
PointTree: Transformation-Robust Point Cloud

Encoder with Relaxed K-D Trees

Jun-Kun Chen and Yu-Xiong Wang

University of Illinois at Urbana-Champaign
{junkun3, yxw}@illinois.edu

Abstract. Being able to learn an effective semantic representation di-
rectly on raw point clouds has become a central topic in 3D under-
standing. Despite rapid progress, state-of-the-art encoders are restric-
tive to canonicalized point clouds, and have weaker than necessary per-
formance when encountering geometric transformation distortions. To
overcome this challenge, we propose PointTree, a general-purpose point
cloud encoder that is robust to transformations based on relaxed K-D
trees. Key to our approach is the design of the division rule in K-D
trees by using principal component analysis (PCA). We use the struc-
ture of the relaxed K-D tree as our computational graph, and model
the features as border descriptors which are merged with pointwise-
maximum operation. In addition to this novel architecture design, we
further improve the robustness by introducing pre-alignment – a simple
yet effective PCA-based normalization scheme. Our PointTree encoder
combined with pre-alignment consistently outperforms state-of-the-art
methods by large margins, for applications from object classification to
semantic segmentation on various transformed versions of the widely-
benchmarked datasets. Code and pre-trained models are available at
https://github.com/immortalCO/PointTree.

1 Introduction

3D sensing technology has advanced rapidly over the past few years, playing a
significant role in many applications such as augmented reality, autonomous driv-
ing, and geographic information systems [1,6,9]. As one of the most commonly-
used output formats of 3D sensors, 3D point clouds flexibly describe the surface
information of the sensed objects or scenes with collection of points. Therefore,
being able to learn an effective semantic representation directly on raw point
clouds, which is useful for high-level tasks such as object recognition, has be-
come a central topic in 3D understanding, with various powerful deep learning
architecture based encoders emerging like PointNet [18] and PointMLP [17].
In real-world applications, a desired encoder is supposed to cope with a wide
range of geometric transformations – point clouds of the same object category
may undergo different similarity/affine/projective transformations, leading to

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 3

to dramatically degenerated recognition performance as shown in Figure 1-b.
Notably, while effective for simple input corruptions, the common strategy (e.g.,
the T-Net [18] used in PointNet) that adopts a transformer network to explicitly
predict a transformation for canonicalization of input data cannot deal with
more general deformations here.

To overcome this challenge, we propose PointTree, a transformation-robust,
general-purpose point cloud encoder architecture. Key to our approach is the use
of relaxed K-D trees [4]. While there have been some existing approaches [10,33]
that utilize K-D trees, they are based on the conventional K-D tree that only
divides the point set along an axis at each node, which implicitly uses the aligned
assumption and thus still performs poorly on transformed point clouds. By con-
trast, our use of the relaxed K-D tree removes the restriction of division rules,
allowing more flexible designs. Particularly, in PointTree, we design the division
rule by using principal component analysis (PCA) as illustrated in Figure 1-a.
By doing so, theoretically, we show that our division of the point set and con-
struction of the whole K-D tree are invariant to similarity transformations; and
empirically, we observe that our PointTree exhibits strong robustness against

more complicated affine and projective transformations (Figure 1-b).

In addition to the proposed division rule, the robustness of our approach
further stems from other properties of K-D trees and additional design strate-
gies. As a tree structure containing multiple layers, PointTree natively divides a
point cloud into components at bottom layers. This facilitates the recognition of
multi-component objects (e.g., an airplane), as PointTree may still capture useful
local features from lower layers even if the whole point cloud undergoes severe
deformation. Also, the similarity transformation-invariant division induced by
relaxed K-D trees prevents cutting two components with the same shape (e.g.,
two engines of the airplane) in different directions, so that the symmetricity
can still be leveraged. Moreover, following PointNet [18] and PointNet++ [19],
we model the features in PointTree as border descriptors which can be merged
with pointwise-maximum operation. We use the structure of the relaxed K-D
tree as our computational graph, which contains a native locality clustering and
down-sampling scheme. Finally, not only from this novel architecture design,
but we also improve the robustness by introducing a simple PCA-based nor-
malization scheme (called “pre-alignment”) on input point clouds to PointTree.
This is shown as a general normalization scheme that consistently and effectively
improves the performance of other encoders under transformations as well.

