


learn classifiers. The hallucinator is meta-trained end-to-end

with the learner, through back-propagating a classification

loss based on ground-truth labels of query data.

Despite the success of prior approaches, we argue that

solely using the classification loss on the small query set

as supervision is insufficient to adjust the hallucinator to

produce effective samples in the few-shot regime. Therefore,

the performance of the classifiers trained on hallucinated

examples is still substantially inferior to that of the classi-

fiers trained on real examples [16, 58]. To overcome this

challenge, our key insight is that there are two important

yet under-explored natural signals for guiding the data gen-

eration process – extrinsic and intrinsic supervision. This

work explores how to leverage such supervision to enable

hallucinating examples in a way that helps the classification

algorithm learn better classifiers.

The first source of supervision is an extrinsic signal

from large-sample learning. As illustrated in Figure 1, to

be most helpful as a hallucinator, a classifier trained on the

hallucinated examples (which are generated from a small

support set of real samples) is expected to be close to a strong

classifier that would be trained on a large amount of real

examples . This extrinsic signal from large-sample learning

is a natural source of supervision for few-shot learning, but

it has been largely overlooked in prior work. While we

have very little data on novel classes, we do have a large

number of real examples on base classes. Therefore, on base

classes we introduce a “mentor” model, which is a strong

classifier pre-trained on all the available large amount of

real examples. Correspondingly, the classifier trained on

hallucinated examples along with few real support examples

becomes the “student.”

We now minimize the discrepancy between the student

and mentor classifiers. A straightforward approach would be

minimizing the distance between the two classifiers in the

parameter space [71, 72, 11], which tends to be difficult and

noisy due to the lack of suitable metrics. Hence, we instead

encourage the output predictions from the student classifier

(e.g., the distribution of class probabilities) to be similar to

those predicted by the mentor on the query set. This way of

learning is reminiscent of knowledge distillation [29]. By

doing so, the hallucinator explicitly learns how to produce

examples that enable the student classifier to mimic the be-

havior of the mentor. Note that the student-mentor pairs are

only used for meta-training on base classes; there are no

mentor classifiers for meta-testing on novel classes.

In practice, the student and mentor classifiers could be

quite different from each other at the beginning of the train-

ing, if the mentor is produced by a large amount of real

examples while the student has access to only few real ex-

amples. To address this issue, we propose a progressive

guidance scheme inspired by curriculum learning [8], and

explore two dual directions – (1) we start with a mentor and

a student, both trained on a small number of real examples,

and we gradually strengthen the mentor by re-training it

with increasing number of real examples; and (2) we start

with a mentor and a student, both trained on a large number

of real examples, and we gradually weaken the student by

removing its real examples. During both of the processes,

the hallucinator is also trained progressively.

The second source of supervision is the intrinsic label

consistency between hallucinated and real examples. As

illustrated in Figure 1, hallucinated and real examples be-

longing to the same class should be pulled together, while

simultaneously pushing apart clusters of hallucinated and

real examples from different classes. However, without ap-

propriate constraints, the hallucinated examples might be

noisy and spread over across class boundaries (e.g., a halluci-

nated dog example resides within the cat cluster). To this end,

we formulate the problem as supervised contrastive learn-

ing, inspired by recent progress on self-supervised learn-

ing [74, 28, 12, 30]. We treat hallucinated and real examples

as different views of the data, and generate the positive and

negative pairs correspondingly. For example, the positives

are drawn from both hallucinated and real samples of the

same class. Note that different from conventional contrastive

learning that learns an embedding space (where the data

augmentation is pre-defined), we use the contrastive loss to

self-direct the hallucinated examples in the right class cluster

or manifold (where is the feature space is pre-trained).

