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Abstract

Generative modeling has recently shown great
promise in computer vision, but it has mostly fo-
cused on synthesizing visually realistic images.
In this paper, motivated by multi-task learning of
shareable feature representations, we consider a
novel problem of learning a shared generative
model that is useful across various visual per-
ception tasks. Correspondingly, we propose a
general multi-task oriented generative modeling
(MGM) framework, by coupling a discrimina-
tive multi-task network with a generative network.
While it is challenging to synthesize both RGB
images and pixel-level annotations in multi-task
scenarios, our framework enables us to use syn-
thesized images paired with only weak annota-
tions (i.e., image-level scene labels) to facilitate
multiple visual tasks. Experimental evaluation
on challenging multi-task benchmarks, including
NYUv2 and Taskonomy, demonstrates that our
MGM framework improves the performance of
all the tasks by large margins, consistently outper-
forming state-of-the-art multi-task approaches in
different sample-size regimes.

1. Introduction

Seeing with the mind’s eye — creating internal images of
objects and scenes not actually present to the senses — is
perhaps one of the hallmarks in human cognition (Pelaprat
& Cole, 2011). For humans, this visual imagination inte-
grates learning experience and facilitates learning by solv-
ing different problems (Egan, 1989; Pelaprat & Cole, 2011;
Egan, 2014; Pearson, 2019). Inspired by such ability, there
has been increasing interest in building generative models
that can synthesize images (Goodfellow et al., 2014; Sohl-
Dickstein et al., 2015; Van Den Oord et al., 2017; Kingma &
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Dhariwal, 2018; Wiles et al., 2020). Yet, most of the effort
has focused on generating visually realistic images (Brock
et al., 2019; Zhang et al., 2019), which are still far from
being useful for machine perception tasks (Wu et al., 2017;
Shmelkov et al., 2018; Borji, 2019). Even though recent
work has started improving the “usefulness” of synthesized
images, this line of investigation is often limited to a single
specific task (Souly et al., 2017; Nguyen-Phuoc et al., 2018;
Zhu et al., 2018; Sitzmann et al., 2019). Could we guide
generative models to benefit multiple visual tasks?

While similar spirits of shareable feature representations
have been widely studied as multi-task learning or meta-
learning (Finn et al., 2017; Zamir et al., 2018), here we
take a different perspective — learning a shareable genera-
tive model across various tasks (as illustrated in Figure 1).
Leveraging multiple tasks allows us to capture the underly-
ing image generation mechanism for more comprehensive
object and scene understanding than being done within indi-
vidual tasks. Taking simultaneous semantic segmentation,
depth estimation, and surface normal prediction as an ex-
ample (Figure 1), successful generative modeling requires
understanding not only the semantics but also the 3D geo-
metric structure and physical property of the input image.
Meanwhile, a learned generative model facilitates the flow
of knowledge across tasks, so that they benefit one another.
For instance, the synthesized images provide meaningful
variations in existing images and could work as additional
training data to build better task-specific models. These
variations are especially critical when the data is limited.

This paper thus explores multi-task oriented generative mod-
eling (MGM), by coupling a discriminative multi-task net-
work with a generative network. To make them cooper-
ate with each other, a straightforward solution would be
to synthesize both RGB images and corresponding pixel-
level annotations (e.g., pixel-wise class labels for semantic
segmentation and depth map for normal prediction). In
the single task scenario, existing work trains a separate
generative model to synthesize paired pixel-level labeled
data (Choi et al., 2019; Sandfort et al., 2019) and produce
an augmented set. However, these models are still highly
task-dependant, and extending them to multi-task scenarios
becomes difficult. A natural question then is: Do we actu-
ally need to synthesize paired image and multi-annotation
data to be useful for multi-task visual learning?
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Figure 1: (a): Traditional multi-task learning framework that learns a shared feature representation vs. (b): our proposed
multi-task oriented generative modeling that additionally learns a shared generative model across various visual tasks.

Our MGM addresses this question by proposing a general
framework that uses synthesized images paired with only
weak annotations (i.e., image-level scene labels) to facili-
tate multiple visual tasks. Our key insight is to introduce
auxiliary discriminative tasks that (i) only require image-
level annotation or no annotation, and (ii) correlate with the
original multiple tasks of interest. To this end, as additional
components to the discriminative multi-task network, we in-
troduce a refinement network and a self-supervision network
that satisfy these properties. Through joint training, the
discriminative network explicitly guides the image synthesis
process. The generative network also contributes to further
refining the shared feature representation. Meanwhile, the
synthesized images of the generative network are used as
additional training data for the discriminative network.

In more detail, the generative network synthesizes images
conditioned on scene labels, leading to naturally paired im-
age and scene-label data. The refinement network performs
scene classification on the basis of the multi-task network
predictions, which requires only scene labels. The self-
supervision network can be operationalized on both real
and synthesized images without reliance on annotations.
With these two modules, our MGM is able to learn from
both (pixel-wise) fully-annotated real images and (image-
level) weakly-labeled synthesized images. We instantiate
MGM with the representative encoder-decoder based multi-
task network (Zamir et al., 2018), self-attention generative
adversarial network (SAGAN) (Zhang et al., 2019), and
contrastive learning based self-supervision network (Chen
et al., 2020). Note that our framework is agnostic to the
choice of these model components.

We evaluate our approach on standard multi-task bench-
marks, including the NYUv2 (Nathan Silberman & Fergus,
2012) and Taskonomy (Zamir et al., 2018) datasets.
Consistent with the previous work (Standley et al., 2020;
Sun et al., 2020), we focus on three representative tasks:
semantic segmentation, depth estimation, and surface
normal prediction. The evaluation shows that: (1)
MGM consistently outperforms state-of-the-art multi-task
approaches by large margins in different sample-size
regimes. (2) With the increasing number of synthesized
samples, the performance of MGM consistently improves

Model ST STq
mLoss (J) | 0.111  0.148

Table 1: Pilot experiment for semantic segmentation on the
Tiny-Taskonomy dataset. Directly using images synthesized
by an off-the-shelf generative model (self-attention GAN)
may hurt the performance on the downstream task. ST:
single-task model trained on real images only; STq: the
same model trained on both real and synthesized images.

and it also almost reaches the performance upper-bound
that trains with weakly-annotated real images. (3) Our
framework is scalable and can be extended to more visual
tasks. The code of this work is available at https:
//github.com/zpbao/multi-task-oriented_
generative_modeling.

2. Pilot Study

This pilot study provides an initial experimentation, which
validates the importance and challenge of our proposed
problem of task oriented generative modeling and further
motivates the development of our method. Specifically, we
show that directly using images synthesized by an off-the-
shelf generative model that is trained with the photo-realism
objective is not helpful for downstream pixel-level percep-
tion tasks. Such difficulty exists even for a single task, let
alone for the more complicated multi-task scenario. Note
that the goal here is not to motivate the specific compo-
nents and design choices in our framework, which will be
explained in Sec. 3.

Experimental Design: For ease of analysis, here we focus
on a single task — semantic segmentation, and use the Tiny-
Taskonomy dataset (Zamir et al., 2018). The dataset split
and evaluation metric are the same as our main experiments
(See Sec. 4 for details). We train a self-attention genera-
tive adversarial network (SAGAN) (Zhang et al., 2019) on
Tiny-Taskonomy, and use it to generate the same number of
synthesized images as the real images to augment the train-
ing set. Figure 6 (a) visualizes that the images synthesized
by SAGAN are photo-realistic.

