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To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we
chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which
contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2
perform pro-viral functions equivalent to that of the yeast Ssal Hsp70. These functions include activation of the
tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate
that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression

Antiviral

Yeast studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus
Plant (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses
Replicase in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral

approach against tombusviruses in plants.

1. Introduction

Positive stand (+)RNA viruses have small genomes and their repli-
cation depends on many co-opted host factors. Major efforts with several
animal viruses using genomic and proteomic approaches have led to the
identification of hundreds of pro-viral or antiviral host factors (Acosta
et al.,, 2014; de Wilde et al., 2018; Diamond and Schoggins, 2013;
Krishnan et al., 2008; Li et al., 2009a; Neufeldt et al., 2018; Yasunaga
et al., 2014). Interestingly, systematic genome-wide screens have also
been performed with yeast (Saccharomyces cerevisiae), which can sup-
port the replication of plant tomato bushy stunt virus (TBSV) and the
unrelated brome mosaic virus and the insect Flock house virus and
Nodamura virus (Gancarz et al., 2011; Jiang et al., 2006; Kushner et al.,
2003; Nagy, 2016; Nagy, 2017; Panavas et al., 2005b; Pogany et al.,
2010; Serviene et al., 2005; Shah Nawaz-Ul-Rehman et al., 2013).
Although a large number of host factors is specific for different viruses,
the emerging theme from the large-scale studies and from follow-up
studies with a number of subverted proteins is that co-opted host fac-
tors bear many functional resemblances (Huang et al., 2012; Nagy,
2016, 2017; Nagy and Pogany, 2012; Sanfacon, 2017; Shulla and Ran-
dall, 2012; Wang, 2015; Zhang et al., 2019). For example, subverted
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host factors facilitate the assembly of the membrane-bound viral repli-
case complexes (VRCs), which consist of viral- and host-coded proteins
and the viral RNA templates, and the biogenesis of large viral replication
organelles (VROs) harboring clusters of VRCs (Altan-Bonnet, 2017; de
Castro et al., 2013; de Wilde et al., 2018; Fernandez de Castro et al.,
2017; Hyodo and Okuno, 2020; Nagy, 2016; Nagy and Pogany, 2012;
Neufeldt et al., 2018).

Among the most wide-spread host factors involved in (+)RNA virus
infections are the heat shock proteins (Hsps) (Nagy, 2020; Nagy et al.,
2011; Taguwa et al., 2015). The best-studied heat shock proteins in viral
replication are the Hsp70 and Hsp90 families of conserved Hsp proteins
that have molecular chaperone functions (Clerico et al., 2015; Duncan
et al., 2015; Moran Luengo, Mayer, and Rudiger, 2019; Rosenzweig
et al., 2019). Hsp70s are involved in maintenance of protein homeo-
stasis, protein folding and preventing protein aggregation, refolding of
denatured proteins, protein degradation, autophagy and transport of
proteins through cellular membranes. Hsp70s bind to surface-exposed
hydrophobic amino acid stretches and refold the client proteins in an
ATP-dependent manner. Successive binding and release of the substrate
proteins by Hsp70s usually depends on Hsp40 co-chaperones. Several
members of Hsp70s are expressed constitutively in cells (called Hsc70s),
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whereas other members are transiently expressed in response to various
stresses, such as heat, cold, drought, oxidative stresses or pathogen in-
fections (Cazale et al., 2009; Ferradini et al., 2015; Moran Luengo,
Mayer, and Rudiger, 2019; Rosenzweig et al., 2019; Wang et al., 2004).
Hsp70s are localized not only in the cytosol, but in all organelles and
localization to distinct subcellular compartments implies functional
specificity for different members. The Arabidopsis genome encodes 18
different members of Hsp70s, including 14 in the DnaK/Ssa subfamily
and 4 in the Hsp110/Sse subfamily (Lin et al., 2001). Five Hsp70s
(Hsp70-1-to-5) are cytosolic, similar to the Ssa subfamily in yeast. There
are no obvious yeast Ssb-like Hsp70s in the Arabidopsis genome (Lin
et al., 2001).

TBSV is a small (+)RNA virus that has been intensively used to study
virus replication, recombination, and virus - host interactions based on
yeast (Saccharomyces cerevisiae) model host (Nagy and Pogany, 2012;
Nagy et al., 2014; Panavas and Nagy, 2003). TBSV expresses only two
replication proteins, including p33 RNA chaperone and the p92P°' RdRp
(RNA-dependent RNA polymerase) protein. The tombusvirus p33 pro-
tein recruits the TBSV (+)RNA to the cytosolic surface of peroxisomal
membranes for replication (Nagy et al., 2012; Panavas et al., 2005a;
Pogany et al., 2005; Stork et al., 2011). The assembly of the functional
VRC requires interaction between the viral p33 and p92°°! RdRp protein
(Panavas et al., 2005a; Panaviene et al., 2005; Pogany and Nagy, 2008,
2012). Importantly, the assembly and functions of VRCs are greatly
affected by host components, such as Ssal/2 (Hsp70), the eukaryotic
elongation factor 1A (eEF1A), eEF1By, ESCRT (endosomal sorting
complexes required for transport) proteins, DEAD-box RNA helicases,
Ubc2/Rad6/Cdc34 ubiquitin-conjugating enzymes and glyco-
lytic/fermentation enzymes and lipids, such as sterols, phospholipids
and phosphoinositides (Feng et al., 2019; Huang and Nagy, 2011; Imura
et al., 2015; Kovalev et al., 2020; Li et al., 2008, 2009b, 2010; Pogany
and Nagy, 2012; Sasvari et al., 2011, 2020; Sharma, Sasvari, and Nagy,
2010, 2011; Xu and Nagy, 2015a).

The molecular functions of co-opted Hsp70s have been studied in
some details during TBSV replication, however, many of the experi-
ments relied on the yeast Ssal and Ssa2 Hsp70s. For example, it has been
shown that Hsp70 is recruited from the cytosol to the site of TBSV
replication via its interaction with the p33 and p92p°1 replication pro-
teins (Wang et al., 2009). Hsp70 is a permanent resident in the tom-
busvirus VRC (Serva and Nagy, 2006), and likely plays multiple roles
during TBSV replication. Hsp70 affects the intracellular localization of
the TBSV replication proteins, which are mislocalized to the cytosol in
the absence of functional Hsp70s in yeast (Wang et al., 2009; Wang
et al., 2009a,b). Hsp70 is also needed for viral p33 to bind to the cellular
membrane in vitro (Wang et al., 2009). Moreover, Hsp70 affects the
assembly of the tombusviral VRC (Pogany et al., 2008). Hsp70 is also
required for the activation of the RdRp activity of p92"°1 protein in vitro
(Pogany and Nagy, 2015). Additionally, Hsp70 is present in tombusvirus
capsids, facilitating disassembly (Alam and Rochon, 2017). The yeast
cell-free extract (CFE)-based and the purified replicase
preparation-based in vitro studies with depleted Hsp70 demonstrated
convincingly that Hsp70 is an essential host factor for TBSV replication
(Pogany et al., 2008; Wang et al., 2009).

The emerging picture with plant viruses, including TBSV, is that
many of the identified host factors hijacked by different plant viruses are
common and conserved. This likely opens up the possibility to develop
broad-range and durable antivirals targeting those common host factors.
One of the outstanding candidates for such approaches is the cytosolic
Hsp70 family, which is widely co-opted by an ever-increasing number of
plant and animal viruses (Nagy et al., 2011; Taguwa et al., 2015).
Therefore, we decided to further characterize the roles of the cytosolic
Hsp70s in TBSV replication and to apply inhibitors of Hsp70s as antiviral
approaches in this work.

To further extend our understanding of the roles of Hsp70s that
might be involved in tombusvirus replication, in this paper we focused
on the cytosolic Arabidopsis Hsp70s identified earlier in a yeast two-
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hybrid screen with p33 (Molho et al., 2021). These include Hsp70-1,
Hsp70-2 and the unique Erd2 (early response to dehydration 2),
which contain Hsp70-like domains (Kiyosue et al., 1994; Sung et al.,
2001). In vitro studies with purified components revealed that both
AtHsp70-2 and AtErd2 could activate the p92 RdRp, and stimulate the in
vitro activity of the tombusvirus replicase. Finally, we applied allosteric
inhibitors of Hsp70s to block TBSV replication in vitro, in yeast and
plants. Altogether, it seems that interfering with the functions of the
co-opted Hsp70s could be a strong antiviral approach in plants.

2. Results

The cytosolic Arabidopsis Hsp70 and AtErd2 proteins interact
with the tombusvirus replication proteins. Our recently performed
MYTH (membrane yeast two-hybrid) assay in yeast using an Arabidopsis
cDNA library has identified the conserved Arabidopsis Hsp70-1, Hsp70-2
and the unique Erd2 proteins as interactors with the tombusvirus p33
replication protein in yeast (Molho et al., 2021). This suggests the
involvement of several members of the Hsp70 family of molecular
chaperones in TBSV replication in plants. Previous studies in yeast have
shown that only the highly similar Ssal and Ssa2 (out of the 14 Hsp70
members in yeast) are co-opted by TBSV in yeast, suggesting that only
the constitutively and highly-expressed cytosolic Hsp70s are co-factors
for TBSV (Serva and Nagy, 2006; Wang et al., 2009; Wang et al.,
2009a,b). However, there are only limited biochemical or genetic data
whether the plant Hsp70s in general and in particular which Hsp70
member could specifically provide equivalent functions to the yeast
Ssal/2 during TBSV replication. Here we chose AtErd2 and AtHsp70-2,
because AtHsp70-1 shows very high sequence identity with AtHsp70-2,
suggesting functional overlaps.

