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Abstract
We consider the problem of tensor estimation from noisy observations with possibly
missing entries. A nonparametric approach to tensor completion is developed
based on a new model which we coin as sign representable tensors. The model
represents the signal tensor of interest using a series of structured sign tensors.
Unlike earlier methods, the sign series representation effectively addresses both
low- and high-rank signals, while encompassing many existing tensor models—
including CP models, Tucker models, single index models, structured tensors with
repeating entries—as special cases. We provably reduce the tensor estimation
problem to a series of structured classification tasks, and we develop a learning
reduction machinery to empower existing low-rank tensor algorithms for more
challenging high-rank estimation. Excess risk bounds, estimation errors, and
sample complexities are established. We demonstrate the outperformance of our
approach over previous methods on two datasets, one on human brain connectivity
networks and the other on topic data mining.

1 Introduction

Higher-order tensors have recently received much attention in enormous fields including social
networks [3], neuroscience [38], and genomics [26]. Tensor methods provide effective representation
of the hidden structure in multiway data. In this paper we consider the signal plus noise model,

Y = Θ+ E , (1)

where Y ∈ Rd1×···×dK is an order-K data tensor, Θ is an unknown signal tensor of interest, and E is
a noise tensor. Our goal is to accurately estimate Θ from the incomplete, noisy observation of Y . In
particular, we focus on the following two problems:

Q1 [Nonparametric tensor estimation]. How to flexibly estimate Θ under a wide range of structures,
including both low-rankness and high-rankness?

Q2 [Complexity of tensor completion]. How many observed tensor entries do we need to consistently
estimate the signal Θ?

Inadequacies of low-rank models. The signal plus noise model (2) is popular in tensor literature.
Existing methods estimate the signal tensor based on low-rankness of Θ [28, 34]. Common low-rank
models include Canonical Polyadic (CP) tensors [24], Tucker tensors [11], and block tensors [40].
While these methods have shown great success in theory, tensors in applications often violate the
low-rankness. Here we provide two examples to illustrate the limitation of classical models.

The first example reveals the sensitivity of tensor rank to order-preserving transformations. Let
Z ∈ R30×30×30 be an order-3 tensor with tensor rank(Z) = 3 (formal definition is deferred to the
end of this section). Suppose a monotonic transformation f(z) = (1 + exp(−cz))−1 is applied to Z
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entrywise, and we let the signal Θ in model (1) be the tensor after transformation. Figure 1a plots
the numerical rank (see Appendix B.1) of Θ versus c. As we see, the rank increases rapidly with
c, rending traditional low-rank tensor methods ineffective in the presence of mild order-preserving
nonlinearities. Similar observations apply to both CP and Tucker models, and more generally, to low-
rank models with scale-sensitive rank measures. In digital processing [17] and genomics analysis [26],
the tensor of interest often undergoes unknown transformation prior to measurements. The sensitivity
to transformation makes the low-rank model less desirable in practice.

Figure 1: (a) Numerical tensor rank of Θ vs. transformation level c in the first example. (b) Top
d = 30 tensor singular values in the second example.

The second example demonstrates the inadequacy of classical low-rankness in representing special
structures. Here we consider the signal tensor of the form Θ = log(1+Z), where Z ∈ Rd×d×d is an
order-3 tensor with entries Z(i, j, k) = d−1 max(i, j, k) for i, j, k ∈ {1, . . . , d}. The matrix analogy
of Θ was studied in graphon analysis [8]. In this case neither Θ nor Z is low-rank; in fact, the rank is
no smaller than the dimension d as illustrated in Figure 1b. Again, classical low-rank models fail to
address this type of tensor structure.

In the above and many other examples, the signal tensors Θ of interest have high rank. Classical
low-rank models will miss these important structures. The observations have motivated us to develop
more flexible tensor modeling.

Our contributions. We develop a new model called sign representable tensors to address the
aforementioned challenges. Figure 2 illustrates our main idea. Our approach is built on the sign series
representation of the signal tensor, and we propose to estimate the sign tensors through a series of
weighted classifications. In contrast to existing methods, our method is guaranteed to recover a wide
range of low- and high-rank signals. We highlight two main contributions that set our work apart
from earlier literature.

Statistically, the problem of high-rank tensor estimation is challenging. Existing estimation theory [3,
34, 7] exclusively focuses on the regime of fixed r and growing d. However, such premise fails in
high-rank tensors, where the rank may grow with, or even exceed, the dimension. A proper notion of
nonparametric complexity is crucial. We show that, somewhat surprisingly, the sign tensor series not
only preserves all information in the original signals, but also brings the benefits of flexibility and
accuracy over classical low-rank models. The results fill the gap between parametric (low-rank) and
nonparametric (high-rank) tensors, thereby greatly enriching the tensor model literature.

