

which denoises background depth estimates and compares

them against foreground predictions (see Fig. 1 middle).

We assess our method on the challenging Cityscapes [7]

and AIODrive [46] datasets. We find difference attention

and refinement to provide accurate results (see Fig. 1 bot-

tom) which yield a new state-of-the-art of 37.6 PQ for

mid-term forecasting on Cityscapes and 48.5 PQ on AIO-

Drive. Code to reproduce results is available via https:

//github.com/cgraber/psf-diffattn.

2. Related work

Forecasting has been studied across communities [41].

Forecasting of non-semantic representations. Trajecto-

ries are arguably one of the representations for which fore-

casting has been studied most. Trajectories specify the

future position of individual objects, either in 2D or 3D

[10, 11, 32, 53]. For example, Hsieh et al. [18] disentan-

gle position and pose of multiple moving objects – but only

on synthetic data. Mittal et al. [33] forecast scene flow for

point cloud data using self-supervision to reduce training

data requirements. Kosiorek et al. [22] track instances to

forecast their future. Several works have focused on antici-

pating future pose and location of specific object types, of-

ten people [13,31]. However, arguably, a trajectory forecast

provides little beyond position, velocity and acceleration.

To obtain more information, forecasting of future RGB

frames has been studied [12, 24, 52]. Due to the high-

dimensional space of the forecasts and because of the am-

biguity in the forecasts, results often remain blurry, despite

significant recent advances. For instance, recent work mod-

els uncertainty over future frames using, e.g., latent vari-

ables [44, 52] or treats foreground and background sepa-

rately [47]. Moreover, Ye et al. [52] forecast future RGB

frames by modeling each foreground object separately.

Note, all these methods differ from ours in architecture and

output: we forecast a semantic representation.

Closer to our work is AgentFormer [54]. It also uses

transformers to forecast and introduces an identity encoding

via agent-aware attention. Our work differs in that we pre-

dict panoptic segmentations while they predict birds-eye-

view locations. Additionally, we develop difference atten-

tion and auxiliary losses which we find to aid forecasting.

Forecasting semantic segmentations. Recently, methods

have been studied to estimate semantic segmentations for

future, unobserved frames. Luc et al. [28] use a deep-net to

estimate a future semantic segmentation given the current

RGB frame and its semantics as input. Nabavi et al. [34]

use recurrent models with semantic maps as input. Chiu

et al. [6] further use a teacher net to provide an additional

supervision during training. Šarić et al. [36] use learnable

deformations to help forecast future semantics given the ob-

served frames. Lin et al. [25] design an autoencoder which

1) compresses input feature pyramids into a low-resolution

predictive feature map, 2) predicts this representation for a

future frame, and 3) expands it back into a feature pyramid

for decoding. However, importantly, these methods do not

explicitly consider dynamics of the scene.

While Jin et al. [21] jointly predict flow and future se-

mantic segmentations, recent work [37] explicitly warps

deep features to obtain a future semantic segmentation.

Similarly, Terwilliger et al. [40] use a long-short-term-

memory (LSTM) module to estimate a flow field which

is then used to warp the semantic output of a given input

frame. However, by warping in output space, their model

has a limited ability to cope with occlusions. While flow

improves the modeling of the dynamic world, these meth-

ods only consider the dynamics at the pixel-level. Instead,

we model dynamics at the object level.

Recent methods [17, 35, 43, 49] estimate future seman-

tic segmentations by reasoning about shape, egomotion,

and foreground motion separately. However, none of these

methods reason explicitly about individual instances, while

our method yields a full future panoptic segmentation fore-

cast, i.e., a prediction for every instance.

Forecasting future instance segmentations. Recent meth-

ods which forecast an instance segmentation use a conv net

or an LSTM module to regress to the deep features which

correspond to the future instance segmentation [19,27]. For

example, Couprie et al. [8] use a conv net to forecast fu-

ture instance contours together with an instance-wise se-

mantic segmentation to estimate future instance segmenta-

tion. However, their method only estimates foreground and

not background semantics.

Unlike these works, we predict both instance segmenta-

tion masks for foreground objects and background seman-

tics for future time steps.

Forecasting panoptic segmentations. In recent years,

panoptic segmentation has become a popular scene under-

standing task [3–5,23,45]. Very recently [14,38], it has been

proposed as a useful representation for forecasting because

it naturally disentangles 1) objects which move in an image

just because of observer motion; from 2) object instances

which move due to both observer and instance motion.

The state-of-the-art [14] forecasts the future position of

individual object instances independently of each other via

an encoder-decoder architecture which is executed sepa-

rately for every object instance. Moreover, the obtained

instance forecasts are combined in a heuristic manner by

simply pasting objects in front of background without con-

sidering depth information of background objects.