Our contributions are three-fold. (1) By jointly lever-

aging the complementary extrinsic and intrinsic supervi-

sion, we develop a general meta-learning with hallucina-

tion framework. (2) We not only extract shared knowledge

across a collection of few-shot learning tasks, similar to most

existing meta-learning methods, but also progressively ex-

ploit extrinsic knowledge in large-sample models trained

on base classes as mentor to guide hallucination and few-

shot learning. (3) Through a contrastive learning process,

the hallucinated examples are self-directed to maintain the

intrinsic label consistency with real examples. Our dual

mentor- and self-directed (DMAS) hallucinator is model-

agnostic, which can generate data in different feature spaces

and can be combined with different classification models to

consistently boost their few-shot learning performance on

a variety of benchmarks, including ImageNet1K [27, 70],

miniImageNet [68, 49], tieredImageNet [51], and CUB [69].

2. Related Work

Generative Models. Generative models have recently

shown great potential as a way of data augmentation for

few-shot learning [5, 70, 84, 22] and semi-supervised learn-

ing [16], but the improvement of recognition performance

is still limited [58]. The generation can be performed

either in image space [15] or in a pre-trained feature

space [27], by using an auto-encoder architecture [56], GAN-
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like generator [70], or the combination of GANs and auto-

encoders [75, 76]. Our work is independent of these different

types of generators, and we focus primarily on how to train

the generator to improve its use for recognition tasks by lever-

aging large amounts of auxiliary data and self-supervision.

Few-Shot Learning and Meta-Learning. Meta-

learning, or the ability to learn to learn [64], is a powerful

framework for tackling the problem of learning with lim-

ited data. Most of modern approaches fall into one of the

categories between optimization and metric learning based

methods. Optimization based methods learn how to do fast

adaptation to novel tasks, by learning appropriate parame-

ter updates [49] or a general initialization [21]. Adaptation

could be done in the original feature space [21, 4, 6] or in an

embedded space [52]. Prior work on few-shot domain adap-

tation [53, 31] learns how to balance cross-domain clustering

that is domain invariant. Metric learning methods focus on

learning a similarity metric [33]. Several distance functions

have been explored, from the Euclidean distance [59, 2] and

the cosine distance [13, 23, 19] to more complex parametric

functions and metrics [68, 62, 37, 82], or using an additional

task-specific metric [46]. Most methods often treat each cat-

egory separately without considering the relations between

them. Graph neural networks are thus introduced to leverage

those relations [54, 32, 24]. To conduct meta-learning more

effectively, recent approaches often first compute a set of fea-

tures of the images using a trained feature extractor network.

Given that high-dimensional features have better modeling

capacity but are computationally expensive to work with,

each meta-learning task is then formulated as a convex op-

timization problem and solved in its low-dimensional dual

space [9, 34]. Our hallucinator component is generic and

can be integrated into different meta-learning methods.

Teacher-Student Networks. Learning a model under the

guidance of a teacher or mentor model has been widely used

for model compression. Compressing one cumbersome or

several models into a smaller model is a classic idea [18, 10]

and has been popularized by the distillation formulation

in [29]. Recent work focuses on advanced techniques to

guide the distillation process [42, 78, 1] and its applications

to practical problems, such as object detection [77, 73] and

distributed machine learning [3]. In addition, knowledge dis-

tillation has been extended to address other tasks, including

multi-task learning [63] and continual learning [38, 57]. To

the best of our knowledge, our work is the first to introduce a

mentor network for learning recognition task oriented gener-

ative models. Importantly, different from existing work that

addresses models of different capacity, we consider models

of the same capacity but trained on real or synthetic data.

Contrastive Learning. Powerful self-supervised repre-

sentation learning approaches have recently been developed

in image domain via manually specified pretext tasks. Ex-

amples include auto-encoding methods which leverage con-

texts [47], channels [86], and colors [85] to recover the

input under some corruption. Some pretext tasks form

pseudo-labels by relative patch locations [17], image ro-

tations [25], and jigsaw puzzles [44]. These pretext tasks

are collected under the umbrella of the contrastive learn-

ing framework, which maintains the relative consistency

between the representations of an image and its augmented

views [45, 74, 80, 28, 12, 65, 26, 14, 81]. In our work, we

treat hallucinated and real examples as different views of the

data and use the contrastive loss to self-direct the halluci-

nated examples in the right class cluster or manifold.