To test if AtErd2 and AtHsp70-2 could facilitate TBSV replication
similar to the yeast Ssal/2, first we confirmed that the full-length
AtErd2 and AtHsp70-2 interact with the p33 and p92 replication pro-
teins in the MYTH assay (Fig. 1A). Then, we expressed the Flag-tagged
AtErd2 and AtHsp70-2 in yeast, followed by affinity purification of
2xStrep-tagged p33 and p92 from the detergent-solubilized yeast
membrane fraction, where the active VRCs are located (Serva and Nagy,
2006). These co-purification experiments clearly showed the robust
co-purification of AtErd2 and AtHsp70-2 as seen for the yeast Ssal
Hsp70 (Fig. 1B). These data suggest that AtErd2 and AtHsp70-2 are
efficiently recruited into the tombusvirus replicase in yeast.

Erd2 and Hsp70-2 proteins are recruited into the tombusvirus
replication compartment in Nicotiana benthamiana. To confirm that
Erd2 and Hsp70-2 are recruited by tombusviruses into VROs in plant
cells, we have conducted bimolecular fluorescence complementation
(BiFC) experiments with TBSV p33 replication protein and AtErd2 and
AtHsp70-2 in N. benthamiana leaves. The BiFC signals revealed specific
interactions between AtErd2 and AtHsp70-2 and p33 replication pro-
teins within the large VROs consisting of aggregated peroxisomes
(Fig. 1C). Similar BiFC-based experiments with the closely-related
carnation Italian ringspot virus (CIRV), whose VROs are built from
aggregated mitochondria, also confirmed interaction between the CIRV
p36 replication protein and AtErd2 and AtHsp70-2 within the VROs
consisting of aggregated mitochondria (Fig. 1D).

Confocal microscopy analysis revealed that both AtErd2 and
AtHsp70-2 are efficiently re-localized into the TBSV p33-BFP decorated
VROs in N. benthamiana leaves infected with TBSV (Fig. 2A and B). We
found that expression of the TBSV p33 replication protein alone (in the
absence of viral replication) was enough to recruit either AtErd2 or
AtHsp70-2 into the VRO-like compartments (Fig. 2A and B). Similar
extensive re-localization of AtErd2 and AtHsp70-2 into VROs was
observed when plants were infected with CIRV (Fig. 2C and D). The RFP-
SKL (peroxisomal luminar marker protein) and RFP-Tim21 (mitochon-
drial marker protein) did not co-localize with AtErd2 and AtHsp70-2
when expressed in N. benthamiana in the absence of viral components
(Fig. 2).
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Fig. 1. The host AtErd2 and AtHsp70-2 are recruited into the tombusvirus replicase complex in yeast through interaction with the viral replication proteins. (A) The
split-ubiquitin-based membrane yeast two-hybrid (MYTH) assay was used to show interaction between p33/p92 replication proteins and AtErd2 or AtHsp70-2 in
yeast. The baits p33 or p92 were co-expressed with AtErd2 or AtHsp70-2 prey proteins. The yeast Ssal (Hsp70 chaperone), and the empty prey vector (NubG) were
used as positive and negative controls, respectively. (B) Co-purification of AtErd2 or AtHsp70-2 proteins with the 2xStrep-tagged p33 and 2xStrep-p92 replication
proteins from the solubilized membrane fraction of yeast cells. Top panel: Western blot analysis of co-purified Flag-tagged cellular proteins with 2xStrep-affinity
purified p33/p92. The Flag-tagged AtErd2 or and Flag-AtHsp70-2 proteins were detected with anti-Flag antibody. The negative control was Hise-tagged p33
from yeasts that was applied to a Strep-affinity column. Middle panel: Western blot of purified 2xStrep-p33 detected with anti-Strep antibody. Bottom panel: The total
(input) expression levels of Flag-AtErd2, Flag-AtHsp70-2 or Flag-Ssal in yeasts are measured in total yeast extracts by western blotting using anti-Flag antibody. The
experiments were repeated three times. (C) Interactions between TBSV p33-cYFP replication protein and the nYFP-AtErd2 or nYFP-AtHsp70-2 proteins were detected
by BiFC. The merged images show the efficient co-localization of the peroxisomal RFP-SKL with the BiFC signal, indicating that the interactions between p33
replication protein and the co-opted host proteins take place within the large VROs. Scale bars represent 10 pm. (D) Interactions between CIRV p36-cYFP replication
protein and the nYFP-AtErd2 or nYFP-AtHsp70-2 proteins were detected by BiFC within the VROs marked by the mitochondrial RFP-Tim21. Scale bars represent 10

pm. Each experiment was repeated three times.

Complementation with AtErd2 and AtHsp70-2 enhances tom-
busvirus replication in ssalAssa24 yeast. In the absence of the
constitutively-expressed Ssal and Ssa2 (ssaldssa2A yeast), TBSV
repRNA can only barely replicate in yeast, due to the partial comple-
mentation by the stress-inducible Ssa3 and Ssa4 Hsp70 proteins (Serva
and Nagy, 2006; Wang et al., 2009). To demonstrate if the expression of
AtErd2 and AtHsp70-2 can complement the defect in TBSV RNA repli-
cation in ssalAssa2A yeast, we analyzed TBSV repRNA accumulation 24
h after induction. Expression of either AtErd2 or AtHsp70-2 partially
complemented TBSV repRNA replication in ssaldssa24 yeast (Fig. 3A
and B). The complementation of CIRV replication by AtHsp70-2 was
more pronounced than by AtErd2 in ssalAssa2A yeast (Fig. 3C and D).
AtHsp70-2 rescued the accumulation of CIRV p36 replication protein,
whereas AtErd2 did not in ssalAssa24 yeast (Fig. 3C and D), suggesting
that different tombusviruses might subvert AtErd2 and AtHsp70-2 with
different efficiencies.

Expression of AtErd2 and AtHsp70-2 in N. benthamiana en-
hances tombusvirus replication. To obtain further evidence on the
pro-tombusviral functions of AtErd2 and AtHsp70-2, we transiently
expressed them in N. benthamiana leaves infected with cucumber ne-
crosis virus (CNV), a closely-related tombusvirus. The expression of
AtErd2 or AtHsp70-2 increased CNV RNA accumulation by ~6 and 7-
fold, respectively, 2.5 days after agroinfiltration (Fig. 4A and B), sug-
gesting a strong pro-viral activity for AtErd2 and AtHsp70-2 in
N. benthamiana. The plants expressing either AtErd2 or AtHsp70-2
showed more severe CNV-induced symptoms (5 dpi, Fig. 4C) and died
more rapidly than CNV-infected plants agroinfiltrated with the empty
vector (9 dpi, Fig. 4D). Mock-inoculated plants expressing either AtErd2
or AtHsp70-2 showed no phenotypes. Altogether, these experiments
confirmed the pro-tombusviral activities of AtErd2 and AtHsp70-2 in
plants.

Induction of Erd2-like Hsp70 expression in tombusvirus-
infected N. benthamiana leaves. Since Erd2 homologues are not yet
identified in N. benthamiana, we used Panther DB to search for a similar
gene in N. benthamiana and Solanum lycopersicum databases. The Erd2-
like gene from N. benthamiana and S. lycopersicum showed 86% and
85% similarity to AtErd2, respectively. Using qRT-PCR, we showed that
the expression of Erd2-like Hsp70 was strongly induced in either TBSV
or CIRV-infected N. benthamiana plants (Fig. 5). Also, when we used an
antibody against Hsp70, then we observed 2-to-3-fold higher Hsp70
level in either TBSV or CIRV-infected N. benthamiana leaves (Fig. 6A).
Also, semi-quantitative RT-PCR with Erd2 primers based on
N. benthamiana or tomato sequences confirmed the induction of Erd2-
like mRNAs during TBSV and CIRV infections of N. benthamiana
(Fig. 6B). Altogether, these data suggest that the expression of Erd2-like
Hsp70 and, in general, the accumulation of cytosolic Hsp70s is increased
during tombusvirus infection of N. benthamiana. The higher Hsp70 level
could be beneficial for tombusviruses due to need for these viruses to
hijack Hsp70s to aid the infection process.

Knockdown of Erd2-like Hsp70 expression reduces tombusvirus
replication in N. benthamiana. Knockdown of the canonical Hsp70-1
(and Hsp70-2 due to high sequence identity) via virus-induced gene

silencing (VIGS) causes serious stunting and necrosis, followed by the
death of N. benthamiana plants (Wang et al., 2009). Therefore, we
focused on knocking down the ERD2 gene expression here. We depleted
the Erd2-like Hsp70 mRNA level by VIGS using the 3’ portion of the
Erd2-like sequences cloned into a TRV-based vector in N. benthamiana
(Fig. 7). Interestingly, the accumulation of the genomic RNAs of TBSV,
CNV and CIRV tombusviruses greatly decreased in the inoculated leaves
after VIGS treatment with Erd2-3’ construct (Fig. 7). The knockdown
plants stayed alive even after 10 days when the infected control plants
died due to CNV or TBSV infections (Fig. 7C, E). Knockdown of Erd2-like
sequences had only little effect on total Hsp70 protein levels on the 8th
day of VIGS treatment (Fig. 7B) and the plants looked slightly stunted
when compared with the control plants (Fig. 7E). In addition, knock-
down of the Erd2-like Hsp70 also inhibited the accumulation of the more
distantly-related red clover necrotic mosaic virus (RCNMV) in
N. benthamiana (Fig. 7G).

Efficient in vitro activation of p92 RdRp by AtErd2 and
AtHsp70-2. To demonstrate the similar biochemical functions of
AtErd2 and the canonical AtHsp70-2 during TBSV replication, we per-
formed in vitro experiments with purified proteins. First, we studied the
ability of AtErd2 and AtHsp70-2 to activate the TBSV p92 RdRp. The
freshly translated p92 RdRp is inactive prior to the assembly of the
functional membrane-bound VRC. The RdRp activation step requires cis-
acting elements in the viral (+)RNA, the p33 replication protein, sub-
cellular membrane, and co-opted Ssal/2 Hsp70 (Pogany and Nagy,
2012; Pogany et al., 2008). A simplified RdRp activation process was
developed to test the requirement of host factors, mainly Hsp70 and
phospholipids (Pogany and Nagy, 2015) (Fig. 8A). We have purified
AtErd2 and AtHsp70-2 from yeast, and Ssal as a positive control
(Fig. 8E), followed by the in vitro RdRp activation assay as depicted in
Fig. 8A. Interestingly, both AtErd2 and AtHsp70-2 were able to support
the RdRp activation step to an extent comparable to that of Ssal in case
of AtErd2, whereas AtHsp70-2 was ~2-fold more efficient in this assay
(Fig. 8B).