In contrast, we propose a method for panoptic segmen-

tation forecasting which jointly forecasts all detected object

instances at once via a tailored transformer attention. This

helps to benefit from correlations between instances. More-

over, we study how to combine the individual forecasts in a

differentiable way. We discuss our method next.

the differences between these inputs, and outputs represen-

tation Y ∈ R
M1×d which encodes these differences. For

this, we first compute entity scores

Z = QKT
R − 1M1×1diag

�
KBK

T
R

�T
, (1)

where 1M1×1 is the M1 × 1 matrix filled with ones. Q is

computed from Xself and KB and KR are computed from

Xother with MLPs, i.e., Q = fQ(Xself), KR = fKR
(Xother),

and KB = fKB
(Xother). Intuitively, this operation allows

the entity score computation to be a function of the differ-

ence between the two inputs Xself and Xother. This is use-

ful for forecasting, as the offset of input locations and their

change over time is necessary to understand motion.

Given these entity scores Z, we compute the final at-

tended representation Y which corresponds to Xself via

Y = softmax
�
Z/

√
d
�
VO −VS , (2)

where VO = fVO
(Xother) and VS = fVS

(Xself). Intu-

itively, this enables the final output Y to encode the dif-

ferences between the two inputs Xself and Xother. This is

again suitable for forecasting, as it enables representations

to encode the velocity of an instance, which is critical for

reasoning about future motion. We now discuss how we

use this difference attention for foreground forecasting.

3.2. Foreground Forecasting

Our forecasting model is tasked with predicting a panop-

tic segmentation �ST+F for time T + F . This is done by

forecasting representations for the N instances in the scene,

followed by a final refinement. We represent each instance

at all times during forecasting using three components lit :=
{xi

t, r
i
t, p

i
t}: a 5-dimensional vector xi

t := [x0, y0, x1, y1, d]
representing the upper-left and lower-right corners of the

bounding box enclosing instance i as well as the estimated

distance of the instance from the camera at time t, a feature

tensor rit ∈ R
256×14×14 representing the visual appearance

of the instance at time t, and a binary value pit ∈ {0, 1}
which indicates whether instance i is present in frame It.
Additionally, given background prediction logits �mB and

background reprojected depths d̃B , the final output of the

forecasting model is

�ST+F = Ref(FD(FE({lit, ci, ot}1:N1:T), {ot}T+1:F), �mB , d̃B).
(3)

Here, the forecasting encoder FE operates on input

representations lit, classes ci, and odometry ot ∀i ∈
{1, . . . , N}, t ∈ {1, . . . , T} and computes embeddings

hi
Loc,t and hi

App,t which encode locations and appearances,

respectively. The forecasting decoder FD processes these

embeddings to autoregressively compute embeddings h̃i
Loc,t

and h̃i
App,t, which are used to produce outputs �lit. These out-

puts are subsequently combined with background semantics

�mB and depths d̃B using refinement model Ref to produce

the final panoptic segmentation �ST+F . We discuss the en-

coder and decoder which use difference attention next, and

we detail refinement in Sec. 3.3.

Forecasting Transformer Encoder. The encoder FE pro-

duces two embeddings for every instance i at every time t:
the first, hi

Loc,t ∈ R
de where de is the size of the embedding,

contains information about its location as well as its ob-

served motion; the second, hi
App,t ∈ R

256×14×14, contains

information about its appearance. These are obtained us-

ing two newly developed forecasting transformer encoders.

The use of transformers for this task permits to jointly rea-

son about every instance both as a function of time and as a

function of the other instances present in the scene.

The first transformer encoder produces in parallel ∀i, t
the location encoding

{hi
Loc,t}1:N1:T = FELoc({lit, ci, ot}1:N1:T). (4)

For this, it uses all input instances at every point in time,

i.e., {lti}1:N1:T , as well as classes ci and odometry ot. Differ-

ent from classical transformer encoders, FELoc is trained via

auxiliary losses to natively reason about both the velocity of

each instance across time as well as the motion of each in-

stance relative to each other. Hence, the embedding hi
Loc,t

is trained to encode information about the velocity, which

we show improves the ability of the decoder to anticipate

the instances’ future motion.

The second transformer encoder, which produces the ap-

pearance encoding

hi
App,t = FEApp({lit, ci, ot}1:N1:T), (5)

maintains the spatial structure of the input appearance fea-

tures. This is beneficial for predicting a spatial output.

Both the location and the appearance components of the

forecasting transformer encoder are comprised of the same

general structure: first, a feature representation for every

instance is produced as a function of its location, its appear-

ance, its object class, the current camera motion, and the

current time. Second, these feature representations are pro-

cessed using our customized transformer encoders FTELoc

and FTEApp. Letting β ∈ {Loc,App} denote the mod-

ules for the location encoder and the appearance encoder,

respectively, this is formally described as

{hi
β,t}1:N1:T = FEβ({lit, ci, ot}1:N1:T) (6)

ô
�

x̄iβ,t = fβ(l
i
t, ci, ot, t) ∀i, t

{hi
β,t}1:N1:T = FTEβ({x̄iβ,t}1:N1:T)

, (7)

where fLoc uses multilayer perceptrons and fApp uses con-

volutional nets which are described fully in Appx. B. Note,

depending on β, Eq. (6) refers to either Eq. (4) or Eq. (5).

