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Abstract

Learning to hallucinate additional examples has recently
been shown as a promising direction to address few-shot
learning tasks. This work investigates two important yet
overlooked natural supervision signals for guiding the hallu-
cination process — (i) extrinsic: classifiers trained on hallu-
cinated examples should be close to strong classifiers that
would be learned from a large amount of real examples;
and (ii) intrinsic: clusters of hallucinated and real exam-
ples belonging to the same class should be pulled together,
while simultaneously pushing apart clusters of hallucinated
and real examples from different classes. We achieve (i) by
introducing an additional mentor model on data-abundant
base classes for directing the hallucinator, and achieve (ii)
by performing contrastive learning between hallucinated
and real examples. As a general, model-agnostic framework,
our dual mentor- and self-directed (DMAS) hallucinator
significantly improves few-shot learning performance on
widely-used benchmarks in various scenarios.

1. Introduction

To alleviate the reliance on large, labeled datasets for
learning deep models, few-shot learning has attracted increas-
ing attention, with the goal of learning novel concepts from
one, or only a few, annotated examples [20, 68, 71, 59, 21].
Existing work tries to solve this problem from the perspec-
tive of meta-learning [55, 7, 64], which is motivated by the
human ability to leverage prior experiences when tackling a
new task. Unlike the standard machine learning paradigm,
where a model is trained on a set of examples, meta-learning
is performed on a set of “simulated” tasks, each consisting of
its own support and query sets [68]. The support set is used
as the few-shot training data for the leaner, and the query
set is used as the test data to evaluate the leaner’s quality.
By sampling small support and query sets from a large col-
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(a)
Figure 1: Learning a hallucinator to generate useful examples for
few-shot learning through extrinsic and intrinsic supervision. Dur-
ing meta-training, we sample a few-shot task (e.g., 2-way 2-shot
classification) on base classes (Fig. 1a). Extrinsic supervision:
The desired classifier for this task is the (dashed) one that would be
learned from a large set of real examples (Fig. 1b). We explicitly
introduce this strong classifier as “mentor” (abundant examples are
available for base classes). We then learn the hallucinator in a way
that minimizes the discrepancy between the (solid) “student” clas-
sifier (trained on hallucinated examples together with the few real
examples) and the (dashed) mentor classifier (Fig. 1c). Intrinsic
supervision: Through contrastive learning, clusters of hallucinated
and real examples belonging to the same class are pulled together
(—+<), while simultaneously pushing apart (<-) clusters of hallu-
cinated and real examples from different classes (Fig. 1¢). During
meta-testing, we use the meta-trained, fixed hallucinator to gen-
erate additional examples as augmentation for learning classifiers
on novel classes. Real examples as light diamonds, hallucinated
examples as dark triangles, and classifiers as solid or dashed lines.

lection of labeled examples of base classes, meta-learning
based approaches learn to extract task-agnostic knowledge,
and apply it to a new few-shot learning task of novel classes.

One notable type of task-agnostic (or meta) knowledge
comes from the shared mechanism of data augmentation
or hallucination across categories [70, 22, 56, 84]. Since
synthesizing raw images is often challenging or sometimes
unnecessary, recent work has instead focused on hallucinat-
ing examples in a learned feature space [70, 22, 56, 84, 76,
83, 87]. This can be achieved by, for example, integrating a
“hallucinator” module into a meta-learning framework, where
it generates hallucinated examples guided by real ones from
the support set [70]. The hallucinator captures the intra-class
variation shared across categories, which generalizes to un-
seen classes. The learner then uses an augmented training set,
which includes both the real and the hallucinated examples to
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learn classifiers. The hallucinator is meta-trained end-to-end
with the learner, through back-propagating a classification
loss based on ground-truth labels of query data.

Despite the success of prior approaches, we argue that
solely using the classification loss on the small query set
as supervision is insufficient to adjust the hallucinator to
produce effective samples in the few-shot regime. Therefore,
the performance of the classifiers trained on hallucinated
examples is still substantially inferior to that of the classi-
fiers trained on real examples [16, 58]. To overcome this
challenge, our key insight is that there are two important
yet under-explored natural signals for guiding the data gen-
eration process — extrinsic and intrinsic supervision. This
work explores how to leverage such supervision to enable
hallucinating examples in a way that helps the classification
algorithm learn better classifiers.

The first source of supervision is an extrinsic signal
from large-sample learning. As illustrated in Figure 1, to
be most helpful as a hallucinator, a classifier trained on the
hallucinated examples (which are generated from a small
support set of real samples) is expected to be close to a strong
classifier that would be trained on a large amount of real
examples . This extrinsic signal from large-sample learning
is a natural source of supervision for few-shot learning, but
it has been largely overlooked in prior work. While we
have very little data on novel classes, we do have a large
number of real examples on base classes. Therefore, on base
classes we introduce a “mentor” model, which is a strong
classifier pre-trained on all the available large amount of
real examples. Correspondingly, the classifier trained on
hallucinated examples along with few real support examples
becomes the “student.”

We now minimize the discrepancy between the student
and mentor classifiers. A straightforward approach would be
minimizing the distance between the two classifiers in the
parameter space [71, 72, 11], which tends to be difficult and
noisy due to the lack of suitable metrics. Hence, we instead
encourage the output predictions from the student classifier
(e.g., the distribution of class probabilities) to be similar to
those predicted by the mentor on the query set. This way of
learning is reminiscent of knowledge distillation [29]. By
doing so, the hallucinator explicitly learns how to produce
examples that enable the student classifier to mimic the be-
havior of the mentor. Note that the student-mentor pairs are
only used for meta-training on base classes; there are no
mentor classifiers for meta-testing on novel classes.

In practice, the student and mentor classifiers could be
quite different from each other at the beginning of the train-
ing, if the mentor is produced by a large amount of real
examples while the student has access to only few real ex-
amples. To address this issue, we propose a progressive
guidance scheme inspired by curriculum learning [8], and
explore two dual directions — (1) we start with a mentor and

a student, both trained on a small number of real examples,
and we gradually strengthen the mentor by re-training it
with increasing number of real examples; and (2) we start
with a mentor and a student, both trained on a large number
of real examples, and we gradually weaken the student by
removing its real examples. During both of the processes,
the hallucinator is also trained progressively.

