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ABSTRACT

In this paper we propose a study on landmark identification as a step
towards a localization setup for real-world robotic swarms setup.
In real world, landmark identification is often tackled as a place
recognition problem through the use of computationally intensive
Convolutional Neural Networks. However, the components of a
robotic swarm usually have limited computational and sensing
capabilities that allows only for the application of relatively shallow
networks that results in large percentage of recognition errors. In
a previous attempt of solving a similar setup — cooperative object
recognition — the authors of [1] have demonstrated how the use
of communication among a swarm and a naive Bayes classifier
was able to substantially improve the correct recognition rate. An
assumption of that paper not compatible with a swarm localization
setup was that all swarm components would be looking at the same
object. In this paper, we propose the use of a weighting factor to
relapse this assumption. Through the use of simulation data, we
show that our approach provides high recognition rates even in
situations in which the robots would look at different objects.
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1 INTRODUCTION

Robotic swarms consist of autonomous relatively inexpensive robots
with limited computational and sensing capabilities. Each robot
performs simple tasks using only local information and limited
communication with its communication neighbors. Thanks to the
intrinsic decentralization of the system, many researchers have
highlighted the robustness of robotics swarms, as well as the versa-
tility and the ability to parallelize the work. These benefits however
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come at the price of a higher complexity in the design and analysis
of single robot behaviors to achieve a global task from local inter-
actions [2]. Despite this additional challenge, robotic swarms have
been proposed for a large plethora of tasks including search and
rescue operations [3], exploration [4], information gathering and
clean up of toxic spills [5, 6], target search and tracking [7], and
even construction [8].

For real world application of these systems, however, swarms
still present a number of challenges that are currently being actively
researched. Localization of the swarm, acquisition of local infor-
mation through sensing, communication with a subset of agents in
the swarm, and decision making based on the gathered sensor data
are aspects that need to be addressed. Particularly while research-
ing sensing and estimation, there are aspects to consider that are
specific to swarms. There are constraints on the number of sensor
equipment that can be employed due to limits on computational
power, energy consumption, and payload. Moreover, the physical
dimension of the robots could be small compared to the objects
in their environment, and in many cases measurements as images
will be collected from very disadvantageous, non-comprehensive
points of view.

However, in many aspects of control, localization, and SLAM,
robots in a swarm still need to be able to identify an object or a place,
be it the target of an action (e.g., [9]) or the current location (e.g.,
[10]). Many mobile robot localization systems, for example, rely on
the presence of known-location landmarks in the environment (e.g.,
[11-14]). In real-world applications, these landmarks should be nat-
urally part of the environment. Their identification however is often
tackled with computationally demanding recognition algorithms
based on computer vision or neural networks.

In this paper we propose a cooperative recognition strategy in
which each robot uses a Convolutional Neural Network (CNN)
trained to recognize the landmarks in the environment. Due to the
limited computational capabilities of the robots, however, the CNNs
are relatively shallow and provide a relatively high percentage of
recognition errors. In a multi-view setup, a suitable strategy to
reduce errors is to fuse the results of the individual CNNs.

In single view setups, there is a vast literature on place recogni-
tion [15], using cameras (e.g., [10, 16]) and lidar sensors (e.g., [17]).
However, there are relatively few authors that have addressed the
problem of place recognition with sequence of frames or in gen-
eral multi-view information. Some algorithms uses sequences of
frames with temporal consistency constraints for place recognition
[18-22]. This setup significantly differs from a multi-view setting
and cannot be straightforwardly applied to our problem. In [23],
the authors propose three alternatives for deep networks to use
several frames of a sequence in a place recognition task, in which



the model learns to combine single-view CNN descriptors from
data. In [24] the authors propose a feature based approach to place
recognition using both lidar and camera sensors. However, both
these methods are beyond the computational capabilities of robotic
swarms.

