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ABSTRACT

Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically
significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally
difficult. The Davis—Chandrasekhar—Fermi (DCF) method has been the most commonly used method to estimate the magnetic
field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion
via linear Alfvén waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption
underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between
turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We
then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new
recipes to improve the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF
analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight

gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method.
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1 INTRODUCTION

Magnetic fields have long been recognized to play a critical role in
shaping the formation and evolution of molecular clouds and proto-
stellar systems (McKee & Ostriker 2007), but definitive progress
has been slow because the complete 3D structure and strength
of the magnetic field within molecular clouds cannot be directly
probed observationally. On one hand, the magnetic field strength
along the line of sight can be derived via Zeeman splitting of
molecular lines, but the measurements are notoriously difficult. Firm
Zeeman detections thus remain sparse (see e.g. Falgarone et al.
2008; Troland & Crutcher 2008; Crutcher et al. 2010, or Crutcher
2012 for a review). On the other hand, polarized dust emission is
generally thought to be a reliable tracer of the projected magnetic
field direction on the plane of sky, because non-spherical grains tend
to be oriented with their long axes perpendicular to the magnetic field
lines (Davis & Greenstein 1951; also see review by Lazarian 2007).
However, though dust polarization patterns have been successfully
mapped at multiple scales from diffuse clouds to protostellar discs
(e.g. Hull et al. 2013; Stephens et al. 2014; Planck Collaboration
XIX 2015; Fissel et al. 2016; Ward-Thompson et al. 2017), the 3D
structure of magnetic field remains unknown.

With the advent of several new instruments in the last several years
including Planck (e.g. Planck Collaboration XIX 2015), BLASTPol
(Fissel et al. 2016), JCMT/POL-2 (Ward-Thompson et al. 2017), and
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SOFIA/HAWC + (Harper et al. 2018), the observational situation
has improved drastically. In particular, it is now possible to generate
large number of polarization vectors in multiscale observations with
high-sensitivity polarimeters, which enables statistical examination
on cloud polarization features. The statistical approach has proven to
provide promising methods in theoretical studies (e.g. Padoan et al.
2001; Falceta-Gongalves, Lazarian & Kowal 2008; Soler et al. 2013),
and various models have been proposed to statistically approximate
the observationally inaccessible properties of the magnetic field (e.g.
Chen, King & Li 2016; King et al. 2018, 2019; Chen et al. 2019;
Sullivan et al. 2021).

Despite the recent advances, the Davis—Chandrasekhar—Fermi
(DCF) method (Davis 1951; Chandrasekhar & Fermi 1953) remains
one of the most commonly used methods to estimate the magnetic
field strength. The fundamental picture of the DCF method is to
consider the propagation of Alfvén waves along the originally
uniform magnetic field. In this scenario, any distortion of the
field lines correlates directly to the gas motions (see e.g. Fig. 1).
Therefore, by measuring the field distortion (usually traced by the
dispersion of polarization angles) and the turbulent strength (traced
by linewidth), the field strength can be estimated by assuming (1)
energy balance holds between the gas kinetic and magnetic energy
fluctuations (i.e. §Ex ~ §Ep), and 2) the gas turbulent motion is
isotropic in 3D. While this method has been tested with numerical
simulations (e.g. Heitsch et al. 2001; Ostriker, Stone & Gammie
2001; Falceta-Gongalves et al. 2008) and applied to observational
data at various scales (e.g. Girart, Rao & Marrone 2006; Pillai
et al. 2015; Planck Collaboration XXXV 2016; Pattle et al. 2017,
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Figure 1. Left: Sketch of the perturbed magnetic field §B in the direc-
tion perpendicular to the unperturbed magnetic field direction induced by
an Alfvén wave running along the ‘initial’ field Byp. Middle and right-
hand panels: Illustrating the geometric relation between the gas velocity
v and magnetic field B, as well as their perturbation components v and
8B = B, following the linear Alfvén wave equation (see equation 2 and
Section 2.2).

Kwon et al. 2019), it should be noted that the highly restrictive
assumptions of the DCF method about the gas motions and magnetic
field geometry severely compromise its accuracy, especially for star-
forming regions that are self-gravitating (see e.g. Ostriker et al.
2001).

Several theoretical studies have been conducted towards character-
izing the uncertainties of the DCF method, with most of the efforts
being focused on investigating the cancellation effect in observed
polarization angle dispersion through either the beam convolution
(e.g. Zweibel 1990; Myers & Goodman 1991) or the integration along
the line of sight (e.g. Falceta-Gongalves et al. 2008; Hildebrand et al.
2009; Houde et al. 2009; Cho & Yoo 2016; Cho 2019; Skalidis &
Tassis 2021). However, as we shall argue in this work, the most severe
uncertainty in the DCF method when applying to real observations
is likely the hydrodynamic properties of the gas, not the polarization
measurement. In fact, as pointed out in the recent work by Li et al.
(2022), the interstellar MHD waves are likely non-linear, and there
exist many other modes that do not satisfy the Alfvén relation, which
is a pre-requisite of the DCF method. Several recent theoretical
works have also investigated the correlation between turbulent kinetic
energy and the perturbed component of magnetic energy using fully
3D simulation data, and suggested that the applicability of the DCF-
assumed scenario is limited (see e.g. Skalidis et al. 2021; Beattie
et al. 2022). If the DCF equation does not hold in 3D, its application
on projected 2D data is questionable, unless proper calibration can
be provided to increase the accuracy.

In this paper, we revisit the fundamental picture behind the
DCF method using fully 3D MHD simulations (Section 2), and
investigate the applicability of the simplified DCF scenario towards
star-forming gas in 2D synthetic observations (Section 3). We
first examine the balance between turbulent kinetic energy and the
perturbed component of the magnetic energy in the 3D space using
MHD simulations, which was assumed to be in equipartition in the
DCF scenario. We then use the linear Alfvén wave relation (the
foundation of the DCF method) to derive the ‘unperturbed’ field
B, for the simulated cloud in 3D (Section 2.2), which is a pure
mathematical result assuming the DCF equation holds everywhere.
We also discuss why the mean field could be considered as the
background, ‘unperturbed’ field when conducting the DCF analysis
(Section 2.3-2.4). In Section 3, we discuss possible corrections and
modifications for the DCF method when applying on 2D, projected
observational data, which we test and compare in Section 4. In
Section 5, we propose a new method to estimate the correction factor
for the DCF equation from the cancellation effect on polarization
angles along the line of sight. We summarize our conclusions in
Section 6.
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Table 1. Summary of the simulation models considered in this study. These
simulations were originally reported in Chen & Ostriker (2015) and Chen et al.
(2019). Values here represent the averaged values in the shock-compressed
regions in these colliding-cloud simulations (see Section 2 for more detailed
description on the model setups). Here, (§¢) represents the angle dispersion
of magnetic field direction in 3D space.

Model B3p Plasma Urms (6¢)
(uG) B (kms™h ©)
L1 74 0.15 0.76 12
L5 13 0.14 0.99 20
L10 12 0.05 1.87 19
L20 20 0.03 2.15 25

2 THE 3D DCF RELATION

In this section, we describe our investigation towards the DCF corre-
lation, and demonstrate our analysis using 3D MHD simulations.
We used the set of simulations reported in Chen et al. (2019),
which are cloud-scale, core-forming 3D MHD simulations.! The
core formation activities in these clouds are induced by turbulent
convergent flows, which compresses the originally diffuse gas (~10—
100cm™?) to create dense, post-shock regions within which dense
structures and cores form (for more detailed information, see Chen &
Ostriker 2014, 2015; Chen et al. 2016). For our analysis in this study,
we only consider the post-shock regions in the simulations because
they resemble better the physical properties of the observed star-
forming molecular clouds. A summary of the basic cloud properties
of these models is in Table 1. Generally speaking, models L1 and
L20 represent the cases with relatively the strongest magnetic field
and turbulence, respectively, and models L5 and L10 represent the
moderately magnetized cases, with model L10 being more turbulent
than L5 (see e.g. the values of plasma 8 and the rms velocity in
Table 1).

2.1 The original DCF method

Based on the assumption that the fluctuation of gas kinetic energy is
equal to the fluctuation of magnetic energy, 8 Ex = §Ep, the original
DCF method envisioned the interplay between gas turbulence and
magnetic field as a transverse Alfvén wave propagating through a
background magnetic field By. The gas velocity thus induces small
deviation of the magnetic field, §B, from the initial, unperturbed
field By. Since we restrict our analysis to Alfvénic fluctuations, only
the perpendicular component of the gas velocity with respect to the
initial field By is effective here, and the perturbed component of the
magnetic field is perpendicular to By (B = 0, B, = 6B; see the
left-hand panel of Fig. 1). This suggests the relation between the gas
velocity and the perturbed magnetic field should follow

SEk pvi/2  4mpvi

5B, ' T BlGD Bl W

!Note that model L1 represents a slightly different scenario than other models.
This particular simulation was designed to follow a local shock-compressed
region (1 pc in size) within a molecular cloud, and thus the initial gas density
is higher (1000cm~3) and has relatively strong magnetic field (~ 75 uG)
comparing to typical cloud-scale properties (~10-100cm ™ and ~ 10 uG).
Since the focus of this study is to test the DCF method under various
circumstances, we include model L1 with other models in our analysis, though
we note that L1 is a relatively extreme case for cloud-scale gas and magnetic
field structures.
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The perturbed magnetic field B, and gas velocity v, thus satisfy

v 8B @)
v =Va—,
i A B,
where V, = /B /47 p is the Alfvén velocity in the pre-perturbation
medium. This implies, if there is a well-defined, small amplitude
Alfvén wave running along the ‘initial’ field, By, it is possible to
derive the magnitude of By using the DCF equation:

V)] vy
By = /471 X \/drp—, 3
0=/ pSB/BO V4 p&p 3)
where p, vy, and 8¢ can be estimated from observations (see
Section 3). Note that there is no pre-requisite (e.g. must be constant)
on By to satisfy equation (2), and thus we shall not simply treat it as the
average field over the interested region before further justifications
(see Section 2.3).