The second source of supervision is the intrinsic label
consistency between hallucinated and real examples. As
illustrated in Figure 1, hallucinated and real examples be-
longing to the same class should be pulled together, while
simultaneously pushing apart clusters of hallucinated and
real examples from different classes. However, without ap-
propriate constraints, the hallucinated examples might be
noisy and spread over across class boundaries (e.g., a halluci-
nated dog example resides within the cat cluster). To this end,
we formulate the problem as supervised contrastive learn-
ing, inspired by recent progress on self-supervised learn-
ing [74, 28, 12, 30]. We treat hallucinated and real examples
as different views of the data, and generate the positive and
negative pairs correspondingly. For example, the positives
are drawn from both hallucinated and real samples of the
same class. Note that different from conventional contrastive
learning that learns an embedding space (where the data
augmentation is pre-defined), we use the contrastive loss to
self-direct the hallucinated examples in the right class cluster
or manifold (where is the feature space is pre-trained).

Our contributions are three-fold. (1) By jointly lever-
aging the complementary extrinsic and intrinsic supervi-
sion, we develop a general meta-learning with hallucina-
tion framework. (2) We not only extract shared knowledge
across a collection of few-shot learning tasks, similar to most
existing meta-learning methods, but also progressively ex-
ploit extrinsic knowledge in large-sample models trained
on base classes as mentor to guide hallucination and few-
shot learning. (3) Through a contrastive learning process,
the hallucinated examples are self-directed to maintain the
intrinsic label consistency with real examples. Our dual
mentor- and self-directed (DMAS) hallucinator is model-
agnostic, which can generate data in different feature spaces
and can be combined with different classification models to
consistently boost their few-shot learning performance on
a variety of benchmarks, including ImageNet1K [27, 70],
minilmageNet [68, 49], tieredlmageNet [51], and CUB [69].

2. Related Work

Generative Models. Generative models have recently
shown great potential as a way of data augmentation for
few-shot learning [5, 70, 84, 22] and semi-supervised learn-
ing [16], but the improvement of recognition performance
is still limited [58]. The generation can be performed
either in image space [15] or in a pre-trained feature
space [27], by using an auto-encoder architecture [56], GAN-
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like generator [70], or the combination of GANs and auto-
encoders [75, 76]. Our work is independent of these different
types of generators, and we focus primarily on how to train
the generator to improve its use for recognition tasks by lever-
aging large amounts of auxiliary data and self-supervision.

Few-Shot Learning and Meta-Learning. Meta-
learning, or the ability to learn to learn [64], is a powerful
framework for tackling the problem of learning with lim-
ited data. Most of modern approaches fall into one of the
categories between optimization and metric learning based
methods. Optimization based methods learn how to do fast
adaptation to novel tasks, by learning appropriate parame-
ter updates [49] or a general initialization [21]. Adaptation
could be done in the original feature space [21, 4, 6] or in an
embedded space [52]. Prior work on few-shot domain adap-
tation [53, 31] learns how to balance cross-domain clustering
that is domain invariant. Metric learning methods focus on
learning a similarity metric [33]. Several distance functions
have been explored, from the Euclidean distance [59, 2] and
the cosine distance [13, 23, 19] to more complex parametric
functions and metrics [68, 62, 37, 82], or using an additional
task-specific metric [46]. Most methods often treat each cat-
egory separately without considering the relations between
them. Graph neural networks are thus introduced to leverage
those relations [54, 32, 24]. To conduct meta-learning more
effectively, recent approaches often first compute a set of fea-
tures of the images using a trained feature extractor network.
Given that high-dimensional features have better modeling
capacity but are computationally expensive to work with,
each meta-learning task is then formulated as a convex op-
timization problem and solved in its low-dimensional dual
space [9, 34]. Our hallucinator component is generic and
can be integrated into different meta-learning methods.

Teacher-Student Networks. Learning a model under the
guidance of a teacher or mentor model has been widely used
for model compression. Compressing one cumbersome or
several models into a smaller model is a classic idea [18, 10]
and has been popularized by the distillation formulation
in [29]. Recent work focuses on advanced techniques to
guide the distillation process [42, 78, 1] and its applications
to practical problems, such as object detection [77, 73] and
distributed machine learning [3]. In addition, knowledge dis-
tillation has been extended to address other tasks, including
multi-task learning [63] and continual learning [38, 57]. To
the best of our knowledge, our work is the first to introduce a
mentor network for learning recognition task oriented gener-
ative models. Importantly, different from existing work that
addresses models of different capacity, we consider models
of the same capacity but trained on real or synthetic data.

Contrastive Learning. Powerful self-supervised repre-
sentation learning approaches have recently been developed
in image domain via manually specified pretext tasks. Ex-
amples include auto-encoding methods which leverage con-

texts [47], channels [86], and colors [85] to recover the
input under some corruption. Some pretext tasks form
pseudo-labels by relative patch locations [17], image ro-
tations [25], and jigsaw puzzles [44]. These pretext tasks
are collected under the umbrella of the contrastive learn-
ing framework, which maintains the relative consistency
between the representations of an image and its augmented
views [45, 74, 80, 28, 12, 65, 26, 14, 81]. In our work, we
treat hallucinated and real examples as different views of the
data and use the contrastive loss to self-direct the halluci-
nated examples in the right class cluster or manifold.

3. Dual Mentor- and Self-Directed Hallucina-
tor

Few-Shot Learning Setting. We are given a set of base
categories Cpase and a set of novel categories Cyoyvel, Where
ChaseNCrovel = 0. We have a base dataset Dy, 5 With a large
amount of annotated training examples per class and a novel
dataset Dy ovel With only few annotated training examples per
class. Few-shot learning aims to learn a good classification
model h for C,,ovel based on the small dataset D, 1. Recent
work achieves this through a meta-learning procedure [68],
which learns from a collection of sampled few-shot classifi-
cation tasks on Cpase. Given a set of categories C and a set of
data D, an m-way k-shot task is composed of a subset Cqy,
of m categories from C, a support (training) set Sg,pp, of k
examples from D for each class in Cq,1, and a query (test)
set Squery Of one or few examples from D for each class in
Csub- Meta-learning is performed in two phases as follows.