How to Generate Pixel-Level Annotations? One remain-
ing question is how to generate pixel-level annotations for
these images synthesized by SAGAN. While prior work
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Figure 2: Architecture of our proposed multi-task oriented generative modeling (MGM) framework. There are four main
components in the framework: Multi-task network to address the target multiple pixel-level prediction tasks; self-supervision
network to facilitate representation learning using images without any annotation; refinement network to perform scene
classification using weak annotation; image generation network to synthesize useful images that benefit multiple tasks.

has explored synthesizing both images and their pixel-level
annotations for specific tasks (Choi et al., 2019; Sandfort
et al., 2019), these annotations are still not reliable. For
ease of analysis, in this study, we factor out the effect of
annotations and assume that we have an oracle annotator.
We use the annotator from Taskonomy (Zamir et al., 2018),
which is a powerful fully-supervised semantic segmentation
network. In fact, the ground-truth of semantic segmentation
on Taskonomy is produced as the output of this network
rather than labeled by humans. By doing so, we ensure
that the annotations of the synthesized images are “accurate”
and consistent with how the real images are labeled.

Comparisons: Single-Task (ST) model is our baseline
which follows the architecture of the Taskonomy single-task
network. ST is trained on real images only. ST is the ST
model trained on the augmented set. Table 1 reports the
results of these two models, and ST is worse than ST.

Do Photo-Realistic Images Synthesized off the Shelf Help
Downstream Tasks? From Table 1, the answer is NO. Even
though the images are synthesized to be photo-realistic (Fig-
ure 6 (a)) by one of the state-of-the-art generative models
and are labeled by the oracle annotator, they still cannot
benefit the downstream task. This is probably because these
images are synthesized off the shelf without “knowing” the
downstream task. Our key insight then is that we need to
explicitly use the downstream task objective to guide the
image synthesis process. Moreover, here we focused on
a single task and assumed that we had the oracle annota-
tions. However, an oracle annotator is difficult to obtain in
practice, especially for multiple tasks. Also, existing work
cannot synthesize paired images and pixel-level annotations

for multiple tasks (Choi et al., 2019; Sandfort et al., 2019).
To overcome these challenges, in what follows we demon-
strate how to facilitate visual tasks with synthesized images
that (i) are guided by the downstream task objective and
(ii) only need image-level scene labels. Our approach is
effective irrespective of a single task or multiple tasks.

3. Method

‘We propose multi-task oriented generative modeling (MGM)
to leverage generative networks for multi-task visual learn-
ing, as summarized in Figure 2. In this section, we first
formalize the novel problem setting of MGM. Then, we
explain the general framework and an instantiation of the
MGM model with representative multi-task learning and im-
age generation approaches. Finally, we discuss the detailed
training strategy for the framework.

3.1. Problem Setting

Multi-task Discriminative Learning: Given a set of n
visual tasks 7 = {T3,Ts,--- ,T,}, we aim to learn a dis-
criminative multi-task model M that is able to address all of
these tasks simultaneously: M(z) — g = (74, %%, ,7"),
where z is an input image and 7/’ is the prediction for task
T;. Here we focus on the type of per-pixel level predic-
tion tasks (e.g., semantic segmentation or depth estimation).
We treat image classification as a special task, which pro-
vides global semantic description (i.e., scene labels) of im-
ages and only requires image-level category annotation c.
Therefore, the set of fully-annotated real data is denoted as
Sreal = {(xjv yjl'y yjz'v Tty y?’ Cj)}‘

Generative Learning: Meanwhile, we aim to learn a gen-
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erative model G that produces a set of synthesized data but
with only corresponding image-level scene labels (weak an-
notation): G(c, z) — T, where z is a random input, and
is a synthesized image. The scene label of 7 is denoted as
¢ = c. We denote the set of synthesized images and their
corresponding scene labels as Sgyn = {(Zg, k) }-

Cooperation Between Discriminative and Generative
Learning: Our objective is that the discriminative model
M and the generative model G cooperate with each other
to improve the performance on the multiple visual tasks 7.
During the whole process, the full model only gets access
to the fully-labeled real data S,c,), and then the genera-
tive network G is trained to produce the synthesized set
Seyn. Finally, M effectively learns from both S,ea1 and
iyn. Note that, unlike most of the existing work on image
generation (Brock et al., 2019; Zhang et al., 2019), we do
not focus on the visual realism of the synthesized images
Z. Instead, we hope G to capture the underlying image
generation mechanism that benefits M.

3.2. Framework and Architecture

Figure 2 shows the architecture of our proposed MGM
framework. It contains four components: the main dis-
criminative multi-task network M, the image generation net-
work G, the refinement network R, and the self-supervision
network. By introducing the refinement network and the
self-supervision network, the full model can leverage both
fully-labeled real images and weakly-labeled synthesized
images to facilitate the learning of latent feature represen-
tation. These two networks thus allow M and G to better
cooperate with each other. Notice that our MGM is a model-
agnostic framework, and here we instantiate its components
with representative models. In Sec. 4.3, we show that MGM
works well with different choices of the model components.

Multi-task Network (M): The multi-task network aims to
make predictions for multiple target tasks based on an input
image. Consistent with the most recent work on multi-task
learning, we instantiate an encoder-decoder based architec-
ture (Zamir et al., 2018; Zhang et al., 2019; Sun et al., 2020).
Considering the trade-off between model complexity and
performance, we use a shared encoder E to extract features
from input images, and individual decoders for each target
task. We adopt a ResNet-18 (He et al., 2016) for the encoder
and symmetric transposed decoders following Zamir et al.
(2018). For each task, we have its own loss function to
update the corresponding decoder and the shared encoder.

Image Generation Network (G): The generative model
G is a variant of generative adversarial networks (GANs).
We include the generator in our framework, but this module
also has a discriminator during its own training. G takes
as input a latent vector z and a category label ¢, and syn-
thesizes an image belonging to category c. Considering the

trade-off between performance and training cost, we instan-
tiate G with a self-attention generative adversarial network
(SAGAN) (Zhang et al., 2019). We achieve conditional im-
age generation by applying conditional batch normalization
(CBN) layers (De Vries et al., 2017):

_ Jiewh —E[fe.]
CBN (fi,c,n,w | Ve, Be) = e TIRET
where f; . n,w is an extracted c-channel 2D feature for the
i-th sample, and € is a small value to avoid collapse. 7,
and [, are two parameters to control the mean and variance
of the normalization, which are learned by the model for
each class. We use hinge loss for the adversarial training.
Notice that the proposed framework is flexible with different
generative models, and we also show the effectiveness of
using DCGAN (Radford et al., 2015) in Sec. 4.3.

+ B, (D

Refinement Network (R): As one of our key contributions,
we introduce the refinement network R to further refine
the shared representation using the global scene category
labels. R takes the predictions of the multi-task network
as input and predicts the category label of the input image.
Importantly, because it only requires category labels, R can
be effortlessly operationalized on the “weakly-annotated”
synthesized images. Through refining the shared representa-
tion with the synthesized images, R also provides implicit
guidance to the image generation network G, enforcing the
semantic consistency of the synthesized images with G.

