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A B S T R A C T 

Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically 

significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally 

difficult. The Davis–Chandrasekhar–Fermi (DCF) method has been the most commonly used method to estimate the magnetic 
field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion 

via linear Alfv ́en waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption 

underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between 

turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We 
then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new 

recipes to impro v e the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF 

analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight 
gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method. 
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1  I N T RO D U C T I O N  

Magnetic fields have long been recognized to play a critical role in 
shaping the formation and evolution of molecular clouds and proto- 
stellar systems (McKee & Ostriker 2007 ), but definitive progress 
has been slow because the complete 3D structure and strength 
of the magnetic field within molecular clouds cannot be directly 
probed observationally. On one hand, the magnetic field strength 
along the line of sight can be derived via Zeeman splitting of 
molecular lines, but the measurements are notoriously difficult. Firm 

Zeeman detections thus remain sparse (see e.g. Falgarone et al. 
2008 ; Troland & Crutcher 2008 ; Crutcher et al. 2010 , or Crutcher 
2012 for a re vie w). On the other hand, polarized dust emission is 
generally thought to be a reliable tracer of the projected magnetic 
field direction on the plane of sky, because non-spherical grains tend 
to be oriented with their long axes perpendicular to the magnetic field 
lines (Davis & Greenstein 1951 ; also see re vie w by Lazarian 2007 ). 
Ho we ver, though dust polarization patterns have been successfully 
mapped at multiple scales from diffuse clouds to protostellar discs 
(e.g. Hull et al. 2013 ; Stephens et al. 2014 ; Planck Collaboration 
XIX 2015 ; Fissel et al. 2016 ; Ward-Thompson et al. 2017 ), the 3D 

structure of magnetic field remains unknown. 
With the advent of several new instruments in the last several years 

including Planck (e.g. Planck Collaboration XIX 2015 ), BLASTPol 
(Fissel et al. 2016 ), JCMT/POL-2 (Ward-Thompson et al. 2017 ), and 

� E-mail: cheyu.c@gmail.com 

SOFIA/HAWC + (Harper et al. 2018 ), the observational situation 
has impro v ed drastically. In particular, it is now possible to generate 
large number of polarization vectors in multiscale observations with 
high-sensitivity polarimeters, which enables statistical examination 
on cloud polarization features. The statistical approach has pro v en to 
provide promising methods in theoretical studies (e.g. Padoan et al. 
2001 ; F alceta-Gon c ¸alv es, Lazarian & Kowal 2008 ; Soler et al. 2013 ), 
and various models have been proposed to statistically approximate 
the observationally inaccessible properties of the magnetic field (e.g. 
Chen, King & Li 2016 ; King et al. 2018 , 2019 ; Chen et al. 2019 ; 
Sulli v an et al. 2021 ). 

Despite the recent advances, the Davis–Chandrasekhar–Fermi 
(DCF) method (Davis 1951 ; Chandrasekhar & Fermi 1953 ) remains 
one of the most commonly used methods to estimate the magnetic 
field strength. The fundamental picture of the DCF method is to 
consider the propagation of Alfv ́en waves along the originally 
uniform magnetic field. In this scenario, any distortion of the 
field lines correlates directly to the gas motions (see e.g. Fig. 1 ). 
Therefore, by measuring the field distortion (usually traced by the 
dispersion of polarization angles) and the turbulent strength (traced 
by linewidth), the field strength can be estimated by assuming (1) 
energy balance holds between the gas kinetic and magnetic energy 
fluctuations (i.e. δE K ≈ δE B ), and 2) the gas turbulent motion is 
isotropic in 3D. While this method has been tested with numerical 
simulations (e.g. Heitsch et al. 2001 ; Ostriker, Stone & Gammie 
2001 ; F alceta-Gon c ¸alv es et al. 2008 ) and applied to observational 
data at various scales (e.g. Girart, Rao & Marrone 2006 ; Pillai 
et al. 2015 ; Planck Collaboration XXXV 2016 ; Pattle et al. 2017 ; 
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Figure 1. Left: Sketch of the perturbed magnetic field δB in the direc- 
tion perpendicular to the unperturbed magnetic field direction induced by 
an Alfv ́en wave running along the ‘initial’ field B 0 . Middle and right- 
hand panels: Illustrating the geometric relation between the gas velocity 
v and magnetic field B , as well as their perturbation components v ⊥ and 
δB = B ⊥ , following the linear Alfv ́en wave equation (see equation 2 and 
Section 2.2 ). 

Kwon et al. 2019 ), it should be noted that the highly restrictive 
assumptions of the DCF method about the gas motions and magnetic 
field geometry severely compromise its accuracy, especially for star- 
forming regions that are self-gravitating (see e.g. Ostriker et al. 
2001 ). 

Several theoretical studies have been conducted towards character- 
izing the uncertainties of the DCF method, with most of the efforts 
being focused on investigating the cancellation effect in observed 
polarization angle dispersion through either the beam convolution 
(e.g. Zweibel 1990 ; Myers & Goodman 1991 ) or the integration along 
the line of sight (e.g. F alceta-Gon c ¸alv es et al. 2008 ; Hildebrand et al. 
2009 ; Houde et al. 2009 ; Cho & Yoo 2016 ; Cho 2019 ; Skalidis & 

Tassis 2021 ). Ho we ver, as we shall argue in this work, the most severe 
uncertainty in the DCF method when applying to real observations 
is likely the hydrodynamic properties of the gas, not the polarization 
measurement. In fact, as pointed out in the recent work by Li et al. 
( 2022 ), the interstellar MHD waves are likely non-linear, and there 
e xist man y other modes that do not satisfy the Alfv ́en relation, which 
is a pre-requisite of the DCF method. Several recent theoretical 
works have also investigated the correlation between turbulent kinetic 
energy and the perturbed component of magnetic energy using fully 
3D simulation data, and suggested that the applicability of the DCF- 
assumed scenario is limited (see e.g. Skalidis et al. 2021 ; Beattie 
et al. 2022 ). If the DCF equation does not hold in 3D, its application 
on projected 2D data is questionable, unless proper calibration can 
be provided to increase the accuracy. 

In this paper, we revisit the fundamental picture behind the 
DCF method using fully 3D MHD simulations (Section 2 ), and 
investigate the applicability of the simplified DCF scenario towards 
star-forming gas in 2D synthetic observations (Section 3 ). We 
first examine the balance between turbulent kinetic energy and the 
perturbed component of the magnetic energy in the 3D space using 
MHD simulations, which was assumed to be in equipartition in the 
DCF scenario. We then use the linear Alfv ́en wave relation (the 
foundation of the DCF method) to derive the ‘unperturbed’ field 
B 0 for the simulated cloud in 3D (Section 2.2 ), which is a pure 
mathematical result assuming the DCF equation holds everywhere. 
We also discuss why the mean field could be considered as the 
background, ‘unperturbed’ field when conducting the DCF analysis 
(Section 2.3 –2.4 ). In Section 3 , we discuss possible corrections and 
modifications for the DCF method when applying on 2D, projected 
observational data, which we test and compare in Section 4 . In 
Section 5 , we propose a new method to estimate the correction factor 
for the DCF equation from the cancellation effect on polarization 
angles along the line of sight. We summarize our conclusions in 
Section 6 . 

Table 1. Summary of the simulation models considered in this study. These 
simulations were originally reported in Chen & Ostriker ( 2015 ) and Chen et al. 
( 2019 ). Values here represent the averaged values in the shock-compressed 
regions in these colliding-cloud simulations (see Section 2 for more detailed 
description on the model setups). Here, 〈 δφ〉 represents the angle dispersion 
of magnetic field direction in 3D space. 

Model B 3D Plasma v rms 〈 δφ〉 
( μG) β (km s −1 ) ( ◦) 

L1 74 0.15 0.76 12 
L5 13 0.14 0.99 20 
L10 12 0.05 1.87 19 
L20 20 0.03 2.15 25 

2  T H E  3 D  D C F  RELATI ON  

In this section, we describe our investigation towards the DCF corre- 
lation, and demonstrate our analysis using 3D MHD simulations. 
We used the set of simulations reported in Chen et al. ( 2019 ), 
which are cloud-scale, core-forming 3D MHD simulations. 1 The 
core formation activities in these clouds are induced by turbulent 
convergent flows, which compresses the originally diffuse gas ( ∼10–
100 cm 

−3 ) to create dense, post-shock regions within which dense 
structures and cores form (for more detailed information, see Chen & 

Ostriker 2014 , 2015 ; Chen et al. 2016 ). For our analysis in this study, 
we only consider the post-shock regions in the simulations because 
they resemble better the physical properties of the observed star- 
forming molecular clouds. A summary of the basic cloud properties 
of these models is in Table 1 . Generally speaking, models L1 and 
L20 represent the cases with relatively the strongest magnetic field 
and turbulence, respectively, and models L5 and L10 represent the 
moderately magnetized cases, with model L10 being more turbulent 
than L5 (see e.g. the values of plasma β and the rms velocity in 
Table 1 ). 

2.1 The original DCF method 

Based on the assumption that the fluctuation of gas kinetic energy is 
equal to the fluctuation of magnetic energy, δE K = δE B , the original 
DCF method envisioned the interplay between gas turbulence and 
magnetic field as a transverse Alfv ́en wave propagating through a 
background magnetic field B 0 . The gas velocity thus induces small 
deviation of the magnetic field, δB , from the initial, unperturbed 
field B 0 . Since we restrict our analysis to Alfv ́enic fluctuations, only 
the perpendicular component of the gas velocity with respect to the 
initial field B 0 is ef fecti ve here, and the perturbed component of the 
magnetic field is perpendicular to B 0 ( B � = 0, B ⊥ = δB ; see the 
left-hand panel of Fig. 1 ). This suggests the relation between the gas 
velocity and the perturbed magnetic field should follow 

δE K 

δE B 
= 1 = 

ρv 2 ⊥ / 2 

B 
2 
⊥ / (8 π ) 

= 
4 πρv 2 ⊥ 

B 
2 
⊥ 

. (1) 

1 Note that model L1 represents a slightly different scenario than other models. 
This particular simulation was designed to follow a local shock-compressed 
region (1 pc in size) within a molecular cloud, and thus the initial gas density 
is higher (1000 cm −3 ) and has relatively strong magnetic field ( ∼ 75 µG) 
comparing to typical cloud-scale properties ( ∼10–100 cm −3 and ∼ 10 µG). 
Since the focus of this study is to test the DCF method under various 
circumstances, we include model L1 with other models in our analysis, though 
we note that L1 is a relativ ely e xtreme case for cloud-scale gas and magnetic 
field structures. 
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The perturbed magnetic field B ⊥ and gas velocity v ⊥ thus satisfy 

v ⊥ = V A 
δB 

B 0 
, (2) 

where V A ≡
√ 

B 
2 
0 / 4 πρ is the Alfv ́en velocity in the pre-perturbation 

medium. This implies, if there is a well-defined, small amplitude 
Alfv ́en wave running along the ‘initial’ field, B 0 , it is possible to 
derive the magnitude of B 0 using the DCF equation: 

B 0 = 

√ 

4 πρ
v ⊥ 

δB/B 0 
≈

√ 

4 πρ
v ⊥ 

δφ
, (3) 

where ρ, v ⊥ , and δφ can be estimated from observations (see 
Section 3 ). Note that there is no pre-requisite (e.g. must be constant) 
on B 0 to satisfy equation ( 2 ), and thus we shall not simply treat it as the 
average field over the interested region before further justifications 
(see Section 2.3 ). 