Similarly, object classification has a vast literature in single view
setup [25], but relatively few works in multi-view setups or multi-
sensor setups. In [26-28], the authors use various approaches to
seek to reconstruct the cluttered parts of an environment in order
to discern the subject from the background using a multi-view
approach. In [29, 30], a method for selection of an optimal number
of images that are taken from different perspectives of a 3D object
is used for recognition. In [31, 32], the authors employ a network
of smart cameras which jointly classify the observed object. In
[33, 34], methods were developed to classify objects based on sound
features and visual information. The commonality between all these
approaches is that they employ a broad point of view to select the
informative features of the observed objects, which is different from
a robotic swarm setup in which each robot may take only partial
information of the observed place.

In one paper [1], the authors proposed a study on multi-sensor
object classification on a series of objects in which the individual
classification results were fused together through an iterative naive
Bayes classifier. The main drawback of this approach is that the
robots were assumed to be looking all at the same object. Therefore,
all individual results were fused together and all team members
would eventually converge to the same result. In a robot localization
scenario, however, it is likely that different team members would
look at different objects. This would happen, for example, if there
is a significant distance between some robots, or if the robots are
looking in different directions.

In this study, we relax that assumption by employing a weighted
naive Bayes classifier (WNBC) in which the weights that each robot
assigns to other robots’ results received through communication
depend on the distance on the communication graph, and the mag-
nitude of the relative yaw. As the overall performance of the system
depends on this relationship between the weights and these two
parameters, we have performed a series of numerical simulation
to optimize our system and highlight the effect of this relationship.
The main contribution of this paper is to provide a novel place
recognition algorithm specifically designed for robotic swarms.

The rest of the paper is organized as follows. Section 2 will in-
troduce the problem settings, including the robot model and sensor
equipment, the communication graph as well as the formal defini-
tion of the problem of cooperative place recognition. Section 3 will
describe the proposed system. In Section 4, we propose a descrip-
tion of the simulation platform and implementation. Section 5 will
conclude the paper.

2 PROBLEM SETTINGS

Let us consider a swarm system A = {A1, A, ..., Ap} of n agents.
The generic robot A;, i = 1,...,n lives in a 3D environment popu-
lated with a set Q = {w1, W, ..., m } of m objects wy, [ =1,...,m.
In general, robots are not aware of their global positions in any fixed
world frame W = O — XYZ, nor they have access to each other’s
relative position. However, we assume that the robots are able to
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communicate with each other within a certain range r. Hence, we
can define the communication graph as an ordered pair G = (N, &)
consisting of nodes AV (the robots) and edges &. An edge e = {i, j} is
an unordered pair such that if {i, j} € &, robots A; and A; can com-
municate. This implies that the underlying communication graph
is undirected, i.e., if A; communicates with Aj, then conversely
Aj can communicate with A;. We also will be operating under the
assumption that the communication graph is connected, i.e., there
is a path between any two nodes of the graph. It is not within the
scope of this paper to study the problem of controlling the swarm
so that this assumption is verified. However, there are in literature
(e.g., [35]) connectivity maintenance swarming algorithm that can
guarantee hat this assumption is verified.

Each agent A; is given a set of exteroceptive sensors and gathers
a measurement z; of an object w’ € Q, where the superscript i
identifies the specific object observed by robot A;. In fact, contrary
to the assumptions of [1], different robots can potentially observe
different objects in the environment. In the following, we assume
that all the robots will be equipped with the same exteroceptive
sensor: a camera. However, this assumption is easily generalizable
to different exteroceptive sensors. In addition, each robot A; will be
able to measure its own yaw angle ¢; in the world frame W through
a magnetometer. In the following, we will indicate with Z = {z;,i =
1,2,...,n} the set of exteroceptive measurements collected by all
the robots, and with ® = {¢;,i = 1,2,...,n} the set of all yaw
angles. Collectively, we will indicate with Zg = {Z, ®} the set of all
exteroceptive and yaw measurements.

To formally introduce the problem that we will address in this
work, we define n random variables Oi(w), i =1,...,n, that repre-
sent the objects observed by A;,i=1,...,n:

Oi(w)=0i=l<:>wi=a)l

(1)
1) = p(OY) as the probability

We then define the probability (O
that 0' = wy.