We use cross-entropy based scene classification loss to train
the refinement network R. And we adopt two different strate-
gies for real and synthesized images, respectively. For the
fully-annotated real images (x, y, ¢), we use the classifica-
tion loss to update R and then the encoder E in the multi-task
network M with the decoders frozen. For the synthesized
images (7, ¢), since their multi-task predictions produced
by M might not be reliable, we apply an algorithm inspired
by Expectation-Maximization (EM) (Dempster et al., 1977).
At the Expectation step, we back-propagate the classifica-
tion loss via R to estimate the /atent multi-task ground-truth.
At the Maximization step, we update the encoder E with R
and the decoders frozen.

More specifically, we model the whole multi-task network
and refinement network as a joint probability graph:

P(z,y,¢;0,0') = P() (HP (yi | z; 9)) P(c|y:0'),
i=1
2)

where z is an input image, ¥y is the multi-task predictions,
c is the scene label, 6 is the parameters of the multi-task
network, and ¢’ is the parameters of the refinement network.
The parameters 6 and 0’ are learned to maximize the joint
probability. For data samples in S,e¢,1, We maximize the
joint probability and update both # and ¢’. In particular, 6’
is updated for training the refinement network:

0" = argmax P(c | y;0"). 3)
0/
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Figure 3: Joint training of the multi-task network and the
image generation network. The multi-task network provides
useful feature representation to guide the image generation
process, while the generation network refines the shared
representation through back-propagation.

Algorithm 1 Training procedure of MGM

Initialization:
emax: Maximum number of epochs for the training;
M: Multi-task network, G: Image generation network;
E: Multi-task encoder, R: Refinement network;
Escis: Self-supervision network encoder;
N': minibatch size;
for e = 1 to e;ax do
Split Syeal into minibatches with size N: Smini
for (z,y,c) € Smini do

Y =M(z)
Lmusi (Y, 9) — update M;
“UR(Y)

Lcr(c,é) — update R, E;
Sample 2N augmented images Taug
ACNTchnt(xaug) — Update E, Escir;
Use Lcan to train G;
(z,¢) = G(z,c),c=c
Lce(¢,R(IM(T))) — update E ;
Sample 2N augmented synthesized images ZTaug
LNT—Xent (Taug) — update E.
end for
end for

For data samples in g'syn, we only update 6 in an EM-like
manner with 6’ frozen. At the Expectation step, we estimate
the latent multi-task ground-truth by:
y' = argmax P (y | ;0) P(¢ | y;0'). )
y
Then at the Maximization step, we back-propagate the error

between y' and 7 (the multi-task predictions) to update 6
(more precisely, the multi-task encoder with the decoders
frozen):

6* = argmax P (yJr | z; 0) . (5)

Self-supervision Network: The self-supervision network,
operationalized on both real and synthesized images, facili-
tates representation learning of the encoder E by performing
self-supervised learning tasks on images without any anno-
tation. We modify SimCLR (Chen et al., 2020), one of the
state-of-the-art approaches, as our self-supervision network.

This network contains an additional embedding network
Escir, working on the output of the multi-task encoder E,
to obtain a 1D latent feature of the input image: u =
Eccif (E(z)). Then, it performs contrastive learning with
these latent vectors. Specifically, given a minibatch of
N images, this network first randomly samples two trans-
formed views of each source image as augmented images

(See Sec. A in the appendix), resulting in 2NV augmented
images. For each augmented image, there is only one pair
of positive augmented examples from the same source im-
age, and other 2(IN — 1) negative pairs. Then the network
jointly minimizes the distance of positive pairs and max-
imizes the distance of negative pairs in the latent space,
through the normalized temperature-scaled cross-entropy
(NT-Xent) loss (Chen et al., 2020):

. exp (dis (pi, 1) /7) ,
SRl iz exp (dlis (15, pux) /7)
where ¢; ; is the NT-Xent loss for a positive pair of examples
(4, pt5) in the latent space. Tgzq € 0,1 is an indicator
function, evaluating to 1 if k& # ¢, and 7 is a temperature
hyper-parameter. dis (u;, £4;) is a distance function, and we
use cosine distance following Chen et al. (2020). This loss
is further back-propagated to refine the multi-task encoder
E. Notice that other types of self-supervised tasks are ap-
plicable as well. To demonstrate this, in Sec. 4.3 we also
report the result with another task — image reconstruction.

14
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3.3. Interaction Among Networks

Cooperation Through Joint Training: We propose a sim-
ple but effective joint training algorithm shown in Figure 3.
The image generation network G takes the feature repre-
sentation of the multi-task encoder E, which is transformed
via an additional embedding layer and added with some
Gaussian noise, as the latent input z to conduct conditional
image generation. Hence, the generation network obtains
additional, explicit guidance (i.e., extra effective features)
from the multi-task network to facilitate the generation of
“better” images — images that may not look more realistic
but are more useful for the multiple target tasks. Then, the
generation error of G will be back-propagated to E to further
refine the shared representation. This process can be also
viewed as introducing image generation as an additional
task in the multi-task learning framework.

Training Procedure: We describe the procedure in Algo-
rithm 1 and further explain it in the appendix.

4. Experiments

To evaluate our proposed MGM model and investigate the
impact of each component, we conduct a variety of experi-
ments on two standard multi-task learning datasets. We also
perform detailed analysis and ablation studies.

4.1. Datasets and Compared Methods

Datasets: Following the work of Sun et al. (2020) and Stan-
dley et al. (2020), we mainly focus on three representative
visual tasks in the main experiments: semantic segmenta-
tion (SS), surface normal prediction (SN), and depth esti-
mation (DE). At the end of this section, we will show that
our approach is scalable to an additional number of tasks.
We evaluate all the models on two widely-benchmarked
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Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Model ST MT MGM ST MT MGM MGM, ST MT MGM MGM,
SS-mIOU (1) 0.249 0.256 0.264 0.230 0.237 0.251 0.258 0.199 0.207 0.229 0.231
NYU +0.008 £0.005 +£0.005 | +£0.009 £0.006 £0.005 | £0.004 | £0.004 F0.007 =£0.004 | £ 0.005
v2 DE-mABSE (}) 0.748 0.708 0.698 0.837 0.819 0.734 0.723 0.908 0.874 0.844 0.821
£0.019 £0.021 +0.014 | £0.017 £0.018 £0.011 | £0.0/0 | £0.017 £0.015 =£0.011 | &+ 0.009
SN-mAD (|) 0.273 0.283 0.255 0.309 0.291 0.273 0.270 0.312 0.296 0.277 0.274
+0.06 +0.008 +0.010 | £0.008 £0.010 +£0.009 | +0.006 | £0.007 =£0.007 =+£0.006 | +0.005
Ti SS-mLoss (1) 0.111 0.137 0.106 0.120 0.138 0.114 0.112 0.119 0.141 0.117 0.115
mny +0.002 £0.003 +£0.003 | +£0.003 +0.002 =£0.003 | £0.002 | £0.003 £0.002 =£0.002 | £ 0.002
o%})sé_y DE-mLoss (1) 1.716 1.584 1.472 1.768 1.595 1.499 1.378 1.795 1.692 1.585 1.580
) +0.006 £0.008 +£0.006 | +0.007 £0.009 £0.008 | £0.007 | £0.010 F0.008 =£0.009 | £ 0.008
SN-mLoss (1) 0.155 0.153 0.145 0.157 0.156 0.147 0.140 0.154 0.152 0.148 0.142
+0.003 £0.003 £0.002 | =0.002 £0.002 £0.002 | £0.00/ | £0.002 £0.002 =£0.003 | £ 0.002

