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Abstract: The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society. 

One of the non-pharmacological measures to contain the COVID-19 infection is social distancing. 

Federal, state, and local governments have placed multiple executive orders for human mobility 

reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal 

the spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. 

With New York City open data, human mobility pattern changes were detected by different catego-

ries of land use, including residential, parks, transportation facilities, and workplaces. This study 

further compares human mobility patterns by land use types based on an open social media plat-

form (Twitter) and the human mobility patterns revealed by Google Community Mobility Report 

cell phone location, indicating that in some applications, open-access social media data can generate 

similar results to private data. The results of this study can be further used for human mobility 

analysis and the battle against COVID-19.   
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1. Introduction 

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), was originally detected in Wuhan, China, and rap-

idly spread worldwide. By June 11th, 2020, more than 7 million cases were confirmed from 

216 countries, areas, or territories [1]. By the end of May 2020, 1,782,571 cases and 104,220 

deaths were reported in the contiguous United States [2]. Due to its rapid spread and 

sudden onset of severe symptoms, the World Health Organization (WHO) has declared 

the COVID-19 outbreak as a Public Health Emergency of International Concern on Janu-

ary 30th, 2020, and a pandemic on March 11th, 2020. On March 12th, 2020, President Trump 

declared a National Emergency Concerning the COVID-19 outbreak [3]. 

To combat the spread of COVID-19, unprecedented measures are taken all over the 

world. One of the most well-known non-pharmacological measures is to keep “social dis-

tancing”, including staying at least six feet from other people and no mass gathering [4]. 

Similar policies of constraining human mobility have been found effective in reducing 

COVID-19 transmission in China [5,6], South Korea [7], and Italy [8]. In the United States 

(U.S.), federal, state, and local governments have imposed social distancing measures in 

March to slow down the spread of COVID-19. Since early March, Governors of multiple 

states have declared the State of Emergency as more cases were reported and announced 

public school closures, non-essential business closures, and cancellations of big events. 

All those social distancing measures have been found to reduce the COVID-19 growth 

rate [9].  

Within the U.S., New York City (NYC) is one of the hardest-hit places at the begin-

ning of the pandemic. Since the first confirmed case on March 3rd, the number of cases has 
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grown rapidly. By June 12th, 2020, NYC has 210,538 confirmed cases, which is about one-

tenth of the total reported cases in the U.S. [2]. Field hospitals were set up in multiple 

places, and the USNS Comfort hospital ship arrived in New York Harbor to increase hos-

pital capacity. Governor Cuomo placed the “New York State on PAUSE” executive order 

that started to be effective on March 22nd (hereafter 3/22), which includes strict social dis-

tancing measures. However, before the executive order, public schools were closed, and 

the majority of activities in NYC were suspended.  

In responding to the battle of COVID-19, multiple companies have released data 

about human mobility to the public. For example, Google and Apple, two main companies 

owning millions of users’ location information, have published their reports on human 

mobility during the pandemic. However, the mobility reports published by Google and 

Apple are highly aggregated data, that the raw data are not accessible to the public. On 

the other hand, social media platforms with open data policies and location-enabled posts 

have been found effective data sources for human mobility research [10]. This study aims 

to explore human mobility patterns during the COVID-19 pandemic in NYC with open 

social media data (Twitter). In addition, this study identifies changes in human mobility 

patterns spatially and temporally for different land use types based on NYC open data. 

Specifically, this study addresses the following three questions:   

1. What are the spatiotemporal human mobility patterns revealed by Twitter data at 

the tax lot level? 

2. How do human mobility patterns change by different land use types? 

3. How are the change patterns detected by Twitter different or similar to the change 

patterns detected by Google Community Mobility Report? 

This paper contributes to the efforts of battling COVID-19 by using big data to reveal 

human mobility patterns during this pandemic. In addition, this paper bridges the gaps 

of using open data to detect human mobility changes by different land use types and com-

paring human mobility patterns revealed by different data sources.  

