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ABSTRACT

In this paper we propose a study on landmark identification as a step

towards a localization setup for real-world robotic swarms setup.

In real world, landmark identification is often tackled as a place

recognition problem through the use of computationally intensive

Convolutional Neural Networks. However, the components of a

robotic swarm usually have limited computational and sensing

capabilities that allows only for the application of relatively shallow

networks that results in large percentage of recognition errors. In

a previous attempt of solving a similar setup – cooperative object

recognition – the authors of [1] have demonstrated how the use

of communication among a swarm and a naive Bayes classifier

was able to substantially improve the correct recognition rate. An

assumption of that paper not compatible with a swarm localization

setup was that all swarm components would be looking at the same

object. In this paper, we propose the use of a weighting factor to

relapse this assumption. Through the use of simulation data, we

show that our approach provides high recognition rates even in

situations in which the robots would look at different objects.
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1 INTRODUCTION

Robotic swarms consist of autonomous relatively inexpensive robots

with limited computational and sensing capabilities. Each robot

performs simple tasks using only local information and limited

communication with its communication neighbors. Thanks to the

intrinsic decentralization of the system, many researchers have

highlighted the robustness of robotics swarms, as well as the versa-

tility and the ability to parallelize the work. These benefits however
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come at the price of a higher complexity in the design and analysis

of single robot behaviors to achieve a global task from local inter-

actions [2]. Despite this additional challenge, robotic swarms have

been proposed for a large plethora of tasks including search and

rescue operations [3], exploration [4], information gathering and

clean up of toxic spills [5, 6], target search and tracking [7], and

even construction [8].

For real world application of these systems, however, swarms

still present a number of challenges that are currently being actively

researched. Localization of the swarm, acquisition of local infor-

mation through sensing, communication with a subset of agents in

the swarm, and decision making based on the gathered sensor data

are aspects that need to be addressed. Particularly while research-

ing sensing and estimation, there are aspects to consider that are

specific to swarms. There are constraints on the number of sensor

equipment that can be employed due to limits on computational

power, energy consumption, and payload. Moreover, the physical

dimension of the robots could be small compared to the objects

in their environment, and in many cases measurements as images

will be collected from very disadvantageous, non-comprehensive

points of view.

However, in many aspects of control, localization, and SLAM,

robots in a swarm still need to be able to identify an object or a place,

be it the target of an action (e.g., [9]) or the current location (e.g.,

[10]). Many mobile robot localization systems, for example, rely on

the presence of known-location landmarks in the environment (e.g.,

[11–14]). In real-world applications, these landmarks should be nat-

urally part of the environment. Their identification however is often

tackled with computationally demanding recognition algorithms

based on computer vision or neural networks.

In this paper we propose a cooperative recognition strategy in

which each robot uses a Convolutional Neural Network (CNN)

trained to recognize the landmarks in the environment. Due to the

limited computational capabilities of the robots, however, the CNNs

are relatively shallow and provide a relatively high percentage of

recognition errors. In a multi-view setup, a suitable strategy to

reduce errors is to fuse the results of the individual CNNs.

In single view setups, there is a vast literature on place recogni-

tion [15], using cameras (e.g., [10, 16]) and lidar sensors (e.g., [17]).

However, there are relatively few authors that have addressed the

problem of place recognition with sequence of frames or in gen-

eral multi-view information. Some algorithms uses sequences of

frames with temporal consistency constraints for place recognition

[18–22]. This setup significantly differs from a multi-view setting

and cannot be straightforwardly applied to our problem. In [23],

the authors propose three alternatives for deep networks to use

several frames of a sequence in a place recognition task, in which
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the model learns to combine single-view CNN descriptors from

data. In [24] the authors propose a feature based approach to place

recognition using both lidar and camera sensors. However, both

these methods are beyond the computational capabilities of robotic

swarms.

Similarly, object classification has a vast literature in single view

setup [25], but relatively few works in multi-view setups or multi-

sensor setups. In [26–28], the authors use various approaches to

seek to reconstruct the cluttered parts of an environment in order

to discern the subject from the background using a multi-view

approach. In [29, 30], a method for selection of an optimal number

of images that are taken from different perspectives of a 3D object

is used for recognition. In [31, 32], the authors employ a network

of smart cameras which jointly classify the observed object. In

[33, 34], methods were developed to classify objects based on sound

features and visual information. The commonality between all these

approaches is that they employ a broad point of view to select the

informative features of the observed objects, which is different from

a robotic swarm setup in which each robot may take only partial

information of the observed place.

In one paper [1], the authors proposed a study on multi-sensor

object classification on a series of objects in which the individual

classification results were fused together through an iterative naive

Bayes classifier. The main drawback of this approach is that the

robots were assumed to be looking all at the same object. Therefore,

all individual results were fused together and all team members

would eventually converge to the same result. In a robot localization

scenario, however, it is likely that different team members would

look at different objects. This would happen, for example, if there

is a significant distance between some robots, or if the robots are

looking in different directions.