2.2 The initial magnetic field in the DCF method 

If the assumption of small-amplitude Alfv ́en wave is valid, equa- 
tions ( 1 )–( 3 ) should hold everywhere in the medium. This allows an 
inference of the unperturbed background field direction ˆ B 0 in each 
location when B and v vectors are known. As illustrated in Fig. 1 , 
in the plane made by B and v vectors, let θ be the angle between 
B and v vectors and δφ the angle between B and B 0 (all angles are 
positiv e), we hav e either (note that B 0 cannot be in between B and 
v ) 
√ 

4 πρv sin ( δφ + θ ) = B sin ( δφ) (4) 

for case 1 ( B 0 on B side), or 
√ 

4 πρv sin ( δφ − θ ) = B sin ( δφ) (5) 

for case 2 ( B 0 on v side). Note that here we require δφ < 90 ◦, which is 
a requirement for the DCF method to be applicable. This is because, 
for the DCF method to work accurately, there must exist such B 0 

as the original, pre-perturbation field. Since the perturbed field B is 
the combination of B 0 and the perturbed component δB from gas 
turbulence, and since only the velocity component perpendicular to 
B 0 could bend the field line, we have B = B 0 + δB with B 0 ⊥ δB , 
and the angle between B and B 0 must be less than 90 ◦. 

We would like to point out that, case 1 represents the ‘traditional’ 
view of the DCF relation that when the deviation of B from B 0 is 
not large, or in general, when the gas turbulence is sub-Alfv ́enic. On 
the other hand, case 2 is also physically correct with B 0 	 B ⊥ � 

B , which represents the situation when the gas turbulence is much 
more energetic comparing to the initial magnetic energy (i.e. super- 
Alfv ́enic). 2 Another criterion for case 2 to be valid is δφ > θ , which 
is a numerical requirement but also provide the natural limit that θ
must be smaller than 90 ◦ in this scenario. 

We can now solve δφ following the derivations below: 
√ 

4 πρ v sin ( δφ ± θ ) = B sin δφ, (6) 

x ≡ sin δφ, A ≡
√ 

4 πρ v 
B , (7) 

A = 
x 

x cos θ±sin θ
√ 

1 −x 2 
, (8) 

sin 2 δφ = x 2 = 
A 2 sin 2 θ

1 −2 A cos θ+ A 2 
. (9) 

2 Because in case 2, 
√ 

4 πρv = 
√ 

4 πρv ⊥ / sin ( θ + δφ) > B ⊥ / sin ( δφ) = B. 
Thus, locations that satisfy the scenario of case 2 are locally super-Alfv ́enic. 
Similarly, case 1 represents sub-Alfv ́enic locations. 

This gives δφ (and thus the direction of B 0 ) at every location. Note 
that the derived formula of δφ is the same for both cases. Since B 0 , 
B , and v must be on the same plane, we can therefore solve for v ⊥ 

and B ⊥ : 

v ⊥ = v sin ( δφ ± θ ) , B ⊥ = B sin δφ. (10) 

When applying on simulation data, we adopt case 1 as the default 
solution, and we only use the solution from case 2 when 

1 

2 
ρ( v cos θ ) 2 > 

B 
2 

8 π
, and δφ > θ. (11) 

By defining v B as the vector in the same plane of B 0 , B , and v and 
is perpendicular to B (see Fig. 1 ), we have 

v B = v −
(

v · ˆ B 
)

ˆ B , (12) 

and we can derive the direction of B 0 (denoted as the unit vector ˆ B ): 

ˆ B 0 = ˆ B cos δφ ∓ ˆ v B sin δφ. (13) 

Since B = B 0 + δB and B 0 ⊥ δB , we know the amplitude of B 0 

should be B 0 = B cos δφ. Ho we ver, we note that only the direction 
of B 0 is important here, because that is what we need to derive B ⊥ 

for the DCF analysis. Fig. 2 illustrates an example of the derived 
ˆ B 0 from a cloud-scale, core-forming simulation (model L10 in Chen 

et al. 2019 ). Also note that, as long as we can determine ˆ B 0 properly, 
the DCF relation is applicable everywhere even in super-Alfv ́enic 
gas, in contrast to the commonly considered assumption that the 
DCF relation only holds in sub-Alfv ́enic regime, which have in fact 
been challenged by recent numerical studies (see e.g. Liu et al. 2021 ; 
Skalidis et al. 2021 ; Beattie et al. 2022 ). 

2.3 Approximation of ˆ B 0 

As demonstrated in the previous section, the accuracy of the DCF 

method depends on the accuracy of the measurement of the direction 
ˆ B 0 . Ho we ver, the full deri v ation of ˆ B 0 requires kno wing the angle 

between v and B , which cannot be probed in observations. Since 
theoretically B 0 represents the ‘unperturbed’ field, a straightforward 
alternative is to consider the vector -a verage of B = B x ̂  x + B y ̂  y + 

B z ̂ z o v er a given scale as an approximation of B 0 : 

B s = B x, s ̂  x + B y, s ̂  y + B z, s ̂  z , (14) 

where B x, s , B y, s , B z, s represent averaged B x , B y , and B z o v er the 
chosen scale, denoted as s . Using the same simulation shown in 
Fig. 2 [model L10 in Chen et al. ( 2019 )], we consider the averaging 
scale to be ±s simulation cells (d x = 0.02 pc for this model), i.e. we 
calculate B s following equation ( 14 ) by averaging over a (2 s + 1) 3 

volume centred at each cell. 
To see how B s depends on scales and whether we can use B s 

to approximate ˆ B 0 , we calculate the angle difference between B s 

and ˆ B 0 utilizing the full 3D information of the simulation data. The 
cases of s = 2, 5, 10, 20 are shown in Fig. 3 (left-hand panel). Also 
included are the comparisons between the local field B (i.e. s = 0) 
and the ‘unperturbed’ field B 0 as well as the total vector -a veraged 
field B all among the entire simulation domain (512 3 cells or 10 3 pc 3 ; 
see Fig. 2 ). Our results show that, statistically, the angle difference 
is smaller when the averaged field B s is derived within a smaller 
volume, which implies that the direction of B s could only be a good 
approximation of ˆ B 0 locally (i.e. for small s ). 

We further use the derived B s to calculate B ⊥ and v ⊥ , and use 
those values to calculate the DCF-derived magnetic field strength, 
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Figure 2. Left: An example of comparing the reconstructed B 0 (the x –y components only; blue streamlines) and the original magnetic field B (also the x − y 

components only; red streamlines), o v erplotted on a slice of gas density (in log ( n /[cm −3 ]), grey-scale) cut through the mid-plane in the post-shock layer of a 
turbulent colliding flow simulation (model L10 in Chen et al. 2019 ; see Table 1 ). Right: Comparisons between the ‘unperturbed’ field B 0 (black streamlines, 
same in all three panels) and the vector -a veraged fields B s (red streamlines) for s = 2 (top), 10 (middle), and 20 (bottom), for the same density slice shown in 
the left. The gas structure is not shown here for clarity. 

B DCF , B s , following equation ( 3 ): 

B DCF , B s = 

√ 

4 πρ
v ⊥ 

B ⊥ / | B s | 
. (15) 

The results are plotted in Fig. 3 (right-hand panel). Interestingly, 
when looking at the probability distribution of the DCF-derived field 
strength using the direction of B s as ˆ B 0 , it is the large-scale average 
B 20 , or the whole-box average B all , that has its most probably value 
around the actual mean field value. 3 In contrast, the DCF method 
tends to o v erestimate the field strength when the reference field is 
averaged locally (small s for B s ). This is not surprising, because 
the locally averaged magnetic field is more tightly correlated with 
the local field direction (see Fig. 3 , left-hand panel), which means 
the dispersion angle δφ = ∠ ( B , B s ) tends to be small, and thus the 
derived B DCF,3D tends to be large. 

The right-hand panel of Fig. 3 suggests that the vector -a veraged 
field direction o v er a large scale could be adopted as the ‘unperturbed’ 
field direction ˆ B 0 in the DCF equation to provide a good estimate of 
the mean field strength within the selected re gion, ev en though the 
direction of such averaged field may not agree with ˆ B 0 everywhere 

3 Note that there are two ways to define the mean field strength: the absolute 
value of the vector -a veraged field | B | , or the scalar -a verage of the magnitude 
of the field | B | . Both are indicated in the right-hand panel of Fig. 3 (vertical 
lines in the plot). 

(see the right column of Fig. 2 ). We note that this can be explained by 
the distribution of δE K ≡ ρv 2 ⊥ / 2 and δE B ≡ B 

2 
⊥ / (8 π ) with respect 

to the averaged magnetic field direction, which is analogous to the 
original DCF assumption equation ( 1 ). Note that the turbulent kinetic 
energy δE K considered here is the total kinetic energy from the 
perpendicular component of the gas velocity with respect to various 
reference magnetic field direction ( B s and B 0 ) within the cloud. 
As shown in Fig. 4 , while the distribution of δE K does not vary 
much when the referencing direction changes, the distribution of δE B 

shifted towards larger values when the referencing field direction is 
deriv ed o v er larger scales. This is expected, because as we mentioned 
abo v e, locally av eraged field direction tends to give smaller B ⊥ , and 
thus δE B is smaller. When we use the entire simulation domain to 
calculate the reference field direction B all , the corresponding δE B / δE K 

peaks around 1, consistent with the pre-requisite of the DCF method 
(equation 1 ), thus provide the most accurate estimate of the field 
strength in Fig. 3 ). 