2. Background 

2.1. Social Media for Human Mobility in Epidemiological Studies 

With the increasing prevalence of geo-enabled social media platforms, an increasing 

number of people have used social media, such as Facebook and Twitter, as communica-

tion tools and information sources [11]. Due to its prevalence, social media data have been 

used for epidemiological studies. Existing studies have found that social media data are 

useful in identifying infectious disease outbreaks [12,13], analyzing sentimental reactions 

and responses [14,15], assessing risks [16], and understanding disease dynamics [17,18]. 

Before the COVID-19 pandemic, social media data have been used for multiple infectious 

diseases including Ebola [19,20], Zika [21,22], H1N1 [23,24], dengue [25–27], and seasonal 

influenza [28,29].  

Geotagged social media data showed their potential in helping analyze and predict 

the spread of infectious diseases by deriving human mobility patterns from the data. For 

example, Albinati et al. generated a prediction model for dengue using Twitter data [25]. 

Kraemer et al. derived human mobility patterns from Twitter and analyzed spatiotem-

poral transmission variation of dengue in Lahore, Pakistan [27]. Taking a different ap-

proach, Ramadona et al. developed a dynamic mobility-weighted incidence index to ana-

lyze the spread of dengue in Yogyakarta, Indonesia [26]. Lai et al. found that mobility 

patterns retrieved from cellphones are valuable to assess health-related risks for travelers 

[30]. Barlacchi et al. studied relationships between characteristics of human mobility pat-

terns and whether or not influenza-like symptoms exist [31]. Souza proposed spatial scan 

statistic methods to identify infection risks from Twitter [32].  

2.2. Big Data for Human Mobility in Response to COVID-19 
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During the COVID-19 pandemic, big data have contributed to fighting against 

COVID-19 from multiple perspectives [33–38]. In the early stage, studies have contributed 

to understanding the spatiotemporal distribution patterns and spread patterns of COVID-

19 confirmed cases in different countries, including China [39,40], Iran [41,42], Italy [43], 

and South Korea [7]. Due to the high infectious rate and long incubation period, move-

ment tracking and contact tracing were among the key methods applied to constraint the 

spread of COVID-19 [40,44].  

This is usually achieved with mobile phone-based location information [45,46]. Stud-

ies have utilized mobile phone location data to detect human mobility changes in China 

[47], Spain [48], South Korea [49], the U.S. [50–57], and Brazil [58], to name a few. With 

more countries imposing “stay-at-home” and “keep-social-distancing” policies, big mo-

bility data have been used to analyze the effectiveness of social and political efforts that 

focus on reducing human movement. For example, how different places responded to 

reducing-mobility-related orders in the U.S. were analyzed at the state level [59] and 

county level [51] with mobile phone data. The effectiveness of interventions in different 

countries was examined with mobility data [30,50,60]. At the individual level, changes in 

travel behavior have been detected, including transportation mode choice, trip destina-

tions, trip distances, and durations [40,61,62].   

Although social media data have been widely used for human mobility studies, lim-

ited studies regarding social media and human mobility under this COVID-19 pandemic 

are found [59,63–65]. Existing COVID-19 and social media studies focus more on infor-

mation propagation [66–70] and text-based analysis of specific topics [71–74].  

3. Study Area and Data 

3.1. New York City 

NYC includes five boroughs, with each borough being a county in New York State: 

Bronx (Bronx County), Brooklyn (Kings County), Manhattan (New York County), Queens 

(Queens County), and Staten Island (Richmond County).  

The NYC Department of City Planning published extensive land use and related ge-

ographic feature data at the parcel level called PLUTO (Primary Land Use Tax Lot Output) 

[75]. PLUTO data include 857,205 parcels in total.  

In PLUTO, all the parcels of NYC are categorized into one of these 11 land use types: 

one- and two-family buildings, multi-family walk-up buildings, multi-family elevator 

buildings, mixed residential and commercial buildings, commercial and office buildings, 

industrial and manufacturing, transportation and utility, public facilities and institutions, 

open space and outdoor recreation, parking facilities, and vacant land.  