They perform the computations given in Eq. (7). All fea-

tures {x̄iβ,t} are used as input into the transformer FTEβ .

For FTELoc, all self-attention modules use the difference

attention formulation introduced in Sec. 3.1. This design fa-

cilitates the ability of the model to reason about the velocity

of the entities, which can be represented by differences in

input embeddings which correspond to the same instance at

different points in time, as well as the relative offsets be-

tween different entities. We find that the use of this form of

attention leads to improved forecasting results.

The appearance transformer encoder FTEApp is built us-

ing convolutional transformers. Specifically, it consists of

a transformer whose linear projections have been replaced

with convolutional layers. This enables a spatially mean-

ingful representation at all stages during encoding.

For more about attention computation see Appendix C.

Forecasting Transformer Decoder. The decoder utilizes

the representations produced by the encoder to predict the

future location �xt
i, the future appearance �rti, and the future

presence �pti of each object i for future time steps t ∈ {T +
1, . . . , T + F}. Predictions are computed autoregressively,

starting with the most recent input locations �xTi := xT
i and

appearance features �rTi := rTi .

For future time step t ∈ {T + 1, . . . , T + F}, both the

location decoder FDLoc and the appearance decoder FDApp

take the following structure, with β ∈ {Loc,App}:

{h̃i
β,t}1:N = FDβ({�lit}1:NT :t−1, {ci}1:N , {ot}T+1:t, {hi

β,t}1:N1:T)

ô
"

x̃
i
β,t = f̃β(�lit, ci, ot, t) ∀i, t

{h̃i
β,t}1:NT+1:T+F = FTDβ({x̃

i
β,t}1:NT+1:T+F)

.

Similar to their corresponding encoder modules, the loca-

tion transformer decoder FTDLoc uses difference attention,

the appearance transformer decoder FTDApp is a convolu-

tional transformer, and both utilize agent-aware attention.

Final location, appearance, and presence predictions are

obtained from the embeddings produced at each time via

�xi
t = fLocOut(h̃

i
Loc,t) + �xi

t−1, (8)

�pit = fPOut(h̃
i
Loc,t), (9)

�rit = fAppOut(h̃
i
App,t), (10)

where fLocOut and fPOut are multilayer perceptrons and

fAppOut is a convolutional network.

Training. The foreground model is trained by providing it

with input location and appearance features, predicting the

future states of each of these, and regressing against pseudo-

ground-truth future locations x∗i
t , appearance features r∗it ,

and presences p∗it which are obtained by running instance

detection and tracking on future frames. We formally spec-

ify the losses in Appendix D.

In addition, we train the forecasting location encoder to

estimate the velocity �viE,t of each instance via

�viE,t = fvel(h
i
Loc,t), (11)

where fvel is a multilayer perceptron. This auxiliary predic-

tion task requires the encoder to include information about

the motion of each instance within the representation it pro-

duces. We find this to lead to better forecasting results.

3.3. Prediction Refinement

To address the aforementioned second shortcoming of

[14], we develop a refinement which combines foreground

and background predictions as a function of their estimated

depth. This allows foreground instances to be placed behind

background objects, which yields more natural predictions.

While this would be easy if the depth signal was reli-

able, the only depth signal we have for the background is the

depth of the reprojected points that are used as input for the

background prediction model. These depths are both noisy

and incomplete, i.e., not every location will correspond to a

reprojected point from an earlier frame. Hence, the refine-

ment model has two primary jobs: first, it needs to complete

as well as denoise the input depth; second, it needs to select

which object is closest based on these depths as well as the

depths of foreground instances.

Formally, the refinement head is provided with predicted

foreground locations1 �xi, appearances �ri, and presences �pi
for N instances. Given these components, if pi = 0, then

instance i is discarded, as the model anticipates that the ob-

ject is not in frame IT+F due to occlusions or leaving the

scene; otherwise, the prediction mask �mi is obtained via

�mi = MaskOut(�xi,�ri), (12)

where MaskOut predicts a fixed-size mask using MaskR-

CNN’s mask head and then pastes it into the location spec-

ified by �xi. The prediction head additionally uses esti-

mated instance depths {�di}1:N , predicted background se-

mantic logits �mB ∈ R
H×W×CBG , where CBG is the number

of background classes, the reprojected background depths

d̃B ∈ R
H×W , and a binary mask Q ∈ {0, 1}H×W which

indicates for each pixel whether or not we have an in-

put background depth. It outputs an object selection map
�P ∈ {0, . . . , N}H×W which specifies, for every pixel,

whether the background is in front (represented by value

0) or one of the instances is in front (represented by values

1 through N). We get the final panoptic segmentation via

�ST+F =1[�P = 0] argmax(�mB)+1[�P > 0](�P + CBG).