Our contributions are three-folds. (1) We propose PointTree, a general-
purpose point cloud encoder architecture based on relaxed K-D trees, which
is robust against geometric (affine and projective) transformations. (2) We in-
troduce pre-alignment, a simple yet general PCA-based normalization scheme,
which can consistently improve the performance of a variety of point cloud en-
coders under geometric transformations. (3) We show that our PointTree encoder
combined with pre-alignment consistently outperforms state-of-the-art methods
by large margins, on various transformed versions of ModelNet40 [27], ShapeNet-
Part [3], and S3DIS [2] benchmarks.

4 J.-K. Chen, Y.-X. Wang

2 Related Work

Deep Learning on Point Clouds. There are mainly four directions to build a
deep learning model to process and analyze point clouds [7]: (i) multi-layer per-
ceptron (MLP) methods [17–19] that use pointwise MLPs along with some multi-
stage locality clustering and down-sampling; (ii) convolution methods [14, 15]
that perform convolutions on voxels, grids, or directly in continuous 3D space;
(iii) graph methods [26,35] that construct graphs with points as vertices and with
neighborhood relations as edges, and apply graph models; and (iv) data structure
methods [10,21,22,33] that use a hierarchical data structure like an OCTree or a
K-D tree as the computational graph. Our PointTree belongs to a data structure
method, since it uses a relaxed K-D tree as the computational graph. Intuitively,
pure MLP methods (without locality clustering) are not robust against transfor-
mations, since they only rely on coordinate values; by exploiting locality, locality
clustering and neighborhood graph may improve the robustness.
Point Cloud Encoders Based on K-D Trees. To the best of our knowledge,
mainly four methods in the literature use K-D trees to build point cloud encoders:
KD-Net [10], 3DContextNet [33], PD-Net [31], and MRT-Net [5], while more
approaches exist based on OCTrees [11,21,22,28]. KD-Net is a simple version of
the K-D tree-based point cloud encoder – it uses MLP to merge the information
of two children nodes for each node. As an advanced version, 3DContextNet
uses the border descriptor features from PointNet [18] which can be merged by
pointwise-maximum; it further proposes multi-stage training to exploit local and
global context. PD-Net [31] is a variant of KD-Net that replaces the vanilla K-D
tree with a PCA-based K-D tree, but its feature aggregation still highly relies
on coordinates. MRT-Net [5] uses the K-D tree only for preprocessing and uses
convolutional layers for further modeling.
Relation Between Our PointTree and Previous Models. Instead of using
conventional K-D trees, PointTree leverages relaxed K-D trees with a proposed
division plane selection method, making it different from all existing K-D tree-
based models. Similar to PointNet [18] and 3DContextNet [33], PointTree models
the features as border descriptors. While the model design of PointTree is in-
spired by and similar to that of 3DContextNet in the “feature learning stage,”
PointTree is simpler without relying on multi-stage training and local and global
cues. Furthermore, PointTree has an extra alignment network as in PointNet.
Investigation on Transformation Robustness. While there has been inter-
est in addressing robustness against geometric transformations of input point
clouds, existing work mainly focuses on specific transformations like rotation
and similarity. IT-Net [32] proposes a learnable normalization component (or
“alignment network”) which learns to recover the original point cloud. Other
work [12, 13, 23, 36] proposes SO(3) (similarity transformation) robust, invari-
ant, or equivariant architectures that maintain stable results when training on
rotated point clouds. Shear transformation is also studied [25], which is a spe-
cial type of affine transformation with deformation only performed on two of
the three axes. None of the existing methods are able to cope with robustness
against general affine or projective transformations as our work.