We further note that this property of equipartition between the 
most probable values of δE K and δE B holds in sub-regions as well, 
and even around dense cores. Fig. 5 illustrates a series of the same 
analysis (using B all as the reference field direction) applied on regions 
of different scales centered at the same dense core. While we clearly 
see the shape of the δE B / δE K distribution becomes more lognormal 
when including more background clouds around the dense core (from 

top to bottom rows of Fig. 5 ), the δE B / δE K distribution from the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
4
/2

/1
5
7
5
/6

6
0
4
8
9
8
 b

y
 U

n
iv

e
rs

ity
 o

f V
irg

in
ia

 H
e
a
lth

 S
c
ie

n
c
e
s
 L

ib
ra

ry
 u

s
e
r o

n
 0

2
 A

u
g
u
s
t 2

0
2
2



DCF method revisited 1579 

MNRAS 514, 1575–1594 (2022) 

Figure 3. Comparing B s , s = 2, 5, 10, 20 ( B averaged over 5 3 , 11 3 , 21 3 , and 41 3 cells) by showing histograms of ∠ ( B s , B 0 ) (left) and DCF-derived magnetic 
field strength (right). Though B s seems to be a good approximate of the direction of B 0 (i.e. small relative angle) statistically when s is small (i.e. averaged 
locally), only the B DCF derived from large-scale av eraged B s giv es good estimates of the averaged field strength. In addition, we found that using sin δφ = B ⊥ / B 

(dashed curves) provides more accurate results than the commonly adopted tan δφ = B ⊥ / | B | (solid curves). The grey vertical line on the right panel marks the 
mean field strength calculated from the scalar mean (solid line) and vector -a verage (dotted line). 

smallest scale that we tested (top row) still peaks very close to 1, 
which suggests the DCF analysis we performed in Fig. 3 may still be 
a good approximation even in the immediate surrounding of a dense 
core. 

We w ould lik e to point out that the equipartition in δE B and δE K 

shown in Figs 4 and 5 could be due to that this simulated cloud, 
being on the shock front of the collision of two diffuse clumps, is in 
principle trans-Alfv ́enic. While this implies that such equipartition 
may not be a general property for all simulations, it is very possible 
that in reality, all star-forming regions are indeed trans-Alfv ́enic, and 
thus the DCF method could still provide a good approximation of the 
field strength measurement. This also explains why this equipartition 
tends to break when only including the immediate surrounding of a 
dense core, because the gas flows around a dense core are likely 
affected by the core’s self-gravity, so the assumption of pure MHD 

turbulence no longer holds. 

2.4 The statistical DCF method 

The DCF method is based on the assumption of the equipartition 
between the perturbed components of gas velocity and magnetic 
field, i.e. δE K = δE B . As discussed in the previous section, one can 
use the vector -a veraged field B as the reference field and achieve the 
equipartition statistically in log space, i.e. 〈 δE K / δE B 〉 log ≈ 0, where 
we use 〈〉 log to represent averaged value in log space. Therefore, 
the DCF equation should be re-written from equation ( 3 ) as the 
following: 

B DCF = 
〈

B DCF , local 

〉

log 
= 

〈

√ 

4 πρ
v ⊥ 

B ⊥ / | B | 

〉

log 

. (16) 

Note that we propose here a slightly different process of applying 
the DCF method. Instead of calculating 

〈 B〉 DCF → 

√ 

4 π〈 ρ〉 
〈 v ⊥ 〉 

〈 B ⊥ / | B |〉 
(17) 

(see Section 3.1 for more discussions on the DCF equation in 2D), 
the lognormal shape of δE K / δE B shown in Fig. 4 suggests that one 
should calculate the DCF-derived magnetic field strength at each 
location using local values of density, velocity, and B ⊥ / | B | as 

B DCF , local = 

√ 

4 πρ
v ⊥ 

B ⊥ / | B | 
, (18) 

then use B DCF = 〈 B DCF, local 〉 log as the cloud-scale magnetic field 
strength. 4 Namely, while the DCF method cannot be applied locally 
at individual cells unless ˆ B 0 is known, we can take the vector -a verage 
of the magnetic field o v er a large-enough scale to approximate 
the unperturbed field direction, and use this direction to calculate 
v ⊥ , B ⊥ , and B DCF, local at each cell. The averaged value of the 
distribution function of this B DCF, local in log space can then be 
adopted as the estimated field strength of the system. Note that, 
by comparing equation ( 16 ) with equation ( 3 ), in equation ( 16 ) 
we are calculating B DCF to approximate | B | , the vector -a veraged 
field strength. Ho we ver, the cloud-scale mean field strength should 
be | B | , and obviously | B | < | B | . As a result, using B ⊥ / | B | as 
the denominator in equation ( 16 ) tends to underestimate the field 
strength. 

We further note that, a commonly adopted convention in 
previous 2D works (e.g. F alceta-Gon c ¸alv es et al. 2008 ) is to 
consider 

tan δφ ≈ B ⊥ / | B | , (19) 

where δφ = ∠ ( B , B ). Ho we ver, the correct relation should be 
tan δφ = B ⊥ / B � where B � is the component of the local magnetic field 
parallel to B , and B ‖ �= | B | . This suggests that by adopting tan δφ
in the DCF equation to replace B ⊥ / | B | would introduce additional 
errors. A better way is to consider sin δφ = B ⊥ / B , i.e. using the 
local ratio between the perturbed (the component perpendicular to 
the mean field) and the total magnetic field to replace B ⊥ / | B | in 
equation ( 16 ). Note that similar concept has been pointed out in 
Liu et al. ( 2021 ). Though B could have large variation within the 
interested region, since we are only considering the peak value in 
log space and since 〈 δE K / δE B 〉 log ≈ 1, equation ( 16 ) gives B DCF → 

〈 B〉 log ≈ | B | . Note that it does not matter if the derived B DCF, local is 
locally correct or not, as we discussed abo v e. The right-hand panel of 
Fig. 3 compares the deri ved B DCF, local v alues using tan δφ = B ⊥ / | B | 
(solid lines) and sin δφ = B ⊥ / B (dashed lines). The difference is 
small for locally averaged field (small n ) due to smaller δφ, but 
for B DCF, local derived from whole-box averaged field, switching to 

4 Note that, in principle, there can be locations where B ‖ B , i.e. B ⊥ = 0. 
In this case, B DCF, local → ∞ . These data points should be remo v ed before 
deriving the averaged value of the magnetic field. 
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Figur e 4. Comparing ener gy ratio δE B /δE k ≡ ( B 2 ⊥ / (8 π )) / ( ρv 2 ⊥ / 2) with B ⊥ , v ⊥ derived with B s as B 0 for all 4 models considered in this work (see Table 1 ). 
When av eraging o v er large scales, B s is able to make δE B / δE k peak near unity, so the most probable value of the corresponding DCF-derived field strength thus 
roughly agrees with the mean field strength in the simulations (also see Fig. 3 ). 

sin δφ clearly shift the peak closer to the true value. As we will show 

in the next section, in projected 2D maps sin δψ and B POS, ⊥ / B POS 

also have tighter correlation than tan δψ versus B POS , ⊥ / B POS (see 
Fig. 7 ). 

3  T H E  D C F  M E T H O D  IN  2 D :  C O M P L I C AT I O N S  

A N D  M O D I F I C AT I O N S  

Now that we have validated the DCF relation in 3D space, we 
e xtend our inv estigation of the DCF method to 2D projected systems, 
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Figure 5. Equipartition between δE K and δE B in dense core and surrounding regions covering different scales (small to large from top to bottom). Left column: 
Slice plot of the gas density log ( n /[cm −3 ]) demonstrating the corresponding gas structures. Middle and right columns: The probability distributions of δE B , 
δE K (middle), and δE B / δE K (right) using the vector -a veraged field over the entire domain shown in the left column as the reference field. When including more 
diffuse gas in the background, the distribution of δE B / δE K becomes more lognormal with a peak near 1 (equipartition). 
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Figure 6. Definition of angles and symbols in calculating the synthetic 
polarization. Revised from Chen et al. ( 2016 , 2019 ). 

i.e. astronomical observations. We note that some extra assumptions 
are needed to apply the DCF method in observations due to the 
limited observables. Here, we discuss various ways to impro v e 
and/or validate these assumptions before applying the DCF method 
to synthetic observations from our numerical simulations in the next 
section. 

3.1 Synthetic polarization 

We derived the synthetic polarization as the follows (see e.g. Lee & 

Draine 1985 ; Wardle & Konigl 1990 ; Fiege & Pudritz 2000 ; Planck 
Collaboration XIX 2015 ; King et al. 2018 ): 

N = 

∑ 

los 

n, N 2 = 

∑ 

los 

n 

(

cos 2 γ −
2 

3 

)

, 

q = 

∑ 

los 

n cos 2 θ cos 2 γ, u = 

∑ 

los 

n sin 2 θ cos 2 γ, 

ψ = 
1 

2 
arctan2 ( u, q ) , p = p 0 

√ 
q 2 + u 2 

N − p 0 N 2 
(20) 

with n being the density of the medium (see Fig. 6 for definition of 
angles). Note that here we use θ for the position angle of the plane-of- 
sky component of the magnetic field ( B POS ) instead of the commonly 
adopted φ to a v oid confusion with δφ, which measures the angle 
between B POS and B POS . For simplicity, we assumed homogeneous 
grain alignment and set the polarization coefficient to be a constant, 
p 0 = 0.1 (see e.g. Chen et al. 2016 , 2019 ). Ho we ver, we note that 
non-constant grain alignment efficiency may have effects on the 
polarization structure, as discussed in e.g. King et al. ( 2019 ). 

In addition to assuming isotropic turbulence so that v ⊥ ∼ σ v where 
σ v is the observed line-of-sight velocity dispersion, to connect the 3D 

DCF relation to 2D projected quantities on the plane of sky (POS), 
we need to assume 

B ⊥ 

B 
≈

B POS , ⊥ 

B POS 
and 

B POS , ⊥ 

B POS 
≈ tan δψ , (21) 

where δψ is the angle between ψ and the averaged angle ψ : 

ψ ≡
1 

2 
arctan2 

( 
∑ 

POS 

sin 2 ψ, 
∑ 

POS 

cos 2 ψ 

) 

. (22) 

With these assumptions, equation ( 3 ) becomes 

B DCF , POS ≈
√ 

4 πρ
σv 

B POS , ⊥ / B POS 
≈

√ 

4 πρ
σv 

tan δψ 
. (23) 

Note that there have been several versions of the 2D DCF equation in 
the past, depending on the interpretation of the magnetic field 
distortion term B ⊥ / B . Ostriker et al. ( 2001 ) considered 〈 B ⊥ / B 〉 ∼
〈 δψ〉 , with 〈 δψ〉 being the dispersion of observed polarization 

angle. Heitsch et al. ( 2001 ) used B ⊥ / B ∼ 〈 tan δψ〉 , which could 
be severely contaminated by large angles. First proposed by Falceta- 
Gon c ¸alves et al. ( 2008 ) and recently justified by Li et al. ( 2022 ), 
the now commonly adopted version of the DCF equation in 
2D is 

B obs = 〈 B〉 DCF , POS = 

√ 

4 π〈 ρ〉 
〈 σv 〉 

tan 〈 δψ〉 
. (24) 

The accuracy of equation ( 24 ) depends on how accurate equa- 
tion ( 21 ) is. The first part of equation ( 21 ) ( B to B POS ) depends on 
the projection effect of the system, which we will discuss shortly 
in Section 3.2 . Regarding the second part of equation ( 21 ) ( B POS to 
polarization angle), a direct comparison between B POS, ⊥ / B POS and 
p ⊥ /p = sin ( ψ − ψ ), as well as B POS , ⊥ / B POS and tan ( ψ − ψ ), is 
shown in Fig. 7 using several synthetic observations (see Table 2 ). 
As we discussed in Section 2.4 , sin δψ correlates much better with 
B POS, ⊥ / B POS compared with the correlation between tan δψ and 
B POS , ⊥ / B POS . This strengthen our argument in Section 2.4 that 
one should consider using sin δψ in the DCF equation. Fig. 7 
also suggests that, in non-extreme conditions (moderate viewing 
angle with respect to the magnetic field, moderate turbulence, etc.), 
the polarization orientation follows the actual POS magnetic field 
structures pretty well when the polarization fraction is high enough, 
say, p/p max � 20 per cent , where p max is the maximum polarization 
fraction measured from the synthetic polarization map. Since the 
orientation of polarization segments with polarization fraction below 

∼ 20 per cent p max hav e relativ ely low correlation with the actual 
magnetic field direction, we shall neglect those polarization segments 
when applying the DCF method to the observations. We discuss this 
in more details in Section 4.2 below. 

