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Abstract

Generative modeling has recently shown great

promise in computer vision, but it has mostly fo-

cused on synthesizing visually realistic images.

In this paper, motivated by multi-task learning of

shareable feature representations, we consider a

novel problem of learning a shared generative

model that is useful across various visual per-

ception tasks. Correspondingly, we propose a

general multi-task oriented generative modeling

(MGM) framework, by coupling a discrimina-

tive multi-task network with a generative network.

While it is challenging to synthesize both RGB

images and pixel-level annotations in multi-task

scenarios, our framework enables us to use syn-

thesized images paired with only weak annota-

tions (i.e., image-level scene labels) to facilitate

multiple visual tasks. Experimental evaluation

on challenging multi-task benchmarks, including

NYUv2 and Taskonomy, demonstrates that our

MGM framework improves the performance of

all the tasks by large margins, consistently outper-

forming state-of-the-art multi-task approaches in

different sample-size regimes.

1. Introduction

Seeing with the mind’s eye – creating internal images of

objects and scenes not actually present to the senses – is

perhaps one of the hallmarks in human cognition (Pelaprat

& Cole, 2011). For humans, this visual imagination inte-

grates learning experience and facilitates learning by solv-

ing different problems (Egan, 1989; Pelaprat & Cole, 2011;

Egan, 2014; Pearson, 2019). Inspired by such ability, there

has been increasing interest in building generative models

that can synthesize images (Goodfellow et al., 2014; Sohl-

Dickstein et al., 2015; Van Den Oord et al., 2017; Kingma &
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Dhariwal, 2018; Wiles et al., 2020). Yet, most of the effort

has focused on generating visually realistic images (Brock

et al., 2019; Zhang et al., 2019), which are still far from

being useful for machine perception tasks (Wu et al., 2017;

Shmelkov et al., 2018; Borji, 2019). Even though recent

work has started improving the “usefulness” of synthesized

images, this line of investigation is often limited to a single

specific task (Souly et al., 2017; Nguyen-Phuoc et al., 2018;

Zhu et al., 2018; Sitzmann et al., 2019). Could we guide

generative models to benefit multiple visual tasks?

While similar spirits of shareable feature representations

have been widely studied as multi-task learning or meta-

learning (Finn et al., 2017; Zamir et al., 2018), here we

take a different perspective – learning a shareable genera-

tive model across various tasks (as illustrated in Figure 1).

Leveraging multiple tasks allows us to capture the underly-

ing image generation mechanism for more comprehensive

object and scene understanding than being done within indi-

vidual tasks. Taking simultaneous semantic segmentation,

depth estimation, and surface normal prediction as an ex-

ample (Figure 1), successful generative modeling requires

understanding not only the semantics but also the 3D geo-

metric structure and physical property of the input image.

Meanwhile, a learned generative model facilitates the flow

of knowledge across tasks, so that they benefit one another.

For instance, the synthesized images provide meaningful

variations in existing images and could work as additional

training data to build better task-specific models. These

variations are especially critical when the data is limited.

This paper thus explores multi-task oriented generative mod-

eling (MGM), by coupling a discriminative multi-task net-

work with a generative network. To make them cooper-

ate with each other, a straightforward solution would be

to synthesize both RGB images and corresponding pixel-

level annotations (e.g., pixel-wise class labels for semantic

segmentation and depth map for normal prediction). In

the single task scenario, existing work trains a separate

generative model to synthesize paired pixel-level labeled

data (Choi et al., 2019; Sandfort et al., 2019) and produce

an augmented set. However, these models are still highly

task-dependant, and extending them to multi-task scenarios

becomes difficult. A natural question then is: Do we actu-

ally need to synthesize paired image and multi-annotation

data to be useful for multi-task visual learning?
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erative model G that produces a set of synthesized data but

with only corresponding image-level scene labels (weak an-

notation): G(c, z) → !x, where z is a random input, and !x

is a synthesized image. The scene label of !x is denoted as

!c = c. We denote the set of synthesized images and their

corresponding scene labels as !Ssyn = {(!xk,!ck)}.

Cooperation Between Discriminative and Generative

Learning: Our objective is that the discriminative model

M and the generative model G cooperate with each other

to improve the performance on the multiple visual tasks T .

During the whole process, the full model only gets access

to the fully-labeled real data Sreal, and then the genera-

tive network G is trained to produce the synthesized set
!Ssyn. Finally, M effectively learns from both Sreal and
!Ssyn. Note that, unlike most of the existing work on image

generation (Brock et al., 2019; Zhang et al., 2019), we do

not focus on the visual realism of the synthesized images

!x. Instead, we hope G to capture the underlying image

generation mechanism that benefits M.

