


contrastive property and the possibility of the joint label-

consistent and feature-contrastive regularization have been

largely under-explored.

Based on our insight, this paper explores how to lever-

age and simultaneously enforce the consistency property in

the label space and the contrastive property in the feature

space, leading to a novel pixel contrastive-consistent semi-

supervised segmentation (PC2Seg) method. For the label

consistency property, we introduce a simple pixel-wise ℓ2
consistency loss between the outputs of weakly and strongly

augmented views of the same image. For the feature con-

trastive property, we extend the popular InfoNCE-based

contrastive loss [5, 19] and make significant modifications

for its use at the pixel level on an intermediate feature map.

More concretely, the pixel contrastive loss in semantic

segmentation faces the unique technical challenges of high

computational cost and harmful false negative examples,

compared with the standard image-level contrastive learn-

ing. The potentially high computation is due to the need of

contrasting a large number of pixels. The harm of false neg-

ative examples (i.e., when examples of the same class as the

anchor are mistakenly chosen as the contrasting examples)

has been noted in image-level contrastive learning [10, 23].

This problem becomes particularly severe in segmentation,

where accurate per-pixel predictions are required compared

with image classification. To overcome these issues, we

develop simple-yet-effective negative sampling strategies.

For each positive pair of pixels, we sample only a moderate

number of negative pixels from the mini-batch for efficiency

and avoid false negative pixels by a simple cross-image and

pseudo-label weighting heuristic.

Our contributions are three-fold:

1. We propose the first framework that leverages both pixel-

consistency (in the label space) and pixel-contrastive (in

the feature space) properties for semi-supervised seman-

tic segmentation. We show that these two properties are

complementary and their synergy is important.

2. We generalize the existing image-level contrastive learn-

ing to pixel-level. To overcome the computational cost

and false negative difficulties inherent in segmentation

tasks, we propose a novel negative sampling technique

and investigate its four variants.

3. We demonstrate state-of-the-art performance on multi-

ple widely-used benchmarks. This is achieved relatively

easily by leveraging the proposed framework together

with standard loss functions and data augmentations,

without sacrificing efficiency compared to other semi-

supervised methods.

2. Related Work

Contrastive Learning. Self-supervised or unsupervised

visual representation learning has been gaining momen-

tum [5, 6, 8, 18, 19]. At the center of the recent progress is

the contrastive learning based pretext tasks [5,6,19], which

learn representations that discriminate similar image pairs

(constructed from different augmentations of the same im-

ages) from dissimilar, negative image pairs. A variety of

strategies have been investigated to choose appropriate neg-

ative pairs. In MoCo [7,19], a memory buffer and a momen-

tum encoder are maintained to provide negative samples. In

SimCLR [5, 6], the negative samples are the large training

mini-batches. Improper negative pairs might hurt learning

performance: Particularly related to our negative pixel sam-

pling strategies, [10,23,49] have proposed ways to alleviate

the bias issue caused by incorrect (false) negative images

by modifying the contrastive loss function. PC2Seg does

not change the loss function but rather samples the nega-

tive examples strategically. SimSiam [8] and BYOL [18]

find that simple consistency training without negatives can

also be effective with carefully designed architectures and

training procedures. However, our ablation study shows that

PC2Seg still benefits from negative samples compared with

feature-space consistency training alone.

Pixel-level contrastive learning has not been well-

explored until very recently. [38, 44, 47, 51] explore dense

pixel-level self-supervised pretraining. They show that

pixel-level pretext tasks can transfer better to segmentation

than image-level self-supervised learning. In this paper, we

attempt to benefit from pixel-level contrastive learning in

the semi-supervised rather than the unsupervised setting.

We present a strong semi-supervised approach that jointly

optimizes a contrastive loss on the intermediate features and

a consistent loss on the output masks.

Contrastive learning can be used in the supervised setting

[27] to improve generalization. Researchers have attempted

to apply supervised contrastive learning for semantic seg-

mentation [46, 54]. [46] directly leverages pixel contrast-

ing in supervised segmentation training, while [54] adopts

it during the first supervised stage in a multi-stage semi-

supervised setting. Compared with these attempts, we fo-

cus on the single-stage semi-supervised setting, where self-

supervised contrastive loss is jointly applied on the unla-

beled images branch without using any ground-truth labels.