3.2 Angle correction: 2D projection of 3D angle 

As discussed abo v e, the DCF-deriv ed magnetic field strength de- 
pends on the angle between the perturbed component and the mean 
direction of the magnetic field. Ho we ver, it is important to note that 
the angle between two vectors in 3D may not be the same after 
being projected to 2D plane, and thus the uncertainty increases when 
applying the DCF method to 2D projected observations. Here, we 
derive the equation for estimating the projection effect from 3D to 
2D; i.e. the relation between the projected angle in 2D and the actual 
angle in 3D. 

Consider two unit vectors on 3D Cartesian coordinates with an 
angle α between them. Without loss of generality, we set these two 
vectors to be on the x –y plane with 

r ± = cos 
α

2 
ˆ i ± sin 

α

2 
ˆ j . (25) 

After projecting these two vectors to a plane H with normal vec- 
tor ˆ d = sin 
 cos � ̂ i + sin 
 sin � ̂ j + cos 
 ̂ k , the projected vectors 
become 

p ± = r ± − ( r ± · ˆ d ) ̂ d . (26) 

Let the angle between the projected vectors be αproj , then we have 

cos αproj = 
p + · p −

| p + || p −| 

= 
cos α − ( r + · ˆ d )( r − · ˆ d ) 

√ 

1 − ( r + · ˆ d ) 2 
√ 

1 − ( r − · ˆ d ) 2 
. (27) 

Since 

r ± · ˆ d = sin 
 cos 
(

� ∓
α

2 

)

, (28) 
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Figure 7. Comparison between the synthetic polarization structure (as traced 
by δψ = ψ − ψ where ψ is the mean polarization angle o v er the entire map) 
and the projected plane-of-sky (POS) magnetic field structure for four selected 
cases with various turbulent levels and viewing angles with respect to the 
magnetic field (more perturbed/inclined from top to bottom; see Table 2 ). As 
discussed in Sections 2.4 and 3.1 , assuming tan δψ ≈ B POS , ⊥ / B POS would 
increase the uncertainties in the DCF relation because tan δψ does not trace 
B POS , ⊥ / B POS well (right column). Instead, sin δψ and B POS, ⊥ / B POS are more 
tightly correlated (left column). These 2D histograms are colour coded by 
normalized polarization fraction p / p max , which suggests that in most of the 
cases when the synthetic polarization fraction is relatively high, the synthetic 
polarization orientation is more consistent with the projected magnetic field 
structure. 

we have 

( r + · ˆ d )( r − · ˆ d ) = 
1 

2 
sin 2 
 [ cos (2 � ) + cos α] , (29) 

and 

( r ± · ˆ d ) 2 = sin 2 
 cos 2 
(

� ∓
α

2 

)

= 
1 

2 
sin 2 
 [ cos (2 � ∓ α) + 1 ] . (30) 

For projected magnetic field on the plane of sky, r ± represent two 
3D vectors with angle �φ between them, and p ± are two vectors 

on the 2D map with angle difference �φ2D . If we use the average 
of the two vectors as the reference direction and let the inclination 
angle between the mean field direction and the plane of sky be γ , the 
normal vector for H (the plane of sky) is on the x–z plane with � = 

0 and 
 = π − γ . Note that since we only consider γ values within 
[0, π /2], this means 
 must be within [ π /2, π ]. Equation ( 27 ) thus 
becomes: 

cos �φ2D = 
cos �φ − 1 

2 sin 2 γ (1 + cos �φ) 

1 − 1 
2 sin 2 γ (1 + cos �φ) 

, (31) 

and we now have the correlation between projected angle �φ2D and 
the original angle �φ with γ being the inclination angle of the mean 
magnetic field with respect to the plane of sky. 

Fig. 8 illustrates this projection effect by showing �φ2D as 
functions of both �φ and γ . Note that the projected angle measured 
in 2D is al w ays larger than the actual angle in 3D, and the difference 
increases with inclination angle. This suggests that B ⊥ / B tends to 
be slightly o v erestimated, which makes the DCF-derived magnetic 
field slightly underestimated. Ho we ver, this ef fect could be small if 
the inclination angle is not large (small γ ) or the actual perturbed 
field does not deviate much from the mean field in 3D (small �φ). 
F or e xample, from Fig. 8 , for a dispersion angle δφ = 20 ◦ in 3D, 
the DCF method shall remain accurate within a factor of two if the 
inclination angle is roughly below 60 ◦. Nevertheless, as shown in 
Section 4 , this projection correction is critical particularly in cases 
with large inclination angles (see e.g. Fig. 12 ). 

3.3 Gas volume density in the DCF method 

When applying the DCF method on observations, one challenge is 
the estimate of the gas volume density ρ, which requires additional 
information either from a chemical network or a measurement of the 
cloud depth along the line of sight. Here, we describe two methods 
on estimating the cloud depth and hence the gas volume density 
from observable quantities. We compare them with the actual values 
and discuss how this affects the accuracy of the DCF method in 
Section 4.1 . 

3.3.1 Linewidth–size correlation 

We first consider the method proposed in Storm et al. ( 2014 ) to esti- 
mate the cloud depth. This method (‘vfit’) is based on the assumption 
that the observed spectral linewidth traces the velocity dispersion 
( σ v ) corresponding to the line-of-sight length-scale of the cloud, 
while the spatial dispersion of the observed centroid velocity ( v c ) 
should reflect the plane-of-sky size of the cloud based on Larson’s law 

on linewidth–size correlation (see Fig. 9 for illustration). We note that 
this assumption is valid as long as the entire target region belongs to 
a spatially connected structure with a power-law correlation between 
the turbulence amplitude and the physical scale. Such linewidth–size 
correlation may break down in clouds with significant sub-structures, 
ho we ver. 

Following Storm et al. ( 2014 ), we identify spatially coherent 
structures (cores, branches, and trunks) from the column density 
map using the Python toolkit astrodendro , then calculate the 
mean linewidth ( σv ) and the dispersion of centroid velocity ( σv c ) 
within each structure. We then fit the dispersion of centroid velocity 
as a power-law function of the physical size of the structure, � : 

σv c = v 1 � 
α, (32) 

which represents the scale relation of the turbulence of the given 
system, σv c ( � ). We can then use the average value of the line-of-sight 
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Table 2. Summary of the synthetic observations described in Section 4.1 and the corresponding results from the DCF analysis with various modifications 
discussed in Section 3 . 

model γB 〈 δψ〉 σv � log ( ρ/ cm −3 ) B DCF / B POS , tan 〈 δψ〉 B DCF / B POS , tan δψ B DCF / B 3D , sin δψ 3D 

( ◦) ( ◦) (km s −1 ) (10 21 cm −2 ) vfit eq ana vfit eq ana vfit eq ana vfit eq ana 

L1 inc0 7 8 0.18 6.54 3.1 2.6 4.3 0.4 0.5 1.6 0.9 0.5 3.9 0.9 0.5 3.8 
L1 inc30 37 11 0.28 8.80 3.3 2.7 4.3 0.8 0.9 2.4 1.8 0.9 5.8 1.5 0.7 4.7 
L1 inc60 67 27 0.41 24.0 4.0 4.0 4.3 1.5 3.2 2.2 3.3 3.0 4.7 1.8 1.8 2.5 

L5 inc0 7 17 0.31 1.41 1.7 1.5 2.9 0.4 0.7 1.8 0.9 0.7 3.9 0.9 0.7 3.8 
L5 inc30 37 24 0.31 1.85 2.0 1.9 2.9 0.6 1.2 1.8 1.5 1.2 4.2 1.3 1.1 3.7 
L5 inc60 67 43 0.42 5.12 2.4 3.2 2.9 0.5 1.5 0.9 0.8 1.2 1.5 0.7 1.7 1.3 

L10 inc0 2 24 0.51 1.71 1.8 1.6 2.7 0.6 0.6 1.2 1.2 0.6 2.5 1.3 0.6 2.7 
L10 inc30 28 28 0.49 2.22 2.1 1.9 2.7 0.6 1.0 1.4 1.4 0.9 2.9 1.4 1.0 2.8 
L10 inc60 62 45 0.75 2.53 2.1 2.2 2.8 0.8 0.9 1.5 1.2 0.7 2.2 1.2 1.1 2.1 

L20 inc0 2 37 0.68 1.68 2.2 1.7 2.4 0.5 0.4 0.6 0.8 0.3 1.1 1.1 0.5 1.4 
L20 inc30 32 42 0.56 2.13 2.3 2.2 2.4 0.5 0.6 0.6 0.9 0.5 1.0 1.1 0.8 1.2 
L20 inc60 63 47 0.75 5.17 2.2 2.8 2.3 0.3 0.8 0.4 0.5 0.6 0.6 0.6 1.1 0.7 

ε ≡ 〈| log ( B DCF / B ) |〉 0.27 0.18 0.24 0.16 0.20 0.41 0.12 0.15 0.38 

Figure 8. The projected angle �φ2D from various values of �φ, as functions 
of the angle of the projection γ (i.e. the inclination angle of the plane of sky). 

Figure 9. The linewidth–size correlation derived from dendrogram struc- 
tures in model L10 inc30. The fitted cloud depth L vfit (thin gre y v ertical line) 
is considered as the intersection of the mean line-of-sight velocity dispersion 
σv (dotted horizontal line) and the fitted linewidth–size correlation (dashed 
line). 

velocity dispersion to determine the depth of the cloud L under the 
assumption that the turbulence is isotropic: 

σv = σv c ( � = L vfit ) = v 1 L 
α
vfit , L vfit = 

(

σv 

v 1 

)1 /α

. (33) 

Note that, when applying on the DCF analysis, this method is 
relatively independent of the line-of-sight velocity dispersion if 
the scale dependence of the centroid velocity roughly follows the 
Larson’s law, i.e. α ≈ 0.5: 

B vfit = 

√ 

4 πρ
σv 

tan δψ 
= 

√ 

4 π
� 

L vfit 

σv 

tan δψ 
≈

√ 
4 π� · v 2 1 

tan δψ 
. (34) 

The derived magnetic field strength thus only depends on the fitting 
result of v 1 , the dispersion of centroid velocity within unit-size 
structures. 