In this study, we relax that assumption by employing a weighted

naive Bayes classifier (WNBC) in which the weights that each robot

assigns to other robots’ results received through communication

depend on the distance on the communication graph, and the mag-

nitude of the relative yaw. As the overall performance of the system

depends on this relationship between the weights and these two

parameters, we have performed a series of numerical simulation

to optimize our system and highlight the effect of this relationship.

The main contribution of this paper is to provide a novel place

recognition algorithm specifically designed for robotic swarms.

The rest of the paper is organized as follows. Section 2 will in-

troduce the problem settings, including the robot model and sensor

equipment, the communication graph as well as the formal defini-

tion of the problem of cooperative place recognition. Section 3 will

describe the proposed system. In Section 4, we propose a descrip-

tion of the simulation platform and implementation. Section 5 will

conclude the paper.

2 PROBLEM SETTINGS

Let us consider a swarm system 𝐴 = {𝐴1, 𝐴2, ..., 𝐴𝑛} of 𝑛 agents.

The generic robot 𝐴𝑖 , 𝑖 = 1, . . . , 𝑛 lives in a 3D environment popu-

lated with a set Ω = {𝜔1, 𝜔2, ..., 𝜔𝑚} of𝑚 objects 𝜔𝑙 , 𝑙 = 1, . . . ,𝑚.

In general, robots are not aware of their global positions in any fixed

world frame𝑊 = 𝑂 − 𝑋𝑌𝑍 , nor they have access to each other’s

relative position. However, we assume that the robots are able to

communicate with each other within a certain range 𝑟 . Hence, we
can define the communication graph as an ordered pair𝐺 = (N , E)
consisting of nodesN (the robots) and edges E. An edge 𝑒 = {𝑖, 𝑗} is
an unordered pair such that if {𝑖, 𝑗} ∈ E, robots𝐴𝑖 and𝐴 𝑗 can com-

municate. This implies that the underlying communication graph

is undirected, i.e., if 𝐴𝑖 communicates with 𝐴 𝑗 , then conversely

𝐴 𝑗 can communicate with 𝐴𝑖 . We also will be operating under the

assumption that the communication graph is connected, i.e., there

is a path between any two nodes of the graph. It is not within the

scope of this paper to study the problem of controlling the swarm

so that this assumption is verified. However, there are in literature

(e.g., [35]) connectivity maintenance swarming algorithm that can

guarantee hat this assumption is verified.

Each agent 𝐴𝑖 is given a set of exteroceptive sensors and gathers

a measurement 𝑧𝑖 of an object 𝜔𝑖 ∈ Ω, where the superscript 𝑖
identifies the specific object observed by robot 𝐴𝑖 . In fact, contrary

to the assumptions of [1], different robots can potentially observe

different objects in the environment. In the following, we assume

that all the robots will be equipped with the same exteroceptive

sensor: a camera. However, this assumption is easily generalizable

to different exteroceptive sensors. In addition, each robot𝐴𝑖 will be

able to measure its own yaw angle 𝜙𝑖 in the world frame𝑊 through

a magnetometer. In the following, we will indicate with 𝑍 = {𝑧𝑖 , 𝑖 =
1, 2, ..., 𝑛} the set of exteroceptive measurements collected by all

the robots, and with Φ = {𝜙𝑖 , 𝑖 = 1, 2, ..., 𝑛} the set of all yaw

angles. Collectively, we will indicate with 𝑍Φ = {𝑍,Φ} the set of all
exteroceptive and yaw measurements.

To formally introduce the problem that we will address in this

work, we define 𝑛 random variables 𝑂𝑖 (𝜔), 𝑖 = 1, . . . , 𝑛, that repre-
sent the objects observed by 𝐴𝑖 , 𝑖 = 1, . . . , 𝑛:

𝑂𝑖 (𝜔) = 𝑂𝑖 = 𝑙 ⇔ 𝜔𝑖 = 𝜔𝑙 (1)

We then define the probability 𝑝 (𝑂𝑖 = 𝑙) = 𝑝 (𝑂𝑖 ) as the probability

that 𝜔𝑖 = 𝜔𝑙 .

Problem Statement 1. The problem of identifying the objects

𝜔𝑖 out of the set Ω through the measurements 𝑍Φ, is the problem of

assigning to each 𝜔𝑖 a potentially different label 𝑙𝑖 = 𝑐𝑙𝑖 (𝑍Φ) out of
the set 𝐿 = {1, . . . ,𝑚} on the basis of the measurements 𝑍Φ, where
𝑐𝑙𝑖 (𝑍Φ) = 𝑙𝑖 if and only if 𝜔𝑖 is recognized to be 𝜔𝑙𝑖 .