2.2 The initial magnetic field in the DCF method

If the assumption of small-amplitude Alfvén wave is valid, equa-
tions (1)—(3) should hold everywhere in the medium. This allows an
inference of the unperturbed background field direction By in each
location when B and v vectors are known. As illustrated in Fig. 1,
in the plane made by B and v vectors, let 6 be the angle between
B and v vectors and 8¢ the angle between B and By (all angles are
positive), we have either (note that By cannot be in between B and

v)

\4mwpvsin(d¢ + 0) = B sin(§¢p) )
for case 1 (By on B side), or
v 4mwpvsin(é¢p — 0) = Bsin(§¢p) 5)

for case 2 (B on v side). Note that here we require §¢p < 90°, which is
a requirement for the DCF method to be applicable. This is because,
for the DCF method to work accurately, there must exist such By
as the original, pre-perturbation field. Since the perturbed field B is
the combination of By and the perturbed component §B from gas
turbulence, and since only the velocity component perpendicular to
By could bend the field line, we have B = By + §B with By L 6B,
and the angle between B and B, must be less than 90°.

We would like to point out that, case 1 represents the ‘traditional’
view of the DCF relation that when the deviation of B from B is
not large, or in general, when the gas turbulence is sub-Alfvénic. On
the other hand, case 2 is also physically correct with By < B <
B, which represents the situation when the gas turbulence is much
more energetic comparing to the initial magnetic energy (i.e. super-
Alfvénic).> Another criterion for case 2 to be valid is §¢ > 6, which
is a numerical requirement but also provide the natural limit that 6
must be smaller than 90° in this scenario.

We can now solve §¢ following the derivations below:

JAp vsin(8p £ 6) = B sin 86, ()
x =sindgp, A= VTer )
A= ——————— =, ®)
xcosftsinfa/ 1—x
. 2 in2
sin §¢ = x? = 17264 féf!eiAz- (€

2Because in case 2, /4mpv = /Ampv, /sin(d + 8¢) > B, /sin(8¢) = B.
Thus, locations that satisfy the scenario of case 2 are locally super-Alfvénic.
Similarly, case 1 represents sub-Alfvénic locations.
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This gives §¢ (and thus the direction of By) at every location. Note
that the derived formula of ¢ is the same for both cases. Since By,
B, and v must be on the same plane, we can therefore solve for v
and B :

v, =vsin(é¢p £6), B; = Bsindg. (10)

When applying on simulation data, we adopt case 1 as the default
solution, and we only use the solution from case 2 when

1 , B?
—p(vcosf) > —, and d¢ > 6. 1n
2 8w

By defining vg as the vector in the same plane of By, B, and v and
is perpendicular to B (see Fig. 1), we have

vg=v— (v-B)B, (12)
and we can derive the direction of B (denoted as the unit vector ﬁ):
By = Bcosd¢ F vy sin 8. (13)

Since B = By + 6B and By L 6B, we know the amplitude of By
should be By = B cos §¢. However, we note that only the direction
of By is important here, because that is what we need to derive B
for the DCF analysis. Fig. 2 illustrates an example of the derived
B, from a cloud-scale, core-forming simulation (model L10 in Chen
et al. 2019). Also note that, as long as we can determine By properly,
the DCEF relation is applicable everywhere even in super-Alfvénic
gas, in contrast to the commonly considered assumption that the
DCEF relation only holds in sub-Alfvénic regime, which have in fact
been challenged by recent numerical studies (see e.g. Liu et al. 2021;
Skalidis et al. 2021; Beattie et al. 2022).

2.3 Approximation of By

As demonstrated in the previous section, the accuracy of the DCF
method depends on the accuracy of the measurement of the direction
B. However, the full derivation of B, requires knowing the angle
between v and B, which cannot be probed in observations. Since
theoretically By represents the ‘unperturbed’ field, a straightforward
alternative is to consider the vector-average of B = B,X + B,y +
B,% over a given scale as an approximation of By:

B, =B, %+ B, §+ B, i, (14)

where B, , B, . B, represent averaged B,, B,, and B, over the
chosen scale, denoted as s. Using the same simulation shown in
Fig. 2 [model L10 in Chen et al. (2019)], we consider the averaging
scale to be =£s simulation cells (dx = 0.02 pc for this model), i.e. we
calculate B, following equation (14) by averaging over a (2s + 1)3
volume centred at each cell.

To see how B, depends on scales and whether we can use B,
to approximate By, we calculate the angle difference between By
and By utilizing the full 3D information of the simulation data. The
cases of s = 2,5, 10,20 are shown in Fig. 3 (left-hand panel). Also
included are the comparisons between the local field B (i.e. s = 0)
and the ‘unperturbed’ field By as well as the total vector-averaged
field B,y among the entire simulation domain (5123 cells or 10% pc?;
see Fig. 2). Our results show that, statistically, the angle difference
is smaller when the averaged field B, is derived within a smaller
volume, which implies that the direction of By could only be a good
approximation of B, locally (i.e. for small s).

We further use the derived B; to calculate B, and v,, and use
those values to calculate the DCF-derived magnetic field strength,
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Figure 2. Left: An example of comparing the reconstructed By (the x—y components only; blue streamlines) and the original magnetic field B (also the x — y
components only; red streamlines), overplotted on a slice of gas density (in log (n/[cm~3]), grey-scale) cut through the mid-plane in the post-shock layer of a
turbulent colliding flow simulation (model L10 in Chen et al. 2019; see Table 1). Right: Comparisons between the ‘unperturbed’ field By (black streamlines,
same in all three panels) and the vector-averaged fields B, (red streamlines) for s = 2 (top), 10 (middle), and 20 (bottom), for the same density slice shown in

the left. The gas structure is not shown here for clarity.

Bpcr 5;» following equation (3):

Boep g = \/4mp—ie 15

pers =V | )
The results are plotted in Fig. 3 (right-hand panel). Interestingly,
when looking at the probability distribution of the DCF-derived field
strength using the direction of By as By, it is the large-scale average
By, or the whole-box average By, that has its most probably value
around the actual mean field value.® In contrast, the DCF method
tends to overestimate the field strength when the reference field is
averaged locally (small s for By). This is not surprising, because
the locally averaged magnetic field is more tightly correlated with
the local field direction (see Fig. 3, left-hand panel), which means
the dispersion angle 8¢ = Z(B, By) tends to be small, and thus the
derived Bpcgsp tends to be large.

The right-hand panel of Fig. 3 suggests that the vector-averaged
field direction over a large scale could be adopted as the ‘unperturbed’
field direction By in the DCF equation to provide a good estimate of
the mean field strength within the selected region, even though the
direction of such averaged field may not agree with By everywhere

3Note that there are two ways to define the mean field strength: the absolute
value of the vector-averaged field |BJ, or the scalar-average of the magnitude
of the field [B[. Both are indicated in the right-hand panel of Fig. 3 (vertical
lines in the plot).

MNRAS 514, 1575-1594 (2022)

(see the right column of Fig. 2). We note that this can be explained by
the distribution of SEx = pv? /2 and §Ep = B? /(87) with respect
to the averaged magnetic field direction, which is analogous to the
original DCF assumption equation (1). Note that the turbulent kinetic
energy 8Eg considered here is the total kinetic energy from the
perpendicular component of the gas velocity with respect to various
reference magnetic field direction (B, and By) within the cloud.
As shown in Fig. 4, while the distribution of §Ex does not vary
much when the referencing direction changes, the distribution of §E
shifted towards larger values when the referencing field direction is
derived over larger scales. This is expected, because as we mentioned
above, locally averaged field direction tends to give smaller B, and
thus §Ep is smaller. When we use the entire simulation domain to
calculate the reference field direction By, the corresponding 8 Ep/SEg
peaks around 1, consistent with the pre-requisite of the DCF method
(equation 1), thus provide the most accurate estimate of the field
strength in Fig. 3).

We further note that this property of equipartition between the
most probable values of Ex and §Ep holds in sub-regions as well,
and even around dense cores. Fig. 5 illustrates a series of the same
analysis (using B as the reference field direction) applied on regions
of different scales centered at the same dense core. While we clearly
see the shape of the §Ep/SEx distribution becomes more lognormal
when including more background clouds around the dense core (from
top to bottom rows of Fig. 5), the §Ep/§Ek distribution from the
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Figure 3. Comparing B,,s=2,5,10,20 (B averaged over 53,113,213, and 413 cells) by showing histograms of Z(E, By) (left) and DCF-derived magnetic
field strength (right). Though By seems to be a good approximate of the direction of By (i.e. small relative angle) statistically when s is small (i.e. averaged
locally), only the Bpcr derived from large-scale averaged B, gives good estimates of the averaged field strength. In addition, we found that using sin §¢ = B, /B
(dashed curves) provides more accurate results than the commonly adopted tan 8¢ = B, /|B| (solid curves). The grey vertical line on the right panel marks the
mean field strength calculated from the scalar mean (solid line) and vector-average (dotted line).

smallest scale that we tested (top row) still peaks very close to 1,
which suggests the DCF analysis we performed in Fig. 3 may still be
a good approximation even in the immediate surrounding of a dense
core.