3.2. Framework and Architecture

Figure 2 shows the architecture of our proposed MGM

framework. It contains four components: the main dis-

criminative multi-task network M, the image generation net-

work G, the refinement network R, and the self-supervision

network. By introducing the refinement network and the

self-supervision network, the full model can leverage both

fully-labeled real images and weakly-labeled synthesized

images to facilitate the learning of latent feature represen-

tation. These two networks thus allow M and G to better

cooperate with each other. Notice that our MGM is a model-

agnostic framework, and here we instantiate its components

with representative models. In Sec. 4.3, we show that MGM

works well with different choices of the model components.

Multi-task Network (M): The multi-task network aims to

make predictions for multiple target tasks based on an input

image. Consistent with the most recent work on multi-task

learning, we instantiate an encoder-decoder based architec-

ture (Zamir et al., 2018; Zhang et al., 2019; Sun et al., 2020).

Considering the trade-off between model complexity and

performance, we use a shared encoder E to extract features

from input images, and individual decoders for each target

task. We adopt a ResNet-18 (He et al., 2016) for the encoder

and symmetric transposed decoders following Zamir et al.

(2018). For each task, we have its own loss function to

update the corresponding decoder and the shared encoder.

Image Generation Network (G): The generative model

G is a variant of generative adversarial networks (GANs).

We include the generator in our framework, but this module

also has a discriminator during its own training. G takes

as input a latent vector z and a category label c, and syn-

thesizes an image belonging to category c. Considering the

trade-off between performance and training cost, we instan-

tiate G with a self-attention generative adversarial network

(SAGAN) (Zhang et al., 2019). We achieve conditional im-

age generation by applying conditional batch normalization

(CBN) layers (De Vries et al., 2017):

CBN(fi,c,h,w | µc, ´c) = µc
fi,c,w,h − E [f·,c,·,·]
�

Var [f·,c,·,·] + ϵ
+ ´c, (1)

where fi,c,h,w is an extracted c-channel 2D feature for the

i-th sample, and ϵ is a small value to avoid collapse. µc
and ´c are two parameters to control the mean and variance

of the normalization, which are learned by the model for

each class. We use hinge loss for the adversarial training.

Notice that the proposed framework is flexible with different

generative models, and we also show the effectiveness of

using DCGAN (Radford et al., 2015) in Sec. 4.3.

Refinement Network (R): As one of our key contributions,

we introduce the refinement network R to further refine

the shared representation using the global scene category

labels. R takes the predictions of the multi-task network

as input and predicts the category label of the input image.

Importantly, because it only requires category labels, R can

be effortlessly operationalized on the “weakly-annotated”

synthesized images. Through refining the shared representa-

tion with the synthesized images, R also provides implicit

guidance to the image generation network G, enforcing the

semantic consistency of the synthesized images with G.

We use cross-entropy based scene classification loss to train

the refinement network R. And we adopt two different strate-

gies for real and synthesized images, respectively. For the

fully-annotated real images (x,y, c), we use the classifica-

tion loss to update R and then the encoder E in the multi-task

network M with the decoders frozen. For the synthesized

images (!x,!c), since their multi-task predictions produced

by M might not be reliable, we apply an algorithm inspired

by Expectation-Maximization (EM) (Dempster et al., 1977).

At the Expectation step, we back-propagate the classifica-

tion loss via R to estimate the latent multi-task ground-truth.

At the Maximization step, we update the encoder E with R

and the decoders frozen.

More specifically, we model the whole multi-task network

and refinement network as a joint probability graph:

P (x,y, c; ¹, ¹′) = P (x)

 

n
�

i=1

P
�

y
i | x; ¹

�

�

P (c | y; ¹′),

(2)

where x is an input image, y is the multi-task predictions,

c is the scene label, ¹ is the parameters of the multi-task

network, and ¹′ is the parameters of the refinement network.

The parameters ¹ and ¹′ are learned to maximize the joint

probability. For data samples in Sreal, we maximize the

joint probability and update both ¹ and ¹′. In particular, ¹′

is updated for training the refinement network:

¹′⋆ = argmax
¹′

P (c | y; ¹′). (3)
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Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Model ST MT MGM ST MT MGM MGMr ST MT MGM MGMr