We also tested the function of AtErd2 or AtHsp70-2 in the assembly
of the tombusvirus replicase in vitro, based on cell-free extract (CFE)
prepared from yeast (Pogany et al., 2008). The purified recombinant
p33 and p921’°l replication proteins could only assemble
replication-competent VRCs in the presence of yeast membrane fraction
if functional Hsp70 is provided (Pogany and Nagy, 2012; Pogany et al.,
2008). We found that the purified AtErd2 or AtHsp70-2 were able to
support the assembly of the tombusvirus replicase in vitro (Fig. 8C and
D). The efficiency of AtHsp70-2 was comparable to that of Ssal Hsp70 in
the replicase assembly assay, while AtErd2 was ~3-fold less efficient
(Fig. 8D). Altogether, the in vitro assays demonstrated that both AtErd2
and AtHsp70-2 could contribute to the assembly of the viral replicase
and the activation of the viral RdRp in vitro, similar to the yeast Ssal
Hsp70.

Allosteric Hsp70 inhibitors block the assembly of the tombus-
virus replicase complex in vitro. The emerging conclusion from the
above data and previous works (Pogany and Nagy, 2015; Pogany et al.,
2008; Wang et al., 2009; Wang et al., 2009a,b) is that several cytosolic
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GFP-Erd2 RFP-SKL Fig. 2. Re-targeting of host AtErd2 and
1 AtHsp70-2 into the TBSV and CIRV VROs in
N. benthamiana. (A-B) Confocal microscopy images
show efficient co-localization of TBSV p33-BFP
replication protein and the GFP-AtErd2 (panel A) or
GFP-AtHsp70-2 (panel B) proteins within VROs
marked by RFP-SKL peroxisomal marker in
N. benthamiana leaves. Expression of these proteins
from the 35S promoter was done after co-
agroinfiltration into N. benthamiana leaves. The
plant leaves were either TBSV-infected or mock-
inoculated as shown. Scale bars represent 10 pm.
(C-D) Confocal microscopy images show efficient co-
localization of CIRV p36-BFP replication protein and
the GFP-AtErd2 (panel C) or GFP-AtHsp70-2 (panel
D) proteins within VROs marked by RFP-Tim21
mitochondrial marker in N. benthamiana leaves. The
plant leaves were either CIRV-infected or mock-
inoculated as shown. See further details in panel
A-B. Each experiment was repeated three times.
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TBSV DI-72 repRNA with Flag-tagged Ssal, Flag-AtErd2 or Flag-AtHsp70-2 from plasmids for 24 h at 23 °C. The accumulation level of repRNA was measured using
ImageQuant software. Ribosomal RNA was used as a loading control (see middle panel). Bottom images: Western blotting shows the accumulation levels of Flag-Ssal,
Flag-AtErd2 or Flag-AtHsp70-2 and Hise-p33 with Hisg-p92 in the above yeast samples. Coomassie-blue-stained SDS-PAGE shows total protein loading. Note that the
yeast Ssal or AtHsp70-2 is visible in some total protein samples. (C-D) Similar assays are shown as in panels A and B, except we expressed the CIRV Hise-p36 and
Hisg-p95 replication proteins to support repRNA replication. The experiments were repeated three times.

Hsp70 family members are co-opted by tombusviruses to support instead of the catalytic site by small molecule drugs (Assimon et al.,
replication and Hsp70s could emerge as possible targets for antiviral 2013; Evans et al., 2010; Rousaki et al., 2011; Zuiderweg et al., 2013).
approaches. There are major on-going efforts to develop Hsp70 in- The advantage of the allosteric approach that it has wide range of in-
hibitors to treat various genetic and tumor-related diseases (Li et al., hibition on all Hsp70s expressed from multicopy genes in a particular
2015; Pratt et al., 2014; Zuiderweg et al., 2013). Therefore, we decided host due to the conserved sequences in the targeted regions. We have
to test allosteric Hsp70 inhibitors to control tombusviruses in cell-free tested seven membrane permeable small molecule compounds from Dr.
replicase reconstitution assay (see below). Jason Gestwicki (UCSF). The first class of inhibitors is MKT-077 and its

Because Hsp70 goes through conformational change upon binding to derivatives, which include MKT-077, YM-01, JG-40, JG-48, and JG-98.
either ATP or ADP, it is possible to target the allosteric forms of Hsp70, These chemicals bind to the Hsp70-ADP form, but not to the
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Fig. 4. Expression of AtErd2 or AtHsp70-2 enhances CNV RNA accumulation in
N. benthamiana. (A) Northern blot analysis of CNV genomic (+)RNA, sub-
genomic RNA1 and sgRNA2 accumulation in N. benthamiana expressing AtErd2
and AtHsp70-2 from plasmids. The plants were inoculated with CNV virion
preparation one day after agroinfiltration. Samples were taken 2.5 dpi. Note
that all the plant leaves co-expressed the TBSV p19 RNA silencing suppressor.
Ribosomal RNA visualized by ethidium-bromide staining in agarose gels is
shown as a loading control. Note that the genomic RNA could be seen in several
samples, showing high CNV accumulation. Each experiment was repeated at
least three times. (B) Western blotting shows the accumulation levels of Flag-
AtErd2 or Flag-AtHsp70-2 in the above plant samples. (C-E) Images of CNV-
infected or mock-inoculated N. benthamiana plants expressing AtErd2 or
AtHsp70-2 or the empty pGD plasmid as a control. Note the appearance of more
intense CNV symptoms when AtErd2 or AtHsp70-2 is expressed. (E) The lack of
phenotype on N. benthamiana expressing AtErd2 and AtHsp70-2 from plasmids
eight days after agro-infiltration. The mock plants were infiltrated with buffer
only. Each experiment was repeated three times.

Hsp70-ATP form (Gestwicki and Shao, 2019; Rousaki et al., 2011; Zui-
derweg et al., 2013). The binding of these allosteric inhibitors limits
ATPase activity and stabilizes the Hsp70-substrate complex, altering the
dynamics of the substrate release and promoting substrate degradation
by the proteasome. Another inhibitor, CE-12, inhibits the ATPase
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activity of Hsp70 (Chafekar et al., 2012). On the other hand, 115-7c
inhibitor stabilizes the Hsp70-ATP form, thus reducing the ability of
Hsp70s to bind stably to the substrate.

To test if viral replication could be affected by the various allosteric
Hsp70 inhibitors, we used in vitro approaches. First, we tested the
effectiveness of allosteric Hsp70 inhibitors to block the assembly of the
tombusvirus replicase in a cell-free yeast extract (CFE) and purified re-
combinant TBSV replication proteins (Fig. 9A) (Pogany et al., 2008). All
the tested compounds strongly inhibited TBSV replication in vitro
(Fig. 9B). MKT-077, YM-01, JG-40 and JG-98 were effective inhibitors of
TBSV replication in vitro even at low concentrations (Fig. 9C). These data
confirm the direct inhibitory effects of these compounds on the activity
of the TBSV replicase in vitro.

The second test included the TBSV RdRp activation assay, which
requires Hsp70 function to make a truncated recombinant p92 as a
functional RARp (Pogany and Nagy, 2012, 2015). Addition of increasing
amounts of the inhibitory compounds to the RdRp activation assay
revealed that six of the allosteric Hsp70 inhibitors were potent in
blocking the RdRp activity of p92 replication protein (Fig. 9D). The most
probable explanation is that the allosteric Hsp70 inhibitors blocked the
function of Hsp70 (present in the soluble fraction of yeast CFE) in
activating p92 RdRp in vitro. Altogether, we found that these allosteric
inhibitors, in spite of their different activities, inhibited TBSV replicase
activity likely due to blocking Hsp70 functions needed for TBSV
replication.

Allosteric Hsp70 inhibitor YM-01 reduces TBSV replication in
yeast cells. To test the in vivo effectiveness of the allosteric Hsp70 in-
hibitors in blocking TBSV replication, we decided to continue working
with YM-01 inhibitor, which represents the first class of inhibitors and it
was highly effective in the in vitro work above. First, we have applied
YM-01 to yeast cultures in increasing concentrations, which resulted in
inhibition of TBSV repRNA accumulation by up to ~90% with 100 uM
showing the strongest inhibition (Fig. 10A). YM-01 also inhibited the
accumulation of the TBSV p33 replication protein in yeast (Fig. 10A).
These experiments confirmed that an allosteric inhibitor of the cellular
Hsp70 has strong anti-TBSV activities in yeast.

One of the major functions of the co-opted Hsp70 in tombusvirus
replication is the facilitation of membrane-association of the tombus-
virus replication proteins, which is critical for the functional VRC as-
sembly (Wang et al., 2009; Wang et al., 2009a,b). Partial inactivation of
a temperature-sensitive ssal® in the absence of SSA2-4 led to mostly
cytosolic distribution of the tombusvirus p33 replication protein (Wang
et al., 2009; Wang et al., 2009a,b). To test if the allosteric Hsp70 in-
hibitor YM-01 could interfere with the membrane association of the
tombusvirus replication protein, we used confocal laser microscopy with
a functional YFP-tagged p33 in yeast treated with YM-01 or DMSO as a
negative control (Fig. 10B and C). Interestingly, treatment of yeast with
YM-01 delayed the membrane-(peroxisome-) association of YFP-p33 by
4-to-8 hours when compared with the DMSO-treated control yeast cells
(Fig. 10B and C). At a latter time point (24 h), however, the YFP-p33 was
present in punctate structures (several of those co-localized with the
peroxisomal Pex13-CFP marker protein), indicative of localization of
YFP-p33 to the peroxisomes in YM-01-treated yeast at the late time point
(Fig. 10B and C).