3. Dual Mentor- and Self-Directed Hallucina-

tor

Few-Shot Learning Setting. We are given a set of base

categories Cbase and a set of novel categories Cnovel, where

Cbase∩Cnovel = ∅. We have a base dataset Dbase with a large

amount of annotated training examples per class and a novel

dataset Dnovel with only few annotated training examples per

class. Few-shot learning aims to learn a good classification

model h for Cnovel based on the small dataset Dnovel. Recent

work achieves this through a meta-learning procedure [68],

which learns from a collection of sampled few-shot classifi-

cation tasks on Cbase. Given a set of categories C and a set of

data D, an m-way k-shot task is composed of a subset Csub
of m categories from C, a support (training) set Ssupp of k

examples from D for each class in Csub, and a query (test)

set Squery of one or few examples from D for each class in

Csub. Meta-learning is performed in two phases as follows.

During meta-training, a classifier learns from a collection

of m-way k-shot tasks sampled from Cbase and Dbase. While

our work is agnostic to different classification models, here

we take a simple cosine classifier [13] as an example – a

variant of prototypical networks [59] which uses the cosine

instead of the standard Euclidean distance function. In each

iteration, we compute a prototype representation for each

class in Csub. Each example is fed to an embedding function

fθ with learnable parameters θ. The prototype of class c is

the mean of the outputs through fθ of examples from c in

Ssupp. We then feed the examples in Squery to the classifier

and update the parameters θ. During meta-testing, we use

the same approach and build our previously meta-learned

classifier with one unique m-way k-shot task, using Cnovel
instead of Cbase and Dnovel instead of Dbase. We evaluate the

final classifier on unseen examples with labels from Cnovel.

Meta-Learning with Hallucination. Incorporating a

generative model which produces additional examples

for data augmentation has been shown to facilitate meta-

learning [70, 22, 56]. While our approach does not rely on

specific types of generative models, here we focus on the

feature hallucinator in [70], due to its simplicity and state-of-

the-art performance, which is implemented as a light-weight

multi-layer perceptron (MLP) module. The hallucinator is a
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Method Backbone
miniImageNet tieredImageNet

k=1 5 k=1 5

Cosine Classifier [13] ResNet12 55.43 ± 0.81 77.18 ± 0.61 61.49 ± 0.91 82.37 ± 0.67

TADAM [46] ResNet12 58.50 ± 0.30 76.70 ± 0.30 – –

ECM [50] ResNet12 59.00 ± – 77.46 ± – 63.99 ± – 81.97 ± –

TPN [40] ResNet12 59.46 ± – 75.65 ± – 59.91 ± 0.94 73.30 ± 0.75

PPA [48] WRN-28-10 59.60 ± 0.41 73.74 ± 0.19 – –

ProtoNet [59] ResNet12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65

wDAE-GNN [24] WRN-28-10 61.07 ± 0.15 76.75 ± 0.11 68.18 ± 0.16 83.09 ± 0.12

MTL [61] ResNet12 61.20 ± 1.80 75.50 ± 0.80 – –

LEO [52] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

DC [39] ResNet12 62.53 ± 0.19 79.77 ± 0.19 – –

MetaOptNet [34] ResNet12 62.64 ± 0.82 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

FEAT [79] ResNet24 62.96 ± 0.20 78.49 ± 0.15 – –

MatchingNet [68] ResNet12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71

CTM [35] ResNet18 64.12 ± 0.82 80.51 ± 0.13 68.41 ± 0.39 84.28 ± 1.73

RFS [66] ResNet12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

DeepEMD [82] ResNet12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

DMAS (Ours) ResNet12 67.42 ± 0.28 83.74 ± 0.20 73.54 ± 0.73 86.27 ± 0.47

(a) Test accuracy (%) on the novel classes for miniImageNet and tieredImageNet.

‘±’ indicates 95% confidence intervals over tasks.