3.3.2 Pr essur e equilibrium 

Alternatively, we can consider the cloud as a layer in hydrostatic 
equilibrium (see e.g. Elmegreen & Elmegreen 1978 ), but in a more 
general form. Considering a self-gravitating sheet-like cloud where 
the internal energy density balances the pressure from gravitational 
potential: 

E int = E grav , 

where E grav = ρ� grav and ∇ 
2 � grav = −4 πG ρ. For a magnetized 

turbulent cloud, we shall have E int = E thermal + E turb + E B . Assuming 
constant density, the equation can be simplified as 

1 

2 
ρ
(

c 2 s + σ 2 
v 

)

+ 
B 

2 

8 π
= ρ� grav = 

πG� 
2 

2 
, (35) 

where πG � 
2 /2 is the gravitational pressure in the mid-plane (see e.g. 

McKee et al. 1993 ). 
Combining with the 2D DCF equation ( 24 ), we can solve the cloud 

depth L = �/ ρ as 

L eq = 
σ 2 

v 

(

( B ⊥ /B) −2 + 1 
)

+ c 2 s 

πG� 
. (36) 
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Figure 10. Demonstrating the density cutoff test, showing the corresponding integrated column density (in log scale with polarization segments colour coded 
by polarization fraction; top) and the line-of-sight velocity dispersion (in log scale; bottom). The case of 10 2 < n /[cm −3 ] < 10 4 (second column) seems to better 
resemble the ‘all’ case (i.e. including all cells and all density ranges; left column), while the extreme case 10 5 < n /[cm −3 ] (right column) only traces the densest 
structures and has too few cells to conduct meaningful analyses. 

The corresponding magnetic field strength is therefore 

B eq = 

√ 

4 π
� 

L eq 

σv 

tan δψ 
= 

⎡ 

⎢ 
⎢ 
⎣ 

4 π2 G� 
2 

tan 2 δψ 

(

1 + 

(

c s 
σv 

) 
)2 

)

+ 1 

⎤ 

⎥ 
⎥ 
⎦ 

1 / 2 

. (37) 

Note that tan δψ ≈ B ⊥ / B is basically 
√ 

4 πρσv / B = M A , the 
Alfv ́en Mach number. In the case of magnetic domination o v er 
turbulence, M A 	 1, equation ( 37 ) reduces to 

B ≈ 2 π
√ 

G �, 

which means the normalized mass-to-flux ratio of the cloud �/ B ·
2 π

√ 
G ≈ 1, or the cloud is magnetically critical. We stress that the 

method described in this section is applicable only to self-gravitating 
sheet-like clouds. 

3.4 Density cutoffs as synthetic line obser v ations 

In addition to gas volume density, the DCF method still requires more 
information than just the polarization morphology . Observationally , 
the velocity dispersion σ v can be probed by the width of molecular 
line emission in the velocity space. Ho we ver, the critical gas densities 
of various molecular lines are different, and the measured velocity 
dispersion therefore may highlight different regions of the target 
cloud that have different densities. Synthetic line observations using 
tracers with different critical densities may help test how this could 
affect the accuracy of the DCF method. 

We thus consider a simplified method of generating synthetic line 
observations by applying density masks to all sightlines; i.e. for 
each sightline, we only include cells with gas volume densities 
within the specified density range when generating the corresponding 
synthetic observations. This is illustrated in Fig. 10 using model 
L10 inc30 as an example. Three density ranges are selected to 
approximate the typical gas tracers commonly used in line obser- 
v ations to wards star-forming regions (see e.g. Shirley 2015 ; Fissel 
et al. 2019 ): 10 2 < n /[cm 

−3 ] < 10 4 (low-to-intermediate density 
regime, e.g. 13 CO, C 

18 O), 10 3 < n /[cm 
−3 ] < 10 5 (intermediate- 

to-dense gas, e.g. NH 3 , N 2 H 
+ ), and 10 5 < n /[cm 

−3 ] (the densest 
gas component, e.g. HCN, H 

13 CO 
+ ). Note that we only used 

our simplified synthetic line observation to calculate the synthetic 
integrated line intensity (used in defining dendrograms for the 
‘vfit’ density-estimating method) and velocity dispersion, but not 
the column density (which is typically derived from multiwave- 
length continuum observations) and polarization angles, because 
thermal dust emission is independent from the molecular line 
observations. 

Fig. 10 demonstrates this synthetic line observation test by show- 
ing the corresponding integrated emission (top row) and velocity 
dispersion (botto w ro w) from the three cases described abo v e. 
Obviously, dense gas tracers (10 5 < n /[cm 

−3 ]) would only follow 

the densest structures, and thus is not very suitable for our statistical 
approach of the DCF method. Also, we note that the velocity 
dispersion traced by the low-density tracer (10 2 < n /[cm 

−3 ] < 10 4 ) 
is higher than that measured in gas with intermediate densities (10 3 

< n /[cm 
−3 ] < 10 5 ), which is not surprising because we expect the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
4
/2

/1
5
7
5
/6

6
0
4
8
9
8
 b

y
 U

n
iv

e
rs

ity
 o

f V
irg

in
ia

 H
e
a
lth

 S
c
ie

n
c
e
s
 L

ib
ra

ry
 u

s
e
r o

n
 0

2
 A

u
g
u
s
t 2

0
2
2



1586 C.-Y. Chen et al. 

MNRAS 514, 1575–1594 (2022) 

Figure 11. The PDFs of DCF-derived magnetic field strength using equation ( 23 ) for all synthetic observations considered in this study, with four simulation 
models (each column; see Table 2 ) and three viewing angles (each row), roughly following the order of relative turbulent strength in the plane of sky from 

left-hand to right-hand panels. In each panel, we compare the DCF-derived magnetic field strength from the three density-estimating methods discussed in 
Section 3.3 (dashed, solid, and dotted lines represent method ‘vfit’, ‘eq’, and ‘ana’, respectively), as well as the potential modifications to the DCF method that 
we discussed earlier: switching 〈 δψ〉 with δψ (red/yellow versus blue/green curves), using sin δψ instead of tan δψ (thick versus thin lines), and considering 
the projection effect to estimate the dispersion angle in 3D (yellow and green curves). See text for more discussions. 

diffuse gas to be more turbulent. We will discuss the corresponding 
DCF results in Section 4.2 below. 

4  C O M PA R I S O N S  A N D  DISCUSSIONS  

4.1 Testing density-estimating methods in synthetic 

obser v ations with the statistical approach 

We first focus on comparing the different methods of deriving gas 
volume density using synthetic observations generated from our 3D 

MHD simulations. Here, we consider 4 simulation models (L1, L5, 
L10, and L20; see Table 1 ) and generate synthetic observations at 3 
viewing angles so that the inclination angles of the mean magnetic 
field are γ ≈ 0 ◦, 30 ◦, and 60 ◦. The basic observable properties of these 
synthetic observations that are important in the DCF analysis (column 
density, velocity dispersion, and polarization angle dispersion) are 
listed in Table 2 . 

The derived mean densities are also listed in Table 2 . Besides the 
two density-estimating methods discussed in Section 3.3 (‘vfit’ and 
‘eq’), we also provide estimates of the cloud depths and correspond- 
ing gas density ρana = � obs / L ana from our 3D simulation data. Since 
all models considered here are convergent flow simulations where 
clouds formed by shock compression, the typical depth of the cloud 
when viewed face-on is the thickness of the post-shock layer, which 

is about 10 per cent of the size of the simulation box. For simplicity, 
we define the ‘analytic’ cloud depth at various inclination angle as 

L ana ≡
0 . 1 L box 

cos γ
. (38) 

In addition, three more comparisons are considered here: (1) 
whether or not the previously proposed 〈 δψ〉 → δψ replacement 
based on our 3D analysis (see Section 2.4 ) still holds in 2D 

observations, 5 (2) whether or not the previously proposed tan δψ 

→ sin δψ replacement based on our 3D analysis (see Section 2.4 ) 
still holds in 2D observations, and (3) if the projection correction on 
2D dispersion angle could be critical in the DCF analysis. A summary 
of the synthetic models and corresponding DCF results, including the 
mean densities derived from the linewidth–size correlation (‘vfit’), 
the equilibrium (‘eq’), and the analytical solution (‘ana’), the DCF- 
derived magnetic field strength using both 〈 δψ〉 and δψ as the 

5 Note that this is different from 〈 B 〉 DCF given in equation ( 24 ), which uses the 
mean density and velocity dispersion to give one value of the DCF-derived 
field strength o v er the entire map. Here, we want to focus on the comparison 
between 〈 δψ〉 and δψ , and thus we keep the local values of ρ and σ v in 
the calculation and only switch between 〈 δψ〉 and δψ (see equation ( 23 )). 
The shape of the distribution of DCF-derived field strength when using 〈 δψ〉 
therefore completely depends on hydrodynamic properties of the gas (see 
Fig. 11 ). 
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Figure 12. Summary of the analysis discussed in Section 4.1 , plotting the ratio between the DCF-derived and the actual magnetic field strengths, in log scale, 
as functions of the mean dispersion angle 〈 δψ〉 . Synthetic observations were generated from 4 different simulations (different marker styles) and 3 inclination 
angles of the mean magnetic field γ (different marker colours). Three methods were applied to estimate the gas density from observables (left, middle, and right 
columns) as discussed in Section 3.3 . We also compared the traditional way of calculating B DCF using tan 〈 δψ〉 (top row) with our proposed revision, tan δψ 

(bottom ro w). Also sho wn is the projection correction (open symbols) that convert the 2D angles to 3D, as discussed in Section 3.2 . Another proposed revision 
that replaces tan δψ with sin δψ is shown as single-sided errorbars. We see clear impro v ement of the accuracy of B DCF when switching from tan 〈 δψ〉 to tan δψ , 
and the projection correction could be critical for cases with large inclination angles of the magnetic field ( γ ≈ 60 ◦; red symbols). In some cases with high 
inclination angles and/or large dispersion of polarization angles, switching to sin instead of using tan also increases the accuracy of B DCF . More importantly, 
while the results derived from method ‘ana’ (right column) are supposed to be the most accurate, we found that ‘vfit’ (left column) and ‘eq’ (middle column) 
methods in general give better estimates of the actual mean field ( B POS or B ), mostly within a factor of 2 (dotted grey horizontal lines mark ± log 2). 

polarization angle dispersion, as well as a projection-corrected DCF 

result using sin δψ proj , can be found in Table 2 , while Figs 11 and 12 
provide more detailed comparisons of the results through graphical 
visualization. 