Allosteric Hsp70 inhibitors reduce tombusvirus replication in
plant cells. To test if allosteric Hsp70 inhibitors could also affect the
replication of the full-length tombusvirus in plant cells, first we tested
the effective concentration of MKT-077 and YM-01 in N. benthamiana
protoplasts electroporated with the TBSV genomic (g)RNA. We sepa-
rately applied 100 pM of MKT-077 and YM-01 to N. benthamiana pro-
toplasts electroporated with TBSV RNA. Northern blot analysis of the
TBSV RNA 24 h after electroporation into plant protoplasts revealed
strong reduction in TBSV RNA accumulation reaching up to 90-95%
decrease in virus accumulation (Fig. 11A). Altogether, the plant pro-
toplasts experiments strongly supported most of the findings obtained in
vitro assays and with yeast on the inhibitory effects of these allosteric
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Fig. 5. Quantitative RT-PCR analysis of Erd2 mRNA expression in tombusvirus-infected N. benthamiana leaves. (A-B) Top images: Total RNA samples from mock-
inoculated or TBSV-infected plants are visualized by ethidium-bromide staining of agarose gel as loading controls. Total RNA samples were from the inoculated
leaves (panel A) or from the TBSV-systemically-infected leaves (panel B). Note that both the ribosomal RNA and the TBSV genomic RNA are seen in samples, showing
high virus accumulation. Quantitative RT-PCR shows the Erd2 mRNA levels based on 3’ sequences. Each experiment was repeated at least three times. Note that the
NbErd2 sequence was obtained based on sequence comparison with AtErd2. (C-D). Comparable experiments based on CIRV. Please find details in panel A-B.

Hsp70 inhibitor compounds on TBSV replication.

To test if selected allosteric Hsp70 inhibitors also affect the replica-
tion of other viruses, first we compared the effects of various concen-
trations of YM-01 on CNV and CIRV accumulation in plant protoplasts.
YM-01 showed high efficiency in inhibition of tombusvirus accumula-
tion in a concentration-dependent fashion in protoplasts (Fig. 11B and
C). Similarly to yeast, YM-01 also inhibited the accumulation of the p33
replication protein in plant protoplasts (Fig. 11B).

To test a more distantly related plant virus, we studied turnip crinkle
virus (TCV), which belongs to carmoviruses in the Tombusviridae fam-
ily. TCV accumulation was inhibited by YM-01 in N. benthamiana pro-
toplasts (Fig. 11D).

Allosteric Hsp70 inhibitors reduce TBSV replication in plants.

The extend our above findings to plants, we infiltrated the allosteric
Hsp70 inhibitors into N. benthamiana plant leaves infected with TBSV.
Northern blot analysis of total RNA extracts from the leaves infiltrated
either with either MKT-077 or YM-01 revealed the extensive inhibition
of TBSV RNA accumulation (Fig. 12A and B). YM-01 also reduced TCV
RNA accumulation in the infiltrated N. benthamiana leaves (Fig. 12E).
Finally, we also tested JG-98 inhibitor in plants, because it was the
most potent inhibitor of TBSV replicase activity in vitro (Fig. 9). We
found that treatment with JG-98 inhibitor strongly decreased TBSV and
CIRV RNA accumulation in N. benthamiana leaves (Fig. 12C and D).
Altogether, these data suggest that the allosteric Hsp70 inhibitors are
effective against selected plant RNA viruses in plants. We did not
observe any detrimental effects caused by treatment with these Hsp70
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Fig. 6. Induction of Erd2 and Hsp70 expression in tombusvirus-infected
N. benthamiana leaves. (A) Western blotting of total protein extracts shows
increased accumulation of NbHsp70 using anti-Hsp70 antibody in plant sam-
ples obtained from either TBSV or CIRV-infected or mock-inoculated plants.
Total protein extracts are shown in a Coomassie blue-stained SDS-PAGE as
protein loading controls. (B) Top image: Ribosomal RNAs in total RNA samples
visualized by ethidium-bromide stained agarose gel are shown as loading
controls. Note that the tombusvirus genomic RNA could be seen in samples,
showing high virus accumulation. Middle images: Semi-quantitative RT-PCR to
measure NbErd2 mRNA levels in TBSV or CIRV-infected plants 4 dpi in case of
TBSV and 5 dpi in case of CIRV versus the mock-treated plants. Note that the
RT-PCR primers for the NbErd2 sequence were designed based on sequence
comparison with AtErd2 (second panel). In the third panel, we used primers
based on the related S. lycopersicum Erd2 sequences for the RT-PCR analysis of
the same total RNA samples. Bottom image: Semi-quantitative RT-PCR of
tubulin mRNA in the above samples, as controls. The experiments were
repeated three times.

inhibitors on the control, uninfected leaves, likely due to timely degra-
dation of the inhibitors.

Allosteric Hsp70 inhibitors reduce nodavirus replication in
yeast. We also tested the effect of YM-01 on two insect (+)RNA noda-
viruses, FHV and Nodamura virus (NoV), which are unrelated to tom-
busviruses, in yeast cells replicating the RNA1 component (Fig. 13).
Interestingly, the replication of RNA1 and synthesis of subgenomic
RNA3 from the RNA1 template were strongly inhibited by YM-01
(Fig. 13A-C). Overall, these data strongly support the model that inhi-
bition of Hsp70 functions by allosteric inhibitors has strong antiviral
effects on multiple (+)RNA viruses at the single cell level.

3. Discussion

The large number of viruses infecting humans, animals and plants
code for specialized viral proteins adapted to their hosts, thus presenting
a major challenge to develop broad-range antiviral strategies. However,
viruses need to co-opt host proteins to support their replication and
infection. These host proteins could provide “universal” and broad-
range antiviral targets to inhibit their pro-viral functions and thus,
interfere with infections caused by many different viruses or even other
pathogens. The hosts” Hsp70s might represent one of those targets for
antivirals due to their wide-spread hijacking by numerous viruses and
pathogens. Indeed, the role of Hsp70 chaperones in replication was
documented for several flaviviruses (Bozzacco et al., 2016; Taguwa
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et al., 2015, 2019), influenza virus (Cao et al., 2014; Manzoor et al.,
2014), and several plant viruses (Chenon et al., 2012; Lamm et al., 2017;
Lohmus et al., 2017; Nagy et al., 2011; Verchot, 2012; Wang et al.,
2018).

Hsp70 family members are molecular chaperones that are involved
in maintaining cellular homeostasis from bacteria to humans (Patury
et al., 2009; Wang et al., 2013; Zuiderweg et al., 2017). Small chemical
inhibitors of Hsp70s have been identified (Assimon et al., 2013; Cesa
et al., 2013; Evans et al., 2010; Patury et al., 2009), and these inhibitors
act only for a limited time, allowing the survival of the host.

Accordingly, we have demonstrated here that different classes of
allosteric inhibitors of Hsp70s greatly inhibited the replication of TBSV
in vitro. The most potent inhibitors belong to the MKT-077 class, which
limits ATPase activity of Hsp70. This class of allosteric inhibitors of
Hsp70 blocked TBSV replicase assembly and the activation of the RARp
function of p921’°1 replication protein. Two other types of allosteric in-
hibitors with different mode of action were less inhibitory on TBSV
replicase assembly and RdRp activation. Overall, the biochemical and
cellular assays revealed that multiple functions of the co-opted Hsp70 in
TBSV replication could be blocked by allosteric inhibitors of Hsp70s.
Experiments in yeast and plants confirmed that the MKT-077 class of
allosteric inhibitors have a great potential as antiviral compounds
against a group of plant and insect (+)RNA viruses.

Several members of the large Hsp70 protein family are hijacked by
tombusviruses for multiple pro-viral functions (Pogany and Nagy, 2015;
Pogany et al., 2008; Wang et al., 2009; Wang et al., 2009a,b). These
members include the cytosolic Ssal/2 in yeast and the plant AtHsp70-1,
AtHsp70-2 and AtErd2 that interact with the TBSV p33 replication
protein (Molho et al., 2021; Serva and Nagy, 2006). In this paper, we
provide biochemical evidence that AtErd2 and AtHsp70-2 of the plant
Hsp70 family perform comparable pro-viral functions to the previously
characterized yeast Ssal and Ssa2 cytosolic Hsp70s in TBSV replication
(Pogany and Nagy, 2015; Pogany et al., 2008; Wang et al., 2009; Wang
et al., 2009a,b). The purified recombinant AtErd2 and AtHsp70-2 were
found to activate the RdRp function of p92p°l, which was capable to
synthesize complementary RNA in the presence of one of these Hsp70s.
Moreover, the low level of TBSV repRNA replication in the yeast CFE
membrane fraction was greatly boosted by the addition of purified re-
combinant AtErd2 and AtHsp70-2, similar to the yeast Ssal. All these in
vitro data firmly establish the equivalent pro-viral functions for AtErd2
and AtHsp70-2 and the yeast Ssal/2 in TBSV replication.

Additional functional evidence for the pro-viral functions of AtErd2
and AtHsp70-2 was obtained in yeast missing SSA1/2 by showing the
ability of AtErd2 and AtHsp70-2 to complement TBSV repRNA replica-
tion. In addition, co-purification experiments showed the presence of
AtErd2 and AtHsp70-2 in the affinity-purified viral replicase prepara-
tion. The recruitment of AtErd2 and AtHsp70-2 into the VRCs likely
accomplished by the direct interaction between AtErd2 and AtHsp70-2
and the p33 replication protein, which constitutes the most abundant
component of the VRCs. Interestingly, AtErd2 and AtHsp70-2 play
similar functions for CIRV, a tombusvirus, which replicates in the outer
mitochondrial membrane instead of the peroxisomal membrane as in the
case of TBSV and CNV (Panavas et al., 2005a; Weber-Lotfi et al., 2002;
Xu et al., 2012).