NYU
v2

SS-mIOU (↑)
0.249

± 0.008
0.256

± 0.005
0.264

± 0.005
0.230

± 0.009
0.237

± 0.006
0.251

± 0.005
0.258

± 0.004
0.199

± 0.004
0.207

± 0.007
0.229

± 0.004
0.231

± 0.005

DE-mABSE (↓)
0.748

± 0.019
0.708

± 0.021
0.698

± 0.014
0.837

± 0.017
0.819

± 0.018
0.734

± 0.011
0.723

± 0.010
0.908

± 0.017
0.874

± 0.015
0.844

± 0.011
0.821

± 0.009

SN-mAD (↓)
0.273
± 0.06

0.283
± 0.008

0.255
± 0.010

0.309
± 0.008

0.291
± 0.010

0.273
± 0.009

0.270
± 0.006

0.312
± 0.007

0.296
± 0.007

0.277
± 0.006

0.274
± 0.005

Tiny

Task-
onomy

SS-mLoss (↓)
0.111

± 0.002
0.137

± 0.003
0.106

± 0.003
0.120

± 0.003
0.138

± 0.002
0.114

± 0.003
0.112

± 0.002
0.119

± 0.003
0.141

± 0.002
0.117

± 0.002
0.115

± 0.002

DE-mLoss (↓)
1.716

± 0.006
1.584

± 0.008
1.472

± 0.006
1.768

± 0.007
1.595

± 0.009
1.499

± 0.008
1.378

± 0.007
1.795

± 0.010
1.692

± 0.008
1.585

± 0.009
1.580

± 0.008

SN-mLoss (↓)
0.155

± 0.003
0.153

± 0.003
0.145

± 0.002
0.157

± 0.002
0.156

± 0.002
0.147

± 0.002
0.140

± 0.001
0.154

± 0.002
0.152

± 0.002
0.148

± 0.003
0.142

± 0.002

Table 2: Main results (mean ± std) on the NYUv2 and Tiny-Taskonomy datasets. SS: semantic segmentation; DE: depth

estimation; SN: surface normal prediction. ↑: higher is better; ↓: lower is better. We use different metrics on the two datasets,

following the existing protocol. Our MGM consistently and significantly outperforms both single-task (ST) and multi-task

(MT) baselines, even reaching the performance upper-bound of training with weakly-annotated real images (MGMr).
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Figure 4: Visualization and error comparison of the multi-task prediction outputs in the 50% data setting on NYUv2. The

prediction results of MGM are quite close to the ground-truth, significantly outperforming the baselines. The grey color in

the SN ground-truth and results denotes that there is no annotation provided in the boundaries.

datasets: NYUv2 (Nathan Silberman & Fergus, 2012; Eigen

& Fergus, 2015) and Tiny-Taskonomy (Zamir et al., 2018).

See Sec. D in the appendix for more details.

Compared Methods: We mainly focus on comparing with

two widely-used discriminative baselines: Single-Task (ST)

model follows the architecture of the Taskonomy single-

task network (Zamir et al., 2018), and addresses each task

individually; Multi-Task (MT) model refers to the sub-

network for the three tasks of interest in Standley et al.

(2020). These two baselines can be viewed as using our

multi-task network without the proposed refinement, self-

supervision, and generation networks. Note that our work is

the first that introduces generative modeling for multi-task

learning, and there is no existing baseline in this direction.

Our MGM is the full model trained with both fully-labeled

real data and weakly-labeled synthesized data, which is

produced by the generation network through joint training.

In addition, to further validate the effectiveness of our MGM

model, we consider its variant model MGMr that is trained

with both fully- and weakly-labeled real data. MGMr is

used to show the performance upper-bound in the semi-

supervised learning scenario, where the synthesized images

are replaced by the real images in the dataset. The resolution

is set to 128 for all the experiments. For all the compared

methods, we use a ResNet-18 like architecture to build

the encoder and use the standard decoder architecture of

Taskonomy (Zamir et al., 2018).

Data Settings: We conduct experiments with three different

data settings: (1) 100% data setting; (2) 50% data setting;

and (3) 25% data setting. For each setting, we use 100%,

50%, or 25% of the entire labeled training set to train the

model. For MGMr, we add another 50% or 25% of weakly-

labeled real data in the last two settings. For MGM, we

include the same number of weakly-labeled synthesized

data in all three settings.

Evaluation Metrics: We follow the standard metrics on

these two datasets for comparison with prior work. For

NYUv2, following the metrics in Eigen & Fergus (2015);

Sun et al. (2020), we measure the mean Intersection-Over-

Union (mIOU) for the semantic segmentation task, the mean

Absolute Error (mABSE) for the depth estimation task, and

the mean Angular Distance (mAD) for the surface normal

prediction task. For Tiny-Taskonomy, we follow the evalua-

tion metrics of previous work (Zamir et al., 2018; Standley

et al., 2020; Sun et al., 2020) and report the averaged loss

values on the test set.
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Model MGM/G MGM/j MGM

SS-mIOU (↑) 0.243 0.243 0.251
DE-mABSE (↓) 0.799 0.763 0.734

SN-mAD (↓) 0.287 0.281 0.273

Table 3: Comparison of our MGM model with its variants on

NYUv2. MGM/G: without synthesizing images; MGM/j:

without joint learning. Our MGM outperforms single-task

and multi-task baselines (Table 2) even without synthesized

data, showing its effectiveness as a general multi-task learn-

ing framework. The model performance further improves

with joint learning.

Implementation Details: See Sec. A in the appendix for

the training details and the hyper-parameter sensitivity.