A common policy to solve Problem 1 is to assign to the observed

objects 𝜔𝑖 , 𝑖 = 1, . . . , 𝑛, the labels that maximize the probabilities

𝑝 (𝑂𝑖 = 𝑙𝑖 |𝑍Φ) given the measurements 𝑍Φ:

𝑐𝑙𝑖 (𝑍Φ) = argmax
𝑙𝑖 ∈𝐿

𝑝 (𝑂𝑖 |𝑍Φ) (2)

Whenever a labeling policy is given in the form of equation (2), it

is called a Bayes classifier. The crux of it is for each robot in the

system to estimate 𝑝 (𝑂𝑖 |𝑍Φ), and then make a decision. One of the

main focuses of this work is to define a distributed way for each

robot 𝐴𝑖 to estimate 𝑝 (𝑂𝑖 |𝑍Φ), as defined in the following Problem

2:

Problem Statement 2. The problem of identifying the objects

𝜔𝑖 , 𝑖 = 1, . . . , 𝑛 out of the set Ω is the problem of computing the 𝑛
vectors of probabilities 𝑝 (𝑂𝑖 |𝑍Φ), 𝑖 = 1, . . . , 𝑛, given the exteroceptive

measurements 𝑍 and the yaw measurements Φ of all robots.
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Figure 1: Block scheme of the system running on robot 𝐴𝑖 .

Note that in Problem 2, contrarily to classical multi-view iden-

tification and distributed estimation problems, the robots are not

required to reach a consensus. Instead, each robot can reach a po-

tentially different solution, even though each robot will use the

same data including its own measurements and the measurements

from all other robots.

3 METHODOLOGY

3.1 System Architecture

The block scheme of the system running on each robot𝐴𝑖 is depicted

in Fig. 1. The image collected by the camera, 𝐴𝑖 ’s measurement 𝑧𝑖 ,
is passed through an AI classifier (Section 3.2), a CNN, to determine

which object 𝐴𝑖 is observing. This step is done independently by

each robot. The output of the classifier is the𝑚-vector of proba-

bilities 𝑃 (𝑧𝑖 |𝑂
𝑖 ) that 𝐴𝑖 obtains a measurement 𝑧𝑖 given that it is

observing 𝜔𝑙 , 𝑙 = 1, . . . ,𝑚. This information is then provided to the

communication module that broadcasts it to the communication

neighbors of 𝐴𝑖 together with the measured yaw angle 𝜙𝑖 . The
communication module also implements a multi-hop communica-

tion algorithm so that each robot 𝐴ℎ in the team can receive the

probability vectors and yaw angle measurements of 𝐴𝑖 , even the

ones that are not directly communicating with 𝐴𝑖 itself.

As all robots do the same, 𝐴𝑖 ’s communication module also re-

ceives the probability vectors 𝑃 (𝑧ℎ |𝑂
ℎ) and the yaw angles 𝜙ℎ ,

ℎ = 1, . . . , 𝑛, ℎ ≠ 𝑖 of all other robots in the swarm. With an appro-

priate communication protocol (Section 3.3), 𝐴𝑖 also computes an

estimate 𝑟ℎ𝑖 of the communication distance between itself and the

generic robot 𝐴ℎ, ℎ = 1, . . . , 𝑛, ℎ ≠ 𝑖 . The communication distance

is the number of communication steps that are needed in the multi-

hop communication algorithm for a message sent from robot 𝐴ℎ to

reach robot𝐴𝑖 , and is equivalent to the graph length of the shortest

path that connects nodes 𝑖 and ℎ in the communication graph 𝐺 .
The probability vector computed by the𝐴𝑖 ’s AI classifier, as well

as the ones received by the other robots, are passed to the Weighted

Naive Bayesian Classifier (WNBC, Section 3.4) together with the

yaw angles 𝜙𝑖 , 𝜙ℎ , and the estimated communication distances

𝑟ℎ𝑖 . This information is used by the WNBC to iteratively compute

𝑃 (𝑂𝑖 |𝑍Φ).