Fig. 11 illustrates our results from the 12 synthetic observations, 
showing the probability distribution functions of the DCF-derived 
magnetic field strength (1) using dif ferent density-deri ving methods, 
(2) with or without the replacement of 〈 δψ〉 → δψ or tan δψ → 

sin δψ , and (3) with or without the projection correction δψ → 

δψ 3D , which can be derived from equation ( 31 ): 

δψ 3D = δφ = arccos 
cos δψ + 

1 
2 sin 2 γ ( 1 − cos δψ ) 

1 − 1 
2 sin 2 γ ( 1 − cos δψ ) 

. (39) 

Note that when considering the projection effect of δψ , we adopted 
the projection-corrected velocity dispersion σ v,3D ≡ σ v cos γ to 
replace σ v in the DCF equation (equation 24 ). This is to exclude 
the velocity component parallel to the magnetic field, which does 
not contribute to the observed field distortion. 

Comparing Fig. 11 to the 3D results (right-hand panel of Fig. 3 ; 
also see right-hand panel of Fig. 4 ), we see that the 2D DCF-derived 
field strengths do not al w ays preserve the nice, symmetric shape of 

lognormal distribution of the DCF-derived field strengths in 3D. Only 
synthetic observations with moderate turbulence levels (e.g. models 
L5 and L10) and inclination angles (e.g. γ � 30 ◦) seem to reco v er 
the lognormal distribution of magnetic field strength, and in fact have 
more accurate DCF results (also see Table 2 ). This indicates that the 
DCF method is less applicable for extreme scenarios with strong 
turbulence (e.g. model L20) and/or very large inclination angles 
(e.g. γ � 60). This is not surprising, because the main assumptions 
one needs to make in order to apply the DCF method in 2D (isotropic 
velocity field and no cancellation along the line of sight) break in 
these extreme cases. 

Another important feature revealed by Fig. 11 is the clear differ- 
ence in both the value and the shape of the distribution between the 
three density-deriving methods. We also note, from Table 2 , that the 
derived mean densities from the three different methods are highly 
inconsistent with each other in many of the synthetic observations 
we studied here. This in fact provides an important message on 
applying the DCF method in observations: the biggest uncertainty 
of calculating DCF-derived magnetic field strength comes from the 
estimate of gas density, not the polarization measurement. We will 
discuss this later in this section. 
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The complete results combining all 12 synthetic observations, 
3 density-deriving methods, and 3 proposed modifications ( 〈 δψ〉 
→ δψ , tan δψ → sin δψ , and δψ → δψ 3D ) are summarized in 
Fig. 12 . Here, we plot in log scale the ratio between the DCF-derived 
magnetic field strength (from equation 24 ) and the actual mean 
field strength, B DCF / B , versus the mean dispersion of polarization 
angle 〈 δψ〉 , for each model and method. Note that for most of the 
cases, B = B POS (and B DCF = B DCF, POS ), but when considering the 
projected polarization angles δψ 3D , B = B 3D is used. Also, two 
horizontal lines are drawn at ± log ( 

√ 
2 ) so that if a model has all 

deri ved v alues within these two lines, we can claim this model is 
accurate within a factor of 2. 

We see clear impro v ement of the accuracy of B DCF when switching 
from 〈 δψ〉 (top row) to δψ (bottom row), especially for the ‘vfit’ 
method (left column). With δψ , the ‘vfit’ method was able to produce 
B DCF within a factor of 2 of the actual value for almost all synthetic 
observations except those with high inclination angles ( γ ≈ 60 ◦; 
red symbols). On the other hand, the simple method ‘eq’ (middle 
column) seems to be less impacted by the choice of 〈 δψ〉 or δψ , 
and the DCF-derived magnetic field strengths using this method are 
also pretty consistent with the actual values especially for moderate 
inclination angles ( γ ≈ 30 ◦). 

To quantitatively compare the accuracy of our proposed methods 
and revisions to the DCF equation, we define the accuracy measure- 
ment ε: 

ε ≡
〈∣

∣

∣

∣

log 

(

B DCF 

B 

)∣

∣

∣

∣

〉

or 

〈∣

∣

∣

∣

log 

(

B DCF , POS 

B POS 

)∣

∣

∣

∣

〉

, (40) 

which is al w ays positive and between 0 and 1. Smaller ε means the 
estimate of B DCF is more accurate. The mean value of ε for each 
model is presented in Table 2 . Switching from 〈 δψ〉 to δψ brings 
ε for ‘vfit’ method down to 0.16 from the original 0.27, and if we 
added the projection correction and the tan δψ → sin δψ revision, 
ε ≈ 0.12 for ‘vfit’ method, which is the best-performing model in 
this test. As mentioned earlier, method ‘eq’ is not affected much by 
the choices of 〈 δψ〉 or δψ . Instead, the accuracy of method ‘eq’ is 
pretty consistent with ε � 0.2 when using either tan 〈 δψ〉 , tan δψ , or 
sin δψ 3D in the DCF equation. 

The unexpected result is the bad performance of the ‘ana’ method, 
which theoretically should give the most accurate estimate of the 
mean gas density. Instead, the derived B DCF / B ratios are very 
scattered in Fig. 12 , and none of our proposed revisions helped 
reduce such error. Combining with the facts that the density estimates 
from different methods often vary a lot and the fitting method from 

line width–size correlation gi ves the best estimates, we believe our 
results suggest that the line-of-sight velocity dispersion used in the 
DCF equation cannot properly reflect the actual turbulent component 
of the velocity in the system, and only the mean density value derived 
also from velocities (the ‘vfit’ method) could offset this uncertainty. 
Thus, even though the derived mean density is not accurate, the 
resulting B DCF is closer to the real value than that using the more 
accurate density from the analytical approach if the line-of-sight 
velocity dispersion is used, as is commonly the case. We note that 
though the reasoning differs, this is similar to the argument discussed 
in Cho & Yoo ( 2016 ) that in addition to the commonly used line-of- 
sight velocity dispersion, the centroid velocity should also be taken 
into consideration in the DCF analysis. 

Moreo v er, ev en though the line-of-sight velocity dispersion is 
density-weighted, the linewidth could still hugely depend on the 
low density gas that has larger velocity difference from the density- 
weighted mean central velocity. Since the mean density is mainly 
determined by the dense gas, it is less correlated with the velocity 

dispersion. We thus note that the cloud depth derived from ‘vfit’ 
method (equation 33 ) should not be treated as the physical cloud 
depth; rather, it should be viewed as a characteristic length-scale 
corresponding to the measured line-of-sight velocity dispersion. 

The projection effect discussed in Section 3.2 is illustrated in 
Fig. 12 as solid (POS values) versus open (reprojected) symbols. 
We see that the best scenario for the projection correction to work 
is the high-inclination low-perturbation case (model L1 inc60; red 
squares), which is expected because the mean inclination angle of the 
magnetic field is more representative in less turbulent environment, 
and the projection effect is more significant when the field inclination 
angle is large. We also note that the projection correction seems to 
work the best with the ‘eq’ density-deriving methods. This could be 
due to that the ‘eq’ method considers the cloud as an infinite slab with 
plane-parallel magnetic field [so E B = B 

2 / (8 π ); see equation ( 35 )], 
so the actual inclination of the magnetic field plays a more critical 
role in estimating the field strength using this method, especially 
since the line-of-sight cloud depth also depends on the inclination 
angle (equation 36 ). 

Also shown in Fig. 12 is the modification of the DCF method we 
proposed in Section 2.4 , that the term tan δψ should be replaced by 
sin δψ (plotted as single-sided errorbars). We found that though B DCF 

seems to be slightly more accurate with sin δψ , the impro v ement is 
small except for cases with large dispersion of polarization angles 
( 〈 δψ〉 � 35 ◦) because sin δψ ≈ tan δψ for small angles. While, from 

the ε values in Table 2 , using sin δψ is statistically more accurate 
than the traditional DCF method, the biggest uncertainty in the DCF 

method seems to be coming from the gas density and turbulence 
level, and thus the modifications on polarization measurement 
generally have weak impact on improving the accuracy of the DCF 

method. 

4.2 Testing density dependence and polarization selection 

As discussed in Section 3.4 , density selection effect could also play a 
critical role in determining the gas turbulence level and thus the DCF 

analysis. Our simplified synthetic line observations were described 
in Section 3.4 , and examples of the corresponding column density 
and velocity dispersion maps were demonstrated in Fig. 10 . Here, 
we consider three viewing angles of simulation model L10 (synthetic 
models L10 inc0, L10 inc30, and L10 inc60 in Table 2 ) with three 
dif ferent density cutof fs adopted in Fig. 10 (10 2 < n /cm 

−3 < 10 4 , 
10 3 < n /cm 

−3 < 10 5 , and 10 5 < n /cm 
−3 ; see Table 3 ) to investigate 

what density range could provide the most accurate DCF result in 
star-forming clouds. 

In addition, we examine the effect of limiting the analysis to 
pixels with polarization fraction abo v e a certain threshold ( p > 

0.2 p max here), as we discussed in Section 3.1 . We would like to 
point out that this polarization selection effect only has impact on 
the measured dispersion angle of polarization orientation, while the 
density selection effect only changes the velocity dispersion. The 
models considered in this test and the corresponding parameters are 
listed in T able 3 . W e note that applying the mask based on polarization 
fraction does not seem to affect the measured polarization angle 
dispersion much. On the other hand, the synthetic linewidth hugely 
depends on the density selection effect, as already suggested in 
Fig. 10 . The velocity dispersion tends to be larger in lower density 
gas, which also differs from the values measured without any density 
selection effect (‘all’ in Table 3 ; column 4). This suggests that any 
DCF analysis based on synthetic observations without considering 
the density selection effect may be inaccurate and incompatible to 
actual observations. 
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Table 3. Summary of the synthetic line observation models discussed in Section 4.2 . 

model 〈 δψ〉 ( ◦) σ v (km s −1 ) 
All p > 0.2 p max All 10 2 < n /cm −3 < 10 4 10 3 < n /cm −3 < 10 5 10 5 < n /cm −3 

L10 inc0 24 23 0.51 0.70 0.17 0.22 
L10 inc30 28 26 0.49 0.66 0.20 0.24 
L10 inc60 45 44 0.75 0.83 0.27 0.22 

The results of the DCF analysis are summarized in Fig. 13 . Similar 
to Fig. 12 , here we plot the ratio B DCF / B ( B DCF , POS / B POS for cases 
without projection correction) in log scale, and draw horizontal lines 
at ±

√ 
2 to show the boundaries of accuracy of a factor of 2. All 

values are plotted as functions of the density selection range. We 
also include the comparisons between using (1) 〈 δψ〉 and δψ (top 
versus bottom row), (2) δψ and δψ 3D (solid versus open symbols), 
and (3) tan δψ and sin δψ (symbols versus errorbars) in the DCF 

equation equation ( 24 ). 
Interestingly but not surprisingly, the density selection effect does 

have strong impacts on the accuracy of the DCF result, and the low-to- 
intermediate density range 10 2 < n /[cm 

−3 ] < 10 4 in general delivers 
the most accurate DCF-derived field strength to the actual value, 
regardless the field inclination angle with respect to the plane of sky. 
As discussed abo v e, such discrepanc y could be due to the v elocity 
dispersion being sensitive to the density cuts (see e.g. Table 3 and 
Fig. 10 ). Moreo v er, the high-density tracers tend to reco v er only the 
densest structures, and thus do not have sufficient pixels to have 
good statistics for the DCF method (see Section 3.3 and Fig. 10 ). 
The low- and intermediate-density tracers (within the range of 10 2 –
10 5 cm 

−3 ) therefore appear to be the better choices for conducting 
the DCF analysis in star-forming clouds, which is rational given that 
this analysis aims to retrieve the cloud-scale magnetic field strength, 
and 10 2 –10 5 cm 

−3 is indeed the typical range of cloud-scale density. 6 

We further note that limiting the analysis based on polarization 
fraction ( p > 20 per cent p max adopted here) does not seem to make 
huge differences (stars versus circles in Fig. 13 ). This is consistent 
to the fact that the mean angle dispersion 〈 δψ〉 values remain similar 
with or without the polarization fraction limitation, as listed in 
Table 3 . This may seem surprising, since Fig. 7 already showed 
that the observed polarization orientation and the actual plane-of- 
sky magnetic field structure are only tightly correlated when the 
polarization fraction is large enough. In fact, we repeated the same 
analysis with the more strict selection criterion p > 50 per cent p max , 
and found that the accuracy of the DCF method decreased instead. 
This again suggests that the accuracy of the DCF method is not 
determined by the polarization measurement, but relies on good 
statistics as well as good hydrodynamics estimates. 