During meta-training, a classifier learns from a collection
of m-way k-shot tasks sampled from Cpase and Dy ase. While
our work is agnostic to different classification models, here
we take a simple cosine classifier [13] as an example — a
variant of prototypical networks [59] which uses the cosine
instead of the standard Euclidean distance function. In each
iteration, we compute a prototype representation for each
class in Cyyp. Each example is fed to an embedding function
fo with learnable parameters 6. The prototype of class c is
the mean of the outputs through fy of examples from c in
Ssupp- We then feed the examples in Sqyery to the classifier
and update the parameters 6. During meta-testing, we use
the same approach and build our previously meta-learned
classifier with one unique m-way k-shot task, using Cyovel
instead of Cpase and Dyoye instead of Dy ... We evaluate the
final classifier on unseen examples with labels from Cpovyel.

Meta-Learning with Hallucination. Incorporating a
generative model which produces additional examples
for data augmentation has been shown to facilitate meta-
learning [70, 22, 56]. While our approach does not rely on
specific types of generative models, here we focus on the
feature hallucinator in [70], due to its simplicity and state-of-
the-art performance, which is implemented as a light-weight
multi-layer perceptron (MLP) module. The hallucinator is a
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Figure 2: Overview of our dual mentor- and self-directed hallucinator “DMAS,” learned through extrinsic and intrinsic supervision. During
each iteration of meta-training, a small support set Ssupp is augmented with a set of examples Sgpp produced by a hallucinator GG. Examples
from the resulting set Soy5, are used to build a student classifier model S. A mentor model M is built from a set Siarge containing a large

supp

amount of real examples on base classes. The hallucinator G is trained by jointly leveraging the extrinsic supervision from Lex and the
intrinsic supervision from L;,. That is, Lex enforces the student classifier to mimic the distribution of class probabilities predicted by the
mentor model on the query set Squery; meanwhile, Li, enforces the intrinsic label consistency between hallucinated and real examples from
Saue  through contrastive learning. During meta-testing, we use the meta-trained, fixed G to generate additional examples as augmentation

supp

for learning classifiers i on novel classes; there are no mentor classifiers. Real examples as diamonds, hallucinated examples as triangles.

function G(x, z;w) : R4 doise — R9 that produces exam-
ples in a pre-trained feature space of dimension d, where x
is the feature vector of a real example, z is a random noise
vector of dimension dyeise Sampled from a Gaussian dis-
tribution, and w is the parameters of G. The hallucinated
example G (x, z;w) is of the same category as x.

Now the procedure of meta-learning integrated with the
hallucinator G is illustrated in Figure 2. During each it-
eration of meta-training, the support set Squpp is first aug-
mented by a generated set Ssclipp. Specifically, for each class
y, we sample k25 examples (z,y) in Ssupp, sample asso-
ciated random noise vectors z, and then add (2’, y) to Sgpp,
where ' = G(z,z;w). Our final support training set is
Sg = Squpp USS,p- As long as G is differentiable with
respect to the generated set Sscflpp, the gradients of the final
classification loss on Sguery can be back-propagated into
G to produce useful hallucinated examples. Through meta-
training over a large amount of iterations, the hallucinator
learns to capture shared modes of variation across different
classes and can thus generalize to unseen classes. During
meta-testing, we use the learned G to generate additional
examples for recognizing categories in Cyoyel -

Hallucination with Extrinsic Guidance from Mentor.
The end-to-end optimization of the classification loss enables
the hallucinator to produce useful examples in the few-shot
regime. However, since the classification loss is computed
on small query sets, such supervision solely is insufficient
to adjust the hallucinator to produce discriminative exam-
ples that most contribute to formulating classifier decision
boundaries. Hence, the resulting classifier trained on the
hallucinated examples could be still far away from the de-
sired classifier that would be learned from a large set of real

examples. This makes it critical to close the gap between
these two classifiers. In fact, during meta-training, a large
amount of annotated examples are already available for the
base categories Cp,se, Which allows us to explicitly obtain
the classifier trained on a large set of examples and use it to
guide the learning of the hallucinator.

Formally, we treat the classifier trained on the augmented
set of the hallucinated examples and the few support exam-
ples as a student model, and we treat the classifier trained
on a large set of real base examples as a mentor model. Our
goal then is to learn the hallucinator by minimizing the dis-
crepancy between the student classifier and its mentor model.
While a naive approach would be to directly characterize
the difference between their model parameters, it turns out
to be challenging due to the high dimensionality of the pa-
rameter space. Inspired by the teacher-student network [29],
we instead enforce the student to mimic the distribution of
class probabilities predicted by the mentor network, which
can be viewed as a way of regularization to improve the
generalization performance of the student model [43].

As shown in Figure 2, meta-training the hallucinator G is
conducted in the following way. We first sample a large set
of examples Siarge With kiarge €xamples per class in Cpase
and train a mentor classifier using all the examples in Sjarge.
During each iteration of meta-training, we augment Sgupp
by generating new examples using the hallucinator G. We
train the student classifier on S8 through the knowledge

i O supp
distillation loss function in [29]:

Lox(s,m. ) = L (o(s),e) + 07 Lon(o(Z),0(7), (1)
which consists of a standard cross-entropy loss (the first
term) and an additional component that measures the dif-

ference between student and mentor outputs (the second
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term). s and m are the logits produced by the student and
the mentor, respectively, for a test example of label y in
Squery- 0 denotes the softmax function, Lcg denotes the
cross-entropy loss, e, is the one-hot encoding of y, and «
is a trade-off hyper-parameter that balances the two terms.
Note that 71 > 0 is a critical learnable parameter called
temperature, which smooths the probability distribution pro-
duced by the mentor and makes the corresponding decision
boundary easier to learn for the student than the original one.

Self-Directed Learning with Intrinsic Label Consis-
tency. While the hallucinated examples directed by the
extrinsic mentor are useful, without other constraints they
might spread over across class boundaries and thus be noisy.
Inspired by supervised contrastive learning [30], we enforce
intrinsic label consistency between hallucinated examples
and real examples.