3.2. Google Community Mobility Report 

Google published a mobility report for COVID-19 by comparing changes in the daily 

number of visitors to the baseline. The baseline is composited of seven values, one for each 

day of the week, and the value is the median value from a 5-week period (January 3rd to 

February 6th, 2020, hereafter 1/3 and 2/6). The Google Community Mobility Report in-

cludes changes for the following six categories of places: retail and recreation, grocery and 

pharmacy, parks, transit stations, workplaces, and residential. Changes reported in the 

Google Community Mobility Report are calculated as change percentages compared to 

the baseline. For the United States, the Google Community Mobility Report is available at 

the state- and county-level, if enough data are available [76].   

3.3. Twitter Data 

Geotagged tweets were collected from 1/3, to May 30th, 2020 (hereafter 5/30), using 

the Twitter Stream Application Programming Interface (API). Although Twitter API only 

allows access to about 1% of all publicly available tweets [77], a total number of 9,459,952 
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geotagged tweets from 209,775 users were collected from NYC during this 5-month pe-

riod. All the streamed tweets are stored on a high-performance computing cluster. Que-

ries for this study were conducted with Apache Impala and Apache Hive. Following the 

change calculation method in the Google Community Mobility Report, tweets collected 

between 1/3 and 2/6 were used for baseline calculation. Later tweets were used for mobil-

ity change calculation.  

4. Methodology 

4.1. Twitter Data Processing 

We collected a total of 1,750,385 tweets between 1/3 and 2/6, 2020, for baseline calcu-

lation, and a total of 5,335,313 tweets were collected between February 16th (hereafter 2/16) 

and 5/30 for human mobility pattern examination. For all the tweets we collected, we first 

separate them into daily datasets based on posted time so that one dataset only contains 

tweets posted during one specific day. In the second step, we map each tweet based on 

the associated geotag as a point. If the associated geotag is coordinates, this tweet is di-

rectly located to the coordinates. If the geotag type is a place, for example, Central Park, 

this tweet is located to the centroid of central park. Tweets that cannot be mapped into 

tax-lot polygons were eliminated in this step. After this mapping step, 1,649,520 tweets 

remain for baseline calculation, and 5,162,468 tweets remain for human mobility pattern 

examination. In the next step, we count how many users have tweeted from each tax lot 

for each day. In other words, only one user is counted into the given lot, regardless of the 

number of tweets one user posted from the same location. 

4.2. Spatial Patterns of Human Mobility Changes 

PLUTO data for NYC has delineated each polygon for each tax unit with one of the 

11 land use types listed in Section 3.1. Spatial mobility pattern changes are calculated for 

each tax unit.  

The baseline used for change calculation is a 5-week period, from 1/3 to 2/6, which is 

the same as the Google Community Mobility Report. For each land unit, the total number 

of Twitter users per week is summarized. The baseline value for each land unit is the me-

dian of the five weeks’ weekly user amount.   

For each polygon, the weekly Twitter user number was summarized for each week 

between 2/16 and 5/30. The percentage of human mobility change of a given polygon is 

calculated as Equation (1): 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =

 

{
 
 

 
 
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≠ 0
 
 
 

100% ,                       𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0

. 
(1) 

4.3. Daily Mobility Pattern Change by Land Use Type 

The baseline for the daily Twitter-based human mobility change pattern is matrix B, 

pairing land use type and day of the week. An element 𝑏𝑖𝑗  in the baseline matrix B is the 

baseline value for land use type 𝑖 on 𝑗th day of the week. For each week of the 5-week 

baseline time, a matrix W is constructed, where each element 𝑤𝑖𝑗  represents the number 

of Twitter users in land type 𝑖 on 𝑗th day of this specific week. Therefore, we built 5 ma-

trices for the 5-week baseline time, denoting as W1, W2, …, W5. The baseline value 𝑏𝑖𝑗  is 

the element-wise median of W1, W2, …, W5.  