Table 2: Main results (mean =+ std) on the NYUv2 and Tiny-Taskonomy datasets. SS: semantic segmentation; DE: depth
estimation; SN: surface normal prediction. 1: higher is better; |: lower is better. We use different metrics on the two datasets,
following the existing protocol. Our MGM consistently and significantly outperforms both single-task (ST) and multi-task

(MT) baselines, even reaching the performance upper-bound of training with weakly-annotated real images (MGM,,).
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Figure 4: Visualization and error comparison of the multi-task prediction outputs in the 50% data setting on NYUv2. The
prediction results of MGM are quite close to the ground-truth, significantly outperforming the baselines. The grey color in
the SN ground-truth and results denotes that there is no annotation provided in the boundaries.

datasets: NYUv2 (Nathan Silberman & Fergus, 2012; Eigen
& Fergus, 2015) and Tiny-Taskonomy (Zamir et al., 2018).
See Sec. D in the appendix for more details.

Compared Methods: We mainly focus on comparing with
two widely-used discriminative baselines: Single-Task (ST)
model follows the architecture of the Taskonomy single-
task network (Zamir et al., 2018), and addresses each task
individually; Multi-Task (MT) model refers to the sub-
network for the three tasks of interest in Standley et al.
(2020). These two baselines can be viewed as using our
multi-task network without the proposed refinement, self-
supervision, and generation networks. Note that our work is
the first that introduces generative modeling for multi-task
learning, and there is no existing baseline in this direction.

Our MGM is the full model trained with both fully-labeled
real data and weakly-labeled synthesized data, which is
produced by the generation network through joint training.
In addition, to further validate the effectiveness of our MGM
model, we consider its variant model MGM, that is trained
with both fully- and weakly-labeled real data. MGM,; is
used to show the performance upper-bound in the semi-
supervised learning scenario, where the synthesized images
are replaced by the real images in the dataset. The resolution

is set to 128 for all the experiments. For all the compared
methods, we use a ResNet-18 like architecture to build
the encoder and use the standard decoder architecture of
Taskonomy (Zamir et al., 2018).

Data Settings: We conduct experiments with three different
data settings: (1) 100% data setting; (2) 50% data setting;
and (3) 25% data setting. For each setting, we use 100%,
50%, or 25% of the entire labeled training set to train the
model. For MGM,.,, we add another 50% or 25% of weakly-
labeled real data in the last two settings. For MGM, we
include the same number of weakly-labeled synthesized
data in all three settings.

Evaluation Metrics: We follow the standard metrics on
these two datasets for comparison with prior work. For
NYUv2, following the metrics in Eigen & Fergus (2015);
Sun et al. (2020), we measure the mean Intersection-Over-
Union (mIOU) for the semantic segmentation task, the mean
Absolute Error (mABSE) for the depth estimation task, and
the mean Angular Distance (mAD) for the surface normal
prediction task. For Tiny-Taskonomy, we follow the evalua-
tion metrics of previous work (Zamir et al., 2018; Standley
et al., 2020; Sun et al., 2020) and report the averaged loss
values on the test set.
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Model MGM,; MGM,; MGM
SS-mIOU (1) 0.243 0243 0.251
DE-mABSE (}) | 0.799 0.763  0.734
SN-mAD (() 0.287 0281 0273

Table 3: Comparison of our MGM model with its variants on
NYUv2. MGM, q: without synthesizing images; MGM ;:
without joint learning. Our MGM outperforms single-task
and multi-task baselines (Table 2) even without synthesized
data, showing its effectiveness as a general multi-task learn-
ing framework. The model performance further improves
with joint learning.

Implementation Details: See Sec. A in the appendix for
the training details and the hyper-parameter sensitivity.

4.2. Main Results

Quantitative Results: We run all the models for 5 times
and report the averaged results and the standard deviation
on the two datasets in Table 2. We have the following key
observations that support the effectiveness of our approach.
(1) Existing discriminative multi-task learning approaches
may not consistently benefit all the three individual tasks.
However, our MGM consistently and significantly outper-
forms both the single-task and multi-task baselines across
all the scenarios. (2) By training with weakly-labeled syn-
thesized data through the self-supervision network and the
refinement network, the results of our model in the 50% data
setting are sometimes even better than those of baselines
in the 100% data setting. (3) More interestingly, the per-
formance of our MGM is close to MGM,, which indicates
that our synthesized images are comparably useful as real
images for improving multiple visual perception tasks. (4)
The performance gap between the two models is especially
minimal in the 25% labeled data setting, suggesting that our
MGM model is, in particular, beneficial when the data is lim-
ited. This is further validated with additional experiments
in even lower-data regimes in Sec. B in the appendix.

Qualitative Results: We also visualize the prediction re-
sults on the three tasks for ST, MT, and MGM in the 50%
data setting in Figure 4 as well as Sec. E in the appendix.
While obvious defects can be found for all the baselines, the
results of our MGM are quite close to the ground-truth.

4.3. Analysis and Ablation Study
For all the experiments in this section, models are trained in
the 50% data setting, unless specifically mentioned.

How Does Generative Modeling Benefit Multiple Tasks?
We further consider two variants of our MGM model:
MGM ¢ is the MGM model trained with Sreal only (with-
out generative modeling), which shows the performance of
our proposed multi-task learning framework in general (with
the help from the auxiliary refinement and self-supervision
networks), and helps to understand the gain of leveraging
generative modeling. MGM ; is trained with images syn-
thesized by a pre-trained SAGAN without the joint training

Model SS-mIOU (1) DE-mABSE () SN-mAD (J)
MGM /zois 0.239 0.776 0.279
MGM /reine 0.254 0.808 0.290
MGM,ccon 0.241 0.768 0.285
MGMbcgan 0.245 0.750 0.285
MGM 0.251 0.734 0.273

Table 4: Ablation study on NYUV2. (1) MGM g ¢: with-
out the self-supervision network; (2) MGM ;cine: with-
out the classification refinement network; (3) MGM,¢con:
with a simple reconstruction task as self-supervision; (4)
MGMpcgan: with a naive generative model, DCGAN.
The refinement network is more crucial to the depth esti-
mation and surface normal prediction tasks, while the self-
supervision network is more crucial to the semantic seg-
mentation task. Their combination achieves the best perfor-
mance. Both (3) and (4) consistently outperform single-task
(ST) and multi-task (MT) baselines, indicating the robust-
ness and flexibility of MGM.

mechanism. Table 3 shows the results on NYUv2. The full
results are shown in Sec. C.6 in the appendix.

Combining the results in Tables 3 and 2, we find: (1) MGM
outperforms both ST and MT baseline even without genera-
tive modeling, indicating the benefit of the self-supervision
and refinement networks; (2) By introducing synthesized
images that are trained separately, the multi-task perfor-
mance slightly improves, which shows the effectiveness of
involving generative modeling under the assistance of our
framework; (3) The joint learning mechanism further im-
proves the cooperation between generative modeling and
discriminative learning, thus enabling the generative model
to better facilitate multi-task visual learning.