Formally, suppose we sample N real examples per mini-
batch and generate M hallucinated examples, resulting in a
batch Z of M + N examples. Given an anchor example z;,
P(i) is the set of indices of all positives in the batch distinct
from ¢ and A(¢) = I'\{i}. The supervised contrastive loss is
defined as Li, = —+ fﬁJ{N L; and

M+N
1 exp(; - Tp/T2)
Li=—5— log . , (@
[P(1)] pengi) ZaEA(i) exp(T; - Ta/T2)

where 72 > 0 is a temperature parameter and | P(7)] s its car-
dinality. This loss allows the real and hallucinated examples
from the same classes to attract mutually, while they repel
the other examples from different classes in the mini-batch.
Thus, our dual mentor- and self-directed hallucinator can
be derived from Eqn. 1 and Eqn. 2 as
L=Lex+ 5£in; (3)
where (3 is a trade-off hyper-parameter that balances the
two terms. Minimizing Eqn. 3 over Squery thus guides the
hallucinator towards producing useful examples that help
the student classifier recover the decision boundary from the
mentor model.

4. Progressive Guidance from Mentor Model

Under the framework of meta-learning with extrinsic guid-
ance, a straightforward way is to build the mentor model by
using Kiaree as large as possible (potentially the full set of
Drase) and keep it fixed, and to train the hallucinator and
student classifier using only few real examples. By doing so,
however, we face the problem that the decision boundaries
obtained by those two models could be very far from each
other at the beginning of the training, making the learning of
the hallucinator difficult. To address this issue, we perform
the learning process in a progressive manner with varied
number of real examples. We start with a mentor and a
student which have access to a not too different number of
real examples, and then progressively change the number
of examples, so that the decision boundaries transform in

& Real examplesinclass| ¢ Real examples in class Il A Generated examples in class| A Generated examples in class |
Figure 3: Illustration of progressive guidance by weakening the
student classifier in the case of recognizing two classes. We start
with a large number of real examples for both the student and the
mentor, and learn the corresponding mentor model (the leftmost
image). We then gradually remove the real examples for the student
over the training. The hallucinator learns to generate additional
examples based on the remaining real examples to preserve the
mentor decision boundary (the middle two and rightmost images).

a smooth manner. Concretely, this can be achieved in the
following two dual directions.

Progressive Guidance by Strengthening the Mentor.
In this setting, both the student and the mentor start with
a small number of real examples. However, the number of
real examples for the mentor gradually increases over the
training. The objective for the hallucinator then is to learn
to generate additional examples so that its corresponding
student can always match the performance of the mentor,
whenever the mentor is re-trained with more samples and
becomes stronger. More specifically, during meta-training,
the support set Sg,pp Of each few-shot task is composed
of very few examples per class, ki;ain, as in regular meta-
training. At the beginning, we sample Sjarge, With Kjarge
being set to the value of ky;..i,. We then progressively sample
new real examples in the same amount for each class and
add them into Siarge. Klarge grows from Kirain to kpax in
a linear or logarithmic scale, where ki, is the maximum
available number of examples per class in Dy ,se. We re-train
the mentor model every time we add new examples.

Progressive Guidance by Weakening the Student. In
this setting, both the student and the mentor start with a large
number of real examples. However, we gradually remove the
real examples for the student over the training. The objective
for the hallucinator then is to learn to generate the missing
examples based on the remaining real examples. This allows
the student to preserve or stabilize the original decision
boundary formulated by the large set of examples (i.e., the
mentor boundary), when the student has access to less real
examples and becomes weaker. More specifically, during
meta-training, the support set Sgupp Of each “few-shot” task
is composed of a large number of examples per class, unlike
regular meta-training. This number of examples per class in
Ssupps Ktrain, decreases in a linear or logarithmic scale, until
it reaches a small value.

5. Evaluation

We now present experiments to evaluate our dual mentor-
and self-directed (DMAS) hallucinator on few-shot classi-
fication, and study the effect of progressive guidance from
extrinsic and intrinsic supervision. Since DMAS is agnos-
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TADAM [46] ResNet12 | 58.50 + 0,30 76.70 L 0.30 B - DEML [88] ResNet50 | 66.95 £ 1.06 77.11 4 0.78
MAML [13] ResNet34 | 67.28 & 1.08 83.47 +0.59

ECM [50] ResNetl2 |59.00+ - 7746+ - 63.99+ - 8197+ - Cosine Classifier [13] | ResNet12 | 67.30 + 0.86 84.75 + 0.60
TPN [40] ResNetl2 5946+ - 7565+ - 59.91+£094 73.3040.75 MatchingNet [68] ResNet12 | 71.87 + 0.85 85.08 + 0.57
PPA [48] WRN-28-10 | 59.60 £ 0.41 73.74 £0.19 - - DeepEMD [82] ResNetl2 | 75.65 + 0.83 88.69 & 0.50
ProtoNet [59] ResNet12 |60.37 +0.83 78.02 £0.57 65.65 +0.92 83.40 + 0.65 DMAS (Ours) ResNetl2 | 78.47 4 0.62 90.67 + 0.39
wDAE-GNN [24] | WRN-28-10 | 61.07 £ 0.15 76.75 +0.11 68.18 +0.16 83.09 +0.12  (b) Test accuracy (%) on the novel classes for CUB.
MTL [61] ResNet12 |61.20 + 1.80 75.50 + 0.80 _ - ‘4’ indicates 95% confidence intervals over tasks.
LEO [52] WRN-28-10|61.76 +£ 0.08 77.59 + 0.12 66.33 + 0.05 81.44 + 0.09 Method Backbone | k=1 2 5 10
DC [39] ResNetl2 [62.53 +0.19 79.77 +0.19 - - ProtoNet [59] ResNetl0 [39.3 544 663 71.2
MetaOptNet [34] ResNetl2 |62.64 +0.82 78.63 £0.46 65.99 +0.72 81.56 + 0.53 ProtoNet Gen [70] ResNet10|45.0 55.9 67.3 73.0
FEAT [79] ResNet24 | 62.96 4 020 7849 + 0.15 _ _ MatchingNet [68] ResNetl0 [43.6 540 66.0 72.5
MatchingNet [68] | ResNetl2 |63.08 = 0.80 75.99 4 0.60 68.50 £ 0.92 80.60 £ 0.7] Logisticregression[27] ResNetl0 384 51.1 648 716

= Logistic regression Analogies [27] | ResNet10 | 40.7 50.8 62.0 69.3
CTM [35] ResNetl8 [64.12 £0.82 80.51 £0.13 68.41 +£0.39 84.28 +1.73 Prototype Matching Net Gen [70] | ResNet10 |45.8 57.8 69.0 743
RFS [66] ResNet12 |64.82 £ 0.60 82.14 +0.43 71.52 +0.69 86.03 £ 0.49 Cosine Att. Weight [23] ResNetl0 | 46.0 57.5 69.1 74.8
DeepEMD [82] ResNet12 |65.91 +0.82 82.41 +0.56 71.16 +0.87 86.03 % 0.58 DMAS (Ours) ResNetl0 |46.5 583 69.7 75.1
DMAS (Ours) ResNetl2 |67.42 +0.28 83.74 +0.20 73.54 + 0.73 86.27 & 0.47 (c) Top-5 accuracy (%) for 311-way novel-class clas-

(a) Test accuracy (%) on the novel classes for minilmageNet and tieredIlmageNet.