Computationally, a number of polynomial-time algorithms are readily available under moderate-to-
high signal-to-noise ratio for 1-bit tensor estimation [39, 20, 17]. These algorithms enjoy computa-
tional efficiency while being restricted to binary inputs. Our work is orthogonal to these algorithm
development, and we show that the high-rank tensor estimate is provably reducible to a series of
binary tensor problems with carefully-designed weights. This reduction provides a generic engine
to empower existing algorithms for a wider range of structured tensor problems. We use a divide-
and-concur approach to combine efficient base algorithms, thereby achieving computational accuracy
without the need to reinvent the wheel. The flexibility to import and adapt existing tensor algorithms
is one advantage of our method.

We also highlight the challenges associated with tensors compared to matrices. High-rank matrix
estimation has been studied under graphon models [41, 44, 8], nonlinear models [15], and subspace
clustering [35, 13]. In particular, the recent work [30] proposes a general nonparametric framework
to address a variety of matrix problems including regression and completion. However, high-rank
tensor problems is more challenging, because the tensor rank often exceeds the dimension when
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order K greater than two [4]. This is in sharp contrast to matrices (K = 2). We show that, applying
matrix methods to higher-order tensors results in suboptimal estimates. A full exploitation of the
higher-order structure is needed; this is another challenge we address in this paper.

Notation. We use [n] = {1, . . . , n} for n-set with n ∈ N+, an � bn if limn→∞ an/bn ≤ c for some
constant c > 0, and an � bn if c1 ≤ limn→∞ an/bn ≤ c2 for some constants c1, c2 > 0. We use
O(·) to denote the big-O notation, Õ(·) the variant hiding logarithmic factors. Let Θ ∈ Rd1×···×dK

denote an order-K (d1, . . . , dK)-dimensional tensor, and Θ(ω) ∈ R denote the tensor entry indexed
by ω ∈ [d1]× · · · × [dK ]. An event A is said to occur “with very high probability” if P(A) tends to 1
faster than any polynomial of tensor dimension d := mink dk → ∞. The tensor rank [24] is defined
by rank(Θ) = min{r ∈ N : Θ =

∑r
s=1 a

(1)
s ⊗ · · · ⊗ a

(K)
s }, where a

(k)
s ∈ Rdk are vectors for

k ∈ [K], s ∈ [r], and ⊗ denotes the outer product of vectors. We use sgn(·) : R → {−1, 1} to denote
the sign function, where sgn(y) = 1 if y ≥ 0 and −1 otherwise. We allow univariate functions, such
as sgn(·) and general f : R → R, to be applied to tensors in an element-wise manner.

2 Model and proposal overview

Let Y be an order-K (d1, . . . , dK)-dimensional tensor generated from the model

Y = Θ+ E , (2)

where Θ ∈ Rd1×···×dK is an unknown signal tensor, and E is a noise tensor consisting of zero-mean,
independent but not necessarily identically distributed entries. We allow heterogenous noise, in
that the marginal distribution of noise entry E(ω) may depend on ω. For a cleaner exposition, we
assume the noise is bounded and the range of observation is in [−1, 1]; the extension to unbounded
observations with sub-Gaussian noise is provided in Appendix B.3. Our observation is an incomplete
data tensor from (2), denoted YΩ, where Ω ⊂ [d1]× · · · × [dK ] is the index set of observed entries.
We consider a general model on Ω that allows both uniform and non-uniform samplings. Specifically,
let Π = {pω} be an arbitrarily predefined probability distribution over the full index set with∑

ω∈[d1]×···×[dK ] pω = 1. We use ω ∼ Π to denote the sampling rule, meaning ω in Ω are i.i.d.
draws with replacement from distribution Π. The goal is to estimate Θ from YΩ. Note that Θ is not
necessarily low-rank.

Proposal intuition. Before describing our main results, we provide the intuition behind our method.
In the two examples in Section 1, the high-rankness in the signal Θ makes the estimation challenging.
Now let us examine the sign of the π-shifted signal sgn(Θ − π) for any given π ∈ [−1, 1]. It
turns out that, these sign tensors share the same sign patterns as low-rank tensors. Indeed, the
signal tensor in the first example has the same sign pattern as a rank-4 tensor, since sgn(Θ− π) =
sgn(Z − f−1(π)). The signal tensor in the second example has the same sign pattern as a rank-2
tensor, since sgn(Θ(i, j, k)−π) = sgn(max(i, j, k)−d(eπ−1)) (see Example 5 in Section 3).