Similar to the discussion in the previous section, the projection 
correction seems to work better with the ‘eq’ method of density 
deri v ation, but is only significant when the inclination angle is large 
(model L10 inc60; red symbols). Another modification we proposed 
based on the 3D analysis, tan δψ → sin δψ , does not seem to show 

consistent impro v ement to the DCF-derived field strength, which 
agrees with the results in the previous section. Combining with the 
result that the polarization selection effect does not play a huge role 
in determining the accuracy of the DCF analysis, we conclude that 

6 We note that it remains an open question that, with enough statistics via 
high-resolution maps, whether the DCF method works in dense, star-forming 
structures like cores and filaments, in addition to the relati vely dif fuse and 
turbulent cloud environment. We shall explore this topic in a following work 
(J. Park et al., in preparation). 

the DCF analysis relies more on the shape and the peak location 
of the probability distribution instead of the precise measurement at 
each location. Conceptually, this agrees with our argument based on 
our 3D analysis that it is not necessary to have the exact solution of 
ˆ B 0 everywhere as long as the distribution of δE K / δE B peaks around 

1 (see Section 2.3 ). 

5  C A N C E L L AT I O N  EFFECT  F RO M  

I N T E G R AT I O N  

By applying the DCF analysis to their numerical simulations and 
synthetic polarization measurements, Ostriker et al. ( 2001 ) suggested 
that a factor of ξ ≈ 0.5 should be included in the DCF method as a 
calibration factor: 

〈 B 〉 DCF , corr = ξ〈 B 〉 DCF = ξ
√ 

4 π〈 ρ〉 
〈 σv 〉 
〈 δψ〉 

. (41) 

Note that the abo v e DCF equation used in Ostriker et al. ( 2001 ) differs 
from the commonly adopted equation ( 24 ), because Ostriker et al. 
( 2001 ) considered 〈 B ⊥ / B 〉 ∼ 〈 δψ〉 instead of tan 〈 δψ〉 (see Li et al. 
2022 for deri v ation and justification). This means that the so-called 
DCF coefficient of ξ = 0.5, based on the results of Ostriker et al. 
( 2001 ), was derived from assuming B ⊥ / B ∼ 〈 δψ〉 , and therefore may 
not be appropriate when B ⊥ / B ∼ tan 〈 δψ〉 is used. Nevertheless, this 
so-called DCF coefficient ξ has been considered to be a necessary 
correction factor to acount for the projection/integration effects from 

inhomogeneities, anisotropies, resolution, and/or variation along the 
line of sight (see e.g. Zweibel 1990 ; Myers & Goodman 1991 ; 
Heitsch et al. 2001 ). 

Ho we v er, the sin δψ v ersus δB POS / B POS plot in Fig. 7 shows that 
the polarization orientation in our synthetic observations generally 
follow the projected magnetic field direction pretty well. This 
suggests that the cancellation effect along the line of sight is not 
significant in our models, and may explain why we did not need 
to include the so-called DCF coefficient ξ ≈ 0.5 as proposed in 
Ostriker et al. ( 2001 ). More importantly, our results indicate that the 
DCF coefficient is likely not a constant globally applicable in all 
environments, and proper calibration is critical in order to increase 
the accuracy of the DCF method (see recent works e.g. Li et al. 
2022 ; Liu et al. 2021 ). In this section, we examine how cancellation 
along the line of sight could affect the measured polarization angle 
dispersion, and provide a way to correct for such effect numerically 
as an extension to the DCF coefficient. 

Because of the integration along the line of sight, the observed 
angle dispersion of the projected 2D map could differ from the 
actual angle dispersion in the 3D space. To quantitatively investigate 
the difference between these two measurements, we designed a 
numerical test, illustrated in Fig. 14 . We first generate a set of 2D 

angles θ to fill in a 3D cube with size N map × N map × N los . These 
angles represent the direction of unit vectors on the x –y plane (plane 
of sky) in each cell. Note that we ignored the density-dependent 
weighting (thus unit vectors) to focus on the geometric effect during 
the integration. We also neglected the line-of-sight ( z-) component 
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Figure 13. The results from the synthetic line observation tests discussed in Sections 3.4 and 4.2 . Similar to Fig. 12 , we consider the ratio B DCF / B (or 
B DCF , POS / B POS ) and compare the results from three different density derivations (see Section 3.3 ) in three different viewing angles of model L10 (see Table 3 ). 
Also included are the projection-corrected DCF analysis (open symbols), as well as the polarization selection criterion p / p max > 0.2 ( stars ) which neglects 
polarization segments smaller than 20 per cent of the maximum polarization fraction. The proposed modification to the DCF method using sin 〈 δψ〉 , sin δψ is 
also shown as single-sided errorbar. Gray horizontal lines mark ±

√ 
2 , the boundaries of the factor of 2 accuracy. 

Figure 14. A sketch illustrating the design of the test discussed in Section 5 . 
We generate a set of ( N map × N map × N los ) values of θ , and arrange them into 
a 3D cube with dimensions N map × N map × N los following three different 
assumptions: smooth, random, and half smooth, half random. The synthetic 
observed angle ψ can therefore be derived from the projection of θ along 
each line of sight (a total of N map × N map values). Comparing the distribution 
of θ with that of ψ among different arrangement of θ can provide insight on 
how the projection effect could affect the DCF analysis. 

of the vector for simplicity (i.e. θ is the 2D projection of the actual 
3D vector in each cell); the projection effect for angles from 3D to 
2D was discussed in Section 3.2 . 

The distribution of the generated angle θ follows a normal 
distribution centred at 0 ◦ and with FWHM equal to two times of the 
chosen dispersion of θ in the cube, 〈 δθ〉 . After assigning θ to each cell 
to have a 3D array θ i , j , k , we can now calculate the polarization angle 
ψ i , j for each column (line of sight) following the general equations of 
synthetic polarization: 

u i,j = 

∑ 

k 

sin (2 θi,j ,k ) , q i,j = 

∑ 

k 

cos (2 θi,j ,k ) , 

ψ i,j = 
1 

2 
arctan 2( u i,j , q i,j ) . (42) 

The dispersion of polarization angle 〈 δψ〉 can then be derived from 

the distribution of ψ i , j . The relation between ψ i , j and θ i , j , k is 
illustrated in Fig. 15 , which plots the distributions of ψ o v er the 
N map × N map plane under three different cases of θ assignment. 
For the case ‘random’, θ i , j , k is randomly assigned in the box, and 
thus has the most significant cancellation when integrated along 
the line of sight. The case ‘smooth’ represent the case when the 
θ data set is sorted before assigning to cells; i.e. the difference in 
θ i , j , k along each sightline is minimum. For the ‘1/2 smooth’ case, we 
randomly assigned half of the data set but sorted the other half before 
assigning them to individual cells (also see Fig. 14 for illustration). 
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Figure 15. Comparing different arrangement methods of θ (random, half random, and smooth), using N los / N map = 0.5 as an example. Plotted are the normalized 
distributions of projected polarization angles ψ from the same set of random vectors θ generated with the corresponding angle dispersion 〈 δθ〉 , from the 
numerical test illustrated in Fig. 14 . This shows that the random arrangement of vectors is the least consistent to the actual distribution of angles, and the smooth 
arrangement and the half-random, half-smooth case could provide better approximations of the angle dispersion unless the dispersion is very large. 

Not surprisingly, Fig. 15 suggests that the ‘smooth’ case best reco v ers 
the actual dispersion values unless the real field is really disturbed 
(large 〈 δθ〉 ), while the case of ‘random’ does not seem to be a good 
approximation even when the angle dispersion is really small. 

The correlation between the projected dispersion, 〈 δψ〉 , and the 
dispersion of the whole cube, 〈 δθ〉 , is plotted in the left-hand panel 
of Fig. 16 , again for the three cases of θ assignment. In addition, we 
tested different numbers of pixels along the line of sight as fractions of 
the size of the 2D map, and as illustrated in Fig. 16 , the ratio N los / N map 

does not have huge impact except for the case where the angles are 
completely random, which rarely happens in the real world. Also 
note that Fig. 16 confirms numerically that the maximum possible 
value of the measured angle dispersion is ≈52 ◦, as pointed out in 
Planck Collaboration XIX ( 2015 ). 

Our results demonstrate that the projected dispersion is al w ays 
smaller than the actual dispersion in the cube, which is consistent 
with what has been suggested due to the cancellation effect along 
the line of sight (see e.g. Ostriker 2003 ). Moreo v er, we can use 
this numerical test to estimate the corresponding DCF coefficient ξ . 
Assuming 〈 B〉 POS = 

√ 
4 π〈 ρ〉 〈 σv 〉 / tan 〈 δθ〉 holds, 7 we have 

〈 B 〉 POS = ξ〈 B 〉 DCF = 

√ 

4 π〈 ρ〉 
〈 σv 〉 

tan 〈 δψ〉 
, ξ = 

tan 〈 δψ〉 
tan 〈 δθ〉 

. (43) 

This ratio is plotted in Fig. 16 (right-hand panel) as a function of 
the observed angle dispersion on the plane of sky 〈 δψ〉 . Considering 
the case of ‘1/2 smooth’ (the most realistic assumption among the 
three considered here), this shows that if tan 〈 δψ〉 is used in the DCF 

method instead of tan 〈 δθ〉 , the correction factor is tan 〈 δψ〉 /tan 〈 δθ〉 
≈ 0.5–0.6 for small angles. This is indeed in good agreement with 
Ostriker et al. ( 2001 ), who suggested that ξ ≈ 0.5 for polarization 
dispersion � 25 ◦. 