We would like to point out that the equipartition in Ep and §Ex
shown in Figs 4 and 5 could be due to that this simulated cloud,
being on the shock front of the collision of two diffuse clumps, is in
principle trans-Alfvénic. While this implies that such equipartition
may not be a general property for all simulations, it is very possible
that in reality, all star-forming regions are indeed trans-Alfvénic, and
thus the DCF method could still provide a good approximation of the
field strength measurement. This also explains why this equipartition
tends to break when only including the immediate surrounding of a
dense core, because the gas flows around a dense core are likely
affected by the core’s self-gravity, so the assumption of pure MHD
turbulence no longer holds.

2.4 The statistical DCF method

The DCF method is based on the assumption of the equipartition
between the perturbed components of gas velocity and magnetic
field, i.e. SEx = 8Ep. As discussed in the previous section, one can
use the vector-averaged field B as the reference field and achieve the
equipartition statistically in log space, i.e. (8Ex/6Ep)10g ~ 0, where
we use ()i to represent averaged value in log space. Therefore,
the DCF equation should be re-written from equation (3) as the
following:

v
Bpcr = <BDCF.loca]>]Og = <\/‘Wﬁ>

Note that we propose here a slightly different process of applying
the DCF method. Instead of calculating

(vi)
(B)pck = VAT (p)——=—
(BL/IB|)
(see Section 3.1 for more discussions on the DCF equation in 2D),
the lognormal shape of §Ex/6Ep shown in Fig. 4 suggests that one
should calculate the DCF-derived magnetic field strength at each
location using local values of density, velocity, and B, /|B| as

vy
BpcE,local = \/4mp

B./B|’

. (16)
log

A7)

(18)

then use Bpcr = (BpCE local)log @S the cloud-scale magnetic field
strength.* Namely, while the DCF method cannot be applied locally
at individual cells unless ]§0 is known, we can take the vector-average
of the magnetic field over a large-enough scale to approximate
the unperturbed field direction, and use this direction to calculate
vy, By, and Bpcrioca at each cell. The averaged value of the
distribution function of this Bpcr 1oca 10 log space can then be
adopted as the estimated field strength of the system. Note that,
by comparing equation (16) with equation (3), in equation (16)
we are calculating Bpcp to approximate |B|, the vector-averaged
field strength. However, the cloud-scale mean field strength should
be |B|, and obviously |B| < |B|. As a result, using B, /|B| as
the denominator in equation (16) tends to underestimate the field
strength.

We further note that, a commonly adopted convention in
previous 2D works (e.g. Falceta-Gongalves et al. 2008) is to
consider

tand¢ ~ B, /|B], (19)

where §¢ = Z(B, B). However, the correct relation should be
tan 8¢ = B /B) where B| is the component of the local magnetic field
parallel to B, and By # |B|. This suggests that by adopting tan §¢
in the DCF equation to replace B, /|B| would introduce additional
errors. A better way is to consider sind¢ = B, /B, i.e. using the
local ratio between the perturbed (the component perpendicular to
the mean field) and the total magnetic field to replace B, /|B| in
equation (16). Note that similar concept has been pointed out in
Liu et al. (2021). Though B could have large variation within the
interested region, since we are only considering the peak value in
log space and since (8Ex/6Ep)ioe ~ 1, equation (16) gives Bpcg —
(B)1og ~ |BJ. Note that it does not matter if the derived BpcE, tocal 18
locally correct or not, as we discussed above. The right-hand panel of
Fig. 3 compares the derived Bpcr, jocal Values using tand¢ = B, / B
(solid lines) and sind¢ = B, /B (dashed lines). The difference is
small for locally averaged field (small n) due to smaller §¢, but
for Bpck 1ocal derived from whole-box averaged field, switching to

“Note that, in principle, there can be locations where B || B, ie. B, =0.
In this case, Bpcf, 1ocal — ©©. These data points should be removed before
deriving the averaged value of the magnetic field.
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Figure 4. Comparing energy ratio SEg /0 Ex = (Bf_ /(8m))/ (pvf_ /2) with By, v, derived with By as By for all 4 models considered in this work (see Table 1).

When averaging over large scales, By is able to make § Eg/§Ej peak near unity, so the most probable value of the corresponding DCF-derived field strength thus
roughly agrees with the mean field strength in the simulations (also see Fig. 3).

sin 8¢ clearly shift the peak closer to the true value. As we will show 3 THE DCF METHOD IN 2D: COMPLICATIONS
in the next section, in projected 2D maps sin vy and Bpos, 1 /Bpos AND MODIFICATIONS

also have tighter correlation than tan §vy versus Bpos, 1 /Bpos (see

Fig. 7).

MNRAS 514, 1575-1594 (2022)

Now that we have validated the DCF relation in 3D space, we
extend our investigation of the DCF method to 2D projected systems,
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Figure 5. Equipartition between §Ex and §Ep in dense core and surrounding regions covering different scales (small to large from top to bottom). Left column:
Slice plot of the gas density log (n/[cm~>]) demonstrating the corresponding gas structures. Middle and right columns: The probability distributions of Eg,
S8Ek (middle), and  ER/SEk (right) using the vector-averaged field over the entire domain shown in the left column as the reference field. When including more
diffuse gas in the background, the distribution of § Ep/§ Ex becomes more lognormal with a peak near 1 (equipartition).
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Figure 6. Definition of angles and symbols in calculating the synthetic
polarization. Revised from Chen et al. (2016, 2019).

i.e. astronomical observations. We note that some extra assumptions
are needed to apply the DCF method in observations due to the
limited observables. Here, we discuss various ways to improve
and/or validate these assumptions before applying the DCF method
to synthetic observations from our numerical simulations in the next
section.

3.1 Synthetic polarization

We derived the synthetic polarization as the follows (see e.g. Lee &
Draine 1985; Wardle & Konigl 1990; Fiege & Pudritz 2000; Planck
Collaboration XIX 2015; King et al. 2018):

N:Zn, N2=Zn (coszy—g),

los los

q = ch05290052y, u =Znsin29€052y,

los los
1 /a2 2

Y = —arctan2 (u, q), p = poqiﬂ (20)
2 N — poN;

with n being the density of the medium (see Fig. 6 for definition of
angles). Note that here we use 6 for the position angle of the plane-of-
sky component of the magnetic field (Bpos) instead of the commonly
adopted ¢ to avoid confusion with §¢, which measures the angle
between Bpps and Bpps. For simplicity, we assumed homogeneous
grain alignment and set the polarization coefficient to be a constant,
po = 0.1 (see e.g. Chen et al. 2016, 2019). However, we note that
non-constant grain alignment efficiency may have effects on the
polarization structure, as discussed in e.g. King et al. (2019).

In addition to assuming isotropic turbulence so that v, ~ o, where
o, 1s the observed line-of-sight velocity dispersion, to connect the 3D
DCEF relation to 2D projected quantities on the plane of sky (POS),
we need to assume

B, Bros,1 Bros, 1.
2L L DPpos. L

— and
B Bpos Bpos

A tan 81/, 1)

where 81 is the angle between v and the averaged angle v/

V= %arctan2 (Z sin2y, » _ cos 21//> ) (22)

POS POS

With these assumptions, equation (3) becomes

4p %~ 4o (23)

Bpcr,pos ~
' Bros, 1/ Bros

Note that there have been several versions of the 2D DCF equation in
the past, depending on the interpretation of the magnetic field
distortion term B, /B. Ostriker et al. (2001) considered (B, /B) ~
(6v), with () being the dispersion of observed polarization

MNRAS 514, 1575-1594 (2022)

angle. Heitsch et al. (2001) used B, /B ~ (tan8ys), which could
be severely contaminated by large angles. First proposed by Falceta-
Gongalves et al. (2008) and recently justified by Li et al. (2022),
the now commonly adopted version of the DCF equation in
2D is

(0v)
tan(8vyr)

The accuracy of equation (24) depends on how accurate equa-
tion (21) is. The first part of equation (21) (B to Bpos) depends on
the projection effect of the system, which we will discuss shortly
in Section 3.2. Regarding the second part of equation (21) (Bpos to
polarization angle), a direct comparison between Bpos, | /Bpos and
pL/p = sin(yy — V), as well as Bpos. 1/ Bpos and tan(yr — W), is
shown in Fig. 7 using several synthetic observations (see Table 2).
As we discussed in Section 2.4, sind correlates much better with
Bpos, 1 /Bpos compared with the correlation between tandy and
Bpos. 1 /Bros. This strengthen our argument in Section 2.4 that
one should consider using sindy¥ in the DCF equation. Fig. 7
also suggests that, in non-extreme conditions (moderate viewing
angle with respect to the magnetic field, moderate turbulence, etc.),
the polarization orientation follows the actual POS magnetic field
structures pretty well when the polarization fraction is high enough,
say, p/Pmax =, 20 per cent, where pn,x is the maximum polarization
fraction measured from the synthetic polarization map. Since the
orientation of polarization segments with polarization fraction below
~ 20 per centpy,,x have relatively low correlation with the actual
magnetic field direction, we shall neglect those polarization segments
when applying the DCF method to the observations. We discuss this
in more details in Section 4.2 below.