Semi-Supervised Learning. Semi-supervised learning

aims at leveraging labeled data and a large amount of unla-

beled data. The idea of consistency regularization is inher-

ent in many successful semi-supervised approaches. Itera-

tive pseudo-labeling and re-training [30, 42, 56] implicitly

enforces consistent predictions between the current model

(student) and its past versions (teacher), leading to smaller

entropy and larger class separation of the predicted label

distribution. FixMatch [39], VAT [35], and UDA [50] lever-

age consistency regularization between weak and strong (or

local adversarial [35]) augmented views of the same unla-

beled image in a single-stage training pipeline. S4L [52]
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weak and strong views:

ℓ
cy
i = 1− cos(ŷi, ŷ

+
i ). (3)

The cosine similarity is cos(u,v) = u
¦
v

∥u∥
2
∥v∥

2

. In practice,

we sharpen the softmax for the weak branch output ŷi by

dividing the logits by temperature 0.5. We also put a stop-

gradient operation on the weak output as in [5, 8, 18, 57],

so that the gradients only back-propagate into the strong

branch but not the weak branch. This effectively makes the

weak branch predictions ŷi act as the pseudo labels to train

the strong branch. Empirically we found that our ℓ2 consis-

tency loss outperforms the cross-entropy loss in [57].

3.2. Pixel Contrastive Loss

Suppose the feature map, of either the weak branch or the

strong branch, has shape B ×H ×W ×D, where B is the

batch size, H and W are the height and width, and D is the

feature dimension. We denote i ∈ {1, 2, . . . , B ×H ×W}
as the index of one pixel location on this feature map. Given

the feature vector zi ∈ R
D of the anchor pixel, the goal of

contrastive learning is to increase its similarity to a posi-

tive pixel z+
i and reduce its similarity to N negative pixels

{z−
in}

N
n=1. A popular choice of the loss function to achieve

such goal is the InfoNCE [21] loss, which is relevant to the

noise contrastive mutual information estimator. When com-

bining the InfoNCE loss with the cosine similarity, we ar-

rive at the pixel contrastive loss in the form of

ℓcei = − log
ecos(zi

,z+

i
)/τ

ecos(zi
,z+

i
)/τ +

N
�

n=1
ecos(zi

,z−

in
)/τ

. (4)

Here Ä is a temperature hyper-parameter to control the scale

of terms inside exponential, which is set to 0.07 throughout

our experiments following prior work [5, 6]. The use of

cosine similarity is shown to be effective in existing con-

trastive learning work [5, 5, 18, 19, 43, 46].

Directly optimizing Eq. 4, however, is challenging. The

first difficulty is that the raw feature vectors can be quite

high-dimensional, e.g., the last ResNet backbone feature

map has shape 33 × 33 × 2, 048 in DeepLab [4], leading

to high memory and computational cost. We therefore uti-

lize a linear projection layer to reduce the feature dimension

from 2, 048 to 128, consistent with [23, 46]. The projection

head parameters of the weak and strong branches can be

separated or tied together. We found that separated projec-

tion heads work slightly better in our experiments. In the

weak branch, similar to the consistency loss, a stop gradient

operation is inserted before the projection.

The next major difficulty lies in deciding the positive and

negative pairs. In the ideal supervised learning setting, i.e.,

when the ground-truth pixel labels are known, we can sim-

ply select the positive pixel from the pixels of the true cate-

gory of the anchor pixel, and choose the negative pixels as

the pixels from different categories [27]. By contrast, the

issue becomes complicated when the labels are unknown

as in our setting. Existing work on image-level contrastive

learning circumvents the problem by forcing the positive

example to come from another augmented view of the same

image, while using both views of a large mini-batch [5] or

a memory bank [19] as the source of negative examples.

However, these techniques are not easily generalizable

to our task. For contrastive learning at pixel level, we still

choose the positive pixel as the corresponding pixel under

a random color augmentation. For example, if zi belongs

to the weak view, z+
i can be the corresponding pixel in the

strong view. As for the negative pixels, two issues occur if

we directly borrow existing approaches in image-level con-

trastive learning: (1) Due to the huge number of pixels, we

cannot afford to use all the pixels in the mini-batch as nega-

tive examples, because the memory and computational cost

scale with O(num pixels2); (2) Since the task is at pixel-

level, the segmentation model can be sensitive to noise from

incorrect negative pixels, if we adopt a simple mini-batch or

memory bank approach. A pixel of the same category as the

anchor pixel might be wrongly chosen as a negative pixel,

leading to ineffective or even misleading learning signal. To

resolve these issues, we propose to sub-sample a fixed num-

ber of negative pixels for each anchor pixel, and develop

several effective sub-sampling strategies as below.