Impact of Self-supervision and Refinement Networks:
Two important components of the proposed framework are
the self-supervision and refinement networks. We evaluate
their impact individually in Table 4. MGM /4t is the model
trained without the self-supervision network; MGM ) ¢fine
is the model without the refinement network. We could see
that the refinement network is more crucial to the depth
estimation and surface normal prediction tasks, while the
self-supervision network is more crucial to the semantic seg-
mentation task. They are complementary to each other, and
combining them generally achieves the best performance.

MGM Is Model-Agnostic: MGM is flexible with different
choices of model components. Here we show its flexibil-
ity for the image generation and self-supervision networks.
MGM,¢con replaces the SImMCLR based self-supervision
method with a weaker reconstruction task; MGMpcaan
replaces SAGAN with a weaker generative network DC-
GAN (Radford et al., 2015). The results are shown in Ta-
ble 4. Combining with Table 2, both variants consistently
improve the performance on all the tasks even with weaker
components, indicating the generalizability and robustness
of our MGM framework. In addition, we find that MGM
outperforms MGMpcgan, suggesting that a more powerful
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Figure 5: Performance change with respect to different ratios of weakly-labeled data on NYUv2. Joint learning significantly
improves the performance. The performance of MGM keeps increasing with more weakly-labeled synthesized images,
achieving results almost comparable to that of MGM,; trained with all the available weakly-labeled real images.

image generation network leads to better performance.

Number of Synthesized Images vs. Real images: From
the previous results, we have found that the synthesized
images could benefit the target multiple tasks in a way sim-
ilar to weakly-labeled real images. To further investigate
the impact of the number of synthesized images, we vary it
from 25% to 125% during multi-task training on NYUv2
in the 25% real data setting. Figure 5 summarizes the re-
sult. First, we can see that the performance gap between
MGM; (without joint training) and MGM becomes larger
for a higher ratio of weakly-labeled data, which indicates
the importance of our joint learning mechanism. More im-
portantly, while the real images are constrained in number
due to the human collection effort, our generation network
is able to synthesize unlimited amounts of images. This is
demonstrated in the comparison between MGM, (with real
images) and MGM: the performance of our MGM keeps
improving with respect to the number of synthesized images,
achieving results almost comparable to that of MGM, when
MGM,; uses all the available weakly-labeled real images.

Visual Realism vs. Downstream Task Usefulness of Syn-
thesized Images: The evaluation so far has focused on the
multi-task learning performance, without consideration of
the visual realism of synthesized images which is a conven-
tional way to evaluate generative models. Such a protocol
is consistent with our main objective of introducing gen-
erative models to facilitate multi-task learning. Here we
further investigate the visual quality of synthesized images
both qualitatively and quantitatively to better understand the
difference between visual realism and usefulness to down-
stream tasks. To this end, Figure 6 visualizes the images
synthesized by SAGAN and MGM on Tiny-Taskonomy. We
observe that (1) the conventional SAGAN, trained with the
photo-realism objective and without the guidance of down-
stream tasks, produces visually appealing images; (2) the
visual quality of images synthesized by MGM becomes de-
graded, where SAGAN is jointly trained with the multi-task
learning objective and under the guidance of downstream
tasks. Interestingly, a similar phenomenon has been ob-
served in Souly et al. (2017), where a generative model is
used to facilitate the semantic segmentation task.

(2) SAGAN (b) MGM
Figure 6: Comparison of images synthesized by SAGAN
and MGM on Tiny-Taskonomy. (a): The images synthe-
sized by off-the-shelf SAGAN are photo-realistic. (b): By
contrast, after jointly training with the discriminative net-
work under our MGM framework, the synthesized images
are not visually realistic, but they are helpful to improve the
downstream task performance.

We hypothesize that this is because those synthesized im-
ages that are useful for improving downstream tasks might
not be necessarily photo-realistic. While the images synthe-
sized by MGM are not visually realistic, they may contain
some crucial discriminative information that can be lever-
aged for addressing downstream tasks — for example, the
synthesized images may contain some unseen patterns from
the real images, which increases the diversity of the train-
ing data. In addition, the difference of synthesized images
between SAGAN and MGM can also partially explain the
result in the pilot study (Sec. 2) — the images synthesized
off the shelf are quite different from the desired images
for multi-task learning, and thus they are not effective in
facilitating downstream tasks.

Furthermore, we investigate the training behavior of MGM,
measured by the change of the Fréchet inception distance
(FID) of images synthesized by the generation network and
the averaged prediction loss values on downstream tasks by
the discriminative network. As shown in Figure 7, when we
start jointly training the two networks, FID (visual quality)
drops but the performance on downstream tasks continually
improves, which is consistent with our model design.

Additional ablation studies on the impact of hyper-
parameters, training strategies, and higher-resolution im-
ages as well as the generalization capability of MGM are
provided in Sec. C in the appendix.
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Figure 7: Training curve of MGM on Tiny-Taskonomy.
When we start jointly training the generation and discrimi-
native networks, FID (visual quality) of synthesized images
drops, but the performance on downstream tasks continu-
ally improves. This indicates that the generation network in
MGM is optimizing downstream task usefulness of synthe-
sized images at the expense of their degraded visual quality.

102 104 106 108 1

Model | SS(}) DE({}) SN{) ET{) Re(d) PC{)
ST | 0120 1768 0.157 0228 0.703 0.462
MT | 0112 1747 0.169 0241 0704 0436

MGM | 0.108 1715 0152 0201 0.699 0417

Table 5: Mean test losses for six tasks on Tiny-Taskonomy.
Again, our MGM outperforms the baselines, indicating its

flexibility, generalizability, and scalability.
4.4. Extension

Experiments with More Tasks: MGM is also flexible and
scalable with different tasks. In addition to the three tasks
addressed in the main experiments, here we add three extra
tasks: Edge Texture (ET), Reshading (Re), and Principal
Curvature (PC), leading to six tasks in total. We evaluate the
performance of all the compared models on Tiny-taskonomy
in the 50% data setting, and report the mean test loss for
all the tasks. The result is reported in Table 5. Again, our
proposed method still outperforms state-of-the-art baselines.

5. Related Work

Multi-task Learning and Task Relationship: Multi-task
learning aims to leverage information from related tasks to
benefit each individual task (Doersch & Zisserman, 2017).
Most recent work can be grouped into two types of strate-
gies (Ruder, 2017): hard parameter sharing (Doersch &
Zisserman, 2017; Kokkinos, 2017; Pentina & Lampert,
2017) and soft parameter sharing (Misra et al., 2016; Chen
et al., 2018; Sener & Koltun, 2018). These strategies have
achieved good performance when the tasks are similar. In
addition, relationships among different tasks have been stud-
ied to improve their cooperation. For example, Taskonomy
exploits the relationships among various visual tasks to
benefit transfer or multi-task learning (Zamir et al., 2018).
Task cooperation and competition are considered (Standley
et al., 2020), in a way of assigning tasks to a few neural
networks to balance all of them. Some follow-up work
also explores task relationships among different types of
tasks (Armeni et al., 2019; Pal & Balasubramanian, 2019;
Sun et al., 2020; Zamir et al., 2020; Wallace et al., 2021;
Yeo et al., 2021), mainly in the paradigm of discriminative
learning. In comparison, our work is the first that introduces

generative modeling to multi-task visual learning.