3.2 Single-Robot Place Recognition

In the scope of this work we are using a standard single-view

recognition algorithm, a convolutional neural network (CNN) on

the Tensorflow platform. CNN’s are frequently used with image

data for recognition purpose [36]. First we have created a training

and a testing dataset on the simulated world that we have used

to demonstrate our cooperative algorithm. We have 7055 images

that we use for our training dataset and 3036 that are used for

the testing dataset. The training dataset was used to learn the

weights of a 5-layered CNN with 19 different categories. In order

to estimate how many epochs to use to train the neural network

we look at the ROC graph [37, 38]. The ROC graph, formally called

the receiver operating characteristic curve, shows the performance

of the classification model at all of the classification thresholds. It

plots the true positive rate and the false positive rate. This was

fundamental to assess that the CNN was giving equal weight to all

the input values, as well as to avoid overfitting. The choice to use a

relatively shallow CNN was dictated by the limited computational

capabilities of the hardware this algorithm is meant for, i.e., the

onboard computer of the robots. After learning the network, the

testing dataset was used to evaluate the single robot recognition

capabilities. The results showed a single robot correct recognition

rate of 84%. This probability is determined by considering each

image as a given set of "grades" or weights that tells us how fitting

the given image is to each class of landmarks. This grade is divided

by the sum of the grades of all categories in order to obtain a

measurement of the probability 𝑝 (𝑧𝑖 |𝑂
𝑖 ).

Note that with this approach it is possible to easily include other

types of sensor. In fact, after the CNN computes 𝑝 (𝑧𝑖 |𝑂
𝑖 ), the rest

of the system does not need to know the data type that originated

the specific probability vector. Therefore, to extend the system to

incorporate additional types of sensors, it is only necessary to train

a new CNN with the data collected by that sensor.

3.3 Communication

Each 𝐴𝑖 communicates its computed 𝑝 (𝑧𝑖 |𝑂
𝑖 ) over the network,

together with its measured yaw angle 𝜙𝑖 . This means that the com-

munication neighbors of 𝑅𝑖 will receive 𝑅𝑖 ’s measured probabilities

and yaw angle. However, every member of the team eventually

needs to receive 𝑝 (𝑧𝑖 |𝑂
𝑖 ), 𝑖 = 1, . . . , 𝑛, to compute 𝑃 (𝜔𝑖 = 𝜔𝑙 |𝑍Φ).

Therefore, each robot enacts a multi-hop communication approach

comprising multiple communication steps to spread the informa-

tion among the team. At a certain point, a generic robot 𝐴 𝑗 will

send to its communication neighbors the data from𝐴𝑖 in a message

that we denote with 𝑆
𝑗
𝑖 . The format of 𝑆

𝑗
𝑖 is the following:

𝑆
𝑗
𝑖 =

[
𝑝 (𝑧𝑖 |𝑂

𝑖 )𝑇 𝑟
𝑗
𝑖 𝜙𝑖 𝑖

]𝑇
, (3)

where 𝑝 (𝑧𝑖 |𝑂
𝑖 ) and 𝜙𝑖 are the communicated data, and 𝑖 is the

indication of the owner of the measurements. 𝑟
𝑗
𝑖 is an estimate of

the communication distance between 𝐴𝑖 and 𝐴 𝑗 , and is computed

while the communication in the team is happening as specified in

the following.

Let be 𝐼𝐷𝑘
𝑖 a set such that ℎ ∈ 𝐼𝐷𝑘

𝑖 if 𝐴𝑖 has received at least

one message 𝑆
𝑗
ℎ
for any ℎ = 1, . . . , 𝑛 between communication step 0

and communication step 𝑘 . This means that if ℎ ∈ 𝐼𝐷𝑘
𝑖 then 𝐴𝑖 has
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Algorithm 1: The pseudocode of the communication algo-

rithm running on 𝐴𝑖 .

1 𝐼𝐷0
𝑖 = {𝑖}

2 broadcast 𝑆𝑖𝑖 =
[
𝑝 (𝑧𝑖 |𝑂

𝑖 )𝑇 𝑟 𝑖𝑖 = 0 𝜙𝑖 𝑖
]𝑇

3 while 𝐼𝐷𝑖 ≠ {1, 2, . . . , 𝑛} do

4 if 𝐴𝑖 receives 𝑆
𝑗
ℎ
then

5 if ℎ ∉ 𝐼𝐷𝑘
𝑖 then

6 𝐼𝐷𝑘+1
𝑖 = 𝐼𝐷𝑘

𝑖

⋃
{ℎ}

7 𝑆𝑖
ℎ
= 𝑆

𝑗
ℎ

8 𝑟 𝑖
ℎ
= 𝑟

𝑗
ℎ
+ 1

9 broadcast 𝑆𝑖
ℎ

10 else

11 ignore 𝑆
𝑗
ℎ

12 end

13 else

14 wait

15 end

16 end

received 𝑝 (𝑧ℎ |𝑂
ℎ) and 𝜙ℎ from a previous communication message

from at least one robot in the team. The pseudocode of the multi-

hop communication algorithms executed by each 𝐴𝑖 is presented

in Algorithm 1. It includes the following steps:

line 1: The algorithm is initialized by setting the 𝐼𝐷0
𝑖 to include

only 𝑖 .
line 2: Then 𝐴𝑖 sends the message 𝑆𝑖𝑖 (containing its own mea-

surements) to its communication neighbors once; in this step,

𝑟
𝑗
𝑖 = 𝑟 𝑖𝑖 = 0.