The above observation suggests a general framework to estimate both low- and high-rank signal
tensors. Figure 2 illustrates the main crux of our method. We propose to estimate the signal tensor Θ
by taking the average over structured sign tensors

Θ̂ =
1

2H + 1

∑
π∈H

sgn(Ẑπ), where Ẑπ = argmin
low rank tensor Z

Weighted-Loss(sgn(Z), sgn(YΩ−π)). (3)

Here sgn(Ẑπ) ∈ {−1, 1}d1×···×dK is the sign tensor estimated at a series of π ∈ H = {−1, . . . ,
−1/H, 0, 1/H, . . . , 1}, and Weighted-Loss(·, ·) denotes a classification objective function with an
entry-specific weight to each tensor entry; its specific form will be described in Section 3.2. To obtain
sgn(Ẑπ) for a given π, we propose to dichotomize the data tensor into a sign tensor sgn(YΩ − π) and
estimate the de-noised sign by performing weighted classification.

Our approach is built on the nonparametric sign representation of signal tensors. We show that a
careful aggregation of dichotomized data preserves all information in the original signals and brings
benefits of accuracy and flexibility over classical low-rank models. Unlike traditional methods, the
sign representation is guaranteed to recover both low- and high-rank signals. In addition, a total of
H = poly(d) dichotomized problems suffice to recover Θ under the considered model. The method
therefore enjoys both statistical effectiveness and computational efficiency.
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Figure 2: Illustration of our method in the context of an order-2 tensor (a.k.a. matrix). (a): a
noisy, incomplete tensor input. (b)-(c): estimation of sign tensor series sgn(Θ − π) for π ∈
{−1, . . . ,−1/H, 0, 1/H, . . . , 1}. (d): recovered signal Θ̂. The depicted signal is a full-rank matrix
based on Example 5 in Section 3.

3 Oracle properties of sign representable tensors

This section develops sign representable tensor models for Θ in (2). We characterize the algebraic
and statistical properties of sign tensor series, which serves the foundation for our method.

3.1 Sign-rank and sign tensor series

Let Θ be the tensor of interest, and sgn(Θ) the corresponding sign pattern. The sign patterns induce
an equivalence relationship between tensors. Two tensors are called sign equivalent, denoted , if
they have the same sign pattern.
Definition 1 (Sign-rank). The sign-rank of a tensor Θ ∈ Rd1×···×dK is defined by the minimal rank
among all tensors that share the same sign pattern as Θ; i.e.,

srank(Θ) = min{rank(Θ′) : Θ′  Θ, Θ′ ∈ Rd1×···×dK}.

This concept is important in combinatorics [10], complexity theory [1], and quantum mechanics [12];
we extend the notion to continuous-valued tensors. Note that the sign-rank concerns only the sign
pattern but discards the magnitude information of Θ. In particular, srank(Θ) = srank(sgnΘ).

Like most tensor problems [23], determining the sign-rank is NP hard in the worst case [1]. For-
tunately, tensors arisen in applications often possess special structures that facilitate analysis. The
sign-rank is upper bounded by tensor rank. More generally, we show the following properties.
Proposition 1 (Upper bounds of the sign-rank).
(a) [Upper bounds] For any strictly monotonic function g : R → R with g(0) = 0, we have
srank(Θ) ≤ rank(g(Θ)).
(b) [Broadness] For every order K ≥ 2 and dimension d, there exist tensors Θ ∈ Rd×···×d such that
rank(Θ) ≥ d but srank(Θ− π) ≤ 2 for all π ∈ R.

Propositions 1 demonstrates the strict broadness of low sign-rank family over the usual low-rank
family. In particular, the sign-rank can be much smaller than the tensor rank, as we have shown in the
two examples of Section 1. We provide several additional examples in Appendix B.2 in which the
tensor rank grows with dimension d but the sign-rank remains a constant. The results highlight the
advantages of using sign-rank in the high-dimensional tensor analysis.

We now introduce a tensor family, which we coin as “sign representable tensors”.
Definition 2 (Sign representable tensors). Fix a level π ∈ [−1, 1]. A tensor Θ is called (r, π)-sign
representable, if the tensor (Θ−π) has sign-rank bounded by r. A tensor Θ is called r-sign (globally)
representable, if Θ is (r, π)-sign representable for all π ∈ [−1, 1]. The collection {sgn(Θ− π) : π ∈
[−1, 1]} is called the sign tensor series. We use Psgn(r) = {Θ: maxπ∈[−1,1] srank(Θ− π) ≤ r} to
denote the r-sign representable tensor family.