PROBLEM STATEMENT 1. The problem of identifying the objects
o' out of the set Q through the measurements Zg, is the problem of
assigning to each o' a potentially different label I' = cl'(Zg) out of
the set L = {1,...,m} on the basis of the measurements Zg, where
cli(Zy) = 1" ifand only if " is recognized to be @y,

A common policy to solve Problem 1 is to assign to the observed
objects w',i = 1,...,n, the labels that maximize the probabilities
p(O' = I'|Zyp) given the measurements Zg:

i (Zg) = argmaxp(Oi |Zo)
el

()

Whenever a labeling policy is given in the form of equation (2), it
is called a Bayes classifier. The crux of it is for each robot in the
system to estimate p(O’|Zg), and then make a decision. One of the
main focuses of this work is to define a distributed way for each
robot A; to estimate p(O|Zg), as defined in the following Problem
2:

PROBLEM STATEMENT 2. The problem of identifying the objects
w'i=1,...,n out of the set Q is the problem of computing the n
vectors of probabilities p(O*|Zp),i = 1,...,n, given the exteroceptive
measurements Z and the yaw measurements ® of all robots.
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Figure 1: Block scheme of the system running on robot A;.

Note that in Problem 2, contrarily to classical multi-view iden-
tification and distributed estimation problems, the robots are not
required to reach a consensus. Instead, each robot can reach a po-
tentially different solution, even though each robot will use the
same data including its own measurements and the measurements
from all other robots.

3 METHODOLOGY
3.1 System Architecture

The block scheme of the system running on each robot A; is depicted
in Fig. 1. The image collected by the camera, A;’s measurement z;,
is passed through an Al classifier (Section 3.2), a CNN, to determine
which object A; is observing. This step is done independently by
each robot. The output of the classifier is the m-vector of proba-
bilities P(z;|O") that A; obtains a measurement z; given that it is
observing wy, I = 1,..., m. This information is then provided to the
communication module that broadcasts it to the communication
neighbors of A; together with the measured yaw angle ¢;. The
communication module also implements a multi-hop communica-
tion algorithm so that each robot Ay, in the team can receive the
probability vectors and yaw angle measurements of A;, even the
ones that are not directly communicating with A; itself.

As all robots do the same, A;’s communication module also re-
ceives the probability vectors P(z,|0") and the yaw angles ¢y,
h=1,...,n, h # iof all other robots in the swarm. With an appro-
priate communication protocol (Section 3.3), A; also computes an
estimate rlh of the communication distance between itself and the
generic robot Ay, h =1,...,n, h # i. The communication distance
is the number of communication steps that are needed in the multi-
hop communication algorithm for a message sent from robot Ay, to
reach robot A;, and is equivalent to the graph length of the shortest
path that connects nodes i and h in the communication graph G.

The probability vector computed by the A;’s Al classifier, as well
as the ones received by the other robots, are passed to the Weighted
Naive Bayesian Classifier (WNBC, Section 3.4) together with the
yaw angles ¢;, ¢y, and the estimated communication distances
rlh. This information is used by the WNBC to iteratively compute
P(0'|Zy).
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3.2 Single-Robot Place Recognition

In the scope of this work we are using a standard single-view
recognition algorithm, a convolutional neural network (CNN) on
the Tensorflow platform. CNN’s are frequently used with image
data for recognition purpose [36]. First we have created a training
and a testing dataset on the simulated world that we have used
to demonstrate our cooperative algorithm. We have 7055 images
that we use for our training dataset and 3036 that are used for
the testing dataset. The training dataset was used to learn the
weights of a 5-layered CNN with 19 different categories. In order
to estimate how many epochs to use to train the neural network
we look at the ROC graph [37, 38]. The ROC graph, formally called
the receiver operating characteristic curve, shows the performance
of the classification model at all of the classification thresholds. It
plots the true positive rate and the false positive rate. This was
fundamental to assess that the CNN was giving equal weight to all
the input values, as well as to avoid overfitting. The choice to use a
relatively shallow CNN was dictated by the limited computational
capabilities of the hardware this algorithm is meant for, i.e., the
onboard computer of the robots. After learning the network, the
testing dataset was used to evaluate the single robot recognition
capabilities. The results showed a single robot correct recognition
rate of 84%. This probability is determined by considering each
image as a given set of "grades” or weights that tells us how fitting
the given image is to each class of landmarks. This grade is divided
by the sum of the grades of all categories in order to obtain a
measurement of the probability p(z;|O%).