lines 3-9: if𝐴𝑖 receives a message 𝑆
𝑗
ℎ
from𝐴 𝑗 with the measure-

ments from 𝐴ℎ , and ℎ ∈ 𝐼𝐷𝑘
𝑖 , i.e., 𝐴𝑖 has never received the

measurements of 𝐴ℎ (line 5) then 𝐴𝑖 creates a new message

𝑆𝑖
ℎ
identical 𝑆

𝑗
ℎ
(line 7), increases the estimated communica-

tion distance by 1 (line 8) and broadcasts 𝑆𝑖
ℎ
to its neighbors.

line 11: if instead 𝐴𝑖 had already received 𝐴ℎ ’s measurements

from another robot, the message 𝑆
𝑗
ℎ
is ignored.

When all robots in the team performs this algorithm, each robot will

receive the probability vectors and yaw angles from all other robots.

Moreover, an estimate of the communication distance between 𝐴𝑖

and any other 𝐴 𝑗 , 𝑗 ∈ 𝐼𝐷𝑘
𝑖 will be available to 𝐴𝑖 .

3.4 Weighted Naive Bayes Classifier

The final goal of 𝐴𝑖 is to compute the 𝑚-vector of probabilities

𝑝 (𝑂𝑖 |𝑍Φ). Here we describe first the distributed Naive Bayes Clas-

sifier (NBC) approach proposed in [1], and then we introduce a

weighting factor to take into account the reliability of the informa-

tion provided by the other robots. In the NBC, the yaw information

is not used to compute 𝑝 (𝑂𝑖 |𝑍Φ) = 𝑝 (𝑂𝑖 |𝑍 ), and the probabil-

ity vectors computed by all robots converge to the same value

𝑝 (𝑂𝑖 |𝑍 ) = 𝑝 (𝑂 𝑗 |𝑍 ),∀𝑖, 𝑗 = 1, . . . , 𝑛. Although the classification

method defined by equation (2) is simple, characterizing the con-

ditional probability 𝑝 (𝑂𝑖 |𝑍 ) is not trivial. We begin by applying

Bayes rule, and 𝑝 (𝑂𝑖 |𝑍 ) can be rewritten as:

𝑝 (𝑂𝑖 |𝑍 ) =
𝑝 (𝑂𝑖 )𝑝 (𝑍 |𝑂𝑖 )

𝑝 (𝑍 )
(4)

We can recursively apply the definition of conditional probability,

thus the numerator of the right-hand side of equation (4) can be

factorized as:

𝑝 (𝑂𝑖 )𝑝 (𝑍 |𝑂𝑖 ) = 𝑝 (𝑂𝑖 )𝑝 (𝑧𝑖 , 𝑖 = 1, . . . , 𝑛 |𝑂𝑖 )

=𝑝 (𝑂𝑖 )𝑝 (𝑧1 |𝑂
𝑖 )𝑝 (𝑧2 |𝑂

𝑖 , 𝑧1) . . . 𝑝 (𝑧𝑛 |𝑂
𝑖 , 𝑧1, . . . , 𝑧𝑛−1)

(5)

Equation (5) can be computed recursively using the measure-

ments one at a time. However, the characterization of the depen-

dency between the measurements can still prevent the actual com-

putation of each factor. In the traditional naive Bayes classifier the

measurements are assumed to be conditionally independent from

each other. Considering that measurements come from different

robots at different locations, we can thus exploit the conditional

independence of the measurements 𝑧𝑖 assumption and simplify the

above equation (5).

𝑝 (𝑂𝑖 )𝑝 (𝑍 |𝑂𝑖 ) = 𝑝 (𝑂𝑖 )

𝑛∏
𝑗=1

𝑝 (𝑧 𝑗 |𝑂
𝑗 ) (6)

To recursively compute equation (6),𝐴𝑖 maintains at all timesteps

𝑘 an estimate of 𝑃 (𝑂𝑖 |𝑍𝑘
𝑖 ), where 𝑍

𝑘
𝑖 = {𝑧𝑞,∀𝑞 ∈ 𝐼𝐷𝑘

𝑖 } is the set of

all measurements received by 𝐴𝑖 up to timestep 𝑘 . Every time that

𝐴𝑖 receives a new message 𝑆
𝑗
ℎ
such that ℎ ∉ 𝐼𝐷𝑘

𝑖 , it will update its

current estimate incorporating the new measurements:

𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ) =

𝑝 (𝑂𝑖 )𝑝 (𝑍𝑘
𝑖 , 𝑧ℎ |𝑂

𝑖 )

𝑝 (𝑍𝑘
𝑖 , 𝑧ℎ)