3.2.1 Negative Sampling Strategies

Consider the i-th anchor pixel. Assume the N negative

pixels z
−
in are sampled without replacement according to

a discrete distribution pij , which is defined on a total of

M = B ×H ×W candidate pixels. More formally,

z
−
in ∼ Discrete

�

{zj}
M
j=1; {pij}

M
j=1

�

. (5)

Different sampling strategies essentially define different

sampling distributions {pij}
M
j=1. We investigate and com-

pare four of them in this paper, with illustration in Fig. 3:

Uniform. The most straightforward way is to sample neg-

ative pixels uniformly from the mini-batch. Suppose there

are M valid pixels in the current mini-batch; each pixel j =
1, 2, . . . ,M gets a uniformly distributed density, pij =

1
M .

As one can imagine, since many pixels on the same im-

age may belong to the same category, the uniform strategy

can produce a large number of false negative pixels, which

may hurt performance. This issue motivates us to study al-

ternative sampling distribution.

Different Image. One idea to fix the false negative issue is

to force the negative pixels to come from a different image,

such that the chance of sampling an incorrect negative is

reduced. Formally, we denote Ii and Ij as the image IDs of

the anchor pixel i and a candidate negative pixel j, and 1{·}
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Tab. 1: VOC 2012 1/2-1/16 labeled TRAIN set results.

The settings follow [57]. The numbers of labeled images

are shown inside the parentheses. R50 and R101 refer to

ResNet 50 and 101. We measure the mIoU on the VOC

2012 VAL set. The mIoUs of compared methods are the

reproduced results in [57] under these data splits. The re-

sults of [17, 57] and our method are obtained by DeepLab-

v3+; [37] uses PSP-Net whose base performance is compa-

rable to DeepLab-v3+, while other methods use DeepLab-

v2. PC2Seg obtains favorable results over existing methods.

Due to the high variance, we also include the standard devi-

ation of 3 runs on differently sampled 1/16 splits.

Method Net 1/2 (732) 1/4 (366) 1/8 (183) 1/16 (92)

AdvSemSeg [22] R101 65.27 59.97 47.58 39.69

CCT [37] R50 62.10 58.80 47.60 33.10

MT [42] R101 69.16 63.01 55.81 48.70

GCT [26] R101 70.67 64.71 54.98 46.04

VAT [35] R101 63.34 56.88 49.35 36.92

CutMix [17] R101 69.84 68.36 63.20 55.58

PseudoSeg [57] R50 70.42 64.85 61.88 54.89

PseudoSeg [57] R101 72.41 69.14 65.50 57.60

Sup. baseline R50 65.73 57.76 49.57 43.97

Sup. baseline R101 66.28 60.02 49.83 40.02

PC2Seg (Ours) R50 70.90 67.62 64.63 56.90 ±1.30

PC2Seg (Ours) R101 73.05 69.78 66.28 57.00 ±1.32

Tab. 2: VOC 2012 1.5k/9k split results (TRAIN 1.5k im-

ages as labeled data and TRAIN 1.5k + AUG 9k as unlabeled

data). The numbers of other methods are directly taken from

the corresponding publications.

Method Network mIoU (%)

GANSeg [40] VGG-16 64.10

AdvSemSeg [22] ResNet-101 68.40

CCT [37] ResNet-50 69.40

PseudoSeg [57] ResNet-50 71.00

PseudoSeg [57] ResNet-101 73.23

Sup. baseline ResNet-50 68.81

Sup. baseline ResNet-101 72.00

PC2Seg (Ours) ResNet-50 72.26

PC2Seg (Ours) ResNet-101 74.15

different backbones including ResNet-50 (the DeepLab

modified beta variant [4]), ResNet-101 [20], and Xception-

65 [9], to test the robustness of our approach to backbone

variations. The backbones are initialized from their Ima-

geNet [13] pretrained weights.