Note that with this approach it is possible to easily include other
types of sensor. In fact, after the CNN computes p(z;|O"), the rest
of the system does not need to know the data type that originated
the specific probability vector. Therefore, to extend the system to
incorporate additional types of sensors, it is only necessary to train
a new CNN with the data collected by that sensor.

3.3 Communication

Each A; communicates its computed p(z;|O") over the network,
together with its measured yaw angle ¢;. This means that the com-
munication neighbors of R; will receive R;’s measured probabilities
and yaw angle. However, every member of the team eventually
needs to receive p(z;|0?), i = 1,...,n, to compute P(w’ = w;|Zp).
Therefore, each robot enacts a multi-hop communication approach
comprising multiple communication steps to spread the informa-
tion among the team. At a certain point, a generic robot A; will
send to its communication neighbors the data from A; in a message
that we denote with S{ . The format of S{ is the following:

T

sl=| ploh™ A ogoi ] 3

where p(z;]O') and ¢; are the communicated data, and i is the
indication of the owner of the measurements. rij is an estimate of
the communication distance between A; and Aj, and is computed
while the communication in the team is happening as specified in
the following.

Let be ID:c a set such that h € IDf if A; has received at least
one message Si forany h = 1,...,n between communication step 0

and communication step k. This means that if h € ID;C then A; has



Algorithm 1: The pseudocode of the communication algo-
rithm running on A;.

1 ID? = {i}
2 broadcast Sf [ p(zilOi)T rii =0 ¢; i ]T
3 while ID; # {1, 2,._..,n} do

4 if A; receives S;} then
5 if h ¢ IDX then
6 Ipf?“ = IDF U{h}
7 S} = 5;1
8 r;l = r;l +1 -
9 broadcast S;l
10 else
11 ‘ ignore Si
12 end
13 else
14 ‘ wait
15 end
16 end

received p(zy, |O") and ¢y, from a previous communication message
from at least one robot in the team. The pseudocode of the multi-
hop communication algorithms executed by each A; is presented
in Algorithm 1. It includes the following steps:

line 1: The algorithm is initialized by setting the ID? to include
only i.
line 2: Then A; sends the message Sf (containing its own mea-
surements) to its communication neighbors once; in this step,
J

rl=rt=0.
1 1

lines 3-9: if A; receives a message S}J; from A with the measure-
ments from Ay, and h € ID!‘, i.e., A; has never received the
measurements of Ay, (line 5) then A; creates a new message
S}il identical S;; (line 7), increases the estimated communica-
tion distance by 1 (line 8) and broadcasts S;l to its neighbors.

line 11: if instead A; had already received Aj’s measurements
from another robot, the message Si is ignored.

When all robots in the team performs this algorithm, each robot will
receive the probability vectors and yaw angles from all other robots.
Moreover, an estimate of the communication distance between A;
and any other Aj, j € ID;C will be available to A;.