Bobs = (B)pcE.pos = /47 {p) (24)

3.2 Angle correction: 2D projection of 3D angle

As discussed above, the DCF-derived magnetic field strength de-
pends on the angle between the perturbed component and the mean
direction of the magnetic field. However, it is important to note that
the angle between two vectors in 3D may not be the same after
being projected to 2D plane, and thus the uncertainty increases when
applying the DCF method to 2D projected observations. Here, we
derive the equation for estimating the projection effect from 3D to
2D; i.e. the relation between the projected angle in 2D and the actual
angle in 3D.

Consider two unit vectors on 3D Cartesian coordinates with an
angle o between them. Without loss of generality, we set these two
vectors to be on the x—y plane with

Yitsinsj (25)
ry = cos —1i+ sin —J.
+ ) 2.]
After projecting these two vectors to a plane ‘H with normal vec-

tor d = sin © cos @i + sin O sin CDJ + cos OK, the projected vectors
become

pr=rs — (ry-dyd. (26)
Let the angle between the projected vectors be &y, then we have
P+ P
COS Qlproj =
[p+Ip-|
_ cosa — (ry - &)(r_ . ﬁ) . @7
\/1—(1'+~d)2\/1—(r_~d)2
Since
r.-d=sin® cos (Qq:%), (28)
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Figure 7. Comparison between the synthetic polarization structure (as traced
by 8¢ = ¥ — ¥ where ¥ is the mean polarization angle over the entire map)
and the projected plane-of-sky (POS) magnetic field structure for four selected
cases with various turbulent levels and viewing angles with respect to the
magnetic field (more perturbed/inclined from top to bottom; see Table 2). As
discussed in Sections 2.4 and 3.1, assuming tan vy ~ Bpos, | / Bpros would
increase the uncertainties in the DCF relation because tan ¢ does not trace
Bpos, 1 / Bpos well (right column). Instead, sin v and Bpos, | /Bpos are more
tightly correlated (left column). These 2D histograms are colour coded by
normalized polarization fraction p/pmax, which suggests that in most of the
cases when the synthetic polarization fraction is relatively high, the synthetic
polarization orientation is more consistent with the projected magnetic field
structure.

we have
R A 1
(ry -d)(r--d)= 2 sin’> © [cos(2D) + cosa], (29)
and
(ry - d)* = sin® © cos’ (dD F %)
1
=3 sin? @ [cosRQP F a) + 1]. (30)

For projected magnetic field on the plane of sky, r.. represent two
3D vectors with angle A¢ between them, and p. are two vectors
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on the 2D map with angle difference A¢,p. If we use the average
of the two vectors as the reference direction and let the inclination
angle between the mean field direction and the plane of sky be y, the
normal vector for H (the plane of sky) is on the x—z plane with & =
0 and ® = 7 — y. Note that since we only consider y values within
[0, /2], this means ® must be within [7/2, 7]. Equation (27) thus
becomes:

cos A¢p — % sin? y (1 + cos Ag)
1-— % sin y(1 + cos A¢)

cos Agop = (31
and we now have the correlation between projected angle A¢,p and
the original angle A¢ with y being the inclination angle of the mean
magnetic field with respect to the plane of sky.

Fig. 8 illustrates this projection effect by showing A¢yp as
functions of both A¢ and y. Note that the projected angle measured
in 2D is always larger than the actual angle in 3D, and the difference
increases with inclination angle. This suggests that B, /B tends to
be slightly overestimated, which makes the DCF-derived magnetic
field slightly underestimated. However, this effect could be small if
the inclination angle is not large (small y) or the actual perturbed
field does not deviate much from the mean field in 3D (small A¢).
For example, from Fig. 8, for a dispersion angle §¢ = 20° in 3D,
the DCF method shall remain accurate within a factor of two if the
inclination angle is roughly below 60°. Nevertheless, as shown in
Section 4, this projection correction is critical particularly in cases
with large inclination angles (see e.g. Fig. 12).

3.3 Gas volume density in the DCF method

When applying the DCF method on observations, one challenge is
the estimate of the gas volume density p, which requires additional
information either from a chemical network or a measurement of the
cloud depth along the line of sight. Here, we describe two methods
on estimating the cloud depth and hence the gas volume density
from observable quantities. We compare them with the actual values
and discuss how this affects the accuracy of the DCF method in
Section 4.1.

3.3.1 Linewidth—size correlation

We first consider the method proposed in Storm et al. (2014) to esti-
mate the cloud depth. This method (‘vfit’) is based on the assumption
that the observed spectral linewidth traces the velocity dispersion
(0,) corresponding to the line-of-sight length-scale of the cloud,
while the spatial dispersion of the observed centroid velocity (v.)
should reflect the plane-of-sky size of the cloud based on Larson’s law
on linewidth—size correlation (see Fig. 9 for illustration). We note that
this assumption is valid as long as the entire target region belongs to
a spatially connected structure with a power-law correlation between
the turbulence amplitude and the physical scale. Such linewidth—size
correlation may break down in clouds with significant sub-structures,
however.

Following Storm et al. (2014), we identify spatially coherent
structures (cores, branches, and trunks) from the column density
map using the Python toolkit astrodendro, then calculate the
mean linewidth (o;,) and the dispersion of centroid velocity (o, )
within each structure. We then fit the dispersion of centroid velocity
as a power-law function of the physical size of the structure, ¢£:

oy, = 0147, (32)

which represents the scale relation of the turbulence of the given
system, o, (£). We can then use the average value of the line-of-sight
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Table 2. Summary of the synthetic observations described in Section 4.1 and the corresponding results from the DCF analysis with various modifications
discussed in Section 3.

C.-Y. Chen et al.

model vy (0Y) oy % log(p/cm™3) Bpcr/Bpos, tan (8v) Bpcr/Bpos, tan 8 Bpcr/Bsp, sin 8yr3p
) ©)  (kms™h (102'em™2)  vfit eq ana vfit eq ana vfit eq ana viit eq ana
L1.inc0 7 8 0.18 6.54 3.1 2.6 43 0.4 0.5 1.6 0.9 0.5 39 0.9 0.5 3.8
L1.inc30 37 11 0.28 8.80 33 2.7 43 0.8 0.9 2.4 1.8 0.9 5.8 1.5 0.7 4.7
L1.inc60 67 27 0.41 24.0 4.0 4.0 4.3 1.5 32 22 33 3.0 4.7 1.8 1.8 2.5
L5.inc0 7 17 0.31 1.41 1.7 1.5 2.9 0.4 0.7 1.8 0.9 0.7 39 0.9 0.7 3.8
L5-inc30 37 24 0.31 1.85 2.0 1.9 2.9 0.6 1.2 1.8 1.5 1.2 4.2 1.3 1.1 3.7
L5-inc60 67 43 0.42 5.12 24 3.2 2.9 0.5 1.5 0.9 0.8 1.2 1.5 0.7 1.7 1.3
L10.incO 2 24 0.51 1.71 1.8 1.6 2.7 0.6 0.6 1.2 1.2 0.6 2.5 1.3 0.6 2.7
L10.inc30 28 28 0.49 222 2.1 1.9 2.7 0.6 1.0 14 1.4 0.9 29 1.4 1.0 2.8
L10-inc60 62 45 0.75 2.53 2.1 2.2 2.8 0.8 0.9 1.5 1.2 0.7 22 1.2 1.1 2.1
L20.-incO 2 37 0.68 1.68 22 1.7 24 0.5 0.4 0.6 0.8 0.3 1.1 1.1 0.5 14
L20.inc30 32 42 0.56 2.13 2.3 22 24 0.5 0.6 0.6 0.9 0.5 1.0 1.1 0.8 1.2
L20.inc60 63 47 0.75 5.17 22 2.8 2.3 0.3 0.8 0.4 0.5 0.6 0.6 0.6 1.1 0.7
€ = (|log(Bpcr/B)|) 0.27 0.18 024  0.16 0.20 0.41 0.12  0.15 0.38
180 velocity dispersion to determine the depth of the cloud L under the
160 — Le=10" e Ag =50" assumption that the turbulence is isotropic:
_ Ap=20° Ad =60
140 Ap=30° Ap =70 7\
[} — v
_;;‘.3112(} — Ap=40" - Ad =80 ) i Oy = O—U(,’(K = L) = Ungﬁt’ Ly = <71 . (33)
S100 I i ’,:"" Note that, when applying on the DCF analysis, this method is
ﬂ 80 -------mmm T _,_.'-"’ relatively independent of the line-of-sight velocity dispersion if
s 604 L i . the scale dependence of the centroid velocity roughly follows the
S 3 Larson’s law, i.e. o & 0.5:
[=H
20— o, > o, \/47t2~v12
By = \/47mp = /4 ~ . (34)
0 tan §y Lyg tan 8 tan §y
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Figure 8. The projected angle A¢p from various values of A¢, as functions
of the angle of the projection y (i.e. the inclination angle of the plane of sky).
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Figure 9. The linewidth—size correlation derived from dendrogram struc-
tures in model L10_inc30. The fitted cloud depth Lyg, (thin grey vertical line)
is considered as the intersection of the mean line-of-sight velocity dispersion
o, (dotted horizontal line) and the fitted linewidth—size correlation (dashed
line).
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The derived magnetic field strength thus only depends on the fitting
result of v;, the dispersion of centroid velocity within unit-size
structures.