4.2. Main Results

Quantitative Results: We run all the models for 5 times

and report the averaged results and the standard deviation

on the two datasets in Table 2. We have the following key

observations that support the effectiveness of our approach.

(1) Existing discriminative multi-task learning approaches

may not consistently benefit all the three individual tasks.

However, our MGM consistently and significantly outper-

forms both the single-task and multi-task baselines across

all the scenarios. (2) By training with weakly-labeled syn-

thesized data through the self-supervision network and the

refinement network, the results of our model in the 50% data

setting are sometimes even better than those of baselines

in the 100% data setting. (3) More interestingly, the per-

formance of our MGM is close to MGMr, which indicates

that our synthesized images are comparably useful as real

images for improving multiple visual perception tasks. (4)

The performance gap between the two models is especially

minimal in the 25% labeled data setting, suggesting that our

MGM model is, in particular, beneficial when the data is lim-

ited. This is further validated with additional experiments

in even lower-data regimes in Sec. B in the appendix.

Qualitative Results: We also visualize the prediction re-

sults on the three tasks for ST, MT, and MGM in the 50%

data setting in Figure 4 as well as Sec. E in the appendix.

While obvious defects can be found for all the baselines, the

results of our MGM are quite close to the ground-truth.

4.3. Analysis and Ablation Study

For all the experiments in this section, models are trained in

the 50% data setting, unless specifically mentioned.

How Does Generative Modeling Benefit Multiple Tasks?

We further consider two variants of our MGM model:

MGM/G is the MGM model trained with Sreal only (with-

out generative modeling), which shows the performance of

our proposed multi-task learning framework in general (with

the help from the auxiliary refinement and self-supervision

networks), and helps to understand the gain of leveraging

generative modeling. MGM/j is trained with images syn-

thesized by a pre-trained SAGAN without the joint training

Model SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

MGM/self 0.239 0.776 0.279
MGM/refine 0.254 0.808 0.290
MGMrecon 0.241 0.768 0.285

MGMDCGAN 0.245 0.750 0.285

MGM 0.251 0.734 0.273

Table 4: Ablation study on NYUv2. (1) MGM/self : with-

out the self-supervision network; (2) MGM/refine: with-

out the classification refinement network; (3) MGMrecon:

with a simple reconstruction task as self-supervision; (4)

MGMDCGAN: with a naive generative model, DCGAN.

The refinement network is more crucial to the depth esti-

mation and surface normal prediction tasks, while the self-

supervision network is more crucial to the semantic seg-

mentation task. Their combination achieves the best perfor-

mance. Both (3) and (4) consistently outperform single-task

(ST) and multi-task (MT) baselines, indicating the robust-

ness and flexibility of MGM.

mechanism. Table 3 shows the results on NYUv2. The full

results are shown in Sec. C.6 in the appendix.

Combining the results in Tables 3 and 2, we find: (1) MGM

outperforms both ST and MT baseline even without genera-

tive modeling, indicating the benefit of the self-supervision

and refinement networks; (2) By introducing synthesized

images that are trained separately, the multi-task perfor-

mance slightly improves, which shows the effectiveness of

involving generative modeling under the assistance of our

framework; (3) The joint learning mechanism further im-

proves the cooperation between generative modeling and

discriminative learning, thus enabling the generative model

to better facilitate multi-task visual learning.

Impact of Self-supervision and Refinement Networks:

Two important components of the proposed framework are

the self-supervision and refinement networks. We evaluate

their impact individually in Table 4. MGM/self is the model

trained without the self-supervision network; MGM/refine

is the model without the refinement network. We could see

that the refinement network is more crucial to the depth

estimation and surface normal prediction tasks, while the

self-supervision network is more crucial to the semantic seg-

mentation task. They are complementary to each other, and

combining them generally achieves the best performance.

MGM Is Model-Agnostic: MGM is flexible with different

choices of model components. Here we show its flexibil-

ity for the image generation and self-supervision networks.

MGMrecon replaces the SimCLR based self-supervision

method with a weaker reconstruction task; MGMDCGAN

replaces SAGAN with a weaker generative network DC-

GAN (Radford et al., 2015). The results are shown in Ta-

ble 4. Combining with Table 2, both variants consistently

improve the performance on all the tasks even with weaker

components, indicating the generalizability and robustness

of our MGM framework. In addition, we find that MGM

outperforms MGMDCGAN, suggesting that a more powerful
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Method SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

ST (Zamir et al., 2018) 0.199 0.908 0.312

MT (Zamir et al., 2018) 0.207 0.874 0.296

TaskGrouping (Standley et al., 2020) 0.215 0.853 0.292

Cross Stitch (Ren & Jae Lee, 2018) 0.205 0.917 0.296

AdaShare (Sun et al., 2020) 0.211 0.875 0.289

MGM 0.229 0.844 0.277

Table 6: Comparison with state-of-the-art multi-task models in the 25% data setting on

the NYUv2 dataset. Notably, with a simple shared encoder architecture, our MGM model

outperforms other state-of-the-art multi-task networks with more sophisticated architectures,

which indicates the benefit of introducing generative modeling for multi-task learning. In

addition, our MGM is a model-agnostic framework and could be incorporated with these

different multi-task models for further improvement.