The expression of AtErd2 and AtHsp70-2 in N. benthamiana has
increased tombusvirus replication, suggesting that these Hsp70s are
limiting factors in plants. Similar to the inhibitory effects on TBSV by the
allosteric Hsp70 inhibitors, knocking down Erd2 Hsp70 hindered tom-
busvirus (TBSV, CNV and CIRV) replication in N. benthamiana. More-
over, we obtained evidence that the expression of Erd2 and other Hsp70s
are up-regulated in tombusvirus-infected N. benthamiana. The increased
Hsp70 level in tombusvirus-infected N. benthamiana was also demon-
strated by western blotting using plant Hsp70 monoclonal antibody. Our
results confirm the findings of Alam and Rochon, who demonstrated
increased accumulation of Hsp70s in N. benthamiana infected with CNV
(Alam and Rochon, 2015).
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Fig. 7. Knockdown of Erd2 reduces tombusvirus RNA accumulation in N. benthamiana. (A) Accumulation of CNV genomic RNA in NbErd2 knockdown
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Fig. 8. Stimulation of in vitro activation of TBSV RdRp function by AtErd2 and AtHsp70-2. (A) Scheme of the in vitro RNA synthesis assay with DI-mini (+)RNA and
purified recombinant p92-A167N TBSV RdRp protein and the added Hsp70 derivatives. The activation of recombinant p92-A167N RdRp protein leads to the
production of a 3'-terminal extension (3'-TEX) product. (B) Denaturing PAGE analysis of the 32P-labeled RNA products obtained in an in vitro assay with the activated
recombinant p92-A167N RdRp. The samples contained the FLAG-affinity-purified AtErd2, AtHsp70-2 or Ssalp Hsp70 proteins (13 pmol) or DMSO. The soluble
fraction containing Ssal and Ssa2 Hsp70 was prepared from WT yeast using centrifugation to remove the membrane fraction. The amounts of 3'TEX products were
estimated using the ImageQuant software. (C) Scheme of the CFE-based TBSV replicase reconstitution assay. The membrane fraction of yeast CFE was programmed
with in vitro transcribed TBSV DI-72 (+)repRNA and purified recombinant MBP-p33 and MBP-p92P' replication proteins of TBSV. Comparable amounts of FLAG-
affinity-purified AtErd2, AtHsp70-2 or Ssalp Hsp70 proteins were added to the assay. (D) Denaturing PAGE analysis of the ?P-labeled TBSV repRNA products
obtained in the CFE-based TBSV replicase reconstitution assay. repRNA production was measured using ImageQuant software. Lane 1 contains the soluble fraction of
yeast CFE, containing Ssal and Ssa2 Hsp70s. The experiments were repeated three times. (E) SDS-PAGE analysis shows the quality of the purified Flag-AtErd2, Flag-
AtHsp70-2 or Flag-Ssal Hsp70 proteins (from yeast) and the MBP-tagged p92-A167N RdRp (from E. coli). The experiments were repeated three times.

Allosteric inhibitors of host Hsp70s were also effective against
Dengue virus (DENV), hepatitis C virus and other flaviviruses (Kha-
chatoorian et al., 2016; Taguwa et al., 2015). These inhibitors inhibited
DENV replication and packaging, and they also affected host responses,
such as proinflammatory cytokines. Importantly, cytotoxicity of these
inhibitors was negligible in human cells (Khachatoorian et al., 2016;
Taguwa et al., 2015). Therefore, allosteric inhibitors of host Hsp70s are
promising as broad-spectrum antivirals in plants and animals.

4. Materials and methods

Yeast strains. The wt yeast (Saccharomyces cerevisiae) strain BY4741
(MATa his3A1 leu2A0 met15A0 ura3A0) was obtained from Open Bio-
systems. NMY51 [MATa his3A 200 trp1-901 leu2-3, 112 ade2 LYS2:
(lexAop)4-HIS3 ura3:(lexAop)g-lacZ ade2:(lexAop)s-ADE2 GAL4] was
obtained from Dualsystems. Double mutant yeast ssal ssa2 strain,
MW123 (his3 leu2 lys2 trp1 ura3 ssal:HIS3 ssa2:LEU2) was provided by
Elizabeth A. Craig (University of Wisconsin) (Becker et al., 1996).

Yeast and plant plasmids. To construct yeast plasmids pRS315-
Nflag-AtErd2, pRS315-Nflag-ssal, pRS315-Nflag-AtHsp70-2, AtERD2
exonl and exon2 were PCR-amplified using A. thaliana genomic DNA
with primers #5643 (CCGGGATCCATGGCTGGTAAGGGAGAAG) and
#5644 (CGAAAACGGTGTTAACAGGGTTC) and #5645 (GAACCCTGT-
TAACACCGTTTTCGACGCAAAGAGGTTGATTGGTC G) and #5646
(CCGCTCGAGTCAGCTAGCTCCTTGATACATCTTAGTG). The final ERD2
product was amplified by overlapping PCR with primers #5643-5646
and digested with BamHI and Xhol. Ssal (hsp70) was cloned from yeast
c¢DNA with primers #2030 (CGCGGGATCCATGTCAAAAGCTGTCGG-
TATTG) - #2812 (GGCCTCGAGTTAATCAACTTCTTCAACGGTTGG), as
previously described (Wang et al., 2009) and digested with BamHI and
Xhol. AtHsp70-2 were cloned using ¢cDNA from A. thaliana via per-
forming nested PCR with primers #6247 (CCTAGCTCTATTCTTTCT
CTTTGCTGC) and #6248 (GAGAAAGGGGTCACCAATGACCQ), followed
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by another PCR-amplification with primers #6302 (CCGCCCGGGA
TGGCTGGTAAAGGAGAAGGTCC) and #6252 (CCGCTCGAGTTAGTC-
GACTTCCTCGATCTTG) and the obtained PCR product was digested
with Xmal and Xhol. The obtained products were inserted into
pRS315-Nflag digested with BamHI and Xhol or Xma and Sall,
respectively.

To generate plasmid pRS317-TET-p95, pCM189 plasmid containing
TET promoter was digested with EcoRI and PstI and ligated into pRS317
vector digested with EcoRI and Pstl. The CIRV p95 gene sequence was
PCR-amplified with primers #6245 (GCACGGCCGATGGATTACAAG
GACGATGACGATAAGGTACCC) and #6246 (GCAGCGGCCGCATG-
CAGCTGGATCTTCGAG), digested with Eco521 and Notl and cloned into
the pRS317-TET vector digested with Eco521 and Notl. The direction of
the insert was verified by restriction enzyme digestions.

To generate plasmid pESC-Trp-Cup, the CUP1 promoter was PCR-
amplified using primers #2741 (CCGCGAGCTCCATTACCGACATTTG
GGCGCTA) and #2594 (CGCGCTCGAGAATTCGTTACAGTTTGT). The
obtained PCR product was digested with SacI and Xhol and ligated intto
PESC-Trp vector. AtERD2, AtHsp70-2, and SSA1 sequences were cloned
following the strategies mentioned above using PCR with primers
#5643 and 5646 (BamHI and Xhol), #2030 and #2812 (BamHI and
Xhol), and #6249 (CCGCTCGAGATGGATTACAAGGACGATGACGA-
TAAGGCTGGTAAAGGAGAAGGTCC) and #6250 (CCGGCTAGCT-
TAGTCGACTTCCTCGATCTTGGG) (Xhol and Nhel) respectively. The
obtained PCR products were digested with the specific restrictions en-
zymes and cloned into the pESC-Trp-Cup vector. The plasmids pTRV1
and pTRV2-pPDS for virus-induced gene silencing (VIGS) were kindly
provided by S. Dinesh-Kumar (UC Davis). pTRV2-cGFP was used as
control (Xu et al., 2014).

To construct the plant pTRV2-NbErd2-3' plasmid, a 3’ portion of
NbERD2 was PCR-amplified using N. benthamiana cDNA with primers
#5497 (GCCGGATCCGCATACAACATGAGGAACAC) and #5498
(CGGCTCGAGGATTACAGACGCTCTCCAAC). For VIGS constructs
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Fig. 9. Inhibition of in vitro reconstitution of TBSV replicase by allosteric inhibitors of Hsp70. (A) Scheme of the CFE-based TBSV replicase reconstitution assay in the
presence of the small molecule allosteric inhibitors. The yeast CFE was programmed with in vitro transcribed TBSV DI-72 (+)repRNA and purified recombinant MBP-
p33 and MBP-p92P°! replication proteins of TBSV. (B) Denaturing PAGE analysis of the >?P-labeled TBSV repRNA products obtained in the CFE-based TBSV replicase
reconstitution assay. repRNA production was measured using ImageQuant software. The final amounts for each compound were 111.1 pM, 333.3 pM, and 1000.0 pM,
respectively, in the replicase reconstitution assay, whereas DMSO solvent was present in 10% in each sample. The experiments were repeated two times. (C) Similar
PAGE analysis of the 3*P-labeled TBSV repRNA products obtained in the CFE-based TBSV replicase reconstitution assay as in panel B, except with lesser amounts of
inhibitors. The final amounts for each compound were 111.1 uM; 37.0 uM and 12.3 pM, respectively, in the replicase reconstitution assay, whereas DMSO solvent was
present in 10% in each sample. Note that the most effective inhibitor JG-98 was also applied in 12.3 pM (lane 25), 4.1 uM (lane 26) and 1.4 uM (lane 27) in the assay.
The experiments were repeated two times. (D) Denaturing PAGE analysis of the *2P-labeled RNA products of DI-72 (+)RNA obtained in an in vitro assay with the
activated recombinant p92-A167N RdRp. The amounts of 3'TEX products were estimated using the ImageQuant software. The experiments were repeated two times.