‘4’ indicates 95% confidence intervals over tasks.

sification on ImageNet1 K. The 95% confidence in-
tervals for all number are of the order of 0.2%.

Table 1: Comparisons with state of the art on four widely-benchmarked few-shot classification datasets. With simple cosine classifiers, our
DMAS significantly and consistently outperforms all the baselines (including sophisticated classification models) across the board.

tic to the choice of classification models, we validate its
generalizability to different types of features and various
meta-learning models. In particular, we focus on simple co-
sine classifiers, which have been recently shown to achieve
very competitive few-shot performance [13].

Datasets. We evaluate on four widely-used datasets: (1)
minilmageNet [68, 49], with 64, 16, and 20 classes for meta-
training, meta-validation, and meta-testing, respectively; (2)
tieredlmageNet [51], with 20, 6, and 8 super-classes for
meta-training, meta-validation, and meta-testing, respec-
tively; (3) ImageNet1K [27, 70], with 193 base and 300
novel classes for cross-validation and 196 base and 311
novel classes for evaluation; (4) Caltech-UCSD Birds-200-
2011 (CUB) [69, 79], with 100, 50, and 50 classes for meta-
training, meta-validation, and meta-testing, respectively.

Implementation Details. For a fair comparison with pre-
vious work, we employ ResNet10 as our model backbone
for ImageNet1K [70] and ResNet12 as our model backbone
for the other three datasets [82]. As is commonly imple-
mented in the state-of-the-art work, we follow the feature
pre-training step [82]. We first train a convolutional network
based feature extractor on the base classes. Then we extract
and save these features to disk, and use these pre-computed
features as inputs for meta-learning. We follow the feature
hallucinator architecture in [70] and use a three layer MLP
with ReLU as the activation. The embedding function fy of
our cosine classifier is a two layer MLP.

During progressive guidance by weakening the student,
we start training the mentor with kjaree = 256, and we
decrease the number to 1 in a logarithmic scale over 12, 000
iterations. We initialize the learnable parameters including
the temperature 7 to 7, the scale factor of the cosine distance

to 75, and the temperature 7, to 0.07. As the performance
is not sensitive to trade-off hyper-parameters « and 3, we
empirically set them to 5 and 1, respectively. The number
of hallucinated examples is a hype-parameter ranging from
2 — 10. The saturation point of hallucinated examples on
improving performance is typically 6. For ImageNet1K, we
follow the settings in [70] and average over 5 pre-determined
k-shot (i.e., k = 1,2, 5, 10) tasks. We report the mean top-5
accuracy and the 95% confidence intervals for all number are
of the order of 0.2%. For the other datasets, we average over
1, 000 randomly sampled tasks and report the accuracies and
the 95% confidence intervals.

Comparisons with State of the Art. We compare our
model with the state-of-the-art methods. We report 5-way
1-shot and 5-way 5-shot performance on three benchmarks:
minilmageNet, tieredlmageNet, and CUB, and 311-way k-
shot on ImageNetl1K. The results are summarized in Ta-
ble 1. Under the same backbones, our model consistently
achieves the best performance on all the datasets and across
different sample-size regimes, even outperforming sophis-
ticated methods, such as the attention based classifier ‘Co-
sine Att. Weight’ [23] and DeepEMD [82]. In particular,
our 1-shot model outperforms state-of-the-art methods by
significant margins, e.g., 1.5% on minilmageNet, 2% on
tieredlmageNet, and 2.8% on CUB.

Ablation Analysis. To unpack the performance gain and
understand the impact of different components, we perform
a series of ablations on the challenging ImageNet1K dataset.
Tables 2 summarizes the top-5 accuracies and the 95% con-
fidence intervals for all number are of the order of 0.2%.

Robust to different types of pre-trained features and clas-
sifiers. Table 2 shows that DMAS can effectively hallucinate
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Method Feature k=1 2 5 10

Method Backbone k=1 5

Standard | 39.3 544 663 712
Standard | 40.2 55.0 66.7 71.6
Standard | 45.0 559 673 73.0
Standard | 45.1 555 673 733
ProtoNet DMAS (full) Standard | 459 56.5 682 73.9
Cosine Classifier (baseline) Standard | 37.8 51.0 655 725
Cosine Classifier Gen (baseline) | Standard | 42.6 539 664 72.6
Cosine Classifier DMAS w/ in Standard | 43.4 547 67.1 735
Cosine Classifier DMAS w/ ex Standard | 44.5 562 68.6 74.2
Cosine Classifier DMAS w/ ext | Standard | 44.3 563 68.8 74.2
Cosine Classifier DMAS w/ex| | Standard | 454 56.7 68.8 74.8
Cosine Classifier DMAS (full) | Standard | 46.5 58.3 69.7 75.1
Cosine Classifier (baseline) Cosine 458 570 689 743
Cosine Classifier Gen (baseline) | Cosine 47.0 57.8 69.1 743
Cosine Classifier DMAS w/ ex Cosine 472 582 692 744
Cosine Classifier DMAS (full) | Cosine 479 593 701 755

Table 2: Ablation studies (top-5 accuracy) on ImageNet1K 311-
way classification: (1) different pre-trained feature spaces for
hallucination — ‘standard’ (the feature backbone is a ResNet10
pre-trained using a standard cross-entropy linear classifier on base
classes) vs. ‘cosine’ (the ResNet10 feature backbone is pre-trained
using a cosine classifier); (2) different types of classifiers — proto-
typical net vs. cosine classifier; (3) impact of different sources of
supervision and progressive training. w/ aug: with standard data
augmentation. Gen: with a plain hallucinator [70] trained using
the classification loss on the query set solely. DMAS w/ ex: DMAS
trained only under the guidance of the mentor without progressive
training. DMAS w/ ex: progressive guidance through strength-
ening the mentor. DMAS w/ ex): progressive guidance through
weakening the student. DMAS w/ in: DMAS trained only in a self-
directed way through contrastive learning. DMAS (full): trained
under both (progressively) extrinsic and intrinsic supervision.