Twitter-based human mobility change patterns were calculated on a daily basis from 

2/16 to 5/30. For each day between this time period, we first used 𝑛𝑖𝑗 as the observed 
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number of Twitter users in land type 𝑖 on the 𝑗th day of that week. Then, the daily change 

percentage is calculated as follows: 

𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑛𝑖𝑗 − 𝑏𝑖𝑗

𝑏𝑖𝑗
× 100%.                                            (2) 

This change percentage calculation method can avoid fluctuations during the week, 

such as human mobility pattern changes between weekdays and weekends.   

Daily change patterns are presented as trend lines, where the y-axis is the change 

percentage, and the x-axis is the date.  

5. Results 

5.1. Spatial Human Mobility Patterns based on Twitter Data  

Figure 1 and Figure 2 show the human mobility patterns change detected using Twit-

ter data at the parcel level. Figure 1 shows changes from week 1 to week 9, and Figure 2 

shows changes from week 10 to week 15. From a spatial perspective, the decrease in the 

number of Twitter users can be observed as early as in the week of March 15th, 2020 (here-

after 3/15, Week 5), which is the week before the city-wide executive order. From the Mon-

day of week 5, most commercial and office buildings in Midtown Manhattan (dark blue 

polygons within the red rectangle in week 5) have seen more than a 75% decrease in the 

number of Twitter users compared to January. Such reduction indicates the spontaneous 

actions of work-from-home from many companies. Downtown Manhattan (red circle in 

the figure of week 5), including the Soho District, Wall Street, World Trade Center, and 

the ferry to Statue of Liberty, has always been a popular destination of tourism. As the 

World Trade Center and Statue of Liberty suspended their tourism-related activities on 

3/14 and 3/16, the number of Twitter users decreased more than 50% at One World Trade 

Center and the Battery Park, which is where the ferry to the Statue of Liberty departs. 

After the stay-at-home executive order was placed on 3/22, the majority of non-residential 

buildings in Downtown Manhattan show more than a 75% reduction in the number of 

Twitter users. In addition, Central Park (red rectangle in the figure of week 6) had seen 

more than a 50% decrease in the number of Twitter users after the issue of the executive 

order, suggesting that the attraction of this largest park in New York City has been damp-

ened during the pandemic. The weekly number of Twitter users in Central Park remained 

at a similar level until the end of May. Contrasting to the general decreasing trend, hospi-

tals (red circle in the figure of week 6) saw a significant increase in the number of Twitter 

users since week 6 (3/22), when the number of COVID-19 cases in NYC started to rise [2]. 
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Figure 1. Human mobility changing patterns at parcel-level in week 1 – week 9. 
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Figure 2. Human mobility changing patterns at parcel-level in weeks 10–15. 

5.2. Temporal Changes by Land Use Type 

Figure 3 shows the daily change for the six land use types. The black line shows the 

original change pattern, and the red line is the smoothed trend with Gaussian smoothing.  
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Figure 3. Mobility changing patterns for six land use types based on Twitter data. 

Transportation-related lands show a significant decrease in the number of people—

about a 70% decrease in mid-March. This result is expected, as people are encouraged to 

avoid unnecessary trips and stay at home. Commercial and office buildings are also found 

to have a noticeable decrease: about 60% in mid-March. Similarly, public facilities and 

institutions also observe about a 40–50% percent decrease in the number of Twitter users. 

Park and outdoor recreation areas for the whole of NYC indicate a slight decrease from 

mid-March. In April, about 40% fewer Twitter users are observed in park and outdoor 

recreation areas, comparing to the baseline.  

Twitter-based human mobility patterns show no obvious increase in the residential 

area for NYC. This shows one limitation of using Twitter data for this type of human mo-

bility capturing study. We can only count the number of distinct Twitter users from a 

location. The length of time spent at home remains unknown. Therefore, for those users 

who regularly tweet from home before the pandemic, this number does not change. 

The following sections describe human mobility changes for Bronx County, Kings 

County (Brooklyn Borough), Queens County, and New York County (Manhattan Bor-

ough) in detail. In addition, similarities and differences comparing human mobility 
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change patterns from Twitter and Google are discussed. Richmond County (Staten Island 

Borough) is not further discussed, as it does not have enough data for a valid comparison.  