pTRV2-AtErd2-5 and pTRV2-AtErd2-3’, we PCR-amplified AtERD2 se- pGD-2x35S-L-AtHsp70-2, the AtERD2 gene sequence was PCR-amplified
quences with primers #6267 (GCCGGATCCATGGCTGGTAAGGGA- using primers #5643 and #5646 as explained above, digested with
GAAGGTC) and #6268 (CGGCTCGAGTCTGCTTGTCCAGGGGTTACC) BamH and Xhol and inserted into pGD-2x35S-L vector digested with
and #6269 (GCCGGATCCGAAGATGGTGCAAGAAGCTGAG) and #6270 BamHI and Xhol. AtHSP70-2 gene sequence was PCR-amplified using
(CGGCTCGAGCATCCTTGATACATCTTAGTGATGATGGTAC), respec- primers #6300 (CCGCTCGAGATGGCTGGTAAAGGAGAAGGTCC) and
tively. The obtained PCR products were digested with BamHI and Xhol #6299 (CCGGAGCTCTTAGTCGACTTCCTCGATCTTGGG). The obtained
and ligated into pTRV2 plasmid digested with BamHI and Xhol. PCR product was digested with XhoI and SacI and inserted into the pGD-
To make the plant expression vectors, pGD-2x35S-L-AtERD2 and 2x35S-L vector digested with XhoI and Sacl.
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Fig. 10. Inhibition of TBSV repRNA accumulation by YM-01 small chemical allosteric inhibitor of Hsp70 in yeast. (A) Dose-dependent inhibition of TBSV repRNA
accumulation in yeast treated with YM-01. Top image: Northern blotting of TBSV repRNA accumulation in yeast treated with YM-01 as shown in two biological
replicates. DMSO solvent was present in 10% in each treatment. The yeasts co-expressed the tombusvirus Hise-p33 and Hise-p92 replication proteins and the TBSV DI-
72 repRNA from plasmids for 24 h at 23 °C. The accumulation level of repRNA was measured using ImageQuant software. Middle panel: Ribosomal RNA was used as
a loading control. Bottom images: Western blotting shows the accumulation levels of Hise-p33 with Hise-p92 in the above yeast samples. Coomassie blue-stained SDS-
PAGE shows total protein loading. (B-C) Confocal microscopy images show delayed co-localization of the YFP-p33 replication protein and the Pex13-CFP peroxi-
somal marker in yeast treated with YM-01 allosteric inhibitor of Hsp70. The p33 replication protein forms large VRO-like structures with aggregated peroxisomes and
ER membranes in yeast (ssalA strain) visible as punctate structures in the control yeast even at early time points, whereas YFP-p33 shows diffused localization at
early time points and it only forms punctate structures late in YM-01-treated yeast (24 h at 23 °C).

Analysis of Hsp70 protein levels in plants. N. benthamiana plants
(4 weeks old) were sap-inoculated with TBSV or CIRV and total protein
was extracted from the systemically-infected leaves 4 days post-
infection (dpi) and 6 dpi, respectively. The total protein of the plants
was extracted as follows: 2 discs of plant samples were frozen with liquid
nitrogen and ground in 100 pl of 1x SDS-PAGE loading buffer +5 pl
f-mercaptoethanol + 25 mM NaCl. The samples were boiled for 15 min
and centrifuged at 21,000xg for 2 min at RT, and the supernatants were
transferred to new Eppendorf tubes and the protein samples were
analyzed by sodium dodecyl sulfate-polyacrylamide gel (SDS/10%
PAGE). Western blotting was performed using plant anti-Hsp70 mono-
clonal antibody (5B7 from Enzo) as a first antibody followed by the
secondary anti-mouse immunoglobulin G antibody (Sigma) (Wang et al.,
2009).

Semi-quantitative ~RT-PCR analysis of ERD2 mRNA.
N. benthamiana plants were sap-inoculated with TBSV or CIRV, followed
by total RNA isolation from systemically-infected leaves, 4 and 5 dpi,
respectively. Plant RNA samples were treated with DNAse for 1 h at

13

37 °C, and then, the samples were extracted with phenol-chloroform.
The RNA quality was checked with agarose gelelectrophoresis. The
RT-PCRs were performed using the oligos: #5497 (GCCGGATCCGCA-
TACAACATGAGGAACAC) and #5498 (CGGCTCGAGGATTACA-
GACGCTCTCCAAC) based on N. benthamiana ERD2 RNA sequence and
primers #6481 (AAGTGGGGTACATGATGTGGTTC) and #6485 (CCA-
TAGTAGCTCCACCAGCA) based on Solanum lycopersicum putative
mERD2 sequence. As an internal control, we RT-PCR-amplified Tubulin
mRNA with oligos #2859 (TAATACGACTCACTATAGGAACCAAATC
ATTCATGTTGCTCTC) and #2860 (TAGTGTATGTGATATCCCACCAA).

Real time qRT-PCR of ERD2 mRNA. N. benthamiana plants were
inoculated with TBSV or CIRV, total RNA was extracted from the
infected leaves 2 dpi and 3 dpi, respectively. For the systemic leaves,
samples were collected at 4 dpi for TBSV and 5 dpi for CIRV. Plant RNA
was extracted and analyzed in an ethidium bromide gel to adjust the
samples loading. To make the cDNA, we used MMLV reverse tran-
scriptase 1st strand cDNA synthesis kit (Lucigen) and Oligo DT. The
primers for the Real time RT-PCR assay were designed using Real Time
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Fig. 11. Inhibition of TBSV genomic RNA accumulation by small chemical allosteric inhibitors of Hsp70 in N. benthamiana protoplasts. (A) Top image: Northern
blotting of TBSV RNA accumulation in N. benthamiana protoplasts (single cells lacking cell-walls) treated with 10 or 100 uM inhibitors as shown. The protoplasts were
electroporated with 1 pg TBSV RNA followed by incubation in the presence of the inhibitors for 24 h at 23 °C. DMSO solvent was present in 10% in each treatment.
The accumulation level of gRNA was measured using ImageQuant software. Middle panel: Ribosomal RNA was used as a loading control. (B) Tope image: Northern
blot shows dose-dependent CNV RNA accumulation in N. benthamiana protoplasts treated with the YM-01 allosteric inhibitor. See panel A for additional details.
Bottom images: Western blotting shows the accumulation levels of p33 and Hsp70 detected with anti-p33 and anti-Hsp70 antibodies in the above protoplasts
samples. (C) Northern blot shows dose-dependent CIRV RNA accumulation in N. benthamiana protoplasts treated with YM-01 allosteric inhibitor. See panel A for
additional details. (D) Northern blot shows dose-dependent TCV RNA accumulation in N. benthamiana protoplasts treated with YM-01 allosteric inhibitor. See panel A
for additional details. The experiments were repeated three times and two times in case of CIRV.

qPCR Assay Entry Tool from Integrated DNA Technologies website
(https://www.idtdna.com/pages) and NbERD2 putative gene sequence
as a reference. We performed the assay using Applied Biosystem Power
up™ SYBR® green master mix (Thermo Fisher Scientific) oligos #8352
(TCCAATGGCTTGACGATAACC) and #8353 (GACACTCTC-
CAACTCCTTCATC). As an internal control, the N. benthamiana house-
keeping tubulin gene was RT-PCR-amplified with oligos #8178
(CTGGGAAGTTATCTGTGACGA) and #8179 (AACAGCCCTAGGAACA-
TAACG). The reactions were placed in the Eppendorf® Mastercycle® in
a 96 well plate (ABI background plate) and the PCR conditions were
selected following the Power up™ SYBR® green master mix manual
recommendations. Data was analyzed with Excel program.

Total protein extraction from yeast and Western blot analysis.
Yeast total protein was harvested then resuspended in 0.1 M NaOH and
vortexing for 30 s, followed by shaking for 15 min. The samples were
centrifuged at 21,000xg for 1 min and the supernatant was discarded.
We then added 1x SDS-PAGE loading buffer + p-mercaptoethanol to the
pellet, vortexed the samples for 30 s, shaked for 15 min and the samples
were placed at 85 °C for 15 min. Protein samples were analyzed in SDS-
10% PAGE gels, followed by electrotransfer to a PVDF membrane
(BioRad). The membranes were treated with 5% nonfat dry milk solu-
tion in Tris-buffered saline (TBS) buffer containing 0.1% Tween 20 (T-
TBS). The membranes were washed three times with T-TBS buffer and
incubated with primary antibody overnight at 4 °C. Then, the mem-
branes were washed with T-TBS buffer 3 times for 5 min and incubated
with the secondary alkaline phosphatase-conjugated antibody. After
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washing, the membranes were developed using 5-bromo-4-chloro-
3indolylphosphate and nitro-blue tetrazolium (Sigma) in 100 mM So-
dium bicarbonate buffer pH 9.5.