Generative Modeling for Visual Learning: While the
initial goal of generative models is to synthesize realis-
tic images, some recent work has explored their poten-
tial to synthesize “usefull” images for downstream visual
tasks (Shorten & Khoshgoftaar, 2019), including classifica-
tion (Frid-Adar et al., 2018; Zhan et al., 2018; Zhu et al.,
2018), semantic segmentation (Luc et al., 2016; Souly et al.,
2017), and depth estimation (Aleotti et al., 2018; Pilzer
et al., 2018). This is often achieved by generating images
and corresponding annotations off the shelf and using them
as data augmentation for a target visual task (Wang et al.,
2018; Choi et al., 2019; Sandfort et al., 2019; Bao et al.,
2021; Gui et al., 2021). Another strategy to leverage gen-
erative models is through well-designed error feedback or
adversarial training (Luc et al., 2016; CS Kumar et al., 2018;
Mustikovela et al., 2020). Different from prior work, MGM
is applicable to various visual tasks jointly and different
generative networks.

Learning with Less Labeling: Recent work takes advan-
tage of weakly-labeled or unlabeled data by assigning some
self-created labels, e.g., via colorization, rotation, or re-
construction (Dosovitskiy et al., 2014; Noroozi & Favaro,
2016; Pathak et al., 2016; Noroozi et al., 2017; Chen et al.,
2020). Similar self-supervised techniques have been proved
useful for multi-task learning (Liu et al., 2008; Doersch &
Zisserman, 2017; Ren & Jae Lee, 2018; Lee et al., 2019).
Among these techniques, a notable one is the Expectation-
Maximization (EM) algorithm (Dempster et al., 1977; Pa-
pandreou et al., 2015), which leverages the information of
weakly-labeled or unlabeled data by iteratively estimating
and refining their labels. We adopt a similar spirit and intro-
duce the refinement network for the MGM framework.

6. Conclusion

This work introduces multi-task oriented generative mod-
eling (MGM) that improves the usefulness of synthesized
images to downstream tasks, instead of optimizing their
photo-realism as is normally the case. A main challenge is
that current generative models cannot synthesize both RGB
images and pixel-level annotations in multi-task scenarios.
We address this problem by equipping the MGM framework
with the self-supervision and refinement networks, which en-
able us to take advantage of synthesized images paired with
image-level scene labels to facilitate multiple visual tasks.
Experimental results demonstrate that MGM consistently
outperforms state-of-the-art multi-task approaches.
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Method SS-mIOU (1) DE-mABSE (]) SN-mAD ()
ST (Zami}r et al., 2018) 0.199 0.908 0.312 Method | SS-mIOU(T)
MT (Zamir et al., 2018) 0.207 0.874 0.296 ST 057
TaskGrouping (Standley et al., 2020) 0.215 0.853 0.292 )
Cross Stitch (Ren & Jae Lee, 2018) 0.205 0.917 0.296 MGM 0.64
AdaShare (Sun et al., 2020) 0.211 0.875 0.289 Table 7: Results on the
MGM 0.229 0.844 0.277 CityScape Subset. MGM still

Table 6: Comparison with state-of-the-art multi-task models in the 25% data setting on outperfgrms th.e baseline ST
the NYUv2 dataset. Notably, with a simple shared encoder architecture, our MGM model model, 1nd1(:at1ng. the .rpbust-
outperforms other state-of-the-art multi-task networks with more sophisticated architectures, 1SS and ge?‘erahzaplhty of
which indicates the benefit of introducing generative modeling for multi-task learning. In the model with multi-hot ob-
addition, our MGM is a model-agnostic framework and could be incorporated with these J€Ct 1abels.

different multi-task models for further improvement.

We summarize the content of the appendix as follows. Sec. A includes additional details of model architecture of our
proposed multi-task oriented generative modeling (MGM) framework. Sec. B provides additional experimental evaluations
including the comparison with other state-of-the-art multi-task models, experiments with other datasets, and investigations
in the few-shot regime. Section C provides additional ablation studies including the impact of parameters, different training
strategies, training with higher resolution images, and the generalizibility of the shared feature representation. Sec. D
describes implementation details of MGM and also the dataset settings. Finally, Sec. E shows more prediction visualizations.

A. Additional Details of Model Architecture

Multi-task Network: The multi-task network contains a shared encoder network and separate decoder networks for target
tasks. We use a ResNet-18 (He et al., 2016) as the encoder network, and its architecture follows the standard Pytorch
implementation'. We only change the size of the features of each layer group from [64, 128, 256, 512] to [48, 96, 192, 360],
so as to better address our GPU memory constraints. The size of the final feature representation is (360, 8, 8). For the
decoder network, we use the same architecture as in Taskonomy (Zamir et al., 2018).

Self-supervision Network: We adopt SimCLR (Chen et al., 2020) as our self-supervision network. SimCLR is one of
the state-of-the-art self-supervised learning approaches based on instance-level discrimination tasks. Following (Chen
et al., 2020), we randomly apply 5 types of transformations on a source image to obtain an augmented image. These
transformations are as follows: (1) random resizing and cropping followed by resizing back to the original size; (2) random
horizontal flipping with probability of 0.5; (3) random color jittering with probability of 0.5; (4) random transformation of
RGB images to gray-scale images with probability of 0.2; (5) random Gaussian blur with probability of 0.5. The shape of
the transformed latent feature, which is used to perform contrastive learning, is (128, ).

Refinement Network: The refinement network takes as input the prediction results of the multi-task network. For each
individual prediction, we apply a ResNet-10 (He et al., 2016) as the refinement encoder to extract the features. The feature
dimension of each layer group of the refinement encoder is the same as the multi-task encoder network. Then we concatenate
all the features together and apply a fully-connected layer with the hidden size of 128 to obtain the final scene class
prediction.

Image Generation Network: We have instantiated the image generation network with two widely used generative
networks: self-attention GAN (SAGAN)? (Zhang et al., 2019) in the main paper and deep convolutional GAN (DC-
GAN)? (Radford et al., 2015) in Sec. 4.3 of this document. For DCGAN, we change the original batch-normalization layers
to conditional batch normalization layers (De Vries et al., 2017) to allow conditional image generation. For the additional
embedding layer used for joint learning, we use a simple global averaged pooling layer followed by a dense layer.

'https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
Mttps://github.com/voletiv/self-attention—-GAN-pytorch
*https://github.com/Natsu6767/DCGAN-PyTorch
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Method | SS-mIOU (1) DE-mABSE (J) SN-mAD ({) Model | SS(}) DE({) SN
ST 0.162 1.004 0.337 ST | 0.137 1.836 0.161
MT 0.185 0.930 0.311 MT | 0.156 1.807  0.162

MGM 0.197 0.911 0.291 MGM | 0.125 1.670  0.153

Table 8: Comparison in the few-shot regime — in the 10% data setting  Table 9: Comparison with extreme low data in
on the NYUv2 dataset where around 3 images for each scene is used as  Taskonomy. In this data setting, MGM signifi-
the training set. Again, MGM significantly outperforms the compared cantly outperforms both ST and MT, indicating
models, showing the benefit of generative models in the extremely low- that MGM is robust and especially helpful in
data regime. low-data regime.

