) and
Hj,, both of which depend on the number of e-folds of inflation (Ny). The formula for Vi,q
can be written in terms of 6, and 6.,q, where 0.,q is the value of the field at the end of
inflation, and 6}, is the value at N e-folds, as:

=" (v (V) o

[30] Here M = mp)/p, As is the initial amplitude of the pivot-scale curvature fluctuations
(taken here to be 2.105 x 1079, in accordance with the most recent Planck results, [22]),
and Oepq is found by numerically solving the equation for €(fenq) = 1, while 6y is found by

numerically solving
8m [lend [V(6)
N = — de 3.20

=i ), [vo) (3:20)

for 0y given a certain value of Ni. Similarly, f,q is found by numerically solving the equation
for €(feng) = 1. (Here a prime indicates a derivative taken with respect to 6, rather than ¢.)
We write the equation for Hj in terms of the same parameters, as

Hy = mpl\/irg (‘;;g:;) . (3.21)

By rearranging equation 2.4 from [42] for Ny,

1 45‘/:311(1
Nre = — 5 3.22
3(1+w)  72g.s (Tre) TE (322)
and combining it with equations 3.11, 3.19 and 3.21, we find an equation for T;e:
4 1/4 ltw
Gy T 2(1 + 3w)
The 1 g«S (Tre) Hy,
Ny—In————-In| ——= 1 —1 —61.62 2
exp[ & n1025eV 3n<g*S(Teq) +na0H0 nHend 61.62] , (3.23)

which we finally solve numerically to find the corresponding value of N} for the specified
initial value parameters, giving us all the information we require to calculate the actual
observables, r and ng.

We compare the model predictions to the regions of the r / ng plane which are al-
lowed by the Planck 2018 TT/TE/EE temperature and polarization data [22-26], and the
BICEP2/Keck Array 2015 combined polarization data [28]. We include Baryon Acoustic
Oscillation (BAO) data from the Sloan Digital Sky Survey Data Release 12 [51], the 6DF
Data Release 3 [52], and the Sloan Digital Sky Survey Data Release 7 main galaxy sample
(MGS) sample [53]. The allowed regions are calculated numerically the CosmoMC Markov
Chain Monte Carlo (MCMC) sampler [54], and the CAMB Boltzmann code. We fit to a
seven-parameter ACDM+r model with the following parameters:

e Baryon density k2.



Dark matter density Qch?.

Angular scale of acoustic horizon 6 at decoupling.

Reionization optical depth 7.
e Power spectrum normalization Ag.

Tensor-to-scalar ratio r, calculated at a pivot scale of k = 0.05 hMpc~!.

e Scalar spectral index ng.

In our analysis, we assume curvature )y is zero, and the Dark Energy equation of state is
w = —1. We set the number of neutrino species N,, = 3.046, and neutrino mass m, = 0.06 eV.
We apply Metropolis-Hastings sampling to 8 chains running in parallel, and use a convergence
criterion for the Gelman-Rubin parameter R of R — 1 < 0.05.

4 Results

4.1 Case 1: Conventional Post-Inflationary Dynamics

We first consider the simple case of conventional reheating directly to a radiation-dominated
universe after inflation. Since, near the minimum, the mass term dominates the potential,
the average equation of state during reheating is w = 0, though the duration of reheating
can vary. This case, shown in Fig. 2, is disfavored at greater than 95% confidence, and
decreasing T;. decreases the number of e-folds of inflation, exacerbating the inconsistency
with data. Note that in the limit of instantaneous reheating, w becomes irrelevant; the
instantaneous reheating line on figures 2 and 3 are identical, and equivalent to the scenario
where w = 1/3.

4.2 Case 2: General Post-Inflationary Dynamics

While a cosine potential results in an equation of state during reheating of w = 0, ‘reheating’
doesn’t necessarily have to be the only thing that occurs during the w period. If we posit some
other interaction or field domination between the end of inflation and BBN, either during or
after the decay of the inflaton field itself, then it could be possible to create a situation where
w is greater than 1/3 for an arbitrarily long period between inflation and BBN. If we allow
w > %, we can increase N, which shifts the r —ns curves down and to the right, reducing the
tension with observations. Ignoring SHOES, if we take the limit w = 1, we find that Natural
Inflation agrees with the 95% range of current observations for T}, < 10'3 GeV, and the 68%
region if we extend the w period past the electroweak scale at 100 GeV, as shown in Figure
3. Similarly, if we take the limit of T;, = 1 MeV, using a value of w >~ (.38 brings the r —ng
curve into the 95% range, and w >= 0.75 takes us into the 68% region, as shown in Figure
4. However, as shown in Ref. [43], we must be careful when extending reheating into late
times, especially when it represents a ‘stiff” epoch (i.e. w > 1/3), since the energy density of
the gravitational waves is amplified during such a period, and we can tightly constrain the
stochastic GW background at BBN.



Varying T,. for Natural Inflation vs Planck 2018 + BICEP/Keck(BK15) Polarization + BAO, w=0
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Figure 2. Tensor/scalar ratio r vs spectral index ng for a variety of values of Ty, assuming

w = 0. The blue shaded region represents the allowed region for Planck 2018 + BICEP /Keck(BK15)
Polarization + BAO, while the black line contours represent the addition of the SHOES Hj data.
(Given the statistically significant tension between the SHOES constraint on Hy and the constraint
from Planck, combining the two in a Bayesian fit is likely of limited value. We include the SHOES
constraint only to show that our conclusion is not sensitive to the assumed value of Hp.) Instantaneous
reheating comes closest to matching observations, but is still excluded from the 95% confidence region.
Decreasing Ty only increases the tension, moving the r — ng curves up and to the left, away from the

allowed region.

~10 -



Varying T for Natural Inflation vs Planck 2018 + BICEP/Keck(BK15) Polarization + BAO, w=1.0
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Figure 3. Curves in the r — ng plane for a variety of values of T}, in the limit of w = 1. The blue

shaded region represents Planck 2018 + BICEP/Keck(BK15) Polarization + BAO, while the black

line contours represent the addition of the SHOES H, data. Note that, although the range in ng is

different, the curve representing instantaneous reheating here is exactly equivalent to its counterpart

on Figure 2.
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Varying w for Natural Inflation vs Planck 2018 + BICEP/Keck(BK15) Polarization + BAO, Tre =1 MeV

w=1.0
- w=0.8 /
0.101 ==- w=0.6 .
— W=0.4 /
0.08
[
0.06
0.04
0.02
0.95 . . 0.98

Figure 4. Curves in the r — ng plane for a variety of values of w in the limit of T3, = 1 MeV. The
blue shaded region represents Planck 2018 + BICEP/Keck(BK15) Polarization + BAO, while the

black line contours represent the addition of the SHOES H, data.
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5 Conclusions

In this paper, we have shown that the original model of Natural Inflation using a cosine
potential is inconsistent with constraints on r and ng at greater than 95% confidence. How-
ever, if we allow for unconventional reheating characterized by a period of w > 1/3, Natural
Inflation can be brought into agreement with current observations. While it is difficult to
bring these models into within the 68% confidence region without extending reheating into
temperatures between electroweak symmetry breaking and nucleosynthesis, it is entirely pos-
sible to bring them into the 95% confidence region, and by extending reheating below the
electroweak scale, Natural Inflation with nonstandard reheating can generate r — n, values
well within the 68% confidence range, down to a minimum r value of r ~ 0(0.01). However,
if future CMB experiments fail to detect tensor modes on that scale, even this extension
of the parameter space accessible to Natural Inflation models will be insufficient, and this
choice of scalar field potential will be ruled out entirely.
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