Strep-affinity protein purification assay. BY4741 yeast strain was
co-transformed with plasmids pESC-StrepC33/DI72, pYES-StrepC92 (Xu
et al., 2014) and pRS315-Nflag-AtERD2 or pRS315-Nflag-ssal or
pRS315-Nflag-AtHsp70-2 by the LiAc-single-stranded DNA-poly-
ethylene glycol method (Panavas and Nagy, 2003). As a control, we also
co-transformed yeast with plasmids: pESC-HisCNVp33-DI72,
PYES-CNVp92 and pRS315-Nflag-AtERD2 or pRS315-Nflag-ssal or
pRS315-Nflag-AtHsp70-2 (Xu et al.,, 2014). BY4741 yeast strain
co-expressing strep-C33/DI72, strep-C92 and Nflag-AtERD2 or
Nflag-ssal or Nflag-AtHsp70-2 or the control yeast expressing
HisCNVp33-DI72, CNVp92, and Nflag-AtERD2 or Nflag-ssal or
Nflag-AtHsp70-2 were grown in 15 ml SC-ULH" (Ura-/Leu-/His-) media
supplemented with 2% glucose for 24 h. Then, the yeast cultures were
washed and inoculated in 50 ml SC-ULH™ media supplemented with 2%
galactose, followed by culturing for 24 h at 23 °C. The pellets were
washed with 50 mM Tris-HCl pH7.5 and harvested by centrifugation 21,
000xg for 5 min. Two hundred milligrams of the yeast pellets were
broken in 200 pl of Yeast Lysis Buffer (50 mM Tris-HCl, pH7.5; 15 mM
MgClg, 10 mM KCl, 10 mM p-mercaptoethanol, Yeast Protease Inhibitor
Mix [Sigma]). The extracts were centrifuged at 1000xg for 10 min, and
the supernatants were transferred to a new Eppendorf tube, followed by
centrifugation at 21,000xg for 30 min at 4 °C. The supernatants were
discarded. The membrane fraction of the yeast pellets was solubilized in
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Fig. 12. Inhibition of TBSV and related viruses by chemical allosteric inhibitors of Hsp70 in N. benthamiana plants. (A-C) Top image: Northern blotting of TBSV RNA
accumulation in N. benthamiana leaves infiltrated 1 h and repeatedly at 6 h after sap-inoculation with 100 uM inhibitors as shown. DMSO solvent was present in 10%
in each treatment. The total RNA was isolated after 17 h incubation at 23 °C. The accumulation level of gRNA was measured using ImageQuant software. Bottom
panel: Ribosomal RNA was used as a loading control. (D) Comparable experiments on CIRV RNA accumulation in N. benthamiana treated with the JG-98 allosteric
inhibitor. See panel A for additional details. (E) Comparable experiments on TCV RNA accumulation in N. benthamiana treated with the YM-01 allosteric inhibitor.

See panel A for additional details. The experiments were repeated three times.

the Solubilization Buffer and gently rotated at 4 °C for 4 h. To prepare
the samples for the Strep-affinity purification, the solubilized membrane
fractions were centrifuged at 21,000xg for 20 min at 4 °C and the su-
pernatants suspension (IBA Life Sciences). Then, the samples were
applied to columns. each containing 25 pl of StrepTactin Superflow high
capacity. The columns were rotated for 4 h, followed by washing with
two volumes of the column buffer and two volumes of washing buffer.
We added 40 pl SDS-PAGE sample buffer directly to resin in the columns
and incubated the columns for 15 min at 85 °C in Eppendorf tubes. The
samples were collected via centrifugation of the columns at 600xg for 5
min at RT. 2 pl of p-mercaptoethanol was added to the samples, followed
by incubation at 85 °C for 15 min. The affinity-purified Strep-p33/-
Strep-p92 samples were tested for the presence of Flag-AtErd2, Flag-ssal
or Flag-AtHsp70-2 using 10% SDS-PAGE. Western Blot was performed
using anti-Strep-tag antibody (2 pl in 10 ml 5%T-TBS Milk), anti-Flag
antibody (1 pl in 10 ml 5%T-TBS Milk) and anti-His antibody (1 pl in
10 ml 5%T-TBS Milk) as the primary antibodies. After through washing
of the membranes, secondary alkaline phosphatase-conjugated antibody
anti-mouse immunoglobulin (Sigma) (Xu et al., 2014) was applied to the
membranes to detect the co-purified proteins.

Complementation experiments in double yeast mutant ssal
ssa2. Double mutant ssal ssa2 yeast strain was co-transformed with the
TBSV expression plasmids (pRS317-TET-His92, pURA-His33/DI72) or
the CIRV expression plasmids (pRS317-TET-flag95, pESC(U)-His36/
DI72) (Barajas et al., 2014). The yeasts were also transformed with
one of the following plasmids: pESC-Trp-Cup-ssal, pESC-Trp-Cup-A-
tERD2 or pESC-Trp-Cup-AtHsp70-2 (Panavas and Nagy, 2003). Yeasts
were plated onto SC-UKLHT (Ura-/Lys-/Leu-/His-/Trp-) media and
grown at 23 °C for 6 d. Transformed yeasts were grown for 24 h at 23 °C
in SC-KUT" (-Lys/Ura-/Trp) media supplemented with 2% glucose,
following by replacing the media SC-KUT media supplemented with 2%
galactose and 50 pM CuSO4 at 23 °C for 24 h for AtHsp70-2 and for 36 h
for yeast expressing AtErd2. The cells were harvested to extract RNA and
protein. The protein levels of p33, p92, p36 replication proteins were
detected with Western blot using anti-His antibody, while p95, ssal,
AtErd2, AtHsp70-2 were detected using anti-Flag antibody, followed by
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secondary anti-mouse immunoglobulin.

Northern blot analysis. Yeast total RNA was extracted with
Extraction Buffer (50 mM sodium acetate [pH 5.2], 10 mM EDTA, 1%
SDS) and water-saturated phenol. Samples were vortexed and incubated
for 4 min at 65 °C and centrifuged at 21,000xg for 15 min at 4 °C. Total
RNA was precipitated from the aqueous phase by adding 3 vol of ab-
solute ethanol with 30 mM of Sodium Acetate and the pellet was washed
with 70% ethanol. Total RNA was dissolved in RNase-free water, fol-
lowed by heat-treatment (5 min at 85 °C), and 1.5% agarose gel elec-
trophoresis. The total RNA was transferred to Hybond XL membrane
(Amersham) and cross-linked with UV (Bio-Rad). RNA hybridization
was done in ULTRAhyb solution (Ambion) at 68 °C according to the
supplier’s instructions. The 32P-UTP-labeled DI-72 (representing the
minus-strand RIII/IV sequence) was used as probes for hybridization.
RNA probe signals were detected using a Typhoon 9400 imaging scanner
(Amersham) and quantified by ImageQuant software.

The P32 _labeled radioactive probes were done using T7 RNA poly-
merase (Thermo Fisher Scientific) and the PCR products of a genomic
region of TBSV and CNV with primers #1166 (ATTCCTGTTTAC-
GAAAGTTAGGT) and #22 (GTAATACGACTCACTATAGGGCTGCAT
TTCTGCAATGTTCC), and for CIRV with primer pairs #978 (TAA-
TACGACTCACTATAGGGCTGCATTTCTGCAATGTTC) and #979
(GGACGGAAGCTTCACTGCACAGAGT), for RCNMV with primer pairs
#3043 (AGGGGAACACGCAGTCTC) and #3044 (TAATACGACTCAC
TATAGGATTTTGTTTTACCAGAGGTATGC). The P32.labeled TBSV,
CIRV, CNV and RCNMV minus-stranded probes were purified using a
Micro Bio-Spin column P-30® (Bio-Rad) and used as probes for hy-
bridization. Hybridization signals were detected using a Typhoon 9400
imaging scanner (Amersham) and quantified by Image Quant software
(Panaviene et al., 2004a).

Knock down of Hsp70s in N. benthamiana. Virus-induced gene
silencing (VIGS) in N. benthamiana was done as previously described
(Jaag and Nagy, 2009). Briefly, Agrobacterium tumefaciens strain C58C1
carrying pTRV1 (ODggo 0.05) (a gift from Dinesh-Kumar, UC Davis) in
combination of one of the plasmids: pTRV2-NbERD2-3’ (ODgpo 0.05),
PTRV2-AtERD2-5’ (ODggg 0.05) or pTRV2-AtERD2-Cterm (ODggg 0.05)
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Fig. 13. Inhibition of nodavirus accumulation by YM-01 allosteric inhibitor of
Hsp70 in yeast. (A-B) Top image: Northern blot analysis of FHV RNA1 and the
subgenomic RNA3 accumulation in yeast treated with YM-01 allosteric in-
hibitors as shown in two biological replicates. The yeasts co-expressed the FHV
Hisg-protein A RdRp and RNA1 from plasmids for 24 h at 23 °C. DMSO solvent
was present in 10% in each treatment. The accumulation level of RNA1 was
measured using ImageQuant software. Middle panel: Ribosomal RNA was used
as a loading control. Bottom images: Western blotting shows the accumulation
levels of Hise-protein A RdRp in the above yeast samples. The yeast Pgkl was
detected by anti-Pgkl antibody using western blotting. (C) Dose-dependent
inhibition of NoV RNA1 and sgRNA3 accumulation in yeast treated with YM-
01 inhibitor. See further details in panel A above. The experiments were
Eepeated two times.

<

were infiltrated into leaves of N. benthamiana (Jaag and Nagy, 2009).
Seven days post agroinfiltration, the upper leaves were sap-inoculated
with CNV20KStP (ot expressing the p20 silencing suppressor), TBSV,
CIRV or RCNMV. For the analysis of viral RNA accumulation, total RNA
was extracted 2.5 d for CNV2%KS©P 5 d for TBSV, and 3 d for CIRV
samples after inoculation from the infected leaves and 6 dpi in case of
RCNMV. The 32p-labeled TBSV, CIRV, CNV and RCNMV probes were
used for RNA hybridization. Hybridization signals were detected using a
Typhoon 9400 imaging scanner (Amersham) and quantified by Image
Quant software (Panaviene et al., 2004a). The knockdown level of
NbERD2 mRNA was checked at the 7th day post agroinfiltration by
semi-quantitative RT-PCR using primers #5494 (GCCGGATCCCTCG-
GAACCACGTATTCCTG) and #5495 (CGGCTCGAGGTAGGCTCATTGA-
TAATACG). Total plant protein was extracted and Hsp70’s levels were
detected with western blotting using plant anti-Hsp70 monoclonal
antibody as described above.