3.4 Weighted Naive Bayes Classifier

The final goal of A; is to compute the m-vector of probabilities
p(0|Ze). Here we describe first the distributed Naive Bayes Clas-
sifier (NBC) approach proposed in [1], and then we introduce a
weighting factor to take into account the reliability of the informa-
tion provided by the other robots. In the NBC, the yaw information
is not used to compute p(0¥|Zp) = p(0¥|Z), and the probabil-
ity vectors computed by all robots converge to the same value
p(012) = p(07|2),Yi,j = 1,...,n. Although the classification
method defined by equation (2) is simple, characterizing the con-
ditional probability p(0!|Z) is not trivial. We begin by applying
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Bayes rule, and p(O?|Z) can be rewritten as:

p(0)p(2]0Y)

p(0f12) = E=T8

4)

We can recursively apply the definition of conditional probability,
thus the numerator of the right-hand side of equation (4) can be
factorized as:

p(0Hp(Z|0") = p(O"p(zi,i = 1,...,n|0")

. . . . 5
=p(0")p(z1|0")p(22|0", z1) ... p(zn|O*, 21, . . ., Zn—1) )
Equation (5) can be computed recursively using the measure-
ments one at a time. However, the characterization of the depen-
dency between the measurements can still prevent the actual com-
putation of each factor. In the traditional naive Bayes classifier the
measurements are assumed to be conditionally independent from
each other. Considering that measurements come from different
robots at different locations, we can thus exploit the conditional
independence of the measurements z; assumption and simplify the
above equation (5).

p(0)p(2]0") = p(0") | [ p(2;107)
j=1

(6)

To recursively compute equation (6), A; maintains at all timesteps
k an estimate ofP(Oi|Zlk), where Zlk ={z¢q:Vq € ID{.C} is the set of
all measurements received by A; up to timestep k. Every time that
Aj receives a new message Sil such that h ¢ IDZF, it will update its
current estimate incorporating the new measurements:

; p(O))p(ZE, 2,107
p(O'|Zf, zp) = —————
p(Z7, zh)

_ p(O)p(Zf10)p(2410")
P(ZP)P(zn)

This algorithm relies on the assumption that A; and Ay, are collect-
ing measurements of the same object (w' = wM). In the setup of this
work, however, A; and Ay, may be looking at different objects. To
relax this assumption, we define the following random variable R;l

R =1
h™ o

Introducing R!, and considering that if R. = 0 the measurement

if i = wh
8)

otherwise

zy, carries no information on the object observed by robot A;, we
can write:
p(O"1Zf,2p) =
= p(0'1Zf. 2. Ri)p(R}) + p(O'1Zf 21 R )p(R})
= p(0'1Zf. 2. Ri)p(R}) + p(O'IZ[ Ry)p(R})
= p(O'1Zf.2p)p(Ry) + p(O1ZP)p(Ry,).



Introducing equation (7) into (9):
p(ON)p(ZF10")p(24|0")P(RY)
P(ZF)p(zp)

+p(0'|ZF)p(RE) =
p(zhlO")p(RD)
p(zp)

Note that in Equation (10) the term p(zy) is a normalization
factor « such that

p(0'1ZF, 2y) =

(10)

=p(0'|Z) +p(O1ZE)p(RY).

5 p(0' =11Z)p(apl0’ =D _ )
; p(zp) ’
therefore:
p(O'1Zf, 2p) = 12
= ap(0'1ZF)p(z,|0")P(RE) + p(O'|Z)p(RY,).
Considering that
P(R})=1-P(R}) (13)

the final step consists in computing the probability P(R;l) that

o' = wh. In general, p(R;l) may depend on several factors and we
do not have a standard way to compute it. In this work, we assumed
that p(R;l) depends on the distance and the relative orientation
between A; and Ay, and that these two factors are independent from
each other. This is based on two considerations. First, the further
apart the robots are, the less likely they are to be observing the same
landmark. As the robots do not have direct access to their relative
distance, they can use the estimated communication distance (which
also provides an estimate of their Cartesian distance) to compute

the following:
1

(rih + A
where 1 is positive parameter used to increase or decrease the
weight of the other robot’s measurements. When A is small (< 1),
the measurements from robots that are further away will have
higher weights. In the limit that A = 0, p(R;llrlh) converges to 1. This

p(RLIrM) = (14)

is the unweighted case. For large A (> 1), p(R;l|rlh) converges to
zero. In principle, it is possible to use this properties also to limit the
number of communication steps to a specific value ry, 4. In fact, for
A > 0, after a given number of communications steps, new incoming
measurements will be assigned an almost zero weight. Therefore, it
is possible to compute rp,4x such that those measurements are never
communicated. This would be important to limit communication in
large swarms of hundreds or thousands of agents, making te system
more scalable. Clearly, r;,qx depends on A and on the approximation
that is possible to accept.