The refinement head is composed of two modules: the

first produces completed/denoised background depth pre-

diction �dB , and the second uses this alongside the fore-

ground instance information to compute the object selection

map �P . We describe both components next.

Depth completion model. We formulate the depth com-

pletion model using two outputs. The first, �dBFill ∈ R
H×W ,

1For readability, we drop subscript T+F for predictions in this section.

represents an initial estimation of the depths for all input lo-

cations which are missing a depth, i.e., where Q = 0. The

second, �dBBias ∈ R
H×W , represents an offset added to the in-

put depths in order to refine and denoise them. Given these

predictions, the output of this module is

�dB = Qd̃B + (1−Q)�dBFill +
�dBBias, (13)

where �dBFill and �dBBias are obtained using small convolutional

networks specified in Appendix E.

Object selection model. Given the completed/denoised

background depth prediction �dB , object selection deter-

mines for every output pixel which object is closest to the

camera. We require that this module be fully differentiable

such that gradients computed from its outputs can be prop-

agated through to the depth completion model.

More formally, we compute the aggregate depth ten-

sor D ∈ R
H×W×(N+1) whose 0-th channel is the com-

pleted background depth �dB and whose i-th channel for

i ∈ {1, . . . , N} is 1[�mi g 0.5]di + 1[�mi < 0.5]dfgmax.

Here, 1[·] is the indicator function applied to all spatial

locations in �mi. Further, dfgmax is a large constant. We

also construct a value tensor V ∈ R
H×W×(N+1) whose

n-th channel is computed by applying a convolutional net

to the background logits �mB and foreground probabilities

�mi. The final prediction is computed via

P̃i,j = softmax (−Di,j) ◦Vi,j , (14)

where P̃ ∈ R
H×W×(N+1) are object selection scores for

each pixel, �Pi,j = argmax P̃i,j , and ◦ is the Hadamard

product. Specifically, for each pixel location (i, j), we use

the softmax function to determine the smallest depth and

then multiply by the value vector to attain correct scaling of

the output probabilities.

Training. For training, we compute the input instance

masks �mi
T+F using the pseudo-ground-truth locations x∗i

t .

We then obtain completed background depths and compute

final object selection scores P̃T+F . This is compared to

the ground-truth object selection P ∗

T+F using cross-entropy.

We additionally apply a squared norm loss to the predicted

depth bias �dBBias such that the model is encouraged to trust

the input depths where possible. Note that we do not su-

pervise the depth completion model to predict globally ac-

curate depths. Instead, we only require that the completed

background depths have the correct relative value compared

to the foreground depths, i.e., the predicted depths lead to

selecting either the foreground or the background correctly

per-pixel.

4. Experiments

We demonstrate that the proposed difference attention

and refinement lead to a new state-of-the-art for panoptic

segmentation forecasting. We additionally show the contri-

bution each component makes to the final improvement via

ablations. In addition, we demonstrate how these improve-

ments carry over to related dense forecasting tasks. Follow-

ing prior work [14], we test our forecasting model on the

Cityscapes dataset [7]. We additionally run experiments on

the recently-introduced AIODrive dataset [46].

4.1. Cityscapes

Data. The Cityscapes dataset contains 5,000 sequences of

30 frames each, where ground-truth panoptic segmentations

are provided for the 20th frame of each sequence. Here,

we evaluate our forecasting model on panoptic segmenta-

tion forecasting. Additional results for instance segmenta-

tion and semantic segmentation forecasting can be found in

Appendix H and Appendix I. We consider two types of fore-

casting: short-term and mid-term forecasting, each looking

3 and 9 frames into the future respectively. In both cases, we

take every third frame as input to our model, hence match-

ing the methods used in prior work [14, 27, 28, 37].

Metrics. Following prior work [14], we consider three met-

rics: segmentation quality (SQ), recognition quality (RQ),

and panoptic quality (PQ). First, we match predicted and

target segments, where true positive matches require the

intersection over union (IoU) of the two segments to be

at least 0.5. SQ corresponds to the average IoU of true

matched positive segments. RQ corresponds to the F1 score

computed over matches. Finally, PQ is the product of SQ

and RQ. These metrics are computed for each individual

class and then averaged over all classes.

Baselines. We compare against the baselines introduced

in [14]. Panoptic Deeplab (Oracle) applies the Panoptic

Deeplab model [3] on the target frame, and represents an

upper bound on performance due to its access to oracle fu-

ture information. Panoptic Deeplab (Last Seen Frame) ap-

plies this model to the most recently observed frame, which

represents a model assuming no camera or instance mo-

tion. Flow computes optical flow [20] from the last two ob-

served frames and then uses it to warp the panoptic segmen-

tation obtained from the last observed frame. Hybrid Se-

mantic/Instance Forecasting fuses a semantic segmentation

forecast [40] with an instance segmentation forecast [27]

to create a panoptic segmentation for the target frame. Fi-

nally, IndRNN-Stack is the model introduced by Graber et

al. [14] which forecasts individual instances using an RNN

encoder-decoder model and stacks all foreground compo-

nents on top of all background components.