B. Additional Experimental Evaluations
B.1. Comparison with Other Multi-task Models

In the main paper, for a fair comparison we focused on comparing our MGM model with internal models (e.g., the multi-task
model upon which MGM builds). To have a more comprehensive understanding of the performance of MGM, we also
compare our method with some state-of-the-art multi-task models. We focus on the 25% data setting for the NYUv2 dataset,
where collaboration between different tasks and the utilization of data is vitally important.

We include six models in this experiments. ST is the single-task model, where the encoder and the decoder are adopted
from Zamir et al. (2018). MT is the multi-task model that uses a shared encoder as ST and separate decoders. ST and
MT are the baselines compared in the main paper. TaskGrouping uses the optimal network for the three tasks concluded
from Standley et al. (2020). Another two well-performing multi-task models are Cross-stitch (Ren & Jae Lee, 2018)* and
AdaShare (Sun et al., 2020). MGM is our proposed model. Table 6 summarizes the results. Notably, with a simple shared
encoder architecture, our MGM model outperforms other state-of-the-art multi-task networks with more sophisticated
architectures, which indicates the benefit of introducing generative modeling for multi-task learning. In addition, our MGM
is a model-agnostic framework and could be incorporated with these different multi-task models for further improvement.

B.2. Experimental Evaluation on CityScape Subset

In this section, we demonstrate that MGM can work with datasets when no image-level labels are available. In an alternative
may, the proposed MGM frame model can work with object labels as well since the generative network and refinement
network can naturally work with multi-hot labels — the refinement network can work with a multi-label classifier, and the
generative network can be a multi-label-conditional GAN.

We conducted semantic segmentation on a subset of CityScape (Cordts et al., 2016) dataset, the Zurich street scene. We
focused on the semantic segmentation task, which is a representative task on CityScape. We use the 30 standard multi-hot
CityScape semantic object labels for the generative model and also the refinement networks. We use 80% of the data for
training and 20 % for testing and compare the performance of ST and MGM for this experiment. We generate the same
amount of data with random multi-hot labels using MGM. The results are shown in Table 7. MGM still outperforms the
baseline ST model, indicating the robustness and generalizability of the model with multi-hot object labels.

B.3. Experiments with Few-Shot Setting

Since the learned generative model facilitates flow of knowledge across tasks and provides meaningful variations in existing
images, it is especially beneficial in the low-data regime. So we designed a 10% data setting for NYUv2 dataset, where
around 3 images for each scene is used as the training set. We also compare our MGM model with ST and MT. From Table 8§,
we can see that MGM outperforms the other compared models significantly, indicating the gain of generative models in the
extremely low-data regime.

B.4. Experiments with Extreme Low data at Taskonomy

We noticed that for Tiny-Taskonomy dataset, 25% data setting is still far from low-data regime. To further explore the
effectiveness with our model with low-data, we further conduct an experiment with a subset of Tiny-Taskonomy dataset.
We randomly select 3 nodes (allensville, benevolence, and coffeen) from Tiny-Taskonomy dataset to build a dataset with

*We modify the network architecture following Sun et al. (2020) to make it work for the three tasks.
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Model | SS-mIOU (1) DE-mABSE (J) SN-mAD (})
ST 0.230 0.837 0.309
MT 0.237 0.819 0.291
ST, 0.232 0.841 0.304
MT, 0.236 0.804 0.288

Table 10: Impact of parameters. ST; and MT;: baselines with a larger number of parameters (with deeper backbones).
Simply increasing the number of parameters cannot significantly boost performance.

Model SS-mIOU () DE-mABSE (J) SN-mAD ()
ST 0.230 0.837 0.309
MGM-SS 0.244 - -
MGM-DE - 0.752 -
MGM-SN - - 0.277
MGM-Combine 0.249 0.747 0.277
MGM 0.251 0.734 0.273

Table 11: Ablation with MGM for single tasks and a stronger baseline with the learned information from the three individual
tasks but without jointly training. The experiments are conducted on NYUv2 50% data setting. MGM-SS, MGM-DE,
MGM-SN: variantal MGM model for single tasks. MGM-Combine: MGM variant trained with augmented images generated
by the above three models. The proposed MGM framework can consistently benefit each single tasks and MGM-combine
cannot reach the performance of MGM, indicating the importance of joint training mechanism.

17,404 images—around 5% data setting compared with the full Tiny-Taskonomy dataset. We then conduct experiments with
ST, MT and MGM for this subset. All the other experimental settings keep the same as the main paper. Table 9 shows the
comparable results. Combining the results in Table 2, we can find that MGM consistently outperforms ST and MT and is
robust and especially helpful in low-data regime.

C. Additional Ablation Study
C.1. Impact of Parameters

Introducing the refinement, self-supervision, and image generation networks also leads to more parameters. To validate that
the performance improvements come from the novel design of our architecture rather than merely increasing the number of
parameters, we provide two model variants as additional baselines: ST} and MT; use ResNet-34 as the encoder network
and the corresponding decoder networks. These two networks have a similar amount of parameters as MGM. The result in
Table 10 show that simply increasing the number of parameters cannot significantly boost performance.

C.2. Ablation with Single Tasks

MGM is a general framework that can be applied to both single tasks and multiple tasks. In the main submission, we
mainly focused on the more challenging multi-task scenario. In this subsection, we conduct experiments with single tasks.
Here we add three baselines applying MGM to the single tasks (SS, DE, SN) named MGM-SS, MGM-DE and MGM-SN
in the NYUvV2 50% data setting. We further provide an additional baseline by using the equivalently sampled data from
the above three model as the augmented data, but not jointly train the generative network, named MGM-Combine. The
results of these models are shown in Table 11. We have the following observations: (1) The proposed MGM framework can
consistently benefit each single tasks though without leveraging shared features from multiple tasks. (2) Compared with the
full MGM model, the performance drops when only using single tasks to jointly train with the generative model. (3) When
using the individually optimized generative models, the performance is slight better than MGM /; but still could not reach
MGM, indicating the importance of our joint training mechanism.

C.3. Training Strategies for Refinement Network

In the main paper, we proposed an Expectation-Maximum (EM) like algorithm to coordinate the training between the
refinement network and the main network. Here we compare our EM-Like Training (EML) with two alternative ways of
the training procedure: Plain End-to-End Training (PEoE) backwards the refinement loss to update the entire network
directly; Loosely Separate Training (LSeT) trains the refinement network and the main network separately, and only
backwards the error to the encoder network when dealing with weakly labeled images. Table 12 shows the comparison
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Method | SS-mIOU (1) DE-mABSE (J) SN-mAD ()
MT 0.237 0.815 0.291
PEoE 0.211 0.896 0.301
LSeT 0.247 0.768 0.277
EML 0.251 0.734 0.273

Table 12: Results on the NYUv2 dataset in the 50% data setting with different training strategies for the refinement network.
‘MT’: multi-task learning baseline; ‘PEoE’: plain end-to-end training; ‘LSeT’: loosely separate training; ‘EML’: EM-like
training (proposed in the main paper). Our EML significantly outperforms alternative strategies to train the refinement
network.

Model | SS-mIOU (1) DE-mABSE (J) SN-mAD ({)
ST 0.239 0.849 0.282
MT 0.244 0.834 0.313

MGM 0.257 0.819 0.275

Table 13: Experiments with 256 image resolution on the NYUv2 dataset. Our MGM still consistently outperforms the
compared baselines, showing the great robustness and flexibility of the proposed framework.

results on the NYUv2 dataset in the 50% data setting. From this table, we could find: (1) A naive end-to-end training
strategy is not able to facilitate the cooperation between different networks and thus hurts the overall performance; (2)
Loosely separate training enables the communication between the refinement network and the main network when needed
and thus outperforms the baseline; (3) Our proposed EM-like training strategy further improves over the loosely separate
training and achieves the best performance.