Method SS-mIOU(↑)

ST 0.57

MGM 0.64

Table 7: Results on the

CityScape Subset. MGM still

outperforms the baseline ST

model, indicating the robust-

ness and generalizability of

the model with multi-hot ob-

ject labels.

We summarize the content of the appendix as follows. Sec. A includes additional details of model architecture of our

proposed multi-task oriented generative modeling (MGM) framework. Sec. B provides additional experimental evaluations

including the comparison with other state-of-the-art multi-task models, experiments with other datasets, and investigations

in the few-shot regime. Section C provides additional ablation studies including the impact of parameters, different training

strategies, training with higher resolution images, and the generalizibility of the shared feature representation. Sec. D

describes implementation details of MGM and also the dataset settings. Finally, Sec. E shows more prediction visualizations.

A. Additional Details of Model Architecture

Multi-task Network: The multi-task network contains a shared encoder network and separate decoder networks for target

tasks. We use a ResNet-18 (He et al., 2016) as the encoder network, and its architecture follows the standard Pytorch

implementation1. We only change the size of the features of each layer group from [64, 128, 256, 512] to [48, 96, 192, 360],
so as to better address our GPU memory constraints. The size of the final feature representation is (360, 8, 8). For the

decoder network, we use the same architecture as in Taskonomy (Zamir et al., 2018).

Self-supervision Network: We adopt SimCLR (Chen et al., 2020) as our self-supervision network. SimCLR is one of

the state-of-the-art self-supervised learning approaches based on instance-level discrimination tasks. Following (Chen

et al., 2020), we randomly apply 5 types of transformations on a source image to obtain an augmented image. These

transformations are as follows: (1) random resizing and cropping followed by resizing back to the original size; (2) random

horizontal flipping with probability of 0.5; (3) random color jittering with probability of 0.5; (4) random transformation of

RGB images to gray-scale images with probability of 0.2; (5) random Gaussian blur with probability of 0.5. The shape of

the transformed latent feature, which is used to perform contrastive learning, is (128, ).

Refinement Network: The refinement network takes as input the prediction results of the multi-task network. For each

individual prediction, we apply a ResNet-10 (He et al., 2016) as the refinement encoder to extract the features. The feature

dimension of each layer group of the refinement encoder is the same as the multi-task encoder network. Then we concatenate

all the features together and apply a fully-connected layer with the hidden size of 128 to obtain the final scene class

prediction.

Image Generation Network: We have instantiated the image generation network with two widely used generative

networks: self-attention GAN (SAGAN)2 (Zhang et al., 2019) in the main paper and deep convolutional GAN (DC-

GAN)3 (Radford et al., 2015) in Sec. 4.3 of this document. For DCGAN, we change the original batch-normalization layers

to conditional batch normalization layers (De Vries et al., 2017) to allow conditional image generation. For the additional

embedding layer used for joint learning, we use a simple global averaged pooling layer followed by a dense layer.

1https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
2https://github.com/voletiv/self-attention-GAN-pytorch
3https://github.com/Natsu6767/DCGAN-PyTorch
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Method SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

ST 0.162 1.004 0.337

MT 0.185 0.930 0.311

MGM 0.197 0.911 0.291

Table 8: Comparison in the few-shot regime – in the 10% data setting

on the NYUv2 dataset where around 3 images for each scene is used as

the training set. Again, MGM significantly outperforms the compared

models, showing the benefit of generative models in the extremely low-

data regime.

Model SS (↓) DE (↓) SN (↓)

ST 0.137 1.836 0.161
MT 0.156 1.807 0.162

MGM 0.125 1.670 0.153

Table 9: Comparison with extreme low data in

Taskonomy. In this data setting, MGM signifi-

cantly outperforms both ST and MT, indicating

that MGM is robust and especially helpful in

low-data regime.

B. Additional Experimental Evaluations

B.1. Comparison with Other Multi-task Models

In the main paper, for a fair comparison we focused on comparing our MGM model with internal models (e.g., the multi-task

model upon which MGM builds). To have a more comprehensive understanding of the performance of MGM, we also

compare our method with some state-of-the-art multi-task models. We focus on the 25% data setting for the NYUv2 dataset,

where collaboration between different tasks and the utilization of data is vitally important.