We next show that the r-sign representable tensor family is a general model that incorporates most
existing tensor models, including low-rank tensors, single index models, GLM models, and structured
tensors with repeating entries.
Example 1 (CP/Tucker low-rank models). The CP and Tucker low-rank tensors are the two most
popular tensor models [29]. Let Θ be a low-rank tensor with CP rank r. We see that Θ belongs to
the sign representable family; i.e., Θ ∈ Psgn(r + 1) (the constant 1 is due to rank(Θ− π) ≤ r + 1).
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Similar results hold for Tucker low-rank tensors Θ ∈ Psgn(r + 1), where r =
∏

k rk with rk being
the k-th mode Tucker rank of Θ.
Example 2 (Tensor block models (TBMs)). Tensor block model [40, 9] assumes a checkerboard
structure among tensor entries under marginal index permutation. The signal tensor Θ takes at most
r distinct values, where r is the total number of multiway blocks. Our model incorporates TBM
because Θ ∈ Psgn(r).
Example 3 (Generalized linear models (GLMs)). Let Y be a binary tensor from a logistic model [39]
with mean Θ = logit(Z), where Z is a latent low-rank tensor. Notice that Θ itself may be high-rank
(see Figure 1a). By definition, Θ is a low-rank sign representable tensor. Same conclusion holds for
general exponential-family models with a (known) link function [25].
Example 4 (Single index models (SIMs)). Single index model is a flexible semiparametric model
proposed in economics [36] and high-dimensional statistics [5, 14]. The SIM assumes the existence
of a (unknown) monotonic function g : R → R such that g(Θ) has rank r. We see that Θ belongs to
the sign representable family; i.e., Θ ∈ Psgn(r + 1).
Example 5 (Structured tensors with repeating entries). Here we revisit the model introduced in
Figure 1b of Section 1. Let Θ be an order-K tensor with entries Θ(i1, . . . , iK) = log(1+maxk x

(k)
ik

),

where x
(k)
ik

are given numbers in [0, 1] for all ik ∈ [dk], k ∈ [K]. We conclude that Θ ∈ Psgn(2),
because the sign tensor sgn(Θ− π) with an arbitrary π ∈ (0, log 2) is a block tensor with at most
two blocks (see Figure 2c). Similar results extend to structured tensors with entries Θ(i1, . . . , iK) =

g(maxk x
(k)
ik

), where g(·) is a polynomial of degree r. In this case, Θ is a high-rank tensor with at
most dmax distinct entries but we have Θ ∈ Psgn(2r) (see proofs in Appendix B.2). These structured
tensors are related to hypergraphons [45, 33]. We discuss the connection in Appendix B.2.

3.2 Statistical characterization of sign tensors via weighted classification

We now provide the explicit form of the weighted loss introduced in (3), and show that sign tensors
are characterized by weighted classification. The results bridge the algebraic and statistical properties
of sign representable tensors.

For a given π ∈ [−1, 1], define a π-shifted data tensor ȲΩ with entries Ȳ(ω) = (Y(ω) − π) for
ω ∈ Ω. We propose a weighted classification objective function

L(Z, ȲΩ) =
1

|Ω|
∑
ω∈Ω

|Ȳ(ω)|︸ ︷︷ ︸
weight

× |sgnZ(ω)− sgnȲ(ω)|︸ ︷︷ ︸
classification loss

, (4)

where Z ∈ Rd1×···×dK is the decision variable to be optimized, |Ȳ(ω)| is the entry-specific weight
equal to the distance from the tensor entry to the target level π. The entry-specific weights incorporate
the magnitude information into classification, where entries far away from the target level are
penalized more heavily in the objective. In the special case of binary tensor Y ∈ {−1, 1}d1×···×dK

and target level π = 0, the loss (4) reduces to usual classification loss.

Our proposed weighted classification function (4) is important for characterizing sgn(Θ− π). Define
the weighted classification risk

Risk(Z) = EYΩ
L(Z, ȲΩ), (5)

where the expectation is taken with respect to YΩ under model (2) and the sampling distribution
ω ∼ Π. The form of Risk(·) implicitly depends on π; we suppress π when no confusion arises.
Proposition 2 (Global optimum of weighted risk). Suppose the data YΩ is generated from model (2)
with Θ ∈ Psgn(r). Then, for all Θ̄ that are sign equivalent to sgn(Θ− π),

Risk(Θ̄) = inf{Risk(Z) : Z ∈ Rd1×···×dK} = inf{Risk(Z) : rank(Z) ≤ r}.

The results show that the sign tensor sgn(Θ− π) optimizes the weighted classification risk. This fact
suggests a practical procedure to estimate sgn(Θ−π) via empirical risk optimization of L(Z, ȲΩ). In
order to establish the recovery guarantee, we shall address the uniqueness (up to sign equivalence) for
the optimizer of Risk(·). The local behavior of Θ around π plays a key role in the accuracy.