3.3.2 Pressure equilibrium

Alternatively, we can consider the cloud as a layer in hydrostatic
equilibrium (see e.g. Elmegreen & Elmegreen 1978), but in a more
general form. Considering a self-gravitating sheet-like cloud where
the internal energy density balances the pressure from gravitational
potential:

Sim =

gravs

where Egray = P Pgray and V2<I>grav = —4nGp. For a magnetized

turbulent cloud, we shall have &y = Epermal + Ewrb + E5- Assuming

constant density, the equation can be simplified as
B? 7GX?

1
E,O (Cf+0',',2)+7:p(bgrzw: 7

8w (35)

where 7 GX2/2 is the gravitational pressure in the mid-plane (see e.g.
McKee et al. 1993).

Combining with the 2D DCF equation (24), we can solve the cloud
depth L = ¥/p as

o2 (BL/B)2+1) + ¢

L = TGX

(36)
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Figure 10. Demonstrating the density cutoff test, showing the corresponding integrated column density (in log scale with polarization segments colour coded
by polarization fraction; top) and the line-of-sight velocity dispersion (in log scale; bottom). The case of 10> < n/[cm~3] < 10* (second column) seems to better
resemble the “all’ case (i.e. including all cells and all density ranges; left column), while the extreme case 10> < n/[cm™>] (right column) only traces the densest

structures and has too few cells to conduct meaningful analyses.

The corresponding magnetic field strength is therefore
1/2

T o, 472G X?
T — =
2
Leg tandy 2 5y <1 + (;—)) ) +1

Note that tandy &~ B, /B is basically /4mwpo,/B = My, the
Alfvén Mach number. In the case of magnetic domination over
turbulence, M < 1, equation (37) reduces to

Bog= @37

B~ 27VGx,

which means the normalized mass-to-flux ratio of the cloud X/B -
27+/G ~ 1, or the cloud is magnetically critical. We stress that the
method described in this section is applicable only to self-gravitating
sheet-like clouds.

3.4 Density cutoffs as synthetic line observations

In addition to gas volume density, the DCF method still requires more
information than just the polarization morphology. Observationally,
the velocity dispersion o, can be probed by the width of molecular
line emission in the velocity space. However, the critical gas densities
of various molecular lines are different, and the measured velocity
dispersion therefore may highlight different regions of the target
cloud that have different densities. Synthetic line observations using
tracers with different critical densities may help test how this could
affect the accuracy of the DCF method.

We thus consider a simplified method of generating synthetic line
observations by applying density masks to all sightlines; i.e. for
each sightline, we only include cells with gas volume densities
within the specified density range when generating the corresponding
synthetic observations. This is illustrated in Fig. 10 using model
L10.inc30 as an example. Three density ranges are selected to
approximate the typical gas tracers commonly used in line obser-
vations towards star-forming regions (see e.g. Shirley 2015; Fissel
et al. 2019): 10*> < n/[em™3] < 10* (low-to-intermediate density
regime, e.g. 3CO, C'%0), 10’ < n/[cm™3] < 10° (intermediate-
to-dense gas, e.g. NH3;, NoH*), and 10° < n/[cm™>] (the densest
gas component, e.g. HCN, H'3CO"). Note that we only used
our simplified synthetic line observation to calculate the synthetic
integrated line intensity (used in defining dendrograms for the
‘vfit’ density-estimating method) and velocity dispersion, but not
the column density (which is typically derived from multiwave-
length continuum observations) and polarization angles, because
thermal dust emission is independent from the molecular line
observations.

Fig. 10 demonstrates this synthetic line observation test by show-
ing the corresponding integrated emission (top row) and velocity
dispersion (bottow row) from the three cases described above.
Obviously, dense gas tracers (10° < n/[cm~*]) would only follow
the densest structures, and thus is not very suitable for our statistical
approach of the DCF method. Also, we note that the velocity
dispersion traced by the low-density tracer (10> < n/[cm™] < 10%)
is higher than that measured in gas with intermediate densities (10
< n/[em™3] < 10%), which is not surprising because we expect the
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Figure 11. The PDFs of DCF-derived magnetic field strength using equation (23) for all synthetic observations considered in this study, with four simulation
models (each column; see Table 2) and three viewing angles (each row), roughly following the order of relative turbulent strength in the plane of sky from
left-hand to right-hand panels. In each panel, we compare the DCF-derived magnetic field strength from the three density-estimating methods discussed in
Section 3.3 (dashed, solid, and dotted lines represent method ‘vfit’, ‘eq’, and ‘ana’, respectively), as well as the potential modifications to the DCF method that
we discussed earlier: switching (§v) with 81 (red/yellow versus blue/green curves), using sin v instead of tan 81 (thick versus thin lines), and considering
the projection effect to estimate the dispersion angle in 3D (yellow and green curves). See text for more discussions.

diffuse gas to be more turbulent. We will discuss the corresponding
DCEF results in Section 4.2 below.

4 COMPARISONS AND DISCUSSIONS

4.1 Testing density-estimating methods in synthetic
observations with the statistical approach

We first focus on comparing the different methods of deriving gas
volume density using synthetic observations generated from our 3D
MHD simulations. Here, we consider 4 simulation models (L1, L5,
L10, and L20; see Table 1) and generate synthetic observations at 3
viewing angles so that the inclination angles of the mean magnetic
field are y ~0°,30°, and 60°. The basic observable properties of these
synthetic observations that are important in the DCF analysis (column
density, velocity dispersion, and polarization angle dispersion) are
listed in Table 2.

The derived mean densities are also listed in Table 2. Besides the
two density-estimating methods discussed in Section 3.3 (‘vfit’ and
‘eq’), we also provide estimates of the cloud depths and correspond-
ing gas density pana = Lobs/Lana from our 3D simulation data. Since
all models considered here are convergent flow simulations where
clouds formed by shock compression, the typical depth of the cloud
when viewed face-on is the thickness of the post-shock layer, which
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is about 10 per cent of the size of the simulation box. For simplicity,
we define the ‘analytic’ cloud depth at various inclination angle as

0.1 Lpox
cosy

Lo, = (38)

In addition, three more comparisons are considered here: (1)
whether or not the previously proposed (§v) — 8y replacement
based on our 3D analysis (see Section 2.4) still holds in 2D
observations,? (2) whether or not the previously proposed tan 8/
— sin v replacement based on our 3D analysis (see Section 2.4)
still holds in 2D observations, and (3) if the projection correction on
2D dispersion angle could be critical in the DCF analysis. A summary
of the synthetic models and corresponding DCF results, including the
mean densities derived from the linewidth—size correlation (‘vfit’),
the equilibrium (‘eq’), and the analytical solution (‘ana’), the DCF-
derived magnetic field strength using both (8v) and 8¢ as the

5Note that this is different from (B)pcr given in equation (24), which uses the
mean density and velocity dispersion to give one value of the DCF-derived
field strength over the entire map. Here, we want to focus on the comparison
between (8v) and v, and thus we keep the local values of p and o, in
the calculation and only switch between () and 8¢ (see equation (23)).
The shape of the distribution of DCF-derived field strength when using (§v)
therefore completely depends on hydrodynamic properties of the gas (see
Fig. 11).
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Figure 12. Summary of the analysis discussed in Section 4.1, plotting the ratio between the DCF-derived and the actual magnetic field strengths, in log scale,
as functions of the mean dispersion angle (61). Synthetic observations were generated from 4 different simulations (different marker styles) and 3 inclination
angles of the mean magnetic field y (different marker colours). Three methods were applied to estimate the gas density from observables (left, middle, and right
columns) as discussed in Section 3.3. We also compared the traditional way of calculating Bpcr using tan (6y) (top row) with our proposed revision, tan 6y
(bottom row). Also shown is the projection correction (open symbols) that convert the 2D angles to 3D, as discussed in Section 3.2. Another proposed revision
that replaces tan 8y with sin §v is shown as single-sided errorbars. We see clear improvement of the accuracy of Bpcr when switching from tan (/) to tan §vr,
and the projection correction could be critical for cases with large inclination angles of the magnetic field (y &~ 60°; red symbols). In some cases with high
inclination angles and/or large dispersion of polarization angles, switching to sin instead of using tan also increases the accuracy of Bpcg. More importantly,
while the results derived from method ‘ana’ (right column) are supposed to be the most accurate, we found that “vfit’ (left column) and ‘eq’ (middle column)
methods in general give better estimates of the actual mean field (Bpos or B), mostly within a factor of 2 (dotted grey horizontal lines mark =+ log 2).

polarization angle dispersion, as well as a projection-corrected DCF
result using sin §v 5, can be found in Table 2, while Figs 11 and 12
provide more detailed comparisons of the results through graphical
visualization.

Fig. 11 illustrates our results from the 12 synthetic observations,
showing the probability distribution functions of the DCF-derived
magnetic field strength (1) using different density-deriving methods,
(2) with or without the replacement of (§¥/) — §¥ or tandyy —
sin§y, and (3) with or without the projection correction §¢ —
8v3p, which can be derived from equation (31):

cos sy + % sin® y (1 — cos 81r)

1) = 8¢ = arccos
Vi =3¢ 1 — Lsin2y (1 - cos8y)

(39)

Note that when considering the projection effect of 5§y, we adopted
the projection-corrected velocity dispersion o,3p = o,co8y to
replace o, in the DCF equation (equation 24). This is to exclude
the velocity component parallel to the magnetic field, which does
not contribute to the observed field distortion.