8 J.-K. Chen, Y.-X. Wang

The encoder of PointTree can be regarded as a K-D tree-guided version of
PointNet++, where at each stage of down-sampling, the points are clustered
under some rule, and each cluster is down-sampled to one point with higher
dimension. In PointTree, instead of some ad hoc clustering strategies used by
PointNet++, K-D trees provide a native and principled way to cluster according
to the spatial and neighborhood information, making it more powerful, general,
and reliable. The output of the PointTree encoder is defined as O = {info(o) | o}.

3.2 Robustness Against Transformations

The robustness of PointTree against transformations mainly stems from our de-
sign of the division rule. Here, we discuss the robustness in more detail, introduce
additional strategies that further improve the robustness, and propose a metric
that quantifies the transformation intensity.
Similarity Transformation. PointTree uses relaxed K-D trees as its base tree,
which holds the following lemma (the proof is in the supplementary material):
Lemma. If the rule to choose the division plane at each node is equivariant to
similarity transformation σ, or more formally,

choose-division-plane(σ(P)) = σ(choose-division-plane(P)), (3)

where choose-division-plane(P) is the procedure to choose the division plane
on point set P , then the construction of the relaxed K-D tree is invariant to such
a similarity transformation.

PointTree uses PCA to implement choose-division-plane(P), which is equiv-
ariant under any similarity transformation. As a result, our model is natively
invariant to similarity transformations.
Affine (and Projective) Transformations. Interestingly, as empirically val-
idated in Section 4, this invariance against similarity transformations enables
PointTree also highly robust against affine and even more complicated projective
transformations. To further improve the robustness to affine transformations, we
introduce two additional strategies: pre-alignment and alignment network. Cor-
respondingly, an input point cloud is fed forward the pre-alignment process and
then the alignment network, before passing to our PointTree encoder (Figure 2).
Pre-alignment: A Normalization for Affine Transformations. We design
a PCA-based pre-alignment scheme as “normalization” of affine transformed
point clouds. For a centered point cloud P ∈ R

n×3, applying PCA obtains
P = Udiag(Σ)V T , where U is a 3 × 3 matrix, Σ is a length-3 vector which
can be regarded as scalings of each axis, and V is an orthorgonal 3 × 3 matrix
which can be regarded as a rotation. When we apply an affine transformation to
a point cloud, the scaling and rotation can be arbitrary, and thus the normal-
ization should not take these two pieces of information. So we disregard them
in Σ and V , and take U as the normalized or pre-aligned point cloud (equiva-
lent to normalizing P by applying another affine transformation V diag(Σ−1)).
Notably, this pre-alignment scheme does not rely on the properties of K-D trees.
As shown in Section 4, it is a general approach and can be used for a variety

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 9

of existing point cloud encoders to improve their robustness. In our implemen-
tation, we found that applying pre-alignment iteratively further improves the
performance, especially for part segmentation. Also, we have proven empirically
that such a pre-alignment method is invariant to affine transformations. See the
supplementary material for more details.
Alignment Network: A Learnable Component for Alignment. The pre-
alignment is simply unlearnable. We also propose a learnable alignment network,
inspired by PointNet [18]. This network takes a feature vector of a point cloud
as input, feeds it into an MLP, and outputs a length-9 vector, which is reshaped
to a 3× 3 affine matrix to align the points. The encoder to generate the feature
vector and the MLP are the learnable components of the alignment network.

The alignment network supports any encoder that outputs a feature vector,
like a PointNet, another PointTree encoder, etc. Our default model uses the same
architecture as “T-Net” in PointNet [18]. Note that such an alignment network
is not designed for restoring the original point cloud (as a registration task).
Instead, we only expect that it can learn to convert the input point cloud into an
easier form for the following PointTree encoder. In Section 3.4, we also consider
other variants of the alignment network that adopt different architectures.
Transformation Intensity Metric: Expected Angle Difference (EAD).
To evaluate the intensity of a transformation, we propose a metric called ex-
pected angle difference (EAD). It is defined on two point clouds P and P ′ as
follows: if we uniformly sample three different point indices a, b, c ∈ [|P |], then
the EAD is defined as the expected difference of ∠PbPaPc and ∠P ′

bP
′
aP

′
c. Or,

EAD(P, P ′) = Ea,b,c∈[|P |] [angle-diff(∠PbPaPc,∠P
′
bP

′
aP

′
c)] . (4)