5.2.1. Bronx County 

Bronx County only has enough Twitter users for two land use types: residential and 

workplace. Figure 4 shows the comparison between Twitter-based human mobility pat-

tern change and change generated with Google-based human mobility data. 

 

 

Figure 4. Twitter- and Google-based human mobility changing patterns in Bronx County. 

In Twitter-based human mobility pattern, the residential area shows no obvious in-

crease, while Google shows a 20% increase in residential areas. As mentioned before, 

Google’s human mobility change for the residential area is based on time spent; therefore, 

a larger increase from Google is found. Both Twitter- and Google-based human mobility 

patterns find about a 60% decrease in the workplace in Bronx. However, the Twitter-based 

mobility pattern shows more dramatic day-to-day changes. Another major difference be-

tween these two trends is that Google shows notable weekday–weekend patterns.  

5.2.2. Kings County (Brooklyn Borough) 

Twitter-based human mobility patterns are generated and compared with Google-

based human mobility change for Kings County in the following three land use types: 

residential, workplace, and park. Figure 5 shows the comparison for the three types. 



ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 20 
 

 

 

 

 

 

 

Figure 5. Twitter- and Google-based human mobility changing patterns in Kings County. 

We found a 20% increase in the number of Twitter users in Kings County for residen-

tial areas, which is similar to Google Community Report. However, Twitter-based human 
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mobility presents a larger day-to-day change, and this change is unstable. Google found 

that people spent about 20% more times in residential places, and weekly regularity is 

also found. Both Twitter- and Google-based human mobility patterns found about a 60% 

decrease in the number of people for the workplace in Kings County, and a drop starting 

around 3/15 was detected in both data. However, Google also identified weekday–week-

end regularity, which is not detected using Twitter data. The human mobility patterns for 

parks and outdoor recreational areas in Kings County are quite different between Google 

and Twitter. Google shows an obvious drop around 3/15, and the number of visitors 

started to increase in late April and keeps increasing in May. The Twitter-based human 

mobility pattern shows an unstable pattern evidenced by the large day-to-day difference. 

In addition, the number of Twitter users identified in parks and outdoor recreation areas 

is above baseline for 71 days, even when the stay-at-home order was in place in late March 

and April.  

5.2.3. New York County (Manhattan Borough) 

New York County shows a decrease in the number of Twitter users in all categories 

(Figure 6). Noticeably, the total number of Twitter users in New York County has de-

creased by 30–40%. This is likely to be caused by the significantly decreasing tourism in 

NYC in general. The number of Twitter users for the residential area in New York County 

shows a 30% decrease, which is consistent with the number of Twitter users decreasing 

for the whole of New York County. Transportation-related lands show similar decreasing 

patterns. Both Twitter-based and Google-based human mobility patterns show a 70–80% 

decrease in visitors to transportation-related lands. The decrease of the number of Twitter 

users in transportation-related lands started in early March, which is earlier than the main 

drop that appeared in Google (mid-March). The workplace in New York County presents 

an obvious decrease in both Twitter-based and Google-based human mobility patterns. 

Twitter-based human mobility shows a 60% decrease, and Google shows a 70% decrease. 

One major difference is that the Google-based pattern shows obvious weekday–weekend 

regularity. Regarding parks and outdoor recreation lands, both Twitter-based and 

Google-based human mobility patterns identify the drop in the number of visitors around 

mid-March. However, the Google-based pattern shows a larger drop: about 70% until late 

April. Visitor numbers starting to increase in May were also found by the Google-based 

pattern. The Twitter-based human mobility pattern shows about a 40% decrease since 

mid-March. Unlike the Google-based pattern, no increase in May was found in the Twit-

ter-based pattern. 
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Figure 6. Twitter- and Google-based human mobility changing patterns in New York County. 