Comparing Fig. 11 to the 3D results (right-hand panel of Fig. 3;
also see right-hand panel of Fig. 4), we see that the 2D DCF-derived
field strengths do not always preserve the nice, symmetric shape of

lognormal distribution of the DCF-derived field strengths in 3D. Only
synthetic observations with moderate turbulence levels (e.g. models
L5 and L10) and inclination angles (e.g. y < 30°) seem to recover
the lognormal distribution of magnetic field strength, and in fact have
more accurate DCF results (also see Table 2). This indicates that the
DCF method is less applicable for extreme scenarios with strong
turbulence (e.g. model L20) and/or very large inclination angles
(e.g. y 2 60). This is not surprising, because the main assumptions
one needs to make in order to apply the DCF method in 2D (isotropic
velocity field and no cancellation along the line of sight) break in
these extreme cases.

Another important feature revealed by Fig. 11 is the clear differ-
ence in both the value and the shape of the distribution between the
three density-deriving methods. We also note, from Table 2, that the
derived mean densities from the three different methods are highly
inconsistent with each other in many of the synthetic observations
we studied here. This in fact provides an important message on
applying the DCF method in observations: the biggest uncertainty
of calculating DCF-derived magnetic field strength comes from the
estimate of gas density, not the polarization measurement. We will
discuss this later in this section.

MNRAS 514, 1575-1594 (2022)
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The complete results combining all 12 synthetic observations,
3 density-deriving methods, and 3 proposed modifications ({(3v)
— 8y, tandyy — sindyr, and §Y — 8vr3p) are summarized in
Fig. 12. Here, we plot in log scale the ratio between the DCF-derived
magnetic field strength (from equation 24) and the actual mean
field strength, Bpcr /E, versus the mean dispersion of polarization
angle (§y), for each model and method. Note that for most of the
cases, B = Bpos (and Bpcr = Bpcr pos), but when considering the
projected polarization angles 8v3p, B = Bsp is used. Also, two
horizontal lines are drawn at :l:log(\/i) so that if a model has all
derived values within these two lines, we can claim this model is
accurate within a factor of 2.

We see clear improvement of the accuracy of Bpcr when switching
from (8y) (top row) to ¢ (bottom row), especially for the ‘vfit’
method (left column). With §1, the ‘vfit’ method was able to produce
Bpcr within a factor of 2 of the actual value for almost all synthetic
observations except those with high inclination angles (y =~ 60°;
red symbols). On the other hand, the simple method ‘eq’ (middle
column) seems to be less impacted by the choice of (§¢) or §¥,
and the DCF-derived magnetic field strengths using this method are
also pretty consistent with the actual values especially for moderate
inclination angles (y ~ 30°).

To quantitatively compare the accuracy of our proposed methods
and revisions to the DCF equation, we define the accuracy measure-

ment €:
B B
€= < log (—ECF> ’> or < log <7DCF'POS) '> R (40)
B Bpos

which is always positive and between 0 and 1. Smaller € means the
estimate of Bpcr is more accurate. The mean value of ¢ for each
model is presented in Table 2. Switching from (§y/) to 8¢ brings
€ for ‘vfit’ method down to 0.16 from the original 0.27, and if we
added the projection correction and the tan §3 — sindy revision,
€ ~ (.12 for ‘vfit’ method, which is the best-performing model in
this test. As mentioned earlier, method ‘eq’ is not affected much by
the choices of (8y) or 8. Instead, the accuracy of method ‘eq’ is
pretty consistent with € < 0.2 when using either tan (§v), tan §y, or
sin 8vr3p in the DCF equation.

The unexpected result is the bad performance of the ‘ana’ method,
which theoretically should give the most accurate estimate of the
mean gas density. Instead, the derived Bpcr /E ratios are very
scattered in Fig. 12, and none of our proposed revisions helped
reduce such error. Combining with the facts that the density estimates
from different methods often vary a lot and the fitting method from
linewidth—size correlation gives the best estimates, we believe our
results suggest that the line-of-sight velocity dispersion used in the
DCEF equation cannot properly reflect the actual turbulent component
of the velocity in the system, and only the mean density value derived
also from velocities (the ‘vfit’ method) could offset this uncertainty.
Thus, even though the derived mean density is not accurate, the
resulting Bpcr is closer to the real value than that using the more
accurate density from the analytical approach if the line-of-sight
velocity dispersion is used, as is commonly the case. We note that
though the reasoning differs, this is similar to the argument discussed
in Cho & Yoo (2016) that in addition to the commonly used line-of-
sight velocity dispersion, the centroid velocity should also be taken
into consideration in the DCF analysis.

Moreover, even though the line-of-sight velocity dispersion is
density-weighted, the linewidth could still hugely depend on the
low density gas that has larger velocity difference from the density-
weighted mean central velocity. Since the mean density is mainly
determined by the dense gas, it is less correlated with the velocity

MNRAS 514, 1575-1594 (2022)

dispersion. We thus note that the cloud depth derived from ‘vfit’
method (equation 33) should not be treated as the physical cloud
depth; rather, it should be viewed as a characteristic length-scale
corresponding to the measured line-of-sight velocity dispersion.

The projection effect discussed in Section 3.2 is illustrated in
Fig. 12 as solid (POS values) versus open (reprojected) symbols.
We see that the best scenario for the projection correction to work
is the high-inclination low-perturbation case (model L1_inc60; red
squares), which is expected because the mean inclination angle of the
magnetic field is more representative in less turbulent environment,
and the projection effect is more significant when the field inclination
angle is large. We also note that the projection correction seems to
work the best with the ‘eq” density-deriving methods. This could be
due to that the ‘eq’ method considers the cloud as an infinite slab with
plane-parallel magnetic field [so £ = B? /(81); see equation (35)],
so the actual inclination of the magnetic field plays a more critical
role in estimating the field strength using this method, especially
since the line-of-sight cloud depth also depends on the inclination
angle (equation 36).

Also shown in Fig. 12 is the modification of the DCF method we
proposed in Section 2.4, that the term tan §v should be replaced by
sin 8¢ (plotted as single-sided errorbars). We found that though Bpcp
seems to be slightly more accurate with sin §y, the improvement is
small except for cases with large dispersion of polarization angles
((8¥) = 35°) because sin §y ~ tan 8y for small angles. While, from
the € values in Table 2, using sin v is statistically more accurate
than the traditional DCF method, the biggest uncertainty in the DCF
method seems to be coming from the gas density and turbulence
level, and thus the modifications on polarization measurement
generally have weak impact on improving the accuracy of the DCF
method.

4.2 Testing density dependence and polarization selection

As discussed in Section 3.4, density selection effect could also play a
critical role in determining the gas turbulence level and thus the DCF
analysis. Our simplified synthetic line observations were described
in Section 3.4, and examples of the corresponding column density
and velocity dispersion maps were demonstrated in Fig. 10. Here,
we consider three viewing angles of simulation model L10 (synthetic
models L10_incO, L10_inc30, and L10_inc60 in Table 2) with three
different density cutoffs adopted in Fig. 10 (10> < n/cm™ < 10,
10 < n/em™3 < 10°, and 10° < n/cm™3; see Table 3) to investigate
what density range could provide the most accurate DCF result in
star-forming clouds.

In addition, we examine the effect of limiting the analysis to
pixels with polarization fraction above a certain threshold (p >
0.2pmax here), as we discussed in Section 3.1. We would like to
point out that this polarization selection effect only has impact on
the measured dispersion angle of polarization orientation, while the
density selection effect only changes the velocity dispersion. The
models considered in this test and the corresponding parameters are
listed in Table 3. We note that applying the mask based on polarization
fraction does not seem to affect the measured polarization angle
dispersion much. On the other hand, the synthetic linewidth hugely
depends on the density selection effect, as already suggested in
Fig. 10. The velocity dispersion tends to be larger in lower density
gas, which also differs from the values measured without any density
selection effect (‘all’ in Table 3; column 4). This suggests that any
DCEF analysis based on synthetic observations without considering
the density selection effect may be inaccurate and incompatible to
actual observations.
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Table 3. Summary of the synthetic line observation models discussed in Section 4.2.

model (89) () o, (kms™h)

All P > 0.2 max All 10? < nlem™3 < 10* 10° < nfem™3 < 10° 10° < n/em™3
L10_incO 24 23 0.51 0.70 0.17 0.22
L10_inc30 28 26 0.49 0.66 0.20 0.24
L10_inc60 45 44 0.75 0.83 0.27 0.22

The results of the DCF analysis are summarized in Fig. 13. Similar
to Fig. 12, here we plot the ratio BDCF/E (Bpcr.pos/ Bpos for cases
without projection correction) in log scale, and draw horizontal lines
at ++/2 to show the boundaries of accuracy of a factor of 2. All
values are plotted as functions of the density selection range. We
also include the comparisons between using (1) (§¢) and §y¢ (top
versus bottom row), (2) 8 and 6vr3p (solid versus open symbols),
and (3) tandy and sin Y (symbols versus errorbars) in the DCF
equation equation (24).