EAD is a metric for measuring the deformation of the transformed point cloud.
By definition, similarity transformations hold EAD(P, P ′) = 0, representing
the minimum deformation – no deformation. Also, for the affine transformation
which we randomly generated, the EAD is approximately π

8 (supplementary ma-
terial). Meanwhile, the experiment shows that our pre-alignment scheme yields

EAD(pre-align(affine1(P)),pre-align(affine2(P))) < 10−4, (5)

for any two affine transformations affine1 and affine2. This indicates that our
pre-alignment is effective, which can normalize different affine transformations
on a same point cloud to similar point clouds. More analysis about the EAD of
transformations and pre-alignment methods are in the supplementary material.

3.3 Downstream Components

Classification: Point Cloud Features. In a classification task, each point
cloud belongs to one class. Given a point cloud, the model should predict its
class within all class candidates. For PointTree, the root node’s information
accounts for the whole point cloud, and we treat it as a global feature. We then
build an MLP classifier that takes the root information info(R) as input. The
output will be the log-likelihood scores for C candidate classes (Figure 2).

10 J.-K. Chen, Y.-X. Wang

General Segmentation: Point Features with Top-Down Information
Flow. In a general segmentation (e.g., part or semantic segmentation) task, for a
given point cloud, each point belongs to one of CS candidate classes. The model
should classify all points in the given point cloud. We design a segmentation
decoder following KD-Net [10], as shown in Figure 4-b. The decoder is a K-D
tree symmetric to the encoder. It follows a top-down flow, as opposite to the
bottom-up flow in the encoder. Every node in the decoder has a feature called
“carried information,” representing the global-local relationship between inside
and outside its subtree. Therefore, we can model the “role” of the subtree in
the global shape. And when the node is leaf, it is exactly the “role” of the
corresponding point in the global shape, which can be viewed as point feature.

Each node takes two inputs: the carried information from its ancestor, and
the skip connection from the symmetric node in the encoder. The node merges
these two inputs with one MLP, obtaining the carried information of itself. The
top-down flow ends at leaf nodes and outputs the carried information of leaves.
Such information is the feature of each point and is used for segmentation.

3.4 PointTree Variants

We introduce three variants of PointTree with different design of alignment net-
works and encoders. Note that, as mentioned in Section 3.2, the alignment net-
work supports any encoder that outputs a point cloud feature. (1) Default
encoder (‘Def’) uses T-Net in PointNet [18] as the alignment network. (2)
Encoder with K-D tree alignment (‘KA’) introduces the default encoder
as a stronger alignment network. (3) ResNet-style encoder (‘RNS’) is a
ResNet-Style variant of PointTree with increased model capacity, by stacking
more layers in a ResNet’s style [8]. By connecting a default encoder and a gen-
eral segmentation component, we can convert the N × 3 input features to N × d

intermediate features. We define such a connected structure as a “ResNet block,”
and stack a block followed by a default encoder to build a ResNet-style encoder.
The output of each block is linked with the output of the previous block through
a skip connection as in ResNet. For this variant, we can also treat the last encoder
as the main encoder, and all previous encoders as part of the alignment network
(since they mostly affect the input at the last layer of the last encoder). The
detailed architectures are shown and explained in the supplementary material.

4 Experiments

Transformations. We evaluate our model on affine and projective transformed
versions of existing datasets, including ModelNet40 [27], ShapeNetPart [3], and
S3DIS [2]. For a dataset D = {P} and a random distribution T of transforma-
tions, we construct the T -transformed dataset as follows: for each P ∈ D, we
sample a fixed number (“augment time”) of transformations {t}, and add all
t(P) in the dataset. Different point clouds will be applied to different transfor-
mations. We perform such process for Dtrain, Dval, and Dtest separately with
some specific “augment time,” obtaining a full transformed dataset.