We include six models in this experiments. ST is the single-task model, where the encoder and the decoder are adopted

from Zamir et al. (2018). MT is the multi-task model that uses a shared encoder as ST and separate decoders. ST and

MT are the baselines compared in the main paper. TaskGrouping uses the optimal network for the three tasks concluded

from Standley et al. (2020). Another two well-performing multi-task models are Cross-stitch (Ren & Jae Lee, 2018)4 and

AdaShare (Sun et al., 2020). MGM is our proposed model. Table 6 summarizes the results. Notably, with a simple shared

encoder architecture, our MGM model outperforms other state-of-the-art multi-task networks with more sophisticated

architectures, which indicates the benefit of introducing generative modeling for multi-task learning. In addition, our MGM

is a model-agnostic framework and could be incorporated with these different multi-task models for further improvement.

B.2. Experimental Evaluation on CityScape Subset

In this section, we demonstrate that MGM can work with datasets when no image-level labels are available. In an alternative

may, the proposed MGM frame model can work with object labels as well since the generative network and refinement

network can naturally work with multi-hot labels — the refinement network can work with a multi-label classifier, and the

generative network can be a multi-label-conditional GAN.

We conducted semantic segmentation on a subset of CityScape (Cordts et al., 2016) dataset, the Zurich street scene. We

focused on the semantic segmentation task, which is a representative task on CityScape. We use the 30 standard multi-hot

CityScape semantic object labels for the generative model and also the refinement networks. We use 80% of the data for

training and 20 % for testing and compare the performance of ST and MGM for this experiment. We generate the same

amount of data with random multi-hot labels using MGM. The results are shown in Table 7. MGM still outperforms the

baseline ST model, indicating the robustness and generalizability of the model with multi-hot object labels.

B.3. Experiments with Few-Shot Setting

Since the learned generative model facilitates flow of knowledge across tasks and provides meaningful variations in existing

images, it is especially beneficial in the low-data regime. So we designed a 10% data setting for NYUv2 dataset, where

around 3 images for each scene is used as the training set. We also compare our MGM model with ST and MT. From Table 8,

we can see that MGM outperforms the other compared models significantly, indicating the gain of generative models in the

extremely low-data regime.

B.4. Experiments with Extreme Low data at Taskonomy

We noticed that for Tiny-Taskonomy dataset, 25% data setting is still far from low-data regime. To further explore the

effectiveness with our model with low-data, we further conduct an experiment with a subset of Tiny-Taskonomy dataset.

We randomly select 3 nodes (allensville, benevolence, and coffeen) from Tiny-Taskonomy dataset to build a dataset with

4We modify the network architecture following Sun et al. (2020) to make it work for the three tasks.



Generative Modeling for Multi-task Visual Learning

Model SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

ST 0.230 0.837 0.309
MT 0.237 0.819 0.291
STl 0.232 0.841 0.304
MTl 0.236 0.804 0.288

Table 10: Impact of parameters. STl and MTl: baselines with a larger number of parameters (with deeper backbones).

Simply increasing the number of parameters cannot significantly boost performance.

Model SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

ST 0.230 0.837 0.309
MGM-SS 0.244 - -
MGM-DE - 0.752 -
MGM-SN - - 0.277

MGM-Combine 0.249 0.747 0.277
MGM 0.251 0.734 0.273

Table 11: Ablation with MGM for single tasks and a stronger baseline with the learned information from the three individual

tasks but without jointly training. The experiments are conducted on NYUv2 50% data setting. MGM-SS, MGM-DE,

MGM-SN: variantal MGM model for single tasks. MGM-Combine: MGM variant trained with augmented images generated

by the above three models. The proposed MGM framework can consistently benefit each single tasks and MGM-combine

cannot reach the performance of MGM, indicating the importance of joint training mechanism.

17,404 images—around 5% data setting compared with the full Tiny-Taskonomy dataset. We then conduct experiments with

ST, MT and MGM for this subset. All the other experimental settings keep the same as the main paper. Table 9 shows the

comparable results. Combining the results in Table 2, we can find that MGM consistently outperforms ST and MT and is

robust and especially helpful in low-data regime.

C. Additional Ablation Study

C.1. Impact of Parameters

Introducing the refinement, self-supervision, and image generation networks also leads to more parameters. To validate that

the performance improvements come from the novel design of our architecture rather than merely increasing the number of

parameters, we provide two model variants as additional baselines: STl and MTl use ResNet-34 as the encoder network

and the corresponding decoder networks. These two networks have a similar amount of parameters as MGM. The result in

Table 10 show that simply increasing the number of parameters cannot significantly boost performance.

C.2. Ablation with Single Tasks

MGM is a general framework that can be applied to both single tasks and multiple tasks. In the main submission, we

mainly focused on the more challenging multi-task scenario. In this subsection, we conduct experiments with single tasks.