5.2.4. Queens County 

Although Twitter- and Google-based human mobility patterns use different methods 

to calculate human mobility changes, both patterns show a 20% increase for residential 
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lands in Queens County (Figure 7). Similar to all residential lands, Google can identify 

weekday–weekend differences, while Twitter-based human mobility patterns cannot. Re-

garding transportation-related lands, both Twitter- and Google-based human mobility 

patterns show a significant drop in the number of visitors around 3/15. However, the 

Twitter-based human mobility pattern shows a larger decrease: about 80%. On the other 

hand, the Google-based pattern finds a 70% decrease, and the number of visitors started 

to increase in May, which is not identified by the Twitter-based human mobility pattern. 

 

 

Figure 7. Twitter- and Google-based human mobility changing patterns in Queens County. 

6. Discussion  

6.1. Comparison of Mobility Patterns Derived from Google and Twitter  

This study compares human mobility patterns during the COVID-19 pandemic using 

two different data sources: cell phone (Google) and Twitter. Human mobility patterns and 

changes of those patterns are different mainly because of the different data collection 

methods with these two data sources. The Google Community Mobility Report is gener-

ated using the Location History feature with Google Accounts. According to Google, if a 

user turns on Location History in their Google Account, and this user is signed into his/her 

Google Account on his/her mobile device, the location history is saved to Google. In other 

words, even if a user does not actively report location by posting or checking in with any 

Google products, Google is able to get this user’s location if this user has Location History 

turned on. With a large number of users who turned on Location History at the Google 
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Account-level for the convenience provided by Google products, Google has access to 

continuous individual-level location, which enables Google to analyze human mobility 

patterns at a more detailed and continuous level.  

On the other hand, Twitter-based human mobility data collection relies on Twitter 

users’ activities completely. Individual-level location records are based on tweeting fre-

quency and decisions about location sharing of each tweet for each individual user. There-

fore, Twitter-based human mobility patterns can be viewed as discrete patterns. Compar-

ing to human mobility data collected by Google, Twitter-based human mobility data fail 

to tell how long a user spends at a given location. 

Mobility patterns in residential for Google Community Mobility Report and Twitter-

based human mobility are calculated differently, which provides quite different results. 

The Google Community Mobility Report calculates changes in the length of time spent in 

residential land, while Twitter-based human mobility calculates changes in the number of 

Twitter users. Therefore, the Google Community Mobility Report found increases in users 

on residential land for the four counties in NYC. Differently, Twitter-based human mobil-

ity indicates decreases in users on residential land in New York County (Manhattan). One 

reasonable guess is that residential Manhattan had a decrease in the number of visitors 

from outside of Manhattan, and those visitors contributed to a large portion of the tweets 

posted from the Manhattan residential area as they visit friends in Manhattan. Since the 

Google Community Mobility Report calculates changes for time length, longer time spent 

at residential land was found. 

Workplace shows weekly cycles in the Google Community Mobility Report, but not 

in Twitter-based human mobility patterns. Interestingly, the Google Community Mobility 

Report shows more people visiting workplaces during the weekends. Such weekend 

peaks are found in Bronx County, Kings County, and New York County. However, Twit-

ter-based workplace mobility patterns do not present such weekly cycles. Instead, the 

Twitter-based workplace mobility pattern in New York County shows fewer fluctuations 

after the lockdown.  

In Queens County and New York County, human mobility patterns in transportation 

show similar trends with Google- and Twitter-based human mobility patterns, although 

Google presents a smoother change than the Twitter-based human mobility pattern 

change. This is caused by the different number of sampled users. Since the Twitter-based 

human mobility pattern calculates changes with a smaller sample than the changes calcu-

lated in the Google Community Mobility Report, the resulting change percentage is larger 

in Twitter-based human mobility. From this perspective, Google-based mobility patterns 

present changes in routine travel patterns such as commuting, while Twitter-based hu-

man mobility patterns are more sensitive to irregular patterns such as special events.   

As demonstrated in this case, Twitter-based and cell phone-based data show differ-

ent perspectives of human mobility patterns and changes of such patterns. Each data 

source shows specific perspectives of activity and human interaction with the land use 

types. Future research should consider more about data fusion to present multifaceted 

human mobility patterns and to capture a wider spectrum of the population.  