=
𝑝 (𝑂𝑖 )𝑝 (𝑍𝑘

𝑖 |𝑂
𝑖 )𝑝 (𝑧ℎ |𝑂

𝑖 )

𝑝 (𝑍𝑘
𝑖 )𝑃 (𝑧ℎ)

(7)

This algorithm relies on the assumption that 𝐴𝑖 and 𝐴ℎ are collect-

ing measurements of the same object (𝜔𝑖 = 𝜔ℎ). In the setup of this

work, however, 𝐴𝑖 and 𝐴ℎ may be looking at different objects. To

relax this assumption, we define the following random variable 𝑅𝑖
ℎ

𝑅𝑖ℎ =

{
1 if 𝜔𝑖 = 𝜔ℎ

0 otherwise
(8)

Introducing 𝑅𝑖
ℎ
, and considering that if 𝑅𝑖

ℎ
= 0 the measurement

𝑧ℎ carries no information on the object observed by robot 𝐴𝑖 , we

can write:

𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ) =

= 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ, 𝑅

𝑖
ℎ)𝑝 (𝑅

𝑖
ℎ) + 𝑝 (𝑂

𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ, 𝑅

𝑖
ℎ)𝑝 (𝑅

𝑖
ℎ)

= 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ, 𝑅

𝑖
ℎ)𝑝 (𝑅

𝑖
ℎ) + 𝑝 (𝑂

𝑖 |𝑍𝑘
𝑖 , 𝑅

𝑖
ℎ)𝑝 (𝑅

𝑖
ℎ)

= 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ)𝑝 (𝑅

𝑖
ℎ) + 𝑝 (𝑂

𝑖 |𝑍𝑘
𝑖 )𝑝 (𝑅

𝑖
ℎ) .

(9)
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Introducing equation (7) into (9):

𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ) =

𝑝 (𝑂𝑖 )𝑝 (𝑍𝑘
𝑖 |𝑂

𝑖 )𝑝 (𝑧ℎ |𝑂
𝑖 )𝑃 (𝑅𝑖

ℎ
)

𝑝 (𝑍𝑘
𝑖 )𝑝 (𝑧ℎ)

+ 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 )𝑝 (𝑅

𝑖
ℎ
) =

= 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 )

𝑝 (𝑧ℎ |𝑂
𝑖 )𝑝 (𝑅𝑖

ℎ
)

𝑝 (𝑧ℎ)
+ 𝑝 (𝑂𝑖 |𝑍𝑘

𝑖 )𝑝 (𝑅
𝑖
ℎ).

(10)

Note that in Equation (10) the term 𝑝 (𝑧ℎ) is a normalization

factor 𝛼 such that∑
𝑙

𝑝 (𝑂𝑖 = 𝑙 |𝑍𝑘
𝑖 )𝑝 (𝑧ℎ |𝑂

𝑖 = 𝑙)

𝑝 (𝑧ℎ)
= 1, (11)

therefore:

𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 , 𝑧ℎ) =

= 𝛼 𝑝 (𝑂𝑖 |𝑍𝑘
𝑖 )𝑝 (𝑧ℎ |𝑂

𝑖 )𝑃 (𝑅𝑖ℎ) + 𝑝 (𝑂
𝑖 |𝑍𝑘

𝑖 )𝑝 (𝑅
𝑖
ℎ) .

(12)

Considering that

𝑃 (𝑅𝑖ℎ) = 1 − 𝑃 (𝑅𝑖ℎ) (13)

the final step consists in computing the probability 𝑃 (𝑅𝑖
ℎ
) that

𝜔𝑖 = 𝜔ℎ . In general, 𝑝 (𝑅𝑖
ℎ
) may depend on several factors and we

do not have a standard way to compute it. In this work, we assumed

that 𝑝 (𝑅𝑖
ℎ
) depends on the distance and the relative orientation

between𝐴𝑖 and𝐴ℎ , and that these two factors are independent from

each other. This is based on two considerations. First, the further

apart the robots are, the less likely they are to be observing the same

landmark. As the robots do not have direct access to their relative

distance, they can use the estimated communication distance (which

also provides an estimate of their Cartesian distance) to compute

the following:

𝑝 (𝑅𝑖ℎ |𝑟
ℎ
𝑖 ) =

1

(𝑟ℎ𝑖 + 1)𝜆
, (14)

where 𝜆 is positive parameter used to increase or decrease the

weight of the other robot’s measurements. When 𝜆 is small (< 1),

the measurements from robots that are further away will have

higher weights. In the limit that 𝜆 = 0, 𝑝 (𝑅𝑖
ℎ
|𝑟ℎ𝑖 ) converges to 1. This

is the unweighted case. For large 𝜆 (� 1), 𝑝 (𝑅𝑖
ℎ
|𝑟ℎ𝑖 ) converges to

zero. In principle, it is possible to use this properties also to limit the

number of communication steps to a specific value 𝑟𝑚𝑎𝑥 . In fact, for

𝜆 > 0, after a given number of communications steps, new incoming

measurements will be assigned an almost zero weight. Therefore, it

is possible to compute 𝑟𝑚𝑎𝑥 such that thosemeasurements are never

communicated. This would be important to limit communication in

large swarms of hundreds or thousands of agents, making te system

more scalable. Clearly, 𝑟𝑚𝑎𝑥 depends on 𝜆 and on the approximation

that is possible to accept.