Here we add three baselines applying MGM to the single tasks (SS, DE, SN) named MGM-SS, MGM-DE and MGM-SN

in the NYUv2 50% data setting. We further provide an additional baseline by using the equivalently sampled data from

the above three model as the augmented data, but not jointly train the generative network, named MGM-Combine. The

results of these models are shown in Table 11. We have the following observations: (1) The proposed MGM framework can

consistently benefit each single tasks though without leveraging shared features from multiple tasks. (2) Compared with the

full MGM model, the performance drops when only using single tasks to jointly train with the generative model. (3) When

using the individually optimized generative models, the performance is slight better than MGM/j but still could not reach

MGM, indicating the importance of our joint training mechanism.

C.3. Training Strategies for Refinement Network

In the main paper, we proposed an Expectation-Maximum (EM) like algorithm to coordinate the training between the

refinement network and the main network. Here we compare our EM-Like Training (EML) with two alternative ways of

the training procedure: Plain End-to-End Training (PEoE) backwards the refinement loss to update the entire network

directly; Loosely Separate Training (LSeT) trains the refinement network and the main network separately, and only

backwards the error to the encoder network when dealing with weakly labeled images. Table 12 shows the comparison
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Method SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

MT 0.237 0.815 0.291

PEoE 0.211 0.896 0.301

LSeT 0.247 0.768 0.277

EML 0.251 0.734 0.273

Table 12: Results on the NYUv2 dataset in the 50% data setting with different training strategies for the refinement network.

‘MT’: multi-task learning baseline; ‘PEoE’: plain end-to-end training; ‘LSeT’: loosely separate training; ‘EML’: EM-like

training (proposed in the main paper). Our EML significantly outperforms alternative strategies to train the refinement

network.

Model SS-mIOU (↑) DE-mABSE (↓) SN-mAD (↓)

ST 0.239 0.849 0.282

MT 0.244 0.834 0.313

MGM 0.257 0.819 0.275

Table 13: Experiments with 256 image resolution on the NYUv2 dataset. Our MGM still consistently outperforms the

compared baselines, showing the great robustness and flexibility of the proposed framework.

results on the NYUv2 dataset in the 50% data setting. From this table, we could find: (1) A naı̈ve end-to-end training

strategy is not able to facilitate the cooperation between different networks and thus hurts the overall performance; (2)

Loosely separate training enables the communication between the refinement network and the main network when needed

and thus outperforms the baseline; (3) Our proposed EM-like training strategy further improves over the loosely separate

training and achieves the best performance.

C.4. Experiments on Higher Image Resolution

In principle, the proposed framework is agnostic to the specific types of multi-task networks and image generation networks,

thus flexible with image resolutions. The practical constraint lies in that it is still challenging and resource-consuming for

modern generative models to synthesize very high-resolution images (Brock et al., 2019; Zhang et al., 2019), although the

deep multi-task models normally work better with high-resolution images. In the main experiments, consistent with exiting

image synthesis work (Zhang et al., 2019), we focused on the resolution of 128× 128. Here we further made an attempt to

run our experiments with a higher resolution, 256× 256 on NYUv2. The results of all the compared models in the 50% data

setting are shown in Table 13. We could find that MGM still consistently outperforms the baselines, indicating the great

robustness and flexibility of our proposed framework.

C.5. Generalization of the Shared Feature Representation

Intuitively, our MGM achieves state-of-the-art performance by effectively learning a shared feature representation. We

further show the generalization capability of this representation by designing the following experiment: for the multi-task

model and our MGM model, we first learn the shared feature space with the SS and DE tasks, and we then use that learned

feature space to train a new decoder for the SN task. We report the results on NYUv2 in Table 14. Our MGM outperforms

the multi-task model in all the three data settings, which means that MGM indeed learns a better and robust shared feature

space.

C.6. Full Impact with Generative Networks and Joint Training

In Table 15, we show the full results for MGM/G and MGM/j on the two datasets. Our MGM outperforms single-task and

multi-task baselines even without synthesized data, showing its effectiveness as a general multi-task learning framework.

The model performance further improves with joint learning.

D. Implementation Details

Data Processing: For the NYUv2 (Nathan Silberman & Fergus, 2012) dataset, following Sun et al. (2020) we resize and

normalize the RGB images to (−1, 1), standardize the normal ground-truth to (0, 1), and do not normalize the depth. For

the Taskonomy dataset (Zamir et al., 2018), we follow the standard data normalization in Zamir et al. (2018).
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Model mAD-100% (↓) mAD-50% (↓) mAD-25% (↓)

MT 0.291 0.310 0.323

MGM 0.280 0.298 0.305

Table 14: Results for the SN task with pre-trained feature representations by the SS and DE tasks. MGM consistently

outperforms multi-task (MT), indicating that MGM learns a more effective and generalizable feature representation.