Method Backbone k=1 5

ProtoNet [59] ResNet12 66.09 ± 0.92 82.50 ± 0.58

RelationNet [13, 62] ResNet34 66.20 ± 0.99 82.30 ± 0.58

DEML [88] ResNet50 66.95 ± 1.06 77.11 ± 0.78

MAML [13] ResNet34 67.28 ± 1.08 83.47 ± 0.59

Cosine Classifier [13] ResNet12 67.30 ± 0.86 84.75 ± 0.60

MatchingNet [68] ResNet12 71.87 ± 0.85 85.08 ± 0.57

DeepEMD [82] ResNet12 75.65 ± 0.83 88.69 ± 0.50

DMAS (Ours) ResNet12 78.47 ± 0.62 90.67 ± 0.39

(b) Test accuracy (%) on the novel classes for CUB.

‘±’ indicates 95% confidence intervals over tasks.

Method Backbone k=1 2 5 10

ProtoNet [59] ResNet10 39.3 54.4 66.3 71.2

ProtoNet Gen [70] ResNet10 45.0 55.9 67.3 73.0

MatchingNet [68] ResNet10 43.6 54.0 66.0 72.5

Logistic regression [27] ResNet10 38.4 51.1 64.8 71.6

Logistic regression Analogies [27] ResNet10 40.7 50.8 62.0 69.3

Prototype Matching Net Gen [70] ResNet10 45.8 57.8 69.0 74.3

Cosine Att. Weight [23] ResNet10 46.0 57.5 69.1 74.8

DMAS (Ours) ResNet10 46.5 58.3 69.7 75.1

(c) Top-5 accuracy (%) for 311-way novel-class clas-

sification on ImageNet1K. The 95% confidence in-

tervals for all number are of the order of 0.2%.

Table 1: Comparisons with state of the art on four widely-benchmarked few-shot classification datasets. With simple cosine classifiers, our

DMAS significantly and consistently outperforms all the baselines (including sophisticated classification models) across the board.

tic to the choice of classification models, we validate its

generalizability to different types of features and various

meta-learning models. In particular, we focus on simple co-

sine classifiers, which have been recently shown to achieve

very competitive few-shot performance [13].

Datasets. We evaluate on four widely-used datasets: (1)

miniImageNet [68, 49], with 64, 16, and 20 classes for meta-

training, meta-validation, and meta-testing, respectively; (2)

tieredImageNet [51], with 20, 6, and 8 super-classes for

meta-training, meta-validation, and meta-testing, respec-

tively; (3) ImageNet1K [27, 70], with 193 base and 300

novel classes for cross-validation and 196 base and 311

novel classes for evaluation; (4) Caltech-UCSD Birds-200-

2011 (CUB) [69, 79], with 100, 50, and 50 classes for meta-

training, meta-validation, and meta-testing, respectively.

Implementation Details. For a fair comparison with pre-

vious work, we employ ResNet10 as our model backbone

for ImageNet1K [70] and ResNet12 as our model backbone

for the other three datasets [82]. As is commonly imple-

mented in the state-of-the-art work, we follow the feature

pre-training step [82]. We first train a convolutional network

based feature extractor on the base classes. Then we extract

and save these features to disk, and use these pre-computed

features as inputs for meta-learning. We follow the feature

hallucinator architecture in [70] and use a three layer MLP

with ReLU as the activation. The embedding function fθ of

our cosine classifier is a two layer MLP.

During progressive guidance by weakening the student,

we start training the mentor with klarge = 256, and we

decrease the number to 1 in a logarithmic scale over 12, 000

iterations. We initialize the learnable parameters including

the temperature τ1 to 7, the scale factor of the cosine distance

to 75, and the temperature τ2 to 0.07. As the performance

is not sensitive to trade-off hyper-parameters α and β, we

empirically set them to 5 and 1, respectively. The number

of hallucinated examples is a hype-parameter ranging from

2 − 10. The saturation point of hallucinated examples on

improving performance is typically 6. For ImageNet1K, we

follow the settings in [70] and average over 5 pre-determined

k-shot (i.e., k = 1, 2, 5, 10) tasks. We report the mean top-5

accuracy and the 95% confidence intervals for all number are

of the order of 0.2%. For the other datasets, we average over

1, 000 randomly sampled tasks and report the accuracies and

the 95% confidence intervals.