ProtoNet [59] (baseline)
ProtoNet w/ aug (baseline)
ProtoNet Gen [70] (baseline)
ProtoNet DMAS w/ ex

Method k=1 5

ProtoNet [59] 50.01 £0.82  72.02 £ 0.67
MatchingNet [68] 51.65 +£0.84 69.14 £0.72
Cosine Classifier [13]  44.17 £0.78 69.01 £0.74
Linear Classifier [13]  50.37 £0.79  73.30 £ 0.69

KNN [36] 50.84 £0.81 71.25 4+ 0.69
DeepEMD [82] 54.24 £0.86 78.86 £ 0.65
DMAS (Ours) 63.72 +0.29 81.24 £ 0.20

Table 3: Cross-domain evaluation (minilmageNet — CUB). Our
model outperforms other baseline methods by large margins, show-
ing the generalization of our learned hallucinator.

data in different types of pre-trained feature spaces and can
work with different types of classifiers. Notably, DMAS
achieves the best performance in a homogeneous setting,
where the feature is pre-trained by using a cosine classifier
and the final classification model is also a cosine classifier.
Extrinsic guidance from mentor. From Table 2, we can
observe that DMAS significantly outperforms baselines by
benefiting from the extrinsic guidance of the mentor. There
are 5.8% improvement when combining with the prototypi-
cal network and 6.7% improvement when combining with
the cosine classifier. More importantly, DMAS outperforms
the plain hallucinator [70] which is trained using the classifi-
cation loss only. Note that both the baselines and DMAS use
the same amount of data for meta-training on base classes.
Intrinsic supervision. Table 2 also shows that DMAS
trained only with the intrinsic supervision already outper-

ResNetl2 | 62.64 £0.61 78.63 £ 0.46
ResNetl2 | 63.46 £0.43 80.02 £0.28
ResNet12 | 64.55 +0.64 80.42 + 0.46

MetaOptNet [34]
MetaOptNet + Gen [70]
MetaOptNet + DMAS (Ours)

S2M2 [41] WRN-28-10 | 63.90 £0.18 81.03 £0.11
S2M2 + Gen [70] WRN-28-10 | 63.37 £0.56 81.23 £0.19
S2M2 + DMAS (Ours) WRN-28-10 | 65.35 +0.63 83.55 + 0.41

DeepEMD [82] ResNetl2 | 6591 £0.82 82.41 £0.56
DeepEMD + Gen [70] ResNetl2 | 64.73 £0.30 79.92 £0.21
DeepEMD + DMAS (Ours) ResNetl2 | 67.42 +0.28 83.74 £ 0.20

Table 4: Ablation study on the generalizability of our approach
and additional comparisons with state of the art on minilmageNet.
Our DMAS hallucinator is general and can work with different
types of classification models and different backbone models
to consistently improve their performance. In addition, DMAS
consistently outperforms the plain hallucinator [70].

forms the baselines. The improvement is more pronounced
when there are very few examples, e.g., 5.6% improvement
when k = 1. This implies the importance of preserving the
label consistency between hallucinated and real examples.
In addition, the full DMAS model achieves the best perfor-
mance, demonstrating that the extrinsic supervision and the
intrinsic supervision are complementary to each other.

Strengthening the mentor vs. weakening the student. We
compare two directions for progressive guidance by strength-
ening the mentor (w/ ex?) and weakening the student (w/
ex|). We use a logarithmic scale when changing the num-
ber of examples on which the student or mentor model is
trained [60, 72]. As shown in Table 2, both directions outper-
form the normal guidance without progression (w/ ex), and
weakening the student achieves better results. It comes from
the fact that, if both mentor and student start being weak,
the learning problem could actually be hard due to the high
variance of both mentor and student.

Comparisons with standard data augmentation. Table 2
shows that our learned data hallucination outperforms meta-
learning with standard hand-crafted data augmentation (‘w/
aug’), which includes random crop, random horizontal flip,
and color jittering as in [13], indicating the importance of
exploiting shared intra-class variation.

Cross-Domain Evaluation. So far, we have focused on
the within-domain scenario. Now we consider the cross-
domain scenario, which allows us to investigate the gen-
eralization of our DMAS hallucinator and understand the
effects of domain shifts. Following the cross-domain setup
in [13, 82], the experiment in Table 3 shows that our DMAS
hallucinator trained on minilmageNet is effective for never-
before-seen classes on CUB without any fine-tuning.

DMAS as a General Plug-and-Play Module. Table 4
further shows the generalizability of our approach — the
DMAS hallucinator can work with different types of clas-
sification models and different backbone models to consis-
tently improve their performance. To fully investigate the
impact of DMAS and for a fair comparison, we conduct
experiments on minilmageNet with the same training setups
(e.g., backbones, data augmentation techniques, and training
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Figure 4: Visualization with t-SNE of the evolution of the decision boundary for two novel classes, when meta-training our DMAS
hallucinator through progressive guidance by weakening the student. Real examples (small dots) are progressively removed, and hallucinated
examples (triangles) are generated in a way that helps maintain the student decision boundary (black solid line) as close as possible to the
desired decision boundary that would be formulated by a large set of real examples (red dashed line). We observe that PCA visualization has

a similar phenomenon. Best viewed in color with zoom.

Figure 5: Visualization of nearest neighbor real images of hallucmated examples for four novel classes. For each class, the single black
framed image comes from the original dataset and is used as a seed for generating new examples. Color framed images correspond to the
nearest neighbor real images of the hallucmated examples in the feature space. Best v1ewed in color with zoom.