Results. The results for all models on the panoptic segmen-

tation forecasting task are presented in Tab. 1. The proposed

approach achieves state-of-the-art across both short- and

mid-term settings on all metrics when compared to meth-

ods which don’t access future information.

Fig. 3 presents a visual comparison. IndRNN-Stack is

References

[1] Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele.

Bayesian prediction of future street scenes using synthetic

likelihoods. ICLR, 2019. 7

[2] Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M.

Montiel, and Juan D. Tardós. ORB-SLAM3: An accurate

open-source library for visual, visual-inertial and multi-map

SLAM. arXiv preprint arXiv:2007.11898, 2020. 3, 8, 5

[3] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu,

Thomas S. Huang, Hartwig Adam, and Liang-Chieh Chen.

Panoptic-DeepLab: A simple, strong, and fast baseline for

bottom-up panoptic segmentation. In CVPR, 2020. 2, 6

[4] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-

der Kirillov, and Rohit Girdhar. Masked-attention mask trans-

former for universal image segmentation. arXiv, 2021. 2

[5] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-

illov. Per-pixel classification is not all you need for semantic

segmentation. 2021. 2

[6] Hsu-Kuang Chiu, Ehsan Adeli, and Juan Carlos Niebles. Seg-

menting the future. IEEE Robotics and Automation Letters,

2020. 1, 2

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,

Stefan Roth, and Bernt Schiele. The cityscapes dataset for

semantic urban scene understanding. In CVPR, 2016. 1, 2, 6

[8] Camille Couprie, Pauline Luc, and Jakob Verbeek. Joint fu-

ture semantic and instance segmentation prediction. In ECCV

workshops, 2018. 1, 2

[9] Kenneth James Williams Craik. The Nature of Explanation.

Cambridge University Press, 1943. 1

[10] Qi Dai, Vaishakh Patil, Simon Hecker, Dengxin Dai, Luc

Van Gool, and Konrad Schindler. Self-supervised object mo-

tion and depth estimation from video. In CVPR Workshops,

2020. 1, 2

[11] Sebastien Ehrhardt, Oliver Groth, Aron Monszpart, Martin

Engelcke, Ingmar Posner, Niloy Mitra, and Andrea Vedaldi.

RELATE: Physically plausible multi-object scene synthesis

using structured latent spaces. In NeurIPS, 2020. 1, 2

[12] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu,

and Trevor Darrell. Disentangling propagation and generation

for video prediction. In ICCV, 2019. 1, 2

[13] Colin Graber and Alexander Schwing. Dynamic neural rela-

tional inference. In CVPR, 2020. 1, 2

[14] Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow,

and Alexander G. Schwing. Panoptic segmentation forecast-

ing. In CVPR, 2021. 1, 2, 3, 5, 6, 7

[15] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong

Tan, and Ping Tan. Cascade cost volume for high-resolution

multi-view stereo and stereo matching. In CVPR, 2020. 3, 6

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017. 6

[17] Lukas Hoyer, Patrick Kesper, Anna Khoreva, and Volker Fis-

cher. Short-term prediction and multi-camera fusion on se-

mantic grids. In ICCV Workshops, 2019. 2

[18] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, and

Juan Carlos Niebles. Learning to decompose and disentangle

representations for video prediction. In NeurIPS, 2018. 2

[19] Jian-Fang Hu, Jiangxin Sun, Zihang Lin, Jian-Huang Lai,

Wenjun Zeng, and Wei-Shi Zheng. Apanet: Auto-path ag-

gregation for future instance segmentation prediction. IEEE

TPAMI, 2021. 1, 2

[20] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

2017. 6

[21] Xiaojie Jin, Huaxin Xiao, Xiaohui Shen, Jimei Yang, Zhe

Lin, Yunpeng Chen, Zequn Jie, Jiashi Feng, and Shuicheng

Yan. Predicting scene parsing and motion dynamics in the

future. In NeurIPS, 2017. 2

[22] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar

Posner. Sequential attend, infer, repeat: Generative modelling

of moving objects. In NeurIPS, 2018. 2

[23] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang,

Zeming Li, Jian Sun, and Jiaya Jia. Fully convolutional net-

works for panoptic segmentation. In CVPR, 2021. 2

[24] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual

motion GAN for future-flow embedded video prediction. In

ICCV, 2017. 1, 2

[25] Zihang Lin, Jiangxin Sun, Jian-Fang Hu, Qizhi Yu, Jian-

Huang Lai, and Wei-Shi Zheng. Predictive feature learning

for future segmentation prediction. In ICCV, 2021. 1, 2, 6, 7

[26] Rodolfo R. Llinás. I of the vortex: from neurons to self. MIT

Press, 2001. 1

[27] Pauline Luc, Camille Couprie, Yann LeCun, and Jakob Ver-

beek. Predicting future instance segmentation by forecasting

convolutional features. In ECCV, 2018. 1, 2, 6, 7, 8, 9, 12

[28] Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Ver-

beek, and Yann LeCun. Predicting deeper into the future of

semantic segmentation. In ICCV, 2017. 1, 2, 6

[29] Osama Makansi, Özgün Cicek, Yassine Marrakchi, and

Thomas Brox. On Exposing the Challenging Long Tail in

Future Prediction of Traffic Actors. In ICCV, 2021. 1

[30] Srikanth Malla, Behzad Dariush, and Chiho Choi. Titan:

Future forecast using action priors. In CVPR, 2020. 1

[31] Karttikeya Mangalam, Ehsan Adeli, Kuan-Hui Lee, Adrien

Gaidon, and Juan Carlos Niebles. Disentangling human dy-

namics for pedestrian locomotion forecasting with noisy su-

pervision. In WACV, 2020. 2

[32] Julieta Martinez, Michael J Black, and Javier Romero. On

human motion prediction using recurrent neural networks. In

CVPR, 2017. 1, 2

[33] Himangi Mittal, Brian Okorn, and David Held. Just go with

the flow: Self-supervised scene flow estimation. In CVPR,

2020. 2

[34] Seyed Shahabeddin Nabavi, Mrigank Rochan, and Yang

Wang. Future semantic segmentation with convolutional

LSTM. In BMVC, 2018. 1, 2

[35] Xiaojuan Qi, Zhengzhe Liu, Qifeng Chen, and Jiaya Jia. 3D

motion decomposition for RGBD future dynamic scene syn-

thesis. In CVPR, 2019. 2

[36] Josip Šarić, Marin Oršić, Tonći Antunović, Sacha Vražić,

and Siniša Šegvić. Single level feature-to-feature forecasting

with deformable convolutions. In German Conference on Pat-

tern Recognition, 2019. 1, 2, 7

[37] Josip Saric, Marin Orsic, Tonci Antunovic, Sacha Vrazic,

and Sinisa Segvic. Warp to the future: Joint forecasting of

features and feature motion. In CVPR, 2020. 2, 6, 7, 8

[38] Josip Šarić, Sacha Vražić, and Siniša Šegvić. Dense seman-

tic forecasting in video by joint regression of features and fea-

ture motion. IEEE TNNLS, 2021. 1, 2

[39] Oliver Styles, Victor Sanchez, and Tanaya Guha. Multiple

object forecasting: Predicting future object locations in di-

verse environments. In WACV, 2020. 1

[40] Adam Terwilliger, Garrick Brazil, and Xiaoming Liu. Re-

current flow-guided semantic forecasting. In WACV, 2019. 2,

6, 7, 8, 9, 12

[41] Eugene Valassakis. Future object segmentation for complex

correlated motions. Master’s thesis, UCL, 2018. 2

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan. N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, 2017. 2, 3

[43] Suhani Vora, Reza Mahjourian, Soeren Pirk, and Anelia An-

gelova. Future semantic segmentation using 3D structure.

arXiv:1811.11358, 2018. 2

[44] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial

Hebert. An uncertain future: Forecasting from static images

using variational autoencoders. In ECCV, 2016. 2

[45] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and

Liang-Chieh Chen. Max-deeplab: End-to-end panoptic seg-

mentation with mask transformers. In CVPR, 2021. 2

[46] Xinshuo Weng, Yunze Man, Jinhyung Park, Ye Yuan, Dazhi

Cheng, Matthew O’Toole, and Kris Kitani. All-In-One Drive:

A Large-Scale Comprehensive Perception Dataset with High-

Density Long-Range Point Clouds. arXiv, 2021. 2, 6, 8

[47] Yue Wu, Rongrong Gao, Jaesik Park, and Qifeng Chen. Fu-

ture video synthesis with object motion prediction. In CVPR,

2020. 2

[48] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin

Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei

Wang, and Tieyan Liu. On layer normalization in the trans-

former architecture. In ICML, 2020. 2

[49] Jingwei Xu, Bingbing Ni, Zefan Li, Shuo Cheng, and Xi-

aokang Yang. Structure preserving video prediction. In CVPR,

2018. 2

[50] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and

Yoichi Sato. Future person localization in first-person videos.

In CVPR, 2018. 1

[51] Yu Yao, Mingze Xu, Chiho Choi, David J Crandall, Ella M

Atkins, and Behzad Dariush. Egocentric vision-based future

vehicle localization for intelligent driving assistance systems.

In ICRA, 2019. 1

[52] Yufei Ye, Maneesh Singh, Abhinav Gupta, and Shubham

Tulsiani. Compositional video prediction. In ICCV, 2019.

1, 2

[53] Raymond A. Yeh, Alexander G. Schwing, Jonathan Huang,

and Kevin Murphy. Diverse Generation for Multi-agent Sports

Games. In CVPR, 2019. 1, 2

[54] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani.