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 11

Table 1: PointTree significantly outperforms state-of-the-art point cloud encoders
under affine transformations for object classification (instance-level overall accuracy
(%)) on the affine transformed ModelNet40 dataset. With the proposed pre-alignment
(‘PA’), the performance of all methods consistently improves, and PointTree still
achieves the best result. The results of baselines are obtained by running publicly re-
leased code on the transformed dataset. In addition, PointTree’s accuracy has a lower
standard deviation on different affine transformed datasets (supplementary material)

Type Method Affine w/ PA Affine w/o PA

PointNet related
PointNet [18] 51.1 32.6
PointNet++ [19] 72.7 47.8

K-D Tree-based
KD-Net [10] 65.3 23.1
3DContextNet [33] 76.7 37.1
PD-Net [31] 62.0 25.7

State-of-the-art

DGCNN [26] 79.4 57.4
GBNet [20] 69.4 18.7
GDANet [30] 72.8 15.6
CurveNet [29] 82.1 59.3
PointMLP [17] 82.3 63.1
IT-Net [32] + DGCNN [26] 80.6 64.2

SO(3) Invariant/Equivariant
CloserLook [12] 82.4 64.9
LGR-Net [36] 80.1 62.7

Ours PointTree RNS 84.1 73.1

Baselines and PointTree Variants. For baseline models, we run the exper-
iments with their official code by injecting the transformations into their data
loaders. We keep their original optimal hyper-parameters, and train the mod-
els until convergence. We focus on four types of baselines: (i) PointNet related
models (PointNet [18] and PointNet++ [19]), (ii) K-D tree-based models (KD-
Net [10], 3DContextNet [33], and PD-Net [31]), (iii) recent state-of-the-art mod-
els (DGCNN [26], GBNet [20], GDANet [30], CurveNet [29], and PointMLP [17]),
and (iv) SO(3) robust models (CloserLook [12] and LGR-Net [36]). As some base-
lines do not release their code on segmentation tasks, we only evaluate them on
the classification task. We evaluate all three PointTree variants (Section 3.4).

Classification on ModelNet40. For the classification task, we evaluate our
model on ModelNet40 [27]. ModelNet40 contains 9,843 point clouds for train-
ing and 2,468 point clouds for testing, and each of them belongs to one of 40
categories. We run the experiment on affine and projective transformations, and
report the overall accuracy as our metric.

Affine Transformations. As shown in Table 1, our robust PointTree consis-
tently outperforms all other point cloud models. Notably, PointTree significantly
outperforms other models in the setting of affine without pre-alignment by more
than 7%∼10%. This clearly shows that PointTree has much higher robustness
against affine transformations. Our accuracy is also 8% and 36% higher than
3DContextNet [33], the previous best K-D tree-based model, in settings of affine
with and without pre-alignment, respectively. This validates that the relaxed K-
D tree is crucial to achieving the robustness that the original K-D tree is unable
to. In addition, PD-Net [31] uses a similar PCA-based relaxed K-D tree as ours,
but its design of feature aggregation highly relies on coordinates (by using the

12 J.-K. Chen, Y.-X. Wang

Table 2: PointTree is robust even on the highly-challenging projective transformed
ModelNet40 dataset, with and without pre-alignment (‘PA’). It significantly outper-
forms all other models with a huge gap of 25% at instance-level accuracy (%)

Method Projective w/ PA Projective w/o PA

PointNet 15.4 4.3

DGCNN 47.3 6.2
PointMLP 49.9 4.1
CurveNet 37.6 5.6

PointTree RNS 62.1 31.8

Table 3: Ablation study results show that both pre-alignment (‘PA’) and alignment
network improve our accuracy on ModelNet. Among the three variants, RNS achieves
the best performance, but all of them outperform baselines in Table 1. Also, relaxed
K-D tree is crucial for the transformation robustness in PointTree

Method ModelNet40 Affine

PointTree RNS w/ PA 84.1
PointTree KA w/ PA 83.4
PointTree Def w/ PA 82.7

PointTree RNS w/o PA 73.1
PointTree KA w/o PA 71.7
PointTree Def w/o PA 70.2

PointTree Def w/ PA w/o Alignment Network 82.4
PointTree Def w/ PA w/ Original K-D Tree 68.8

PointTree RNS w/ PA w/ Concatenate-MLP 79.3

normal vector of children nodes’ division plane), which wastes and nullifies the
affine robustness of the tree structure, yielding a 13.6% worse accuracy than ours.
Our method also consistently outperforms the SO(3) robust baselines, showing
that the SO(3) robustness is not sufficient for coping with affine transformations.