The hyper-parameters of our approach mainly include

the loss coefficients, the negative sampling strategies, and

other design choices of the pixel contrastive loss. They are

tuned with the VOC 1/8 split and ResNet-50. Please refer

Tab. 3: Cityscapes experiment results. The labeled data is

varied from 1/30 to full of the original TRAIN FINE set. We

evaluate the mIoU on the VAL FINE set. The result of [17]

is reproduced by [57] based on DeepLab-v3+, while the re-

sults of [16, 22, 34, 36] are their reported numbers based

on DeepLab-v2. R50 and R101 refer to ResNet 50 and

101. Our approach achieves higher scores than all previ-

ous methods. In the 1/4 and 1/8 settings, even the weaker

ResNet-50 backbone performs quite favorably.

Method Net 1 (2,975) 1/4 (744) 1/8 (377) 1/30 (100)

AdvSemSeg [22] R101 - 62.3 58.8 -

s4GAN [34] R101 65.8 61.9 59.3 -

DMT [16] R101 68.16 - 63.03 54.80

ClassMix [36] R101 - 63.63 61.35 -

CutMix [17] R101 - 68.33 65.82 55.71

PseudoSeg [57] R101 - 72.36 69.81 60.96

Sup. baseline R50 73.64 72.86 68.06 55.25

Sup. baseline R101 74.88 73.31 68.72 56.09

PC2Seg (Ours) R50 75.39 73.80 72.11 60.37

PC2Seg (Ours) R101 75.99 75.15 72.29 62.89

to the ablation study in Sec. 4.3 for details. These hyper-

parameters are used for other benchmarks without further

tuning. The performance could be further improved by

dataset-specific hyper-parameter selection. In the main re-

sults, we set the loss coefficients as ¼1 = 0.3 and ¼2 = 1.

The contrastive loss is computed for each anchor pixel in

the last backbone feature maps right before the encoder net-

work (i.e., Conv5 of ResNets and ExitFlow2 of Xception)

of both the weak and strong views. The number of nega-

tive pixels is 200. They are sampled from both views with

the “Different Image + Pseudo Label” strategy. Additional

training details and DeepLab-related hyper-parameters are

presented in the supplementary material.

4.2. Main Results

VOC 2012. We report the results on the 1/2-1/16 labeled

splits in Tab. 1. Our method (PC2Seg) outperforms the prior

state-of-the-art (PseudoSeg [57]) and other consistency-

based approaches in almost all data splits with the ResNet-

50 and ResNet-101 backbones. Note that the ratio of la-

beled data is small in this setting, since we use the entire

TRAIN+AUG 10,575 images as the unlabeled data. We ob-

serve that the gain of our approach is particularly notewor-

thy for moderately low-data regimes such as the 1/2 and

1/4 splits. The more extreme case of 1/16 labeled split (92

labeled images) is quite challenging, as there is very little

supervision signal for the semi-supervised model to learn in

the first place. We thus augment the weak branch with the

momentum averaging technique as in MoCo (momentum

0.99) and report the mean and standard deviation (std) of
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Tab. 4: COCO results. The original TRAIN set is split into 1/512-1/8 subsets to be the labeled data. PseudoSeg [57] results

are taken from their paper. PC2Seg performs consistently better than the supervised baseline and [57]. The gain over the

supervised baseline is the largest in the 1/256 split, while our 1/8 split result almost matches the supervised full data result.

Method Network Full (118k) 1/8 (14786) 1/16 (7393) 1/32 (3697) 1/64 (1849) 1/128 (925) 1/256 (463) 1/512 (232)

Sup. baseline Xception-65 50.10 47.91 45.12 42.24 37.80 33.60 27.96 22.94

PseudoSeg [57] Xception-65 - - - 43.64 41.75 39.11 37.11 29.78

PC2Seg Xception-65 50.67 49.91 48.07 46.05 43.67 40.12 37.53 29.94

3 runs of the 3 randomly generated 1/16 splits and observe

that our method is comparable to [57].

We also compare the results of the 1.4k/9k split in Tab. 2.

We find that our method outperforms the prior arts under

this setting, achieving 74.15% mIoU with ResNet-101.

Cityscapes. The Cityscapes results are shown in Tab. 3.

Across all semi-superivsed settings, PC2Seg outperforms

the supervised baseline by a large margin. Notably, with

ResNet-101, the mIoU gap between the full set result

(75.99%) and the 1/4 labeled setting result (75.15%) is only

0.84%. The performance of our method with ResNet-50 is

surprisingly good in the 1/8 and 1/30 settings, suggesting

that the deeper ResNet-101 backbone might be over-fitting

in such settings due to the limited amount of labeled data.