Similarly, if the two robots look in different directions (i.e., have
a relative orientation near 1), they are unlikely to be watching the
same object. The relative orientation can be computed through the
use of the yaw measurements ¢;, ¢y, therefore we have considered

P(REIi, dn) = p(RE|di — $p) (15)
In our implementation, p (R;1|¢z — ¢p) is a Gaussian function with

zero mean and /3 covariance. This,_ choice was made so that small
values of ¢; — ¢, would provide p(R} |$; —$p,) ~ 1, while larger yaw
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Figure 2: Two views of the simulated world in ROS Gazebo
used to evaluate the performance of the place recognition
system.

differences would result in lower weights. However, other functions
can lead to equivalent results. Finally, equations (14) and (15) can
be combined into the following:

P(RY) = p(RyIi, $prit) = p(Ry |0, $p)p (R} Ir). (16)

4 SIMULATIONS

In order to test the proposed algorithm, we used a ROS Gazebo
simulation with ten small (~20 c¢m) robots moving in a complex
environment (Figure 2) consisting in a street with nineteen unique
buildings and other landmarks (e.g., trees, a playground, a mailbox).
The location of each building is assumed to be known in advance.
Therefore, from the position and orientation of a robot it is therefore
possible to predict which landmark it would be facing, and viceversa
it is possible to divide the configuration space of the robots into
nineteen cells, one for each landmark, from which a measurement
of that landmark would be collected. Each robot is equipped with
a simulated camera and IMU sensor, and limited communication
distance is simulated through the knowledge of the robots’ position.
A 1s communication delay between transmission and reception of
a message is also introduced.

In a typical simulation, the robots are divided into two or more
groups (clusters). Robots of the same cluster collect images of the
same landmark (therefore are in the same cell in the configuration
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Figure 3: Correct recognition rate as a function of the num-
ber of communications received.

space), while robots in different clusters collect images of differ-
ent landmarks. The distance between clusters and robot within
the same cluster varies from one simulation to another, but in
general robots are deployed so that the communication graph is
always connected. This is to ensure that we collect homogeneous
data. If the robots were split into multiple unconnected groups, the
algorithm would work independently in each subgroup, but the
communication graph would not have enough depth to stress-test
it. The formation shape also varies from simulation to simulation,
to change the connectivity of the communication graph. Sometimes
a line formation is used (as the one shown in Figure 4), sometimes
a double line, and sometimes more general formations.

Over the course of a simulation, each robot A; collects an image,
computes the probability measurement p(z;|0?) with the CNN,
collects other robots measurements using the communication algo-
rithm described in Section 3.3, and applies the weighted naive Bayes
classifier described in Section 3.4, until all communications have
been received. Every few seconds and a small motion, a new set of
images are collected and the cooperative recognition is repeated.
With this methodology, 118 unique configurations were collected
over five simulations in which the robots covered the whole en-
vironment. Considering that each experiment is performed with
ten robots, we have a total of 1180 data point. The result of each
step of the iterative weighted naive Bayes classifier of each robot
was recorded together with the robots’ location and the number of
other robots’ measurements incorporated in each step.