Finally, by comparing the settings of affine with and without pre-alignment,
we observe an at least 10% improvement in accuracy when applying pre-alignment
in each baseline. This shows that pre-alignment is a general and effective ap-
proach to normalizing affine transformed point clouds.

Projective Transformations. Table 2 shows the accuracy of our model and
top baselines on the projective transformed ModelNet40 dataset. In this ex-
periment, PointTree significantly outperforms all baselines by more than 25%.
For the most challenging setting, projective ModelNet40 without pre-alignment,
PointTree still achieves a reasonable accuracy, while all other baselines can only
obtain an accuracy that is a little higher than random guess.

Ablation Study. From the ablation study results in Table 3, we have the fol-
lowing observations. (1) By comparing the accuracy of the three PointTree vari-
ants in settings with and without pre-alignment, we observe that pre-alignment
is helpful for our already-robust PointTree. (2) The three variants – Def, KA,
and RNS – can be also interpreted as different types of the “alignment network”
component in PointTree, from simplest to the most sophisticated. By comparing
their accuracy, along with the variant “PointTree Def w/o Alignment Network,”
we can find that the improvement in alignment networks leads to higher ac-

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 13

Table 4: PointTree significantly outperforms baselines for part segmentation on affine
transformed ShapeNetPart with pre-alignment, increasing class-level mIoU (%) by 7%
Method airplane bag cap car chair earphone guitar knife lamp laptop motorbike mug pistol rocket skateboard table mIoU

PointNet [18] 69.7 53.5 57.8 59.2 84.1 44.9 62.9 41.7 61.9 64.5 31.8 71.0 50.3 35.4 46.1 76.6 56.9
PointNet++ [19] 66.5 73.7 58.6 37.6 72.0 71.5 85.9 74.4 72.5 51.0 29.1 74.9 54.1 41.6 57.1 71.9 62.1

DGCNN [26] 89.0 71.3 91.2 33.7 11.7 94.3 84.6 67.5 72.6 92.9 10.3 84.1 83.7 35.1 62.9 97.3 67.6
GDANet [30] 76.4 74.3 78.3 59.1 84.4 72.7 86.7 75.9 74.0 70.0 31.1 89.5 65.7 53.8 75.6 79.5 71.7
CurveNet [29] 75.8 64.7 79.3 60.7 86.9 59.5 86.2 72.4 74.8 69.3 24.6 89.5 63.5 39.2 60.1 78.4 67.8

PointTree RNS 83.6 74.7 82.5 80.4 90.6 66.5 92.1 84.0 82.0 88.3 56.0 95.4 78.0 55.4 68.9 81.2 78.7

Table 5: PointTree consistently outperforms state of the art for large-scale semantic
segmentation on S3DIS, with notable margins of 2.2% and 6.7% on affine and projective
transformed datasets, respectively, in overall accuracy (%) of Area5

Method Affine w/ PA Affine w/o PA Projective w/ PA Projective w/o PA

PointNet [18] 64.9 69.1 49.3 31.1
DGCNN [26] 80.0 70.8 67.1 57.8

PointTree Def 82.2 74.9 73.8 61.2

curacy. (3) RNS is the most powerful variant, due to its multiple layers and
intermediate features. Notably, even the other variants have lower accuracy than
RNS, they still outperform all the baselines in Table 1. (4) When we replace
the relaxed K-D tree with the original K-D tree in PointTree, the performance
experiences a dramatical drop by more than 10%. This indicates that the relaxed
K-D tree is crucial for the robustness against transformations. (5) When we re-
place the implementation of merge-info from pointwise-maximum in Formula
(2) to concatenate-MLP (concatenate ol and or and apply an MLP), the accu-
racy clearly drops, showing that pointwise-maximum is a critical design choice.