Some additional notation is needed for stating the results in full generality. Let dtotal =
∏K

k=1 dk
denote the total number of tensor entries, and ∆s = 1/dtotal a small tolerance. We quantify the
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distribution of tensor entries Θ(ω) using a pseudo density, i.e., histogram with bin width 2∆s. Let
G(π) := Pω∼Π[Θ(ω) ≤ π] denote the cumulative distribution function (CDF) of Θ(ω) under ω ∼ Π.
We partition [−1, 1] = N c ∪N , such that the pseudo density based on 2∆-bin is uniformly bounded
over N c; i.e,

N c =

{
π ∈ [−1, 1] :

G(π +∆s)−G(π −∆s)

∆s
≤ C

}
, for some universal constant C > 0,

and N otherwise. Informally, the set N collects the jump points for which the pseudo density is
unbounded. Both Θ and its induced CDF G implicitly depend on the tensor dimension.
Assumption 1 (α-smoothness). Fix π ∈ N c. Assume there exist constants α = α(π) > 0, c =
c(π) > 0, independent of tensor dimension, such that,

sup
∆s≤t<ρ(π,N )

G(π + t)−G(π − t)

tα
≤ c, (6)

where ρ(π,N ) := minπ′∈N |π − π′|+∆s denotes the adjusted distance from π to the nearest point
in N . We make the convention that ρ(π,N ) = ∞ when N = ∅. The largest possible α = α(π)
in (6) is called the smoothness index at level π. We define that α = ∞ if the numerator in (6) is
zero. A tensor Θ is called α-globally smooth, if (6) holds with global constants α > 0, c > 0 for
all π ∈ N c. A similar notion of α-smoothness was previously developed in different contexts of
nonparametric function estimation; see Figures 3 in Lee et al [30] for an illustration.

The smoothness index α quantifies the intrinsic hardness of recovering sgn(Θ − π) from Risk(·).
The value of α depends on both the sampling distribution ω ∼ Π and the behavior of Θ(ω). The
recovery is easier at levels where points are less concentrated around π with a large value of α > 1,
or equivalently, when G(π) remains almost flat around π. A small value of α < 1 indicates the
nonexistent (infinite) density at level π, or equivalently, when the G(π) jumps by greater than the
tolerance ∆s at π. Table 2 illustrates the G(π) for various models of Θ (see Section 5).

We now reach the main theorem in this section. For two tensors Θ1,Θ2, define the mean absolute
error (MAE) as MAE(Θ1,Θ2) = Eω∼Π|Θ1(ω)−Θ2(ω)|.
Theorem 1 (Identifiability). Assume Θ ∈ Psgn(r) is α-globally smooth. Then, for all π ∈ N c and
tensors Θ̄  sgn(Θ− π), we have

MAE(sgnZ, sgnΘ̄) � C(π)
[
Risk(Z)− Risk(Θ̄)

]α/(α+1)
+∆s, for all Z ∈ Rd1×···×dK ,

where C(π) > 0 is independent of Z .

The result establishes the recovery stability of sign tensors sgn(Θ − π) using optimization with
population risk (5). The bound immediately shows the uniqueness of the optimizer for Risk(·) up to
a ∆s-measure set under Π. We find that a higher value of α implies more stable recovery, as intuition
would suggest. Similar results hold for optimization with sample risk (4) (see Section 4).

We conclude this section by applying Assumption 1 to the examples described in Section 3.1. For
simplicity, suppose Π is the uniform sampling. The tensor block model is ∞-globally smooth. This
is because the set N consists of finite 2∆s-bin’s covering the distinct block means in Θ. Furthermore,
we have α = ∞ for all π ∈ N c, since the numerator in (6) is zero. Similarly, the high-rank (d, d, d)-
dimensional tensor Θ(i, j, k) = log(1+ 1

d max(i, j, k)) is ∞-globally smooth because α = ∞ for all
π except those in N , where N collects d many 2∆s-bin’s covering log(1+ i/d) for all i ∈ [d].

4 Nonparametric tensor completion via sign series

In previous sections we have established the sign series representation and its relationship to classifi-
cation. In this section, we present our learning reduction proposal in details (Figure 2). We provide
the estimation error bound and address the empirical implementation of the method.

4.1 Statistical error and sample complexity

Given a noisy incomplete tensor observation YΩ from model (2), we cast the problem of estimating
Θ into a series of weighted classifications. Specifically, we propose the signal tensor estimate using
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averaged structured sign tensors

Θ̂ =
1

2H + 1

∑
π∈H

sgnẐπ, with Ẑπ = argmin
Z : rankZ≤r

L(Z,YΩ − π), (7)

where H = {−1, . . . ,−1/H, 0, 1/H, . . . , 1} is the series of levels to aggregate, L(·, ·) denotes
the weighted classification objective defined in (4), and the rank constraint on Z follows from
Proposition 2. For the theory, we assume the true r is known; in practice, r could be chosen in a data
adaptive fashion via cross-validation or elbow method [21].