Interestingly but not surprisingly, the density selection effect does
have strong impacts on the accuracy of the DCF result, and the low-to-
intermediate density range 10? < n/[cm 3] < 10* in general delivers
the most accurate DCF-derived field strength to the actual value,
regardless the field inclination angle with respect to the plane of sky.
As discussed above, such discrepancy could be due to the velocity
dispersion being sensitive to the density cuts (see e.g. Table 3 and
Fig. 10). Moreover, the high-density tracers tend to recover only the
densest structures, and thus do not have sufficient pixels to have
good statistics for the DCF method (see Section 3.3 and Fig. 10).
The low- and intermediate-density tracers (within the range of 10°—
10° cm™?) therefore appear to be the better choices for conducting
the DCF analysis in star-forming clouds, which is rational given that
this analysis aims to retrieve the cloud-scale magnetic field strength,
and 10>-10° cm~ is indeed the typical range of cloud-scale density.®

We further note that limiting the analysis based on polarization
fraction (p > 20 per centpp.x adopted here) does not seem to make
huge difterences (stars versus circles in Fig. 13). This is consistent
to the fact that the mean angle dispersion (§v) values remain similar
with or without the polarization fraction limitation, as listed in
Table 3. This may seem surprising, since Fig. 7 already showed
that the observed polarization orientation and the actual plane-of-
sky magnetic field structure are only tightly correlated when the
polarization fraction is large enough. In fact, we repeated the same
analysis with the more strict selection criterion p > 50 per cent ppax,
and found that the accuracy of the DCF method decreased instead.
This again suggests that the accuracy of the DCF method is not
determined by the polarization measurement, but relies on good
statistics as well as good hydrodynamics estimates.

Similar to the discussion in the previous section, the projection
correction seems to work better with the ‘eq’ method of density
derivation, but is only significant when the inclination angle is large
(model L10-inc60; red symbols). Another modification we proposed
based on the 3D analysis, tan 6y — sin §y, does not seem to show
consistent improvement to the DCF-derived field strength, which
agrees with the results in the previous section. Combining with the
result that the polarization selection effect does not play a huge role
in determining the accuracy of the DCF analysis, we conclude that

OWe note that it remains an open question that, with enough statistics via
high-resolution maps, whether the DCF method works in dense, star-forming
structures like cores and filaments, in addition to the relatively diffuse and
turbulent cloud environment. We shall explore this topic in a following work
(J. Park et al., in preparation).

the DCF analysis relies more on the shape and the peak location
of the probability distribution instead of the precise measurement at
each location. Conceptually, this agrees with our argument based on
our 3D analysis that it is not necessary to have the exact solution of
B, everywhere as long as the distribution of § Ex/§Ep peaks around
1 (see Section 2.3).

5 CANCELLATION EFFECT FROM
INTEGRATION

By applying the DCF analysis to their numerical simulations and
synthetic polarization measurements, Ostriker et al. (2001) suggested
that a factor of & &~ 0.5 should be included in the DCF method as a
calibration factor:

(0)
6y

Note that the above DCF equation used in Ostriker et al. (2001) differs
from the commonly adopted equation (24), because Ostriker et al.
(2001) considered (B, /B) ~ (8v) instead of tan (81/) (see Li et al.
2022 for derivation and justification). This means that the so-called
DCF coefficient of & = 0.5, based on the results of Ostriker et al.
(2001), was derived from assuming B, /B ~ (§v), and therefore may
not be appropriate when B, /B ~ tan (§v) is used. Nevertheless, this
so-called DCF coefficient & has been considered to be a necessary
correction factor to acount for the projection/integration effects from
inhomogeneities, anisotropies, resolution, and/or variation along the
line of sight (see e.g. Zweibel 1990; Myers & Goodman 1991;
Heitsch et al. 2001).

However, the sin §y versus §Bpos/Bpos plot in Fig. 7 shows that
the polarization orientation in our synthetic observations generally
follow the projected magnetic field direction pretty well. This
suggests that the cancellation effect along the line of sight is not
significant in our models, and may explain why we did not need
to include the so-called DCF coefficient £ ~ 0.5 as proposed in
Ostriker et al. (2001). More importantly, our results indicate that the
DCEF coefficient is likely not a constant globally applicable in all
environments, and proper calibration is critical in order to increase
the accuracy of the DCF method (see recent works e.g. Li et al.
2022; Liu et al. 2021). In this section, we examine how cancellation
along the line of sight could affect the measured polarization angle
dispersion, and provide a way to correct for such effect numerically
as an extension to the DCF coefficient.

Because of the integration along the line of sight, the observed
angle dispersion of the projected 2D map could differ from the
actual angle dispersion in the 3D space. To quantitatively investigate
the difference between these two measurements, we designed a
numerical test, illustrated in Fig. 14. We first generate a set of 2D
angles 6 to fill in a 3D cube with size Nyap X Nmap X Nios. These
angles represent the direction of unit vectors on the x—y plane (plane
of sky) in each cell. Note that we ignored the density-dependent
weighting (thus unit vectors) to focus on the geometric effect during
the integration. We also neglected the line-of-sight (z-) component

(B)pcF.cor = §(B)pcr = § /47 (p) (41)

MNRAS 514, 1575-1594 (2022)
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Figure 13. The results from the synthetic line observation tests discussed in Sections 3.4 and 4.2. Similar to Fig. 12, we consider the ratio Bpcp/B (or
Bpcr,pos/ Bpos) and compare the results from three different density derivations (see Section 3.3) in three different viewing angles of model L10 (see Table 3).
Also included are the projection-corrected DCF analysis (open symbols), as well as the polarization selection criterion p/pmax > 0.2 (stars) which neglects
polarization segments smaller than 20 per cent of the maximum polarization fraction. The proposed modification to the DCF method using sin (§y), sin v is
also shown as single-sided errorbar. Gray horizontal lines mark £+/2, the boundaries of the factor of 2 accuracy.
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Figure 14. A sketch illustrating the design of the test discussed in Section 5.
We generate a set of (Nmap X Nmap X Nios) values of 6, and arrange them into
a 3D cube with dimensions Npap X Nmap X Nios following three different
assumptions: smooth, random, and half smooth, half random. The synthetic
observed angle v can therefore be derived from the projection of 6 along
each line of sight (a total of Nymap X Nmap values). Comparing the distribution
of 6 with that of ¥ among different arrangement of 6 can provide insight on
how the projection effect could affect the DCF analysis.

MNRAS 514, 1575-1594 (2022)

of the vector for simplicity (i.e. 6 is the 2D projection of the actual
3D vector in each cell); the projection effect for angles from 3D to
2D was discussed in Section 3.2.

The distribution of the generated angle 6 follows a normal
distribution centred at 0° and with FWHM equal to two times of the
chosen dispersion of 6 in the cube, (§6). After assigning 6 to each cell
to have a 3D array 6, ; «, we can now calculate the polarization angle
Yr;,j for each column (line of sight) following the general equations of
synthetic polarization:

> sin6;0), gi; =Y cos(26; ;).
k k

Ui j

1
Vi = Earctan2(u,-,j,q,-,j). (42)

The dispersion of polarization angle (§¢) can then be derived from
the distribution of ; ;. The relation between ;; and 0, « is
illustrated in Fig. 15, which plots the distributions of i over the
Nmap X Nmgp plane under three different cases of 6 assignment.
For the case ‘random’, 6, ;  is randomly assigned in the box, and
thus has the most significant cancellation when integrated along
the line of sight. The case ‘smooth’ represent the case when the
0 data set is sorted before assigning to cells; i.e. the difference in
0i,j,  along each sightline is minimum. For the ‘1/2 smooth’ case, we
randomly assigned half of the data set but sorted the other half before
assigning them to individual cells (also see Fig. 14 for illustration).
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Figure 15. Comparing different arrangement methods of € (random, half random, and smooth), using Nios/Nmap = 0.5 as an example. Plotted are the normalized

distributions of projected polarization angles ¥ from the same set of random

vectors 6 generated with the corresponding angle dispersion (§6), from the

numerical test illustrated in Fig. 14. This shows that the random arrangement of vectors is the least consistent to the actual distribution of angles, and the smooth
arrangement and the half-random, half-smooth case could provide better approximations of the angle dispersion unless the dispersion is very large.

Not surprisingly, Fig. 15 suggests that the ‘smooth’ case best recovers
the actual dispersion values unless the real field is really disturbed
(large (56)), while the case of ‘random’ does not seem to be a good
approximation even when the angle dispersion is really small.

The correlation between the projected dispersion, (6v), and the
dispersion of the whole cube, (§6), is plotted in the left-hand panel
of Fig. 16, again for the three cases of 6 assignment. In addition, we
tested different numbers of pixels along the line of sight as fractions of
the size of the 2D map, and as illustrated in Fig. 16, the ratio Nios/Niap
does not have huge impact except for the case where the angles are
completely random, which rarely happens in the real world. Also
note that Fig. 16 confirms numerically that the maximum possible
value of the measured angle dispersion is ~52°, as pointed out in
Planck Collaboration XIX (2015).

Our results demonstrate that the projected dispersion is always
smaller than the actual dispersion in the cube, which is consistent
with what has been suggested due to the cancellation effect along
the line of sight (see e.g. Ostriker 2003). Moreover, we can use
this numerical test to estimate the corresponding DCF coefficient &.
Assuming (B)pos = /41 (p)(0,)/tan(66) holds,” we have

(0v) _ tan(8y)
tan(sv) ° tan(86)

This ratio is plotted in Fig. 16 (right-hand panel) as a function of
the observed angle dispersion on the plane of sky (8v). Considering
the case of ‘1/2 smooth’ (the most realistic assumption among the
three considered here), this shows that if tan (§1) is used in the DCF
method instead of tan (§6), the correction factor is tan (§v)/tan (56)
~ 0.5-0.6 for small angles. This is indeed in good agreement with
Ostriker et al. (2001), who suggested that & ~ 0.5 for polarization
dispersion <25°.