Data Setting 100% Data Setting 50% Data Setting 25% Data Setting
Models MGM/G MGM/j MGM MGM/G MGM/j MGM MGM/G MGM/j MGM

NYU
v2

SS-mIOU (↑) 0.261 0.262 0.264 0.243 0.243 0.251 0.215 0.220 0.229
DE-mABSE (↓) 0.707 0.701 0.698 0.799 0.763 0.734 0.868 0.860 0.844

SN-mAD (↓) 0.262 0.259 0.255 0.287 0.281 0.273 0.292 0.286 0.277

Tiny

Task-
onomy

SS-mLoss (↓) 0.108 0.108 0.106 0.116 0.115 0.114 0.119 0.121 0.117
DE-mLoss (↓) 1.491 1.488 1.472 1.527 1.523 1.499 1.636 1.616 1.585
SN-mLoss (↓) 0.151 0.151 0.145 0.153 0.152 0.147 0.154 0.152 0.148

Table 15: Full Comparison of our MGM model with its variants. MGM/G: without generating synthesized images; MGM/j:

without joint learning. Our MGM outperforms single-task and multi-task baselines even without synthesized data, showing

its effectiveness as a general multi-task learning framework. The model performance further improves with joint learning.

Additional Implementation Details: We use Adam (Kingma & Ba, 2014) optimizer for all the models. The learning

rates are set to 0.001 for the multi-task, self-supervision, and refinement networks, 0.0001 for the SAGAN generator, and

0.0004 for the SAGAN discriminator. The batch size is set to 32. We use a cross-entropy loss for semantic segmentation and

the scene classification task of the refinement network, and an l1 loss for surface normal and depth estimation.

Due to the different converge time for the different modules, we use a three-stage strategy to perform joint training: (1) We

first train the multi-task network separately with fully labeled real data; (2) We then freeze the multi-task network, and train

the image generation network and the embedding network separately; (3) We do joint training with the whole network using

both fully labeled real data and weakly labeled sythesized data. During the pre-training process of SAGAN, we set the batch

size to 128 to train a better model following Zhang et al. (2019). Then, for the joint training, we use a batch size of 32 for all

the sub-networks. Additionally, for the same minibatch of data, we update the image generation network 2 times iteratively

during stage (3).

Training Procedure: We summarized the training procedure in Algorithm 1 in the main paper. Here we further explain

the training procedure in more details. Given a minibatch of data in Sreal, we conduct the following training procedure.

1. For the input images x, we predict ŷ = M(x), and then use the task-specific losses between y and ŷ to update the

multi-task network M.

2. We predict the scene labels by ĉ = R(ŷ), and update the refinement network R and the multi-task encoding network

E using the cross-entropy loss between c and ĉ.

3. We randomly sample pairs of augmented images, process them with the self-supervision network, and then update the

self-supervision network and the multi-task encoder E with the NT-Xent loss in Eqn. (6).

4. We train the image generation network G through adversarial training with (x, c), and back-propagate the adversarial

error and update E at the same time.

5. We sample another minibatch of synthesized data (!x,!c), and use these data to update E by performing both the EM-like

algorithm described in Sec. 3.2 (main paper) with R and the self-supervised learning as in step 3.

Dataset Setting We evaluate all the models on two widely-benchmarked datasets: NYUv2 (Nathan Silberman & Fergus,

2012; Eigen & Fergus, 2015) containing 1,449 images with 40 types of objects (Gupta et al., 2013); Tiny-Taskonomy

which is the standard tiny split of the Taskonomy dataset (Zamir et al., 2018).

For Tiny-Taskonomy dataset, since a certain amount of images for each category is required to train a generative network,

we keep the images of the top 35 scene categories on Tiny-Taskonomy, with each one consisting of more than 1,000 images.

This resulting dataset contains 358,426 images in total. For NYUv2, we randomly select 1,049 images as the full training set

and 200 images each as the validation/test set. For Tiny-Taskonomy, we randomly pick 80% of the whole set as the full

training set and 10% each as the validation/test set.
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E. More Visualizations

In Figure 4 of the main paper, we visualized the prediction results. Here we provide more visualizations of the multi-task

predictions for MGM and the compared baselines in Figure 8. Notice that, for the surface normal predictions, the ground-

truth of NYU-V2 dataset has padded boundaries. For a better visualization, we mask the boundaries in the main paper but

include them in Figure 8. Our MGM model significantly outperforms both ST and MT baselines.

ST-SS

MT-SS

MGM-SS

GT-SS

ST-DE

MT-DE

MGM-DE

GT-DE

ST-SN

MT-SN

MGM-SN

GT-SN

Figure 8: More visualizations of the multi-task predictions for MGM and the compared baselines. SS: semantic segmentation

task; DE: depth estimation task; SN: surface normal prediction task; ST: single-task model; MT: multi-task model; MGM:

multi-task oriented generative modeling (our proposed model); GT: ground-truth. The prediction results of our MGM model

are much closer to the ground-truth and significantly outperform the state-of-the-art results.