Part Segmentation on ShapeNetPart.We test PointTree for the point cloud
part segmentation task on ShapeNetPart [3]. It contains 16,881 point clouds in
16 classes. Each point belongs to one of 50 parts, where different classes have
different sets of parts. We report the class-level mean intersection over union
(mIoU) as the accuracy. Figure 5 visualizes two point clouds with PointTree and
PointNet [18] as baseline. In both cases, the pre-alignment successfully normal-
izes the very flat affine transformed point cloud into a reasonable shape. For the
lamp case, both PointNet and PointTree make a small mistake at the center of
the lamp top (which is marked blue but should be green), while PointTree is
more accurate at the bottom of the light pole. For the chair case, PointNet is
performing badly, while our PointTree’s accuracy is almost perfect.

Table 4 shows the segmentation results on affine transformed ShapeNetPart
with pre-alignment. Our PointTree achieves a top mIoU over all baselines with
an increase of more than 7%, and achieves best IoUs for more than half of the
classes. This shows that PointTree is a general-purpose encoder that can work
in both classification and segmentation tasks, being significantly more robust
than other models. The results on projective transformed ShapeNetPart in the
supplementary material demonstrate similar observations.

Transformation-Robust Point Cloud Encoder with Relaxed K-D Trees 15

References

1. Agarwal, P.K., Arge, L., Danner, A.: From point cloud to grid DEM: A scalable
approach. In: International Symposium on Spatial Data Handling (2006) 1

2. Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D-3D-semantic data for
indoor scene understanding. arXiv abs/1702.01105 (2017) 3, 10, 14

3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An
information-rich 3D model repository. arXiv abs/1512.03012 (2015) 2, 3, 10, 13

4. Duch, A., Estivill-Castro, V., Martinez, C.: Randomized K-dimensional binary
search trees. In: International Symposium on Algorithms and Computation (1998)
3, 6

5. Gadelha, M., Wang, R., Maji, S.: Multiresolution tree networks for 3D point cloud
processing. arXiv abs/1807.03520 (2018) 4

6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI
vision benchmark suite. In: CVPR (2012) 1

7. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun: Deep learning for 3D point
clouds: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
43, 4338–4364 (2021) 4

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 10

9. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces.
In: IEEE and ACM International Symposium on Mixed and Augmented Reality
(2007) 1

10. Klokov, R., Lempitsky, V.: Escape from cells: Deep Kd-Networks for the recognition
of 3D point cloud models. In: ICCV (2017) 3, 4, 5, 10, 11

11. Lei, H., Akhtar, N., Mian, A.S.: Octree guided CNN with spherical kernels for 3D
point clouds. In: CVPR (2019) 4

12. Li, F., Fujiwara, K., Okura, F., Matsushita, Y.: A closer look at rotation-invariant
deep point cloud analysis. In: ICCV (2021) 4, 11

13. Li, X., Li, R., Chen, G., Fu, C.W., Cohen-Or, D., Heng, P.A.: A rotation-invariant
framework for deep point cloud analysis. IEEE Transactions on Visualization and
Computer Graphics pp. 1–1 (2021) 4

14. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: Convolution on
X-transformed points. In: NeurIPS (2018) 4

15. Liu, Y., Fan, B., Meng, G., Lu, J., Xiang, S., Pan, C.: DensePoint: Learn-
ing densely contextual representation for efficient point cloud processing. arXiv
abs/1909.03669 (2019) 4

16. Lv, X., Wang, B., Dou, Z., Ye, D., Wang, S.: LCCNet: LiDAR and camera self-
calibration using cost volume network. In: CVPRW (2021) 2

17. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local ge-
ometry in point cloud: A simple residual MLP framework. arXiv abs/2202.07123
(2022) 1, 2, 4, 11

18. Qi, C.R., Su, H., Kaichun, M., Guibas, L.J.: PointNet: Deep learning on point sets
for 3D classification and segmentation. In: CVPR (2017) 1, 2, 3, 4, 7, 9, 10, 11, 13