We note that our numerical test discussed here is similar to the 
analytical models examined by Myers & Goodman ( 1991 ), who 
also investigated the distribution of angles after integration along the 
line of sight. Also, the modified DCF method using the structure 
functions of the polarization angles (Hildebrand et al. 2009 ; Houde 

7 We note that though we propose to replace tan 〈 δψ〉 (or tan δψ) with sin 〈 δψ〉 
(or sin δψ) to increase the accuracy of the DCF method, as we discussed in 
Section 2.4 , our results in Sections 4.1 and 4.2 show that this modification is 
not critical. We therefore still use the tangent ratio of the polarization angle 
dispersion for the DCF coefficient. 

et al. 2009 ) also aims at resolving the cancellation effect along the 
line of sight due to integration. Hildebrand et al. ( 2009 ) and Houde 
et al. ( 2009 ) attribute the dispersion of polarization angles to the 
existence of multiple turbulent cells along the line of sight, which 
is conceptually similar to our numerical tests: sightlines with more 
turbulent cells are more similar to the ‘random’ assignment case (see 
Fig. 14 ) and would have more severe cancellation effect, thus require 
a correction coefficient further away from 1 (see Fig. 16 ), consistent 
with the method proposed in Hildebrand et al. ( 2009 ) and Houde 
et al. ( 2009 ) on estimating the ratio between the turbulent component 
of the magnetic field to the ordered field. Further discussion on 
comparisons between the various modifications of the DCF method 
will be presented in a separate publication (Park et al., in preparation). 

For completeness, we combine the cancellation effect from inte- 
gration discussed in this section with the projection effect discussed 
in Section 3.2 to provide the total geometrical correction for the 
DCF method, summarized in Fig. 17 . The plot shows the correlation 
between the measured dispersion 〈 δψ〉 on the plane-of-sky and the 
actual angle dispersion of the 3D system 〈 δφ〉 (left-hand panel), and 
the corresponding DCF coefficient ξ 3D ≡ tan 〈 δψ〉 /tan 〈 δφ〉 (right- 
hand panel), for the three cases of angle arrangement (dotted, solid, 
and dashed lines represent the case of random, half-random, and 
smooth arrangement, respectively) and various inclination angles γ . 
Note that since the ratio N los / N map (i.e. the cloud depth relative to 
the cloud size) does not have a significant impact on the projection 
and integration effects (unless the angle arrangement is completely 
random in space), we only plotted the case N los / N map = 0.5 here. 

Fig. 17 thus provides a guideline for better estimates of magnetic 
field strengths using the DCF method with the mean dispersion of 
polarization angles 〈 δψ〉 . Note that, unlike the results in Fig. 16 
with plane-of-sky angles only, utilizing Fig. 17 requires knowing the 
inclination angle of the magnetic field with respect to the plane of 
sky, γ , which can be estimated from the probability distribution 
function of the observed polarization fraction over the targeted 
region, as proposed by Chen et al. ( 2019 ). Also, though we plotted 
the three cases of possible magnetic field morphology (different 
arrangements of θ i , j , k in our numerical test) along the line of 
sight, we note that the ‘smooth’ case (dashed lines) should only be 
considered when the measured 〈 δψ〉 is very small, presumably � 10 ◦. 
Similarly, the case of completely random arrangement of angles 
(dotted lines) is unlikely to happen in the real world, and should only 
be considered if 〈 δψ〉 is closer to the maximum value ≈53 ◦. The 
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Figure 16. Results from the numerical test illustrated in Fig. 14 , showing the correlation between the dispersion of the projected angle 〈 δψ〉 and the original 
angle dispersion in 3D 〈 δθ〉 , with various ratios between the physical scale on the plane of sky and along the line of sight ( N los / N map ; different line colours) as 
well as the three different arrangement methods of θ (different line styles; dashed, solid, and dotted lines represent ‘smooth’, ‘half-smooth, half-random’, and 
‘random’ cases, respectively). The correlation between 〈 δθ〉 and 〈 δψ〉 shown on the left panel can be used to derive the correction factor for the DCF analysis, 
tan 〈 δψ〉 /tan 〈 δθ〉 (right-hand panel). 

Figure 17. Similar to Fig. 16 , but now also includes the projection effect discussed in Section 3.2 (also see equation 39 ). The correlation between the mean 
angle dispersion measured in 3D, 〈 δφ〉 , and the mean dispersion of the synthetic polarization, 〈 δψ〉 , depends on both the inclination angle γ (different line 
colours) and the level of turbulence of the system, which is approximated by different angle assignment method in our numerical test: random (dotted lines), 
half random (solid lines), and smooth (dashed lines) as described in Section 5 and Fig. 14 . 

‘1/2 smooth’ case (solid lines) is the most appropriate assumption 
that one should consider adopting when estimating the 3D correction 
factor (tan 〈 δψ〉 /tan 〈 δφ〉 ; right-hand panel of Fig. 17 ) of the DCF 

analysis. 
Nevertheless, we note that the correction factor, or the DCF 

coefficient ξ , is only applicable when considering the dispersion of 

polarization angle 〈 δψ〉 in the DCF analysis. This is in fact opposite 
to what we proposed in Section 2.4 that one should consider tan δψ 

instead of tan 〈 δψ〉 , which we showed in Section 4.1 to be more 
accurate on estimating the field strength. We therefore conclude that 
one should al w ays consider using δψ in the DCF analysis, and only 
refer to the correction factor tan 〈 δψ〉 /tan 〈 δθ〉 or tan 〈 δψ〉 /tan 〈 δφ〉 
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when the statistics is not good enough to have a lognormal-shaped 
distribution of the DCF-derived field. 

6  SUMMARY  A N D  C O N C L U S I O N S  

We re-visited the well-known DCF method on deriving magnetic field 
strength using observed information. Using 3D MHD simulations of 
star-forming clouds, we tested the fundamental assumption of the 
DCF method, that the turbulent gas motion is solely responsible 
for the distortion of the magnetic field morphology, and thus any 
deviation of the magnetic field from the unperturbed state can be 
related to the gas velocity through the Alfv ́en wave equation, δE K = 

δE B . While we found that a uniform, unperturbed field did not exist 
in simulated clouds nor did the strict relation between gas velocity 
and magnetic field strength, we were able to find a good substitute of 
the unperturbed field direction: the vector -a veraged magnetic field. 
Using the vector -a veraged magnetic field as the reference direction, 
the ratio between the ‘perturbed’ components (i.e. perpendicular 
to the reference field) of gas kinetic energy and magnetic energy 
becomes a roughly normal distribution in the log space with the peak 
around unity. This statistical equipartition between δE K and δE B is 
the key for the DCF method to work with data in the real 3D space. 

To extend our analysis to observations, we examined the dis- 
crepancies between 3D and 2D systems, and proposed several 
modifications to the original DCF method. These modified DCF 

methods were then tested using synthetic observations generated 
from the aforementioned simulations. Based on our results, we 
conclude the best practice of the DCF analysis is the following: 

(i) Instead of calculating the DCF-derived field strength using 
the dispersion of polarization angle 〈 δψ〉 and the mean density and 
velocity dispersion as 〈 B〉 DCF = 〈 σv 〉 

√ 
4 π〈 ρ〉 / tan 〈 δψ〉 , we propose 

to calculate B DCF , local = σv 

√ 
4 πρ/ tan δψ everywhere on the plane of 

sky and use the distribution of B DCF, local in log space to find the field 
strength B DCF = 〈 B DCF, local 〉 log , which is the location of the peak, or 
the most probable value of B DCF, local (see Section 2.4 and Figs 3 −5 ). 

(ii) The measurement of gas velocity dispersion seems to be 
critical in the DCF analysis, especially since it can be used in deriving 
the depth of the cloud and hence the volume density, another essential 
source of uncertainty in the DCF analysis (see Section 4.1 ). Ho we ver, 
the velocity dispersion traced by different molecular tracers could 
be different (see Table 3 ), and our results suggest that the low- to 
intermediate-density ( ∼10 3 –10 4 cm 

−3 ) tracers are preferred here (see 
Fig. 10 ). We note that this is the density range that traces the cloud to 
core transition (see e.g. Chen & Ostriker 2015 ), hence could provide 
more accurate estimates on the turbulence level of the star-forming 
gas (see Section 4.2 ). 

(iii) When considering the gas volume density used in the DCF 

analysis, we recommend to use either the velocity fitting method 
(Section 3.3.1 ) or the equilibrium layer method (Section 3.3.2 ) to 
derive the characteristic depth of the cloud (see Fig. 12 and Table 2 ), 
assuming the region of interest can be considered to be locally 
flattened. For the DCF method to work, the gas volume density must 
be derived from a tracer that is corresponding to the gas traced by 
polarization measurement, and thus the low- to intermediate-density 
( ∼10 3 –10 4 cm 

−3 ) tracers are again the preferred choices (also see 
Section 3.4 ). 

(iv) If possible, we recommend using the method proposed in 
Chen et al. ( 2019 ) to estimate the mean inclination angle of the 
magnetic field with respect to the plane of sky, γ . If (and only if) γ is 
large ( � 60 ◦), one should consider including the projection correction 
described in Section 3.2 in the DCF analysis by replacing δψ i , j with 

δψ 3D i,j using equation ( 39 ), and switching σv i,j to σv i,j cos γ to only 
include the component perpendicular to the inclined magnetic field. 
The projection effect is minor in most of the cases, but could become 
critical when the magnetic field is f ar aw ay from the plane of sky 
(see Section 4.1 ). 

(v) The ‘traditional’ DCF method, 〈 B〉 DCF = 

〈 σv 〉 
√ 

4 π〈 ρ〉 / tan 〈 δψ〉 , is only recommended when good 
statistics on δψ is not a vailable, i.e. when the distrib ution of 
B DCF , local = σv 

√ 
4 πρ/ tan δψ is far off from a lognormal shape. In 

this case, one should estimate the correction factor ξ using Fig. 16 
to get a better approximation of the field strength as 〈 B 〉 DCF, corr = 

ξ〈 B 〉 DCF . The projection effect should be considered (Fig. 17 ) only 
when the mean inclination angle of the magnetic field γ is large. 

To conclude, good statistics is critical to the DCF analysis, and 
the biggest uncertainty of the DCF-derived magnetic field strength is 
actually from the velocity dispersion measurement (especially if the 
gas volume density is determined using the velocity information), not 
polarization observation. This explains why neither of our proposed 
modifications, tan δψ → sin δψ and adopting a polarization fraction 
mask p > 0.2 p max , has significant impact on the accuracy of the 
derived magnetic field strength. Nevertheless, our modified DCF 

analysis should be able to provide estimates of the magnetic field 
strength within roughly a factor of 2 in typical star-forming clouds 
e xcept the e xtreme cases (highly turbulent, large inclination angle, 
etc.). 
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