Comparisons with State of the Art. We compare our

model with the state-of-the-art methods. We report 5-way

1-shot and 5-way 5-shot performance on three benchmarks:

miniImageNet, tieredImageNet, and CUB, and 311-way k-

shot on ImageNet1K. The results are summarized in Ta-

ble 1. Under the same backbones, our model consistently

achieves the best performance on all the datasets and across

different sample-size regimes, even outperforming sophis-

ticated methods, such as the attention based classifier ‘Co-

sine Att. Weight’ [23] and DeepEMD [82]. In particular,

our 1-shot model outperforms state-of-the-art methods by

significant margins, e.g., 1.5% on miniImageNet, 2% on

tieredImageNet, and 2.8% on CUB.

Ablation Analysis. To unpack the performance gain and

understand the impact of different components, we perform

a series of ablations on the challenging ImageNet1K dataset.

Tables 2 summarizes the top-5 accuracies and the 95% con-

fidence intervals for all number are of the order of 0.2%.

Robust to different types of pre-trained features and clas-

sifiers. Table 2 shows that DMAS can effectively hallucinate
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Method Feature k=1 2 5 10

ProtoNet [59] (baseline) Standard 39.3 54.4 66.3 71.2

ProtoNet w/ aug (baseline) Standard 40.2 55.0 66.7 71.6

ProtoNet Gen [70] (baseline) Standard 45.0 55.9 67.3 73.0

ProtoNet DMAS w/ ex Standard 45.1 55.5 67.3 73.3

ProtoNet DMAS (full) Standard 45.9 56.5 68.2 73.9

Cosine Classifier (baseline) Standard 37.8 51.0 65.5 72.5

Cosine Classifier Gen (baseline) Standard 42.6 53.9 66.4 72.6

Cosine Classifier DMAS w/ in Standard 43.4 54.7 67.1 73.5

Cosine Classifier DMAS w/ ex Standard 44.5 56.2 68.6 74.2

Cosine Classifier DMAS w/ ex↑ Standard 44.3 56.3 68.8 74.2

Cosine Classifier DMAS w/ ex↓ Standard 45.4 56.7 68.8 74.8

Cosine Classifier DMAS (full) Standard 46.5 58.3 69.7 75.1

Cosine Classifier (baseline) Cosine 45.8 57.0 68.9 74.3

Cosine Classifier Gen (baseline) Cosine 47.0 57.8 69.1 74.3

Cosine Classifier DMAS w/ ex Cosine 47.2 58.2 69.2 74.4

Cosine Classifier DMAS (full) Cosine 47.9 59.3 70.1 75.5

Table 2: Ablation studies (top-5 accuracy) on ImageNet1K 311-

way classification: (1) different pre-trained feature spaces for

hallucination – ‘standard’ (the feature backbone is a ResNet10

pre-trained using a standard cross-entropy linear classifier on base

classes) vs. ‘cosine’ (the ResNet10 feature backbone is pre-trained

using a cosine classifier); (2) different types of classifiers – proto-

typical net vs. cosine classifier; (3) impact of different sources of

supervision and progressive training. w/ aug: with standard data

augmentation. Gen: with a plain hallucinator [70] trained using

the classification loss on the query set solely. DMAS w/ ex: DMAS

trained only under the guidance of the mentor without progressive

training. DMAS w/ ex↑: progressive guidance through strength-

ening the mentor. DMAS w/ ex↓: progressive guidance through

weakening the student. DMAS w/ in: DMAS trained only in a self-

directed way through contrastive learning. DMAS (full): trained

under both (progressively) extrinsic and intrinsic supervision.

Method k=1 5

ProtoNet [59] 50.01 ± 0.82 72.02 ± 0.67

MatchingNet [68] 51.65 ± 0.84 69.14 ± 0.72

Cosine Classifier [13] 44.17 ± 0.78 69.01 ± 0.74

Linear Classifier [13] 50.37 ± 0.79 73.30 ± 0.69

KNN [36] 50.84 ± 0.81 71.25 ± 0.69

DeepEMD [82] 54.24 ± 0.86 78.86 ± 0.65

DMAS (Ours) 63.72 ± 0.29 81.24 ± 0.20

Table 3: Cross-domain evaluation (miniImageNet → CUB). Our

model outperforms other baseline methods by large margins, show-

ing the generalization of our learned hallucinator.

data in different types of pre-trained feature spaces and can

work with different types of classifiers. Notably, DMAS

achieves the best performance in a homogeneous setting,

where the feature is pre-trained by using a cosine classifier

and the final classification model is also a cosine classifier.