6.2. Limitations 

Although Twitter-based human mobility data provide fast and robust results for mo-

bility pattern change detection, we realize that limitations exist in Twitter-based human 

mobility data. First is the issue of representativeness. Twitter, the same as all other social 

media platforms, only can attract a small portion of the total population. Furthermore, not 

all Twitter users post tweets with geotags to a resolution that can be valid for this study. 

Existing studies have recognized this problem and have examined for population biases 

with Twitter users [78–80]. Unfortunately, no solutions have been found so far. Compar-

ing to Twitter users, Google has a larger number of users as sampled for mobility pattern 

changes. However, Google Location History requires additional action to be turned on. 
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Similar to Twitter-based human mobility data collection, cell phone-based data are limited 

to users of certain companies, which is also affected by issues of representativeness [81,82].  

The second limitation of this study is the baseline calculation method. In this study, 

the baseline is calculated with a 5-week period data (1/3–2/6), which follows the Google 

Community Mobility Report. However, human mobility patterns during this time can be 

affected by seasonal tourism, especially considering NYC as an internationally famous 

tourism destination. For a better human mobility analysis, baseline calculation should 

consider the annual cycle of human mobility. For instance, human mobility data from last 

year March to May should also be included for baseline calculation.  

 

6.3. Future Research 

Despite the limitations, compared to most cell phone-based mobility data, the value 

of Twitter-based (or more generally social media-based) human mobility data lies in that 

they provide multi-dimensional information rather than only the changes in the location 

of individuals. Despite not being used in this study, tweets posted in NYC can be analyzed 

with text-based methods to retrieve information such as increasing situational awareness, 

allocation of medical needs, and reporting problems or change of services [65,83]. Such 

analysis can help us better understand human mobility dynamics during the pandemic, 

such as why people are still going to parks regardless of the stay-at-home executive order. 

In addition, with self-description and other information provided by each individual 

Twitter user, further analysis can be conducted, including how COVID-19 impacts differ-

ent demographic and socioeconomic groups   

Secondly, Twitter data provide more flexibility in spatiotemporal resolution. Human 

mobility data provided by Google Mobility Report are at the county and state level. No 

finer resolution such as tract-level mobility patterns can be retrieved from those data. 

Therefore, the spatial variance within a county cannot be captured. On the other hand, 

Twitter data can be aggregated to different spatial resolutions, which is a better fit for 

different research applications. Temporally, Twitter data allow individual-level mobility 

analysis, such as trajectory analysis and trip prediction. With long-term Twitter-based 

mobility data, more sophisticated change detection methods, such as time series, can be 

applied to better capture abnormality in human mobility. 

7. Conclusion 

This study explores the change of human mobility patterns in New York City using 

Twitter data. With the open access NYC detailed land use data, this study analyzes 

changes of Twitter user number of different land use types of NYC during the COVID-19 

pandemic. This study also compares Twitter-based human mobility pattern changes with 

the Google Community Mobility Report at the county (borough) level of NYC. Comparing 

Twitter-based human mobility patterns and the Google Community Mobility Report, a 

major difference exists in residential lands, since Google Location History is able to record 

the length of time each individual spent at a location, which cannot be achieved with Twit-

ter data. On the other hand, Twitter-based human mobility and the Google Community 

Mobility Report show similar results in changes at workplaces and transportation-related 

land use, such as subway stations and airports.  

Human mobility data have played key roles in understanding and combating the 

COVID-19 pandemic. However, data accessibility placed limitations in scientific research, 

as many human mobility data are provided and protected by commercial companies 

whose raw data are not released to the general public. As an initial effort to bridge this 

gap, this study provides a comparison between the effectiveness of identifying human 

mobility changes using social media data (Twitter) and cell phone data (Google) during 

the COVID-19 pandemic in NYC. The results of this study show that in some applications, 

open-access social media data (Twitter) can generate similar results to private data 
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(Google), and thus, under some situations, social media data are capable of substituting 

private data to facilitate real-time human mobility monitoring. In addition, the results of 

this study can be used to develop platforms for infectious diseases monitoring and further 

analysis of different characteristics of human mobility patterns during the COVID-19 pan-

demic.  
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