Overexpression of plant proteins in N. benthamiana.
A. tumefaciens strain C58C1 carrying one of the following constructs:
pGD-2x35S-L-AtERD2 (ODggg 0.6), pGD-2x35S-L-AtHsp70-2 (ODggg 0.6)
or pGD-2x35S-L (ODggo 0.6), were co-agroinfiltrated with pGD-p19
(ODggo 0.2) and pGD-35S-CNV2%KS°P  (ODggy 0.2) into young
N. benthamiana leaves as before (Barajas et al., 2009). Total RNA was
extracted from agroinfiltrated leaves 2 !4 days after agroinfiltration,
followed by northern blotting as described above.

Confocal laser microscopy in plants. For the bimolecular fluo-
rescence complementation (BiFC) assay, agrobacterium carrying plas-
mids pGD-cYFP-T33 and pGD-nYFP-AtErd2 or pGD-nYFP-AtHsp70-2
and RFP-SKL were co-agroinfiltrated into the N. benthamiana leaves. For
the TBSV infected sample, the agroinfiltrated leaves were inoculated
with TBSV sap 24 h after agroinfiltration and the plant samples were
visualized 50 h after agroinfiltration. For the CIRV experiments, plant
leaves were co-infiltrated with agrobacteria carrying pGD-cYFP-C36 and
pGD-nYFP-AtErd2 or pGD-nYFP-AtHsp70-2 and RFP-Tim21, as the
mitochondrial marker. For the CIRV infected leaves, the agrobacterium
carrying pGD-CIRV was co-infiltrated with the BiFC plasmids mentioned
above. 50 h after agroinfiltration the plant samples were analyzed using
confocal laser microscopy. As a control, plants were co-agroinfiltrated
with agrobacteria carrying pGD-cYFP and pGD-nYFP-AtErd2 or pGD-
nYFP-Hsp70- 2. To observe the subcellular distribution of Erd2 and
Hsp70-2 in N. benthamiana, plant leaves were co-infiltrated with agro-
bacteria transformed with pGD-BFP-T33, pGD-RFP-SKL, pGD-EGFP-
AtErd2 or pGD-EGFP-AtHsp70-2. Agroinfiltrated leaves were inocu-
lated with TBSV sap 24 h after agroinfiltration. For CIRV, plant leaves
were co-agroinfiltrated with pGD-BFP-C36, pGD-CIRV, pGD-EGFP-
AtEtd2 or pGD-EGFP-AtHsp70-2 and pGD-RFP-Tim21. Plant samples
were analyzed 50 h after agroinfiltration with confocal laser
microscopy.

Purification of Flag-tagged proteins from yeast. The recombinant
Flag-AtErd2, Flag-AtHsp70-2, Flag-ssal proteins were expressed from
PESC-Trp-Cup-AtERD2, pESC-Trp-Cup-AtHsp70-2, pESC-Trp-Cup-ssal
in Scl yeast strain (Barajas et al., 2009). Scl strain expressing one of
the recombinant proteins was grown at 23 °C in SCT™~ supplemented
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with 2% glucose for 24 h, then the ODggg of the yeast cultures was
adjusted to 0.4, followed by dilution in 100 ml of minimal media SCT™®~
supplemented with 2% glucose and 50 pM of CuSOy. Yeasts were further
cultured for 6 h at 23 °C. Yeast cells (200 mg) were broken in 200 pl of
yeast breaking buffer (1 M HEPES-KOH pH7.6, 1 M Potassium Acetate
sterile, 1 M Magnesium Acetate sterile, -mercaptoethanol, protease
inhibitor mix [Sigma]), followed by centrifugation at 400xg for 3 min at
4 °C. The supernatants were pipetted to a fresh tube, centrifuged at 21,
000xg for 15 min at 4 °C and transferred to an equilibrated Flag-column
and rotated at 4 °C for 2 h. The columns were centrifuged at 100 xg for 2
min at 4 °C and washed three times with the Washing Buffer (1 M
HEPES-KOH pH7.6, 1 M Potassium Acetate sterile, 1 M Magnesium
Acetate sterile). The recombinant proteins were eluted from the column
with the Flag elution buffer (1 M HEPES-KOH pH7.6, 1 M Potassium
Acetate sterile, 1 M Magnesium Acetate sterile, 2 pl Flag peptide) after
incubation on ice for 3 h. The Flag-tagged proteins were collected by
centrifugation at 100xg for 2 min at 4 °C and stored at —80 °C for further
experiments.

Protoplasts isolation and Hsp70 allosteric inhibitors treatment.
Protoplasts were isolated form N. benthamiana callus as previously
described (Panaviene et al., 2003). Newly prepared protoplasts were
treated with 100 pM of DMSO or different concentrations (10, 20, 50 &
100 pM) of Hsp70 allosteric inhibitors for 30 min, followed by electro-
poration with 1 pg of in vitro transcribed TBSV, CNV and TCV gRNAs,
respectively. After electroporation, samples were kept on ice for 30 min,
followed by addition of 0.7 ml of protoplast culture medium to each
sample. Protoplasts were transferred to 35 x 10 mm petri dishes and
incubated in dark for 24 h at room temperature, followed by RNA
analysis (Panaviene et al., 2003).

Hsp70 allosteric inhibitors treatment in plants. N. benthamiana
leaves were first infiltrated with 50 pM DMSO or Hsp70 inhibitors. After
1 h incubation, the same leaves were sap-infected with TBSV, CNV or
TCV. 6 h later, the same leaves were infiltrated with 100 pM DMSO or
Hsp70 inhibitor (MKT-077 or YM-01), after 17 h total RNA was isolated
from the infected leaves.

Treating yeast with Hsp70 allosteric inhibitors. The yeast strain
BY4741 was co-transformed with HpGBK-CUP1-p33/Gal-DI-72 and
LpESC-CUP1-His-p92 as described (Panavas and Nagy, 2003). Trans-
formed yeast cells were inoculated in LH™ media supplemented with 2%
glucose and BCS at 23 °C for 12 h. Then, the media with LH™ media
(inhibitor uptake media contained 0.003%SDS) supplemented with 2%
galactose and 50 pM CuSOy4 in presence of 100 pM DMSO or 10, 20, 50 &
100 pM of inhibitors. Yeasts were grown at 23 °C for 24 h. Then, total
RNA was isolated and analyzed as described earlier (Cheng et al., 2005;
Panaviene et al., 2004b).

In vitro TBSV RdRp activation assay. The recombinant MBP-p92-
A167N TBSV RdRp (Pogany and Nagy, 2012) was purified from E. coli.
Briefly, bacteria culture was grown in MB broth supplemented with 100
pg/ml ampicillin and 34 pg/ml chloramphenicol at 37 °C until reaching
ODggp 0.7. The recombinant protein expression was induced with 1 mM
IPTG for 8 h at 16 °C, followed by sonication in cold Column Buffer with
reduced salt containing p-mercaptoethanol. Then, the samples were
centrifuged 21,000xg and the supernatant was transferred into a col-
umn containing 0.4 ml amylose resin. The columns were rotated for 30
min, washed 5 times with cold Column Buffer with reduced salt, fol-
lowed by elution of the purified proteins in 0.3 ml MBP Elution Buffer
and stored at —80 °C (Pogany and Nagy, 2012). The full-length TBSV
DI-72 (+)RNA and DI-72-mini (+)RNA transcripts were prepared as
before (Pogany and Nagy, 2015). The Flag-affinity purified host proteins
from yeast or the yeast soluble fraction (as a control) were incubated
together with the recombinant MBP-p92-A167N in a buffer containing
50 mM potassium acetate, 5 mM magnesium acetate, 0.2 M sorbitol, 0.2
pl actinomycin D (5 mg/ml), 0.2 ul 1 M DTT, 2 pl of 150 mM creatine
phosphate, 2 pl of 10 mM ATP, CTP, and GTP and 0.25 mM UTP, 0.1 pl of
[32P]UTP, 0.2 pl of 10 mg/ml creatine kinase, 0.2 pl of RNase inhibitor,
2 pl DMSO, and 0.5 pg (+)RNA transcript in a 20 pl reaction mixture

17

Virology 563 (2021) 1-19

(Pogany and Nagy, 2015). The final reaction was incubated at 25 °C for
3 h, then the reactions were stopped with the SDS stop solution (1% SDS,
0.05 M EDTA pH8.0), followed by RNA precipitation with iso-
propanol-1 M Ammonium Acetate and washed with 70% ethanol. The
RNA samples were dissolved in 1X RNA loading dye and analyzed in a
5% Acrylamide/8 M urea gel (Pogany and Nagy, 2015).

In vitro reconstitution of the TBSV replicase in yeast membrane
fraction. To reconstitute the TBSV replicase, yeast cell-free extract
(CFE) was prepared from BY4741 strain as described previously (Pogany
and Nagy, 2008). The CFE membrane fraction was obtained by centri-
fugation of the CFE as before (Kovalev et al., 2014). MBP-p92 and
MBP-p33 recombinant proteins were purified as described above
(Pogany and Nagy, 2012). For the reconstitution assay, the CFE mem-
brane fraction was incubated with the recombinant MBP-p92 and
MBP-p33 proteins and one of the following purified recombinant pro-
teins: Flag-Ssal, Flag-AtErd2 or Flag-Hsp70-2 in a buffer containing 50
mM potassium acetate, 5 mM magnesium acetate, 0.2 M sorbitol, 0.2 pl
actinomycin D (5 mg/ml), 2 pl of 150 mM creatine phosphate, 2 pl of 10
mM ATP, CTP, and GTP and 0.25 mM UTP, 0.1 pl of [*2PJUTP, 0.2 pl of
10 mg/ml creatine kinase, 0.2 pl of RNase inhibitor, 0.2 pl of 1 M DTT,
and 0.5 pg DI-72 (+)RNA transcripts in a 20 pl reaction mixture (Pogany
and Nagy, 2008). The final reaction was incubated at 25 °C for 3h fol-
lowed by addition of SDS stop solution, and RNA precipitation with
isopropanol Ammonium Acetate. The in vitro replicase products were
analyzed in a 5% Acrylamide/8 M urea gel (Li et al., 2010).
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