The next theorem establishes the statistical convergence for the sign tensor estimate (7).
Theorem 2 (Sign tensor estimation). Suppose Θ ∈ Psgn(r) and Θ(ω) is α-globally smooth under
ω ∼ Π. Let Ẑπ be the estimate in (7), d = maxk∈[K] dk, and td = dr log |Ω|

|Ω| � 1. Then, for all
π ∈ N c, with very high probability over YΩ,

MAE(sgnẐπ, sgn(Θ− π)) � t
α/(α+2)
d +

1

ρ2(π,N )
td. (8)

Theorem 2 provides the error bound for the sign tensor estimation. Compared to the population
results in Theorem 1, we explicitly reveal the dependence of accuracy on the sample complexity and
the level π. The result demonstrates the polynomial decay of sign errors with |Ω|. Our sign estimate
achieves consistent recovery using as few as Õ(dr) noisy entries.

Recall that N collects the levels for which the sign tensor is possibly nonrecoverable. Let |N | be the
covering number of N with 2∆s-bin’s, i.e, |N | = �Leb(N )/2∆s�, where Leb(·) is the Lebesgue
measure and �·� is the ceiling function. Combining the sign representability of the signal tensor and
the sign estimation accuracy, we obtain our main results on nonparametric tensor estimation.

Theorem 3 (Tensor estimation error). Consider the same conditions of Theorem 2. Let Θ̂ be the
estimate in (7). For any resolution parameter H ∈ N+, with very high probability over YΩ,

MAE(Θ̂,Θ) � (td logH)
α

α+2 +
1 + |N |

H
+ tdH logH. (9)

In particular, setting H = (1 + |N |)1/2t−1/2
d � poly(d) yields the tightest upper bound in (9).

Theorem 3 demonstrates the convergence rate of our tensor estimation. The bound (9) reveals three
sources of errors: the estimation error for sign tensors, the bias from sign series representations, and
the variance thereof. The resolution parameter H controls the bias-variance tradeoff. We remark that
the signal estimation error (9) is generally no better than the corresponding sign error (8). This is to
be expected, since magnitude estimation is a harder problem than sign estimation.

In the special case of full observation with equal dimension d1 = · · · = dK = d and bounded
|N | ≤ C, our signal estimate achieves convergence

MAE(Θ̂,Θ) � rd−(K−1)min( α
α+2 ,

1
2 ) log2 d,

by setting H � d(K−1)/2. Compared to earlier methods, our estimation accuracy applies to both
low- and high-rank signal tensors. The rate depends on the sign complexity Θ ∈ Psgn(r), and this r
is often much smaller than the usual tensor rank (see Section 3.1). Our result also reveals that the
convergence becomes favorable as the order of data tensor increases.

We apply our general theorem to the main examples in Section 3.1, and we compare the results with
existing literature (Table 1). The numerical comparison is provided in Section 5.
Example 2 (TBMs). Consider a tensor block model with r multiway blocks. Our result implies a
rate Õ(d−(K−1)/2) by taking α = ∞ and |N | ≤ rK � O(1). This rate agrees with the previous
root-mean-square error (RMSE) for block tensor estimation [40].
Example 3 (GLMs). Consider a GLM tensor Θ = g(Z), where g is a known link function and Z
is a latent low-rank tensor. Suppose the CDF of Θ(ω) is uniformly bounded as d → ∞. Applying
our results with α = 1 and finite |N | yields Õ(d−(K−1)/3). This rate is slightly slower than the
parametric RMSE rate [43, 39, 27], as expected. The reason is that our estimate remains valid for
unknown g and general high-rank tensors. The nonparametric rate is the price one has to pay for not
knowing the form Θ = g(Z) as a priori.
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Table 1: Summary of our statistical rates compared to existing works under different models. For
notational simplicity, we present error rates assuming equal tensor dimension in all modes and finite
|N | for the smooth tensor model. Here K denotes tensor order and d denotes tensor dimension.

Model α |N | Our rate (power of d) Comparison with previous result
Tensor block model ∞ Finite −(K − 1)/2 Achieves minimax rate [40].

Single index model 1 0 −(K − 1)/3
Not available for general K > 3; Improves
previous rate -1/4 for K = 2 [15].

Generalized linear model 1 0 −(K − 1)/3 Close to minimax rate [43, 39, 27].

Structure with repeating entries ∞ d −(K − 2)/2 Not available.

Smooth tensor α Finite −(K − 2)min( α
α+2 ,

1
2 ) Not available.

Example 4 (SIMs). The earlier example has shown the nonparametric rate Õ(d−(K−1)/3) when
applying our method to single index tensor model. In the matrix case with K = 2, our theorem yields
error rate Õ(d−1/3). Our result is consistent with the rate obtained by Xu [41] and is faster than the
rate O(d−1/4) obtained by Ganti et al [15].
Example 5 (Structured tensors with repeating entries). We consider a more general model than that
in Section 1. Consider an r-sign representable tensor Θ ∈ Psgn(r) with at most d distinct entries
with repetition pattern. Applying our results with α = ∞ and |N | = d yields the rate Õ(d−(K−2)/2).