COCO. For the COCO experiments, we mainly compare

with the recent state-of-the-art PseudoSeg method [57] fol-

lowing their experiment protocols. Xception-65 [9], a

stronger backbone than ResNet-101, is used. The results

are shown in Tab. 4. We observe that our method performs

better in all data splits. We even see gains in the full data

setting, possibly because of the stronger data augmentation

and regularization in our method. The VAL mIoU of the

1/8 labeled setting is quite promising, almost catching the

supervised learning result of the fully labeled data.

4.3. Analyses

We report the ablation studies and diagnosis experiments

in this section. Without special mentioning, all experiments

are conducted with the ResNet-50 backbone and VOC 1/8

labeled split. The mIoUs are evaluated on the VOC VAL set.

Negative Sampling Strategy. One key technical contri-

bution of our method is the negative sampling strategy.

We measure the average False Negative Rates (FNR) dur-

ing training with different negative sampling strategies in

Tab. 5. We notice that FNR reduces with more complex

sampling distributions. As expected, the Uniform strategy

delivers the worst performance, suggesting that the noise

introduced by false negative pixels may indeed hurt perfor-

mance. The ideal case (marked as Oracle) pretends that the

algorithm knows the actual ground-truth masks during con-

trastive learning and can be seen as an upper bound. Our

best sampling strategy, Different Image + Pseudo Label,

achieves an mIoU almost as good as the Oracle version.

Tab. 5: Quantitative comparison of negative sampling

strategies in VOC 1/8 setting. We report the VAL mIoU

and the False Negative Rates (FNR) of the sampled negative

pixels. Oracle refers to the ideal case of using the ground-

truth masks to guide the (uniform) negative pixel sampling.

Strategy Unif Diff Unif+Pseu Diff+Pseu Oracle

mIoU (%) 62.70 63.33 64.38 64.63 64.78

FNR (%) 14.77 3.42 2.83 2.80 0

Tab. 6: Study on the number of sampled negative pixels.

None refers to not using the feature-space pixel contrastive

loss. As the number of negatives increases, the VAL mIoU

rises, but the computation and the memory costs also rise.

In our experiment, N = 1, 600 actually causes the out-of-

memory error. Therefore, we choose N = 200 in the main

results as a trade-off between accuracy and efficiency.

N None 50 100 200 400 800 1600

mIoU (%) 63.75 64.08 64.24 64.63 64.84 65.03 OOM

Number of Negative Pixels. Another importance factor in

our pixel contrastive loss is the number of sampled nega-

tive pixels N . Previous work suggests that a large number

of negatives may be beneficial to image-level contrastive

learning [5, 19]. While we generally agree with this argu-

ment, using a large number of negative pixels can be costly

in semantic segmentation. We believe that there should be

a trade-off between efficiency and accuracy. In Tab. 6, we

study the effect of the number of negative pixels. With the

help of the negative sampling strategy to reduce false nega-

tive rates, our approach can already obtain competitive per-

formance with only N = 200 negative pixels per anchor.

Loss Coefficients. We show the impact of the coefficients

on the label consistency loss (Eq. 3) and the feature con-

trastive loss (Eq. 4) in Tab. 7. We found that ¼1 = 0.3
and ¼2 = 1 achieve the best result, therefore adopting these

values in all other data splits and architectures. The co-

efficients transfer well to other settings. Another impor-

tant observation with this hyper-parameter study is the com-

plementary nature of the label consistency and the feature

contrastive properties. We notice that the joint contrastive-

consistent learning (64.63% when ¼1 = 0.3, ¼2 = 1) out-

performs either the purely consistent version (63.75% when
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Tab. 7: Effect of different combinations of unlabeled loss

weights. As in Eq. 2, ¼1 (column) is the coefficient on the

pixel contrastive loss in the feature space, ¼2 (row) is the

coefficient on the consistency loss in the label space. Per-

formance is measured by the VOC VAL mIoU when trained

in the 1/8-labeled setting. ¼1 = 0 is the special case of ap-

plying only label consistency training, while ¼2 = 0 is the

special case of applying only feature contrastive learning.

λ1 = 0 0.1 0.3 0.5 0.7 0.9

λ2 = 0 49.57 51.92 52.29 52.28 52.74 53.53

λ2 = 0.5 62.31 61.62 62.47 63.83 63.07 63.64

λ2 = 0.7 63.46 63.26 63.71 63.79 63.35 63.43

λ2 = 1.0 63.75 63.60 64.63 64.48 62.55 63.15

λ2 = 1.2 61.33 64.48 64.30 64.16 63.08 63.03

Tab. 8: Training time comparison in the VOC 1/8 setting.