Similarly, if the two robots look in different directions (i.e., have

a relative orientation near 𝜋 ), they are unlikely to be watching the

same object. The relative orientation can be computed through the

use of the yaw measurements 𝜙𝑖 , 𝜙ℎ , therefore we have considered

𝑝 (𝑅𝑖ℎ |𝜙𝑖 , 𝜙ℎ) = 𝑝 (𝑅𝑖ℎ |𝜙𝑖 − 𝜙ℎ) (15)

In our implementation, 𝑝 (𝑅𝑖
ℎ
|𝜙𝑖 − 𝜙ℎ) is a Gaussian function with

zero mean and 𝜋/3 covariance. This choice was made so that small

values of 𝜙𝑖 −𝜙ℎ would provide 𝑝 (𝑅𝑖
ℎ
|𝜙𝑖 −𝜙ℎ) � 1, while larger yaw

Figure 2: Two views of the simulated world in ROS Gazebo

used to evaluate the performance of the place recognition

system.

differences would result in lower weights. However, other functions

can lead to equivalent results. Finally, equations (14) and (15) can

be combined into the following:

𝑝 (𝑅𝑖ℎ) = 𝑝 (𝑅𝑖ℎ |𝜙𝑖 , 𝜙ℎ, 𝑟
ℎ
𝑖 ) = 𝑝 (𝑅𝑖ℎ |𝜙𝑖 , 𝜙ℎ)𝑝 (𝑅

𝑖
ℎ |𝑟

ℎ
𝑖 ). (16)

4 SIMULATIONS

In order to test the proposed algorithm, we used a ROS Gazebo

simulation with ten small (∼20 𝑐𝑚) robots moving in a complex

environment (Figure 2) consisting in a street with nineteen unique

buildings and other landmarks (e.g., trees, a playground, a mailbox).

The location of each building is assumed to be known in advance.

Therefore, from the position and orientation of a robot it is therefore

possible to predict which landmark it would be facing, and viceversa

it is possible to divide the configuration space of the robots into

nineteen cells, one for each landmark, from which a measurement

of that landmark would be collected. Each robot is equipped with

a simulated camera and IMU sensor, and limited communication

distance is simulated through the knowledge of the robots’ position.

A 1s communication delay between transmission and reception of

a message is also introduced.

In a typical simulation, the robots are divided into two or more

groups (clusters). Robots of the same cluster collect images of the

same landmark (therefore are in the same cell in the configuration
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Figure 3: Correct recognition rate as a function of the num-

ber of communications received.

space), while robots in different clusters collect images of differ-

ent landmarks. The distance between clusters and robot within

the same cluster varies from one simulation to another, but in

general robots are deployed so that the communication graph is

always connected. This is to ensure that we collect homogeneous

data. If the robots were split into multiple unconnected groups, the

algorithm would work independently in each subgroup, but the

communication graph would not have enough depth to stress-test

it. The formation shape also varies from simulation to simulation,

to change the connectivity of the communication graph. Sometimes

a line formation is used (as the one shown in Figure 4), sometimes

a double line, and sometimes more general formations.

Over the course of a simulation, each robot 𝐴𝑖 collects an image,

computes the probability measurement 𝑝 (𝑧𝑖 |𝑂
𝑖 ) with the CNN,

collects other robots measurements using the communication algo-

rithm described in Section 3.3, and applies the weighted naive Bayes

classifier described in Section 3.4, until all communications have

been received. Every few seconds and a small motion, a new set of

images are collected and the cooperative recognition is repeated.

With this methodology, 118 unique configurations were collected

over five simulations in which the robots covered the whole en-

vironment. Considering that each experiment is performed with

ten robots, we have a total of 1180 data point. The result of each

step of the iterative weighted naive Bayes classifier of each robot

was recorded together with the robots’ location and the number of

other robots’ measurements incorporated in each step.

In order to evaluate the effect of the parameter 𝜆 in equation (14)

the weighted naive Bayes classifier was run with this dataset for

𝜆 = 0, 𝜆 = 1, 𝜆 = 2, and 𝜆 = 100. The case 𝜆 = 0 is the same as the

unweighted case, and was performed for comparison. In the case

𝜆 = 100 all weights are trivially � 0, therefore it corresponds to the

single robot recognition. It was done as a sanity check and to gain

an understanding of the advantages provided by the cooperation

among the robots.