C.4. Experiments on Higher Image Resolution

In principle, the proposed framework is agnostic to the specific types of multi-task networks and image generation networks,
thus flexible with image resolutions. The practical constraint lies in that it is still challenging and resource-consuming for
modern generative models to synthesize very high-resolution images (Brock et al., 2019; Zhang et al., 2019), although the
deep multi-task models normally work better with high-resolution images. In the main experiments, consistent with exiting
image synthesis work (Zhang et al., 2019), we focused on the resolution of 128 x 128. Here we further made an attempt to
run our experiments with a higher resolution, 256 x 256 on NYUv2. The results of all the compared models in the 50% data
setting are shown in Table 13. We could find that MGM still consistently outperforms the baselines, indicating the great
robustness and flexibility of our proposed framework.

C.5. Generalization of the Shared Feature Representation

Intuitively, our MGM achieves state-of-the-art performance by effectively learning a shared feature representation. We
further show the generalization capability of this representation by designing the following experiment: for the multi-task
model and our MGM model, we first learn the shared feature space with the SS and DE tasks, and we then use that learned
feature space to train a new decoder for the SN task. We report the results on NYUv2 in Table 14. Our MGM outperforms
the multi-task model in all the three data settings, which means that MGM indeed learns a better and robust shared feature
space.

C.6. Full Impact with Generative Networks and Joint Training

In Table 15, we show the full results for MGM ¢ and MGM /; on the two datasets. Our MGM outperforms single-task and
multi-task baselines even without synthesized data, showing its effectiveness as a general multi-task learning framework.
The model performance further improves with joint learning.

D. Implementation Details

Data Processing: For the NYUv2 (Nathan Silberman & Fergus, 2012) dataset, following Sun et al. (2020) we resize and
normalize the RGB images to (—1, 1), standardize the normal ground-truth to (0, 1), and do not normalize the depth. For
the Taskonomy dataset (Zamir et al., 2018), we follow the standard data normalization in Zamir et al. (2018).
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Model | mAD-100% ([) mAD-50% () mAD-25% (])
MT 0.291 0.310 0.323
MGM 0.280 0.298 0.305

Table 14: Results for the SN task with pre-trained feature representations by the SS and DE tasks. MGM consistently
outperforms multi-task (MT), indicating that MGM learns a more effective and generalizable feature representation.

Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Models MGM,; MGM,; MGM | MGM,c MGM,; MGM | MGM,; MGM,; MGM
NYU SS-mIOU (1) 0.261 0.262 0.264 0.243 0.243 0.251 0.215 0.220 0.229
V2 DE-mABSE ({) 0.707 0.701 0.698 0.799 0.763 0.734 0.868 0.860 0.844
SN-mAD ({) 0.262 0.259 0.255 0.287 0.281 0.273 0.292 0.286 0.277

Tiny SS-mLoss ({) 0.108 0.108 0.106 0.116 0.115 0.114 0.119 0.121 0.117
Task- | DE-mLoss ({) 1.491 1488 1472 | 1527 1.523 1499 | 1.636 1.616 1585
onomy | SN-mLoss () 0.151 0.151 0.145 0.153 0.152  0.147 0.154 0.152  0.148
Table 15: Full Comparison of our MGM model with its variants. MGM g without generating synthesized images; MGM /;:
without joint learning. Our MGM outperforms single-task and multi-task baselines even without synthesized data, showing
its effectiveness as a general multi-task learning framework. The model performance further improves with joint learning.

Additional Implementation Details: We use Adam (Kingma & Ba, 2014) optimizer for all the models. The learning
rates are set to 0.001 for the multi-task, self-supervision, and refinement networks, 0.0001 for the SAGAN generator, and
0.0004 for the SAGAN discriminator. The batch size is set to 32. We use a cross-entropy loss for semantic segmentation and
the scene classification task of the refinement network, and an /; loss for surface normal and depth estimation.

Due to the different converge time for the different modules, we use a three-stage strategy to perform joint training: (1) We
first train the multi-task network separately with fully labeled real data; (2) We then freeze the multi-task network, and train
the image generation network and the embedding network separately; (3) We do joint training with the whole network using
both fully labeled real data and weakly labeled sythesized data. During the pre-training process of SAGAN, we set the batch
size to 128 to train a better model following Zhang et al. (2019). Then, for the joint training, we use a batch size of 32 for all
the sub-networks. Additionally, for the same minibatch of data, we update the image generation network 2 times iteratively
during stage (3).

Training Procedure: We summarized the training procedure in Algorithm 1 in the main paper. Here we further explain
the training procedure in more details. Given a minibatch of data in S,¢,1, We conduct the following training procedure.

1. For the input images x, we predict § = M(x), and then use the task-specific losses between y and g to update the
multi-task network M.

2. We predict the scene labels by ¢ = R(y), and update the refinement network R and the multi-task encoding network
E using the cross-entropy loss between c and ¢.

3. We randomly sample pairs of augmented images, process them with the self-supervision network, and then update the
self-supervision network and the multi-task encoder E with the NT-Xent loss in Eqn. (6).

4. We train the image generation network G through adversarial training with (z, ¢), and back-propagate the adversarial
error and update E at the same time.

5. We sample another minibatch of synthesized data (Z, ¢), and use these data to update E by performing both the EM-like
algorithm described in Sec. 3.2 (main paper) with R and the self-supervised learning as in step 3.

Dataset Setting We evaluate all the models on two widely-benchmarked datasets: NYUv2 (Nathan Silberman & Fergus,
2012; Eigen & Fergus, 2015) containing 1,449 images with 40 types of objects (Gupta et al., 2013); Tiny-Taskonomy
which is the standard tiny split of the Taskonomy dataset (Zamir et al., 2018).

For Tiny-Taskonomy dataset, since a certain amount of images for each category is required to train a generative network,
we keep the images of the top 35 scene categories on Tiny-Taskonomy, with each one consisting of more than 1,000 images.
This resulting dataset contains 358,426 images in total. For NYUv2, we randomly select 1,049 images as the full training set
and 200 images each as the validation/test set. For Tiny-Taskonomy, we randomly pick 80% of the whole set as the full
training set and 10% each as the validation/test set.
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E. More Visualizations

In Figure 4 of the main paper, we visualized the prediction results. Here we provide more visualizations of the multi-task
predictions for MGM and the compared baselines in Figure 8. Notice that, for the surface normal predictions, the ground-
truth of NYU-V2 dataset has padded boundaries. For a better visualization, we mask the boundaries in the main paper but
include them in Figure 8. Our MGM model significantly outperforms both ST and MT baselines.
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Figure 8: More visualizations of the multi-task predictions for MGM and the compared baselines. SS: semantic segmentation
task; DE: depth estimation task; SN: surface normal prediction task; ST: single-task model; MT: multi-task model; MGM:
multi-task oriented generative modeling (our proposed model); GT: ground-truth. The prediction results of our MGM model
are much closer to the ground-truth and significantly outperform the state-of-the-art results.