Supervised PseudoSeg PC2Seg consist-only PC2Seg

Time (min) 38 80 75∼80 80

VAL mIoU (%) 49.57 61.88 63.21 64.63

Tab. 9: Investigation of the variants that use different loss

functions on the label space (row) and the feature space

(column) with other hyper-parameters fixed. Overall, we

observe that the ℓ2 loss is more robust as a label-space con-

sistency loss than the cross-entropy (CE) loss. In the 2nd

row, the pixel contrastive loss outperforms the pixel consis-

tency loss and the image-level contrastive loss.

mIoU (%) None Img Contrast Pix Consist Pix Contrast

Output CE 63.54 60.41 59.33 58.47

Output ℓ2 63.75 62.49 63.21 64.63

¼1 = 0, ¼2 = 1) or the best purely contrastive version

(53.53% when ¼1 = 0.9, ¼2 = 0), supporting our insight.

Computational Cost. We report the training time com-

parison in Tab. 8. While achieving higher performance, the

training time of PC2Seg is comparable to the previous state-

of-the-art semi-supervised method PseudoSeg [57]. If we

remove the contrastive component of PC2Seg, the time is

reduced by less than 5min, suggesting that the extra cost of

our pixel contrastive learning is low. We further show the

cost reduced by our negative sampling strategy through a

simple calculation in the supplementary material.

Comparison to Other Label-Space and Feature-Space

Losses. In the label space, we compare two variants: the

normalized ℓ2 loss (Sec. 3) and the cross-entropy (CE) loss.

In the feature space, we compare four variants: (1) no

feature-space loss (None), (2) image contrastive loss [5],

(3) pixel consistency loss, which is the normalized ℓ2 dis-

tance between pixel features, and (4) pixel contrastive loss.

Tab. 9 shows that the combination of the label ℓ2 loss and

the feature pixel contrastive loss achieves the best result.

Tab. 10: Varying the feature layer to apply the pixel con-

trastive loss. We report the VOC VAL mIoU in the 1/8 set-

ting. Conv3-5 are the corresponding conv blocks of ResNet-

50. Encoder refers to the feature map produced by the

DeepLab ASPP net. Decoder refers to the final feature

map right before classification. Conv5+Enc imposes a con-

trastive loss on two best-performing layers (Conv5 and En-

coder), which does not bring extra gains over a single layer.

Layer Conv3 Conv4 Conv5 Encoder Decoder Conv5+Enc

mIoU (%) 60.70 63.90 64.63 64.25 63.74 64.59

Tab. 11: Delaying the unlabeled loss until certain steps. The

total number of steps is 30,000. Applying all losses jointly

without delay achieves the best result.

Delayed Steps 0 2,000 4,000 8,000 12,000

mIoU (%) 64.63 63.30 62.67 62.56 62.50

Choice of Contrastive Learning Layer. In the main re-

sults, we choose to apply pixel contrastive learning on the

last feature map of the backbone networks (Conv5 block of

ResNet and ExitFlow2 block of Xception). We show results

of applying it on other ResNet layers in Tab. 10. Earlier

stage feature maps are larger in size and contain more low-

level details, while later stage feature maps lose resolutions

but contain more semantics. A mid-level intermediate layer

yields the best performance.

Projection Layer. The projection layer performs dimen-

sionality reduction on the feature vectors before contrasive

learning. We find that using separate projections for the

weak and strong branches yields higher mIoU than using a

shared projection head (64.63% vs. 63.97%).

Delayed-Start of Semi-Supervised Learning. We mimic

the two-stage variant that delays the start of semi-supervised

learning until certain steps in Tab. 11. We notice that break-

ing the training into two stages in fact decreases the perfor-

mance. Applying all losses jointly throughout the training

(Delay = 0) achieves a better result in our experiments.

5. Conclusion

We propose a novel semi-supervised semantic segmen-

tation approach based on feature-space contrastive learn-

ing and label-space consistency training. We also present

the negative sampling techniques to improve the efficiency

and effectiveness of pixel contrastive learning. Our ap-

proach outperforms existing methods on several semi-

supervised segmentation benchmarks, suggesting that pixel

contrastive-consistent learning is a promising research di-

rection to improve semi-supervised semantic segmentation.
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