Agentformer: Agent-aware transformers for socio-temporal

multi-agent forecasting. In ICCV, 2021. 2, 3

Supplementary Material:

Joint Forecasting of Panoptic Segmentations with Difference Attention

This appendix is structured as follows: Appendix A details the background prediction approach which we use to obtain

preliminary background class predictions. Appendix B provides specific model architectural details for the forecasting trans-

former encoder and decoder. Appendix C explains in detail the agent-aware attention approach we use which allows for

identity information to be encoded in the model. Appendix D describes the specific losses computed during training of the

foreground forecasting model. Appendix E presents the model architecture used by the depth completion model introduced

in Sec. 3.3. Appendix F describes additional details of implementation and model training. Appendix G contains additional

information about the AIODrive dataset and experiments. Appendix H contains instance segmentation forecasting experi-

mental results for Cityscapes. Appendix I contains semantic segmentation forecasting experimental results for Cityscapes.

Appendix J presents additional model visualizations on Cityscapes for both the short- and mid-term settings. Appendix K

contains the full per-class breakdown of the panoptic segmentation metrics presented in Tab. 1. Appendix L describes the

major code libraries used to implement our model. Finally, Appendix M discusses potential negative societal impacts that

could arise from the implementation of this work in practice.

A. Background Model

In this work, we utilize the background semantic prediction model introduced by Graber et al. [14]. This approach lifts

background semantics into a 3D point cloud using the estimated input depth, transforms the point cloud based on camera

movement, projects to the image plane, and refines the projected semantics using a semantic segmentation model. Formally,

this model estimates the semantics of background object classes for unseen future frame T + F as

�mB
T+F = BGRef({proj(mt, dt,K,Ht, ut)}1:T), (15)

where K represents camera intrinsic parameters, Ht is the 6-dof camera transform from input frame t to target frame T +F ,

mt is the semantic segmentation for frame t which is obtained from a pre-trained model, dt is the input depth map at time t,
and ut denotes the coordinates of all of the pixels in mt which correspond to background semantic classes. Proj refers to the

step which creates the sparse reprojected semantic map for frame T + F given inputs for frame t, and BGRef refers to the

background refinement model which produces a complete background prediction from the output of Proj.

The first step of the background model is to produce reprojected semantic point clouds (m̃B
t , d̃

B
t) which are processed by

BGRef. These are obtained for each time t ∈ {1, . . . , T} by applying Proj to the corresponding input frame It. Given per-

pixel semantic prediction mt and depth map dt, Proj back-projects, transforms, and reprojects the pixels from input frame t
to target frame T + F . This process is summarized as



xt

yt
zt


 = Ht


K

−1

ø
ut

1

ø
diag(dt)

1


 , (16)

ø
uT+F

1

ø
= K



xt/zt
yt/zt
1


 , (17)

m̃B
t (uT+F) = mB

t (ut), (18)

d̃Bt (uT+F) = zt, (19)

where ut is a vector whose entries dictate the pixel locations in mt which correspond to background object classes and uT+F

is the vector which contains the location of these pixels in the target frame at time T + F . During this, we maintain the

semantic class obtained from mt and the projected depth of each pixel location. Whenever multiple pixels ut from an input

frame are projected to the same pixel uT+F in the target frame, the depth and the semantic label of the pixel with the smallest

depth is kept, as it is closest to the camera.

Given reprojected semantics m̃B
t and depths d̃Bt from the previous step, the background refinement model is tasked with

predicting a final semantic output. This is done by concatenating the input from all frames and feeding them into a semantic

segmentation model, which can be described as

�mProb
T+F = BGRef([{m̃B

t (uT+F)d̃
B
t (uT+F)}1:T])

�mB
T+F = argmax

c
(�mProb

T+F),

where �mProb
T+F ∈ ∆H×W

CBG
represents the CBG-dimensional output probability map per pixel, one for each background class,

and the final output �mB
T+F is obtained per-pixel by choosing the class with the largest probability.

The refinement network is trained using the cross-entropy loss

Lbf :=
1

�
x,y 1

bg

T+F
[x,y]

�

x,y

1
bg
T+F [x, y]

�

c

mB∗

T+F (x, y, c) log
�
�mProb

T+F (x, y)
�
. (20)

Here, 1
bg
T+F [x, y] is an indicator function specifying whether pixel coordinates (x, y) correspond to background semantic

classes for frame T +F , and mi∗
T+F (x, y, c) = 1 if the correct class for pixel (x, y) is c and 0 otherwise. For all experiments

presented in this work, we use the specific background prediction model trained by Graber et al. [14]. Further implementation

details related to model architecture and training can be found in the Appendix of [14].