Figure 6: Visualization of classification results of two novel classes (Top row: malamute; bottom row: mixking bowl) and comparison
between our DMAS hallucinator and the plain hallucinator [70]. The left block shows images correctly classified by both approaches. The
middle block shows images that are misclassified by [70] as other classes (with predicted class names overlaid on the images), but correctly
classified by our approach. The right block shows images from other classes that are misclassified by [70] as the target class, but correctly
classified by our approach. In these examples, our classifier is able to recognize objects with different poses and view points, whereas [70]

fails to distinguish between similar classes.

strategies) as the state-of-the-art approaches [34, 41, 82]. In
all cases, DMAS can be seamlessly incorporated into these
approaches (denoted as ‘+’), and substantially improve their
performance, e.g., 1.9% improvement when combining with
MetaOptNet [34] and 1.5% improvement when combining
with S2M2 [41] under the challenging 1-shot setting.
Comparisons with the plain hallucinator. Table 4 also
shows that DMAS consistently outperforms the plain halluci-
nator [70] for different types of models (Table 2 has already
shown this for ProtoNet and cosine classifier). More impor-
tantly, ‘DeepEMD + [70] is worse than the plain DeepEMD;
a similar phenomenon is observed with S2M2 in the 1-shot
case. These results suggest that, while DMAS is general, [70]
is not a general module for different few-shot models. For
more sophisticated models (S2M2 and DeepEMD), solely
using the classification loss as in [70] is insufficient to adjust
the hallucinator to produce effective samples. This further
verifies the importance of extrinsic and intrinsic supervision.
Visualizations. To further understand how our model
helps learning a classifier and refining the hallucinator, we
conduct visualizations on ImageNet1 K. We first visualize
in Figure 4 the evolution of the decision boundary for two

novel classes during progressive guidance by weakening the
student using t-SNE [67]. We then visualize in Figure 5
the hallucinated examples in the pixel space, using their
nearest neighbor real images in the feature space. Finally in
Figure 6, we compare our approach with the state-of-the-art
meta-learned hallucinator [70] and show that ours is able to
recognize a large range of visual variations.

6. Conclusion

We present an approach to few-shot classification that
uses a dual mentor- and self-directed hallucinator to gener-
ate additional examples. This is achieved by exploiting two
important natural supervision signals that facilitate data hal-
lucination in a way that most improves the classification per-
formance, and is trained end-to-end through meta-learning.
Our hallucinator can be inserted as a plug-and-play module
into different classification models. The extensive experi-
ments demonstrate our state-of-the-art performance on the
widely-benchmarked few-shot datasets in various scenarios.

Acknowledgement: This work was supported in part by ONR MURI
NO000014-16-1-2007, AFRL Grant FA23861714660, and NSF Grant
2106825. We also thank AWS Cloud Credits for Research program.

8708



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

[18]

(19]

[20]

(21]

Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya
Patil, Kolten Pearson, and Soheil Feizi. Compress-
ing GANs using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019. 3

Kelsey R Allen, Evan Shelhamer, Hanul Shin, and Joshua B
Tenenbaum. Infinite mixture prototypes for few-shot learning.
In ICML, 2019. 3

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Rébert Or-
mandi, George E. Dahl, and Geoffrey E. Hinton. Large scale
distributed neural network training through online distillation.
In ICLR, 2018. 3

Antreas Antoniou, Harrison Edwards, and Amos Storkey.
How to train your MAML. In ICLR, 2019. 3

Anthreas Antoniou, Amos Storkey, and Harrison Edwards.
Data augmentation generative adversarial networks. In /CLR,
2017. 2

Antreas Antoniou and Amos J. Storkey. Learning to learn via
self-critique. In NeurIPS, 2019. 3

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning
a synaptic learning rule. Université de Montréal, Départe-
ment d’informatique et de recherche opérationnelle, 1990.
1

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In /CML, 2009. 2
Luca Bertinetto, Jodo F. Henriques, Philip H. S. Torr, and
Andrea Vedaldi. Meta-learning with differentiable closed-
form solvers. In ICLR, 2018. 3

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In KDD, 2006. 3

Wei-Lun Chao, Han-Jia Ye, De-Chuan Zhan, Mark Camp-
bell, and Kilian Q Weinberger. Revisiting meta-learning as
supervised learning. arXiv preprint arXiv:2002.00573, 2020.
2

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In /CML, 2020. 2, 3

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. In ICLR, 2019. 3,6, 7

Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. In CVPR, 2021. 3

Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma, Wei Liu,
and Martial Hebert. Image deformation meta-networks for
one-shot learning. In CVPR, 2019. 2

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and
Ruslan Salakhutdinov. Good semi-supervised learning that
requires a bad GAN. In NeurIPS, 2017. 2

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
ICCV,2015. 3

Pedro Domingos. Knowledge acquisition from examples via
multiple models. In ICML, 1997. 3

Nikita Dvornik, Cordelia Schmid, and Julien Mairal. Di-
versity with cooperation: Ensemble methods for few-shot
classification. In ICCV, 2019. 3

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning
of object categories. TPAMI, 28(4):594-611, 2006. 1
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

8709

agnostic meta-learning for fast adaptation of deep networks.
InICML, 2017. 1,3

Hang Gao, Zheng Shou, Alireza, Zareian, Hanwang Zhang,
and Shih-Fu Chang. Low-shot learning via covariance-
preserving adversarial augmentation networks. In NeurIPS,
2018. 1,2,3

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In CVPR, 2018. 3, 6
Spyros Gidaris and Nikos Komodakis. Generating classifica-
tion weights with GNN denoising autoencoders for few-shot
learning. In CVPR, 2019. 3,6

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-
pervised representation learning by predicting image rotations.
In ICLR, 2018. 3

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doer-
sch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. Bootstrap your own latent: A new approach to
self-supervised learning. In NeurIPS, 2020. 3

Bharath Hariharan and Ross B. Girshick. Low-shot visual
object recognition by shrinking and hallucinating features. In
ICCV,2017. 2,6

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, 2020. 2, 3

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531,2015. 2,3, 4

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. In NeurIPS,
2020. 2,5

Donghyun Kim, Kuniaki Saito, Tae-Hyun Oh, Bryan A Plum-
mer, Stan Sclaroff, and Kate Saenko. CDSP: Cross-domain
self-supervised pre-training. In /CCV, 2021. 3

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D.
Yoo. Edge-labeling graph neural network for few-shot learn-
ing. In CVPR, 2019. 3

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML, 2015. 3

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex
optimization. In CVPR, 2019. 3,6, 7, 8

Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,
and Xiaogang Wang. Finding task-relevant features for few-
shot learning by category traversal. In CVPR, 2019. 6
Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and
Jiebo Luo. Revisiting local descriptor based image-to-class
measure for few-shot learning. In CVPR, 2019. 7