We note that our numerical test discussed here is similar to the
analytical models examined by Myers & Goodman (1991), who
also investigated the distribution of angles after integration along the
line of sight. Also, the modified DCF method using the structure
functions of the polarization angles (Hildebrand et al. 2009; Houde

(B)pos = &(B)pcr =

7{(p) - (43)

7We note that though we propose to replace tan (61/) (or tan §1) with sin (5vr)
(or sin ) to increase the accuracy of the DCF method, as we discussed in
Section 2.4, our results in Sections 4.1 and 4.2 show that this modification is
not critical. We therefore still use the tangent ratio of the polarization angle
dispersion for the DCF coefficient.

et al. 2009) also aims at resolving the cancellation effect along the
line of sight due to integration. Hildebrand et al. (2009) and Houde
et al. (2009) attribute the dispersion of polarization angles to the
existence of multiple turbulent cells along the line of sight, which
is conceptually similar to our numerical tests: sightlines with more
turbulent cells are more similar to the ‘random’ assignment case (see
Fig. 14) and would have more severe cancellation effect, thus require
a correction coefficient further away from 1 (see Fig. 16), consistent
with the method proposed in Hildebrand et al. (2009) and Houde
etal. (2009) on estimating the ratio between the turbulent component
of the magnetic field to the ordered field. Further discussion on
comparisons between the various modifications of the DCF method
will be presented in a separate publication (Park et al., in preparation).
For completeness, we combine the cancellation effect from inte-
gration discussed in this section with the projection effect discussed
in Section 3.2 to provide the total geometrical correction for the
DCF method, summarized in Fig. 17. The plot shows the correlation
between the measured dispersion (§v) on the plane-of-sky and the
actual angle dispersion of the 3D system (5¢) (left-hand panel), and
the corresponding DCF coefficient £5;p = tan (6v/)/tan (§¢) (right-
hand panel), for the three cases of angle arrangement (dotted, solid,
and dashed lines represent the case of random, half-random, and
smooth arrangement, respectively) and various inclination angles y .
Note that since the ratio Nios/Nmap (i.€. the cloud depth relative to
the cloud size) does not have a significant impact on the projection
and integration effects (unless the angle arrangement is completely
random in space), we only plotted the case Nios/Nmqp = 0.5 here.
Fig. 17 thus provides a guideline for better estimates of magnetic
field strengths using the DCF method with the mean dispersion of
polarization angles (§v). Note that, unlike the results in Fig. 16
with plane-of-sky angles only, utilizing Fig. 17 requires knowing the
inclination angle of the magnetic field with respect to the plane of
sky, y, which can be estimated from the probability distribution
function of the observed polarization fraction over the targeted
region, as proposed by Chen et al. (2019). Also, though we plotted
the three cases of possible magnetic field morphology (different
arrangements of 6; ;; in our numerical test) along the line of
sight, we note that the ‘smooth’ case (dashed lines) should only be
considered when the measured () is very small, presumably <10°.
Similarly, the case of completely random arrangement of angles
(dotted lines) is unlikely to happen in the real world, and should only
be considered if (§y) is closer to the maximum value ~53°. The
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Figure 16. Results from the numerical test illustrated in Fig. 14, showing the correlation between the dispersion of the projected angle (§v) and the original
angle dispersion in 3D (§6), with various ratios between the physical scale on the plane of sky and along the line of sight (Njos/Nmap; different line colours) as
well as the three different arrangement methods of 6 (different line styles; dashed, solid, and dotted lines represent ‘smooth’, ‘half-smooth, half-random’, and
‘random’ cases, respectively). The correlation between (§6) and (§¢) shown on the left panel can be used to derive the correction factor for the DCF analysis,

tan (5§ )/tan (860) (right-hand panel).
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Figure 17. Similar to Fig. 16, but now also includes the projection effect discussed in Section 3.2 (also see equation 39). The correlation between the mean
angle dispersion measured in 3D, (8¢), and the mean dispersion of the synthetic polarization, (8v), depends on both the inclination angle y (different line
colours) and the level of turbulence of the system, which is approximated by different angle assignment method in our numerical test: random (dotted lines),
half random (solid lines), and smooth (dashed lines) as described in Section 5 and Fig. 14.

‘1/2 smooth’ case (solid lines) is the most appropriate assumption
that one should consider adopting when estimating the 3D correction
factor (tan (61 )/tan (6¢); right-hand panel of Fig. 17) of the DCF
analysis.

Nevertheless, we note that the correction factor, or the DCF
coefficient &, is only applicable when considering the dispersion of
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polarization angle (§v) in the DCF analysis. This is in fact opposite
to what we proposed in Section 2.4 that one should consider tan §y
instead of tan (5v), which we showed in Section 4.1 to be more
accurate on estimating the field strength. We therefore conclude that
one should always consider using §v in the DCF analysis, and only
refer to the correction factor tan (5 )/tan (§6) or tan (5 )/tan (§¢)
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when the statistics is not good enough to have a lognormal-shaped
distribution of the DCF-derived field.

6 SUMMARY AND CONCLUSIONS

We re-visited the well-known DCF method on deriving magnetic field
strength using observed information. Using 3D MHD simulations of
star-forming clouds, we tested the fundamental assumption of the
DCF method, that the turbulent gas motion is solely responsible
for the distortion of the magnetic field morphology, and thus any
deviation of the magnetic field from the unperturbed state can be
related to the gas velocity through the Alfvén wave equation, Ex =
8Ep. While we found that a uniform, unperturbed field did not exist
in simulated clouds nor did the strict relation between gas velocity
and magnetic field strength, we were able to find a good substitute of
the unperturbed field direction: the vector-averaged magnetic field.
Using the vector-averaged magnetic field as the reference direction,
the ratio between the ‘perturbed’ components (i.e. perpendicular
to the reference field) of gas kinetic energy and magnetic energy
becomes a roughly normal distribution in the log space with the peak
around unity. This statistical equipartition between §Ex and §Ep is
the key for the DCF method to work with data in the real 3D space.
To extend our analysis to observations, we examined the dis-
crepancies between 3D and 2D systems, and proposed several
modifications to the original DCF method. These modified DCF
methods were then tested using synthetic observations generated
from the aforementioned simulations. Based on our results, we
conclude the best practice of the DCF analysis is the following:

(1) Instead of calculating the DCF-derived field strength using
the dispersion of polarization angle (§v) and the mean density and
velocity dispersion as (B)pcr = (0,,)+/47 (p)/ tan{8yr), we propose
to calculate Bpcr jocal = 0v+/47p/ tan §yr everywhere on the plane of
sky and use the distribution of Bpcr 1ocal 10 l0g space to find the field
strength Bpcr = (BpCE, 1ocal) 1og» Which is the location of the peak, or
the most probable value of Bpcr 1ocal (s€€ Section 2.4 and Figs 3—5).

(i) The measurement of gas velocity dispersion seems to be
critical in the DCF analysis, especially since it can be used in deriving
the depth of the cloud and hence the volume density, another essential
source of uncertainty in the DCF analysis (see Section 4.1). However,
the velocity dispersion traced by different molecular tracers could
be different (see Table 3), and our results suggest that the low- to
intermediate-density (~103-10* cm™3) tracers are preferred here (see
Fig. 10). We note that this is the density range that traces the cloud to
core transition (see e.g. Chen & Ostriker 2015), hence could provide
more accurate estimates on the turbulence level of the star-forming
gas (see Section 4.2).

(iil) When considering the gas volume density used in the DCF
analysis, we recommend to use either the velocity fitting method
(Section 3.3.1) or the equilibrium layer method (Section 3.3.2) to
derive the characteristic depth of the cloud (see Fig. 12 and Table 2),
assuming the region of interest can be considered to be locally
flattened. For the DCF method to work, the gas volume density must
be derived from a tracer that is corresponding to the gas traced by
polarization measurement, and thus the low- to intermediate-density
(~103-10* cm™3) tracers are again the preferred choices (also see
Section 3.4).

(iv) If possible, we recommend using the method proposed in
Chen et al. (2019) to estimate the mean inclination angle of the
magnetic field with respect to the plane of sky, y. If (and only if) y is
large (=60°), one should consider including the projection correction
described in Section 3.2 in the DCF analysis by replacing §v; ; with
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3Y3p, ; using equation (39), and switching oy, ; to o, ; cos y to only
include the component perpendicular to the inclined magnetic field.
The projection effect is minor in most of the cases, but could become
critical when the magnetic field is far away from the plane of sky
(see Section 4.1).

(v) The ‘traditional’ DCF method, (B)pcr =
(oy)/4m(p)/tan(éy), 1is only recommended when good
statistics on 8 is not available, i.e. when the distribution of
Bpcr jocal = 0yA/47p/ tan 84 is far off from a lognormal shape. In
this case, one should estimate the correction factor & using Fig. 16
to get a better approximation of the field strength as (B)pcr, corr =
&(B)pcr. The projection effect should be considered (Fig. 17) only
when the mean inclination angle of the magnetic field y is large.

To conclude, good statistics is critical to the DCF analysis, and
the biggest uncertainty of the DCF-derived magnetic field strength is
actually from the velocity dispersion measurement (especially if the
gas volume density is determined using the velocity information), not
polarization observation. This explains why neither of our proposed
modifications, tan ¢ — sin §y and adopting a polarization fraction
mask p > 0.2pn., has significant impact on the accuracy of the
derived magnetic field strength. Nevertheless, our modified DCF
analysis should be able to provide estimates of the magnetic field
strength within roughly a factor of 2 in typical star-forming clouds
except the extreme cases (highly turbulent, large inclination angle,
etc.).
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