In order to evaluate the effect of the parameter A in equation (14)
the weighted naive Bayes classifier was run with this dataset for
A=0,1=1,1=2 and A = 100. The case A = 0 is the same as the
unweighted case, and was performed for comparison. In the case
A =100 all weights are trivially =~ 0, therefore it corresponds to the
single robot recognition. It was done as a sanity check and to gain
an understanding of the advantages provided by the cooperation
among the robots.
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To evaluate the performance of the system we have plotted in
Figure 3 the correct recognitions percentage against the number
of incorporated messages for the four values of A. The results in-
dicate that the choice of A has a strong effect on the results. As
the number of communications from other robots in the swarm
increases, the probability of correctly identifying which landmark
they are observing increases up to a certain critical number of
incorporated messages. This is true for all values of A, with the
exception of A = 100, which we trivially note remains constant for
all message numbers due to the near-zero weights assigned to the
measurements of all other robots. Note that the single robot correct
recognition rate of 68% is considerably lower with respect to the
recognition rate computed through our testing dataset in the CNN
training and testing process. This may be due to the fact that the
motion in swarm brings the robots to more varied orientations than
what was included in the original testing set.

Conversely, in the unweighted case where 1 = 0, all robots’
p(z,|0) are given weight 1. Since all robots converge to the same
result, but not all robots are observing the same landmark, it is
natural that the final correct recognition rate at ten messages is
low. The initial good results are due to incorporating measure-
ments from nearby robots that are more likely to observe the same
landmark. Now, we contemplate the case where the robots start to
weigh other robots’ predictions p(z,|0?). In particular, predictions
p(z,|0") from robots that are further away are given lower weights.
In the case for A = 1, we see that the final prediction accuracy re-
mains high, around 90% for up to seven messages before it starts to
deteriorate rapidly down to 30% accuracy for ten messages.

Lastly, in the case where A = 2, for early messages, meaning from
the first five robots that are closer, we observe that this weight does
not afford enough importance to close neighbors, and therefore the
overall prediction accuracy is not as high as in the cases A = 0 and
A = 1. However, as the messages from robots that are further away
are received, these are weighted less, so the recognition accuracy
is not compromised remaining at around 80%.

These results illustrate the importance of weighting the proba-
bility vectors to assign more importance to the robots in our cluster,
and less importance to the robots in clusters further away. This
also leads us to contemplate potentially being able to dynamically
change the weighting policy during operation.

In Figure 4, we show two visualizations of the results of simu-
lations for A = 2. The robots (triangles) are distributed in a line in
front of three landmarks. Each landmark is represented as a seg-
ment of a specific color in the plots, representing the facades of the
corresponding buildings. The color of each robot is matched with
the color of the landmarks that it recognizes after incorporating all
ten communicated messages. The two configurations differs mainly
for the yaw angles of the robots. This data visualization shows that
with the proposed algorithm the robots are capable of splitting the
group in clusters, that is not possible using the unweighted naive
Bayes classifier. However, as shown in the second configuration,
mispredictions are still possible.

Finally, in Figure 5 we provide the full confusion matrix for
the case of 1 = 2 and all ten incorporated messages in the form
of a heatmap. The figure shows that most buildings are correctly
recognized in a majority of cases. Therefore, we believe the system
proposed in this paper is suitable to be used to feed the measurement
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Figure 4: Two examples of swarm configuration collected
during an experiment in which the robots where divided in
three clusters. The two configurations differ mainly for the
yaw of the robots.

update of a landmark-based localization scheme, as outlined in
Section 5.
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5 CONCLUSIONS

In this paper we have presented and formalized a methodology
to perform cooperative place recognition in a robotic swarm. The
ultimate goal of this project is the application of the presented
system to provide measurements in a landmark-based Bayesian
localization scheme. The proposed solution relies on a weighted
naive Bayes classifier to fuse the solution of individual shallow
CNNs. The simulation results have shown good results in general,
and a significant improvement with respect to the employment of an
unweighted naive Bayes classifier. With respect to the unweighted
version, the main advantage relies in the ability of the robots to
converge to different solution, thus accounting for the situation in
which the overall group is split into clusters of robots observing
different landmarks. However, the results have also shown a strong
sensitivity of the algorithm with respect to design parameters.

Based on these considerations, future works will include not
only the application in a localization scheme, but also the study of
an adaptive law for the mentioned parameters. Moreover, we plan
to include different sensors into the system, for example a lidar
sensor. Finally, we will work towards transitioning from simulated
environment to real-world application.
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