To evaluate the performance of the system we have plotted in

Figure 3 the correct recognitions percentage against the number

of incorporated messages for the four values of 𝜆. The results in-
dicate that the choice of 𝜆 has a strong effect on the results. As

the number of communications from other robots in the swarm

increases, the probability of correctly identifying which landmark

they are observing increases up to a certain critical number of

incorporated messages. This is true for all values of 𝜆, with the

exception of 𝜆 = 100, which we trivially note remains constant for

all message numbers due to the near-zero weights assigned to the

measurements of all other robots. Note that the single robot correct

recognition rate of 68% is considerably lower with respect to the

recognition rate computed through our testing dataset in the CNN

training and testing process. This may be due to the fact that the

motion in swarm brings the robots to more varied orientations than

what was included in the original testing set.

Conversely, in the unweighted case where 𝜆 = 0, all robots’

𝑝 (𝑧ℎ |𝑂
𝑖 ) are given weight 1. Since all robots converge to the same

result, but not all robots are observing the same landmark, it is

natural that the final correct recognition rate at ten messages is

low. The initial good results are due to incorporating measure-

ments from nearby robots that are more likely to observe the same

landmark. Now, we contemplate the case where the robots start to

weigh other robots’ predictions 𝑝 (𝑧ℎ |𝑂
𝑖 ). In particular, predictions

𝑝 (𝑧ℎ |𝑂
𝑖 ) from robots that are further away are given lower weights.

In the case for 𝜆 = 1, we see that the final prediction accuracy re-

mains high, around 90% for up to seven messages before it starts to

deteriorate rapidly down to 30% accuracy for ten messages.

Lastly, in the case where 𝜆 = 2, for early messages, meaning from

the first five robots that are closer, we observe that this weight does

not afford enough importance to close neighbors, and therefore the

overall prediction accuracy is not as high as in the cases 𝜆 = 0 and

𝜆 = 1. However, as the messages from robots that are further away

are received, these are weighted less, so the recognition accuracy

is not compromised remaining at around 80%.

These results illustrate the importance of weighting the proba-

bility vectors to assign more importance to the robots in our cluster,

and less importance to the robots in clusters further away. This

also leads us to contemplate potentially being able to dynamically

change the weighting policy during operation.

In Figure 4, we show two visualizations of the results of simu-

lations for 𝜆 = 2. The robots (triangles) are distributed in a line in

front of three landmarks. Each landmark is represented as a seg-

ment of a specific color in the plots, representing the facades of the

corresponding buildings. The color of each robot is matched with

the color of the landmarks that it recognizes after incorporating all

ten communicated messages. The two configurations differs mainly

for the yaw angles of the robots. This data visualization shows that

with the proposed algorithm the robots are capable of splitting the

group in clusters, that is not possible using the unweighted naive

Bayes classifier. However, as shown in the second configuration,

mispredictions are still possible.

Finally, in Figure 5 we provide the full confusion matrix for

the case of 𝜆 = 2 and all ten incorporated messages in the form

of a heatmap. The figure shows that most buildings are correctly

recognized in a majority of cases. Therefore, we believe the system

proposed in this paper is suitable to be used to feed themeasurement
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Figure 4: Two examples of swarm configuration collected

during an experiment in which the robots where divided in

three clusters. The two configurations differ mainly for the

yaw of the robots.

update of a landmark-based localization scheme, as outlined in

Section 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Actual building observed by the robots

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bu
ild

in
g 

id
en

tif
ie

d 
as

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Confusion matrix for 𝜆 = 2 and ten received mes-

sages.

5 CONCLUSIONS

In this paper we have presented and formalized a methodology

to perform cooperative place recognition in a robotic swarm. The

ultimate goal of this project is the application of the presented

system to provide measurements in a landmark-based Bayesian

localization scheme. The proposed solution relies on a weighted

naive Bayes classifier to fuse the solution of individual shallow

CNNs. The simulation results have shown good results in general,

and a significant improvement with respect to the employment of an

unweighted naive Bayes classifier. With respect to the unweighted

version, the main advantage relies in the ability of the robots to

converge to different solution, thus accounting for the situation in

which the overall group is split into clusters of robots observing

different landmarks. However, the results have also shown a strong

sensitivity of the algorithm with respect to design parameters.

Based on these considerations, future works will include not

only the application in a localization scheme, but also the study of

an adaptive law for the mentioned parameters. Moreover, we plan

to include different sensors into the system, for example a lidar

sensor. Finally, we will work towards transitioning from simulated

environment to real-world application.
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