Wenbin Li, Jinglin Xu, Jing Huo, Lei Wang, Yang Gao, and
Jiebo Luo. Distribution consistency based covariance metric
networks for few-shot learning. In AAAI 2019. 3

Zhizhong Li and Derek Hoiem. Learning without forgetting.
TPAMI, 40(12):2935-2947, 2017. 3

Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei
Bursuc. Dense classification and implanting for few-shot
learning. In CVPR, 2019. 6

Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho



[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

[52]

(53]

[54]

[55]

[56]

[57]

Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate la-
bels: Transductive propagation network for few-shot learning.
In ICLR, 2019. 6

Puneet Mangla, Nupur Kumari, Abhishek Sinha, Mayank
Singh, Balaji Krishnamurthy, and Vineeth N Balasubrama-
nian. Charting the right manifold: Manifold mixup for few-
shot learning. In WACV, 2020. 7, 8

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir
Levine, Akihiro Matsukawa, and Hassan Ghasemzadeh. Im-
proved knowledge distillation via teacher assistant. In AAAI,
2020. 3

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin
Ishii. Virtual adversarial training: A regularization method for
supervised and semi-supervised learning. TPAMI, 41(8):1979—
1993, 2018. 4

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
2016. 3

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 3

Boris Oreshkin, Pau Rodriguez Lépez, and Alexandre La-
coste. TADAM: Task dependent adaptive metric for improved
few-shot learning. In NeurIPS, 2018. 3,6

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In CVPR, 2016. 3

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In CVPR, 2018. 6

Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In /CLR, 2017. 2, 3,6

Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Few-shot learning with embedded class models and shot-free
meta training. In ICCV, 2019. 6

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-shot
classification. In ICLR, 2018. 2, 6

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.
Meta-learning with latent embedding optimization. In /CLR,
2019. 3,6

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate
Saenko. Universal domain adaptation through self super-
vision. In NeurIPS, 2020. 3

Victor Garcia Satorras and Joan Bruna Estrach. Few-shot
learning with graph neural networks. In ICLR, 2018. 3
Jirgen Schmidhuber. Evolutionary principles in self-
referential learning. On learning how to learn: The meta-
meta-... hook. Diploma thesis, Institut f. Informatik, Tech.
Univ. Munich, 1987. 1

Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary,
Mattias Marder, Abhishek Kumar, Rogerio Feris, Raja Giryes,
and Alex M. Bronstein. Delta-encoder: An effective sample
synthesis method for few-shot object recognition. In NeurIPS,
2018. 1,2,3

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,
Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-

(58]

(591

[60]

[61]

(62]

(63]

[64]

[65]

[66]

[67]

(68]

(69]

(70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

8710

canu, and Raia Hadsell. Progress & compress: A scalable
framework for continual learning. In ICML, 2018. 3
Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari.
How good is my GAN? In ECCV, 2018. 2

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypi-
cal networks for few-shot learning. In NeurIPS, 2017. 1, 3, 6,
7

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav
Gupta. Revisiting unreasonable effectiveness of data in deep
learning era. In ICCV, 2017. 7

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In CVPR, 2019.
6

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare:
Relation network for few-shot learning. In CVPR, 2018. 3, 6
Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan,
James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan
Pascanu. Distral: Robust multitask reinforcement learning.
In NeurIPS, 2017. 3

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer
Science & Business Media, 2012. 1, 3

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding. In ECCV, 2020. 3

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classifi-
cation: A good embedding is all you need? In ECCV, 2020.
6

Laurens van der Maaten and Geoffrey Hinton. Visualizing
high-dimensional data using t-SNE. JMLR, 9(11):2579-2605,
2008. 8

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning. In NeurIPS, 2016. 1, 2,3, 6,7

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The Caltech-UCSD Birds-200-2011
dataset. Technical report, 2011. 2, 6

Yu-Xiong Wang, Ross B. Girshick, Martial Hebert, and
Bharath Hariharan. Low-shot learning from imaginary data.
In CVPR, 2018. 1,2,3,6,7,8

Yu-Xiong Wang and Martial Hebert. Learning to learn: Model
regression networks for easy small sample learning. In ECCV,
2016. 1,2

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-
ing to model the tail. In NeurIPS, 2017. 2,7

Yi Wei, Xinyu Pan, Hongwei Qin, and Junjie Yan. Quantiza-
tion mimic: Towards very tiny CNN for object detection. In
ECCV,2018. 3

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 2, 3

Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning. In
CVPR, 2018. 3

Yonggqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep
Akata. f-VAEGAN-D2: A feature generating framework for
any-shot learning. In CVPR, 2019. 1,3

Jiaolong Xu, Peng Wang, Heng Yang, and Antonio M. Lépez.
Training a binary weight object detector by knowledge trans-
fer for autonomous driving. In /CRA, 2019. 3



(78]

[79]

[80]

(81]

[82]

[83]

[84]

(85]

(86]

(87]

[88]

Zheng Xu, Yen-Chang Hsu, and Jiawei Huang. Training
shallow and thin networks for acceleration via knowledge
distillation with conditional adversarial networks. In /CLR,
2018. 3

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In CVPR, 2020. 6

Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang.
Unsupervised embedding learning via invariant and spreading
instance feature. In CVPR, 2019. 3

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane
Deny. Barlow twins: Self-supervised learning via redundancy
reduction. 2021. 3

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
DeepEMD: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In CVPR,
2020. 3,6,7,8

Hongguang Zhang, Jing Zhang, and Piotr Koniusz. Few-shot
learning via saliency-guided hallucination of samples. In
CVPR, 2019. 1

Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Ben-
gio, and Yangqiu Song. MetaGAN: An adversarial approach
to few-shot learning. In NeurIPS, 2018. 1, 2

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In ECCV, 2016. 3

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-
brain autoencoders: Unsupervised learning by cross-channel
prediction. In CVPR, 2017. 3

Weilin Zhang and Yu-Xiong Wang. Hallucination improves
few-shot object detection. In CVPR, 2021. 1

Fengwei Zhou, Bin Wu, and Zhenguo Li. Deep meta-learning:
Learning to learn in the concept space. arXiv preprint
arXiv:1802.03596, 2018. 6

8711