19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017) 3, 4, 7, 11, 13

20. Qiu, S., Anwar, S., Barnes, N.: Geometric feedback network for point cloud classi-
fication. arXiv abs/1911.12885 (2019) 11

16 J.-K. Chen, Y.-X. Wang

21. Que, Z., Lu, G., Xu, D.: VoxelContext-Net: An octree based framework for point
cloud compression. arXiv abs/2105.02158 (2021) 4

22. Riegler, G., Ulusoy, A., Geiger, A.: Octnet: Learning deep 3D representations at
high resolutions. In: CVPR (2017) 4

23. Shen, W., Zhang, B., Huang, S., Wei, Z., Zhang, Q.: 3D-rotation-equivariant
quaternion neural networks. In: ECCV (2020) 4

24. Siekański, P., Paśko, S., Malowany, K., Malesa, M.: Online correction of the mutual
miscalibration of multimodal VIS–IR sensors and 3D data on a UAV platform for
surveillance applications. Remote Sensing 11(21) (2019) 2

25. Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., Mao, Z.M.: Benchmark-
ing robustness of 3D point cloud recognition against common corruptions. arXiv
abs/2201.12296 (2022) 4

26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Transactions on Graphics 38(5)
(2019) 4, 11, 13

27. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D shapenets for 2.5D object
recognition and next-best-view prediction. arXiv abs/1406.5670 (2014) 2, 3, 10,
11

28. Xiang, B., Tu, J., Yao, J., Li, L.: A novel octree-based 3-D fully convolutional neural
network for point cloud classification in road environment. IEEE Transactions on
Geoscience and Remote Sensing 57, 7799–7818 (2019) 4

29. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: Learning curves
for point clouds shape analysis. In: ICCV (2021) 11, 13

30. Xu, M., Zhang, J., Zhou, Z., Xu, M., Qi, X., Qiao, Y.: Learning geometry-
disentangled representation for complementary understanding of 3D object point
cloud. In: AAAI (2021) 11, 13

31. Yi, L., Shao, L., Savva, M., Huang, H., Zhou, Y., Wang, Q., Graham, B., Engelcke,
M., Klokov, R., Lempitsky, V.S., Gan, Y., Wang, P., Liu, K., Yu, F., Shui, P., Hu,
B., Zhang, Y., Li, Y., Bu, R., Sun, M., Wu, W., Jeong, M., Choi, J., Kim, C.,
Geetchandra, A., Murthy, N., Ramu, B., Manda, B., Ramanathan, M., Kumar,
G., Preetham, P., Srivastava, S., Bhugra, S., Lall, B., Häne, C., Tulsiani, S., Ma-
lik, J., Lafer, J., Jones, R., Li, S., Lu, J., Jin, S., Yu, J., Huang, Q., Kalogerakis,
E., Savarese, S., Hanrahan, P., Funkhouser, T.A., Su, H., Guibas, L.J.: Large-
scale 3D shape reconstruction and segmentation from ShapeNet core55. arXiv
abs/1710.06104 (2017) 4, 11

32. Yuan, W., Held, D., Mertz, C., Hebert, M.: Iterative transformer network for 3D
point cloud. arXiv abs/1811.11209 (2018) 4, 11

33. Zeng, W., Gevers, T.: 3Dcontextnet: K-d tree guided hierarchical learning of point
clouds using local contextual cues. arXiv abs/1711.11379 (2017) 3, 4, 5, 11

34. Zhang, X., Zhu, S., Guo, S., Li, J., Liu, H.: Line-based automatic extrinsic cali-
bration of lidar and camera. In: ICRA (2021) 2

35. Zhang, Y., Rabbat, M.G.: A graph-CNN for 3D point cloud classification. In:
ICASSP (2018) 4

36. Zhao, C., Yang, J., Xiong, X., Zhu, A., Cao, Z., Li, X.: Rotation invariant
point cloud classification: Where local geometry meets global topology. arXiv
abs/1911.00195 (2019) 4, 11