The following corollary reveal the sample complexity for nonparamtric tensor completion.
Corollary 1 (Sample complexity for nonparametric completion). Assume the same conditions of
Theorem 3 and bounded |N |. Then, with high probability over YΩ,

MAE(Θ̂,Θ) → 0, as
|Ω|

dr log2 |Ω|
→ ∞.

Our result improves earlier work [42, 18, 31] by allowing both low- and high-rank signals. Interest-
ingly, the sample requirements depend only on the sign complexity dr but not the nonparametric
complexity α. Note that Õ(dr) roughly matches the degree of freedom of sign tensors, suggesting
the optimality of our sample requirements.

4.2 Implementation via learning reduction

This section addresses the practical implementation of our estimation (7). We take a learning reduction
approach by dividing the full procedure into a meta algorithm and 2H + 1 base algorithms. The
meta algorithm takes the average of (2H + 1) � poly(d) sign tensors, whereas each base algorithm
estimates the tensor sgn(Θ−π) given binary input sgn(Y−π) and a target rank r. The full procedure
is described in Algorithm 1 and Figure 2.

Algorithm 1 Nonparametric tensor completion via learning reduction

Input: Noisy and incomplete data tensor YΩ, rank r, resolution parameter H , ridge penalty λ.
1: for π ∈ H = {−1, . . . ,− 1

H , 0, 1
H , . . . , 1} do

2: Define π-shifted tensor Ȳ = Y − π and corresponding sign tensor sgn(Ȳ) = sgn(Y − π).
3: Perform 1-bit tensor estimation algorithm [17, 39, 25, 2] on ȲΩ and obtain Ẑπ ←

argminlow-rank Z
∑

ω∈Ω |Ȳ(ω)|F (Z(ω)sgnȲ(ω))+λ‖Z‖2F where F (·) is the large-margin loss.
4: end for

Output: Estimated signal tensor Θ̂F = 1
2H+1

∑
π∈H sgn(Ẑπ).

The base algorithm reduces to a low-rank 1-bit tensor estimation problem. Following the common
practice in classification [6], we replace the 0-1 loss �(z, y) = |sgnz − sgny| in (4) with a continuous
large-margin loss F (m) where m = zsgn(y) is the margin. Examples of large-margin loss are hinge
loss F (m) = (1−m)+, logistic loss F (m) = log(1+e−m), and ψ-loss F (m) = 2min(1, (1−m)+)
with m+ = max(m, 0). A number of polynomial-time algorithms with convergence guarantees are
readily available for this problem [17, 39, 25, 2]. We implement hinge loss [2, 16, 22] which maintains
desirable statistical properties as in 0-1 loss, because of the linear excess risk bound [37]

Risk(Z)− Risk(Θ− π) ≤ C[RiskF (Z)− RiskF (Θ− π)], for all π ∈ [−1, 1] and all tensor Z.

8



Here RiskF (·) is defined similarly as in (5) with hinge loss in place of 0-1 loss. The resulting estimate
enjoys both statistical and computational efficiency under mild conditions.

Theorem 4 (Large-margin loss). Let Θ̂F be the output from Algorithm 1 with F being the hinge
loss. Under the set-up of Theorem 2 and technical assumptions on base algorithms, Θ̂F has the same
error bound as in (9). Furthermore, the total complexity is within a poly(d) factor of base algorithms.

The full statement of Theorem 4 can be found in Appendix A.5. Technical assumptions in the theorem
depend on the chosen base algorithm. For example, a signal-to-noise ratio for base problem is needed
for the polynomial complexity of algorithms [39, 20]. We remark that we did not attempt to propose
a new tensor algorithm. Instead, we present a learning reduction by adopting existing algorithms for a
more challenging high-rank problems almost for free, i.e., at only an extra poly(d) computational cost,
but at almost no extra statistical cost. The developed sign-representable tensor model unifies low-rank
and high-rank tensors, thereby empowering exiting algorithms for broader implications.

In principle, uses can choose their own favorite large-margin losses, as long as the base algorithms are
sample efficient. The comparison between various large-margin losses has been studied before [6].
Note that, instead of using Ẑπ as in existing 1-bit tensor algorithms [17, 39], we use sgn(Ẑπ) for
more challenging nonparametric estimation. The sign aggregation brings the benefits of flexibility
and accuracy over classical low-rank models.

5 Numerical experiments

Finite-sample accuracy. We compare our nonparametric tensor method (NonparaT) with two
alternative approaches: low-rank tensor CP decomposition (CPT), and the matrix version of our
method applied to tensor unfolding (NonparaM). The performance is assessed under both complete
and incomplete observations. We generate signal tensors based on four models summarized in Table 2,
including block tensors, transformed low rank tensors, and structured tensors with repeating entries.
We consider order-3 tensors of equal dimension, and set d ∈ {15, 20, . . . , 55, 60}, r ∈ {2, 3, . . . , 10},
H = 10+(d− 15)/5 in Algorithm 1. All summary statistics are averaged across 30 replicates.