Extrinsic guidance from mentor. From Table 2, we can

observe that DMAS significantly outperforms baselines by

benefiting from the extrinsic guidance of the mentor. There

are 5.8% improvement when combining with the prototypi-

cal network and 6.7% improvement when combining with

the cosine classifier. More importantly, DMAS outperforms

the plain hallucinator [70] which is trained using the classifi-

cation loss only. Note that both the baselines and DMAS use

the same amount of data for meta-training on base classes.

Intrinsic supervision. Table 2 also shows that DMAS

trained only with the intrinsic supervision already outper-

Method Backbone k=1 5

MetaOptNet [34] ResNet12 62.64 ± 0.61 78.63 ± 0.46

MetaOptNet + Gen [70] ResNet12 63.46 ± 0.43 80.02 ± 0.28

MetaOptNet + DMAS (Ours) ResNet12 64.55 ± 0.64 80.42 ± 0.46

S2M2 [41] WRN-28-10 63.90 ± 0.18 81.03 ± 0.11

S2M2 + Gen [70] WRN-28-10 63.37 ± 0.56 81.23 ± 0.19

S2M2 + DMAS (Ours) WRN-28-10 65.35 ± 0.63 83.55 ± 0.41

DeepEMD [82] ResNet12 65.91 ± 0.82 82.41 ± 0.56

DeepEMD + Gen [70] ResNet12 64.73 ± 0.30 79.92 ± 0.21

DeepEMD + DMAS (Ours) ResNet12 67.42 ± 0.28 83.74 ± 0.20

Table 4: Ablation study on the generalizability of our approach

and additional comparisons with state of the art on miniImageNet.

Our DMAS hallucinator is general and can work with different

types of classification models and different backbone models

to consistently improve their performance. In addition, DMAS

consistently outperforms the plain hallucinator [70].

forms the baselines. The improvement is more pronounced

when there are very few examples, e.g., 5.6% improvement

when k = 1. This implies the importance of preserving the

label consistency between hallucinated and real examples.

In addition, the full DMAS model achieves the best perfor-

mance, demonstrating that the extrinsic supervision and the

intrinsic supervision are complementary to each other.

Strengthening the mentor vs. weakening the student. We

compare two directions for progressive guidance by strength-

ening the mentor (w/ ex↑) and weakening the student (w/

ex↓). We use a logarithmic scale when changing the num-

ber of examples on which the student or mentor model is

trained [60, 72]. As shown in Table 2, both directions outper-

form the normal guidance without progression (w/ ex), and

weakening the student achieves better results. It comes from

the fact that, if both mentor and student start being weak,

the learning problem could actually be hard due to the high

variance of both mentor and student.

Comparisons with standard data augmentation. Table 2

shows that our learned data hallucination outperforms meta-

learning with standard hand-crafted data augmentation (‘w/

aug’), which includes random crop, random horizontal flip,

and color jittering as in [13], indicating the importance of

exploiting shared intra-class variation.

Cross-Domain Evaluation. So far, we have focused on

the within-domain scenario. Now we consider the cross-

domain scenario, which allows us to investigate the gen-

eralization of our DMAS hallucinator and understand the

effects of domain shifts. Following the cross-domain setup

in [13, 82], the experiment in Table 3 shows that our DMAS

hallucinator trained on miniImageNet is effective for never-

before-seen classes on CUB without any fine-tuning.

DMAS as a General Plug-and-Play Module. Table 4

further shows the generalizability of our approach – the

DMAS hallucinator can work with different types of clas-

sification models and different backbone models to consis-

tently improve their performance. To fully investigate the

impact of DMAS and for a fair comparison, we conduct

experiments on miniImageNet with the same training setups

(e.g., backbones, data augmentation techniques, and training
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