Table 2: Simulation models used for comparison. Here Mk ∈ {0, 1}d×3 denotes membership matrix;
C ∈ R3×3×3 is the block mean tensor; a = d−1(1, 2, . . . , d)T is a length-d vector; Zmax and Zmin

are order-3 tensors with entries d−1 max(i, j, k) and d−1 min(i, j, k), respectively.

Figure 3a-b compares the estimation error under full observation. For space consideration, only
results for models 2-3 are presented in the main paper, and the rest in the Appendix C.1. We find that
MAE decreases with tensor dimension for all three methods. Our method NonparaT achieves the best
performance in all scenarios, whereas the second best method is CPT for model 2, and NonparaM for
model 3. The model 2 has controlled multilinear rank along mode 3, which makes tensor methods
NonparaT and CPT more accurate than NonparaM. The model 3 fits poorly into low-rank tensor
families, and therefore, the two nonparametric methods NonparaT and NonparaM exhibit the greater
advantage. Figure 3c-d shows the completion error against observation fraction. We fix d = 40
and gradually increase the observation fraction |Ω|/d3 from 0.3 to 1. Again, we find that NonparaT
achieves the lowest error. The simulation covers a wide range of complexities, and our method shows
good performance in experiments.

Data applications. We apply our method to two tensor datasets, the MRN-114 human brain connec-
tivity data [38], and NIPS data [19]. The brain dataset records the structural connectivity among 68
brain regions for 114 individuals along with their Intelligence Quotient (IQ) scores. We organize the
connectivity data into an order-3 tensor, where entries encode the presence or absence of fiber connec-
tions between brain regions across individuals. The NIPS dataset consists of word occurrence counts
in papers published from 1987 to 2003. We focus on the top 100 authors, 200 most frequent words,
and normalize each word count by log transformation with pseudo-count 1. The resulting dataset is
an order-3 tensor with entry representing the log counts of words by authors across years.
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Figure 3: Performance comparison between different methods. (a)-(b): Estimation error versus tensor
dimension. (c)-(d): Estimation error versus observation fraction. Panels (a) and (c) are for model 2,
whereas (b) and (d) are for model 3.

Table 3 compares the prediction accuracy of different methods. Reported MAEs are averaged over five
runs of cross-validation, with 20% entries for testing and 80% for training. Our method substantially
outperforms the low-rank CP method for every configuration under consideration. Further increment
of rank appears to have little effect on the performance, and we find that increased missingness
gives more advantages to our method (see details in Appendix B.2). The comparison highlights the
advantage of our method in achieving accuracy while maintaining low complexity.

Table 3: MAE comparison between Non-
paraT (H = 20) and CPT in the real
data analysis. Standard errors are in
parenthesis.

MRN-114 brain connectivity dataset

Method r = 6 r = 9 r = 12

NonparaT (Ours) 0.14(0.001) 0.12(0.001) 0.12(0.001)

CPT 0.23(0.006) 0.22(0.004) 0.21(0.006)

NIPS word occurrence dataset

Method r = 6 r = 9 r = 12

NonparaT (Ours) 0.16(0.002) 0.15(0.001) 0.14(0.001)

CPT 0.20(0.007) 0.19(0.007) 0.17(0.007)

Figure 4: (a) top IQ-associated edges in the brain con-
nectivity data. (b) top (authors, words, year) triplets in
the NIPS data.

Figure 4a shows the top 10 brain edges based on regression analysis of denoised tensor from NonparaT
against normalized IQ scores. We find that the top connections are mostly inter-hemisphere edges,
consistent with recent research on brain connectivity [32, 38]. Figure 4b illustrates the results from
NIPS data, where we plot the entries in Θ̂ corresponding to top authors and most-frequent words
(after excluding generic words such as figure, results, etc). The identified pattern agrees with active
topics in the NIPS publication. Among the top words are neural (marginal mean = 1.95), learning
(1.48), and network (1.21), whereas top authors are T. Sejnowski (1.18), B. Scholkopf (1.17), M.
Jordan (1.11), and G. Hinton (1.06). We also find strong heterogeneity among word occurrences
across authors and years. For example, training and algorithm are popular words for B. Scholkopf
and A. Smola in 1998-1999, whereas model occurs more often in M. Jordan and in 1996. The detected
patterns and achieved accuracy demonstrate the applicability of our method.

6 Conclusion

We have developed a tensor estimation method that addresses both low- and high-rankness based on
sign series representation. Our work provides a nonparametric framework for tensor estimation, and
we establish accuracy guarantees for recovering a wide range of structured tensors. Our proposed
learning reduction strategy empowers existing algorithms for broader implication, thereby connecting
the low-rank (parametric) tensors and high-rank (nonparametric) tensors. We hope the work opens up
new inquiry that allows more researchers to contribute to this field.
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