B. Architecture details for Forecasting Transformer Encoder and Decoder

The feature model fLoc processes input locations xi
t, appearances rit, instance classes ci, odometry ot, and time t to

produce an embedding x̄i
Loc,t which is processed by the transformer FTE. fLoc can be fully specified by the following model

components:

x′

t
i
= fb([x

i
t, onehot(ci)]), (21)

r′t
i
= AvgPool(ff (r

i
t)), (22)

x̄i
Loc,t = fe2([fe1([x

′

t
i
, r′t

i
, ot]), τt]). (23)

First, an initial location embedding x′

t
i

is produced, where fb is a linear layer and onehot represents a vector whose ci-th

element is set to one and whose other entries are set to zero. Similarly, initial appearance embedding r′t
i

is produced, where

ff is a small convolutional network and AvgPool averages the result over the spatial dimensions. These two embeddings are

concatenated with odometry ot, passed through linear layer fe1, concatenated with temporal encoding τt, and passed through

the final linear layer fe2. Specifically, the temporal encoding τ t ∈ R
dτ provides information to the model about the temporal

location of the given instance in the sequence and whose k-th element is defined as

τ t(k) =

"
sin(t/1000k/dτ), k is even

cos(t/1000(k−1)/dτ), k is odd
. (24)

Here dτ is the size of the temporal encoding and is set to 256 everywhere in this work. All linear layers in fLoc have an output

embedding size of 256, and ff contains two 2D convolutional layers with a kernel size of 3, output channel size of 256, and

ReLU activations after each.

The feature model fApp produces appearance embedding x̄i
App,t as a function of the input appearances rit as well as input

time t, and can be fully specified by the following model components:

x̄i
App,t = fae2([fae1(r

i
t), τ̃t]), (25)

where fae1 is a 3×3 convolutional layer with output dimension 256, fae2 is a 1×1 convolutional layer with output dimension

256, and τ̃t ∈ R
dτ×14×14 is equivalent to τt copied across spatial dimensions to match the size of rit.

The location transformer encoder FTELoc consists of two stacks of transformer encoder modules as originally defined

in [42] consisting of layer norm, multi-head self-attention, feed-forward networks, and residual connections. Specifically, all

transformers in this work use the Pre-LN construction [48], where the Layer Norm module is placed before the multi-head

attention and feed-forward network, as we observed improved convergence. As specified in Sec. 3.2, the multi-head attention

modules use both difference attention (Sec. 3.1) and agent-aware attention (Appendix C). The embedding dimension of all

keys, queries, and values as well as the output hi
Loc,t is 256, the hidden dimension of feedforward modules is 512, the dropout

rate used is 0.1, and the number of heads used for multi-head attention is 8.

The appearance transformer encoder FTEApp additionally consists of two stacks of transformer encoder modules. How-

ever, unlike FTELoc, the standard dot-product attention formulation is used, and all linear projections in both the multihead

attention modules as well as the feedforward network are replaced with 2D convolutional layers with a filter size of 3 × 3.

All embeddings maintain the same spatial dimensions of 14×14 during computation, the channel dimension used is 256, the

hidden channel dimension of the feedforward modules is 512, the dropout rate used is 0.1, and the number of heads used for

multi-headed attention is 8.

Note, for readability we formulate all models assuming every instance i is present at every input time step t ∈ {1, . . . , T}.

However, in practice, some instances will not be present in some input time steps due to occlusions or instances enter-

ing/leaving the frame, i.e., there are instances i and input frames t for which pit = 0. For all i, t such that pit = 0, we do not

compute x̄i
Loc,t or x̄i

App,t since there are no inputs from which we can compute these. Consequentially, neither FTELoc nor

FTEApp receive input representing instance i for time t and thus do not produce encoder representations hi
Loc,t and hi

App,t for

them.

The decoder location feature model f̃Loc produces the feature representation x̃i
Loc,t containing information about the most

recently predicted location, odometry, and the corresponding instance class. f̃Loc can be fully specified by the following

model components:

x′′
i
t = fd1([�xit−1, onehot(ci), ot), (26)

x̃i
Loc,t = fd2([x

′′i
t, τt]). (27)

First, an initial representation x′′
i
t is computed from the previous location prediction�xit−1 using linear layer fd1, corresponding

instance class ci, and odometry ot. This is concatenated with temporal encoding τt and passed through a second linear layer

fd2. Both fd1 and fd2 use output dimension equal to 256.

The decoder appearance feature model f̃App produces the feature representation x̃i
App,t containing information about the

most recently predicted appearance. f̃App can be fully specified by the following model components:

x̃t
App,t = fad2([fad1(�rit−1), τ̃t]), (28)

where fad1 and fad2 are convolutional layers with the same structure as fae1 and fae2, respectively.

Both the location and appearance transformer decoders FDELoc and FDEApp use the same construction and hyperparame-

ters as their encoder counterparts. The primary difference is that they are transformer decoders as defined in [42] and hence

additionally introduce cross attention layers which operate on the encoder representations {hi
Loc,t}1:N1:T and {hi

App,t}1:N1:T ,

respectively. Output decoder representations h̃i
Loc,t and h̃i

Loc,t are computed autoregressively; e.g., previous predictions

{�xi
t}1:NT :t′−1 for times T through t′ − 1 are used to compute the outputs {h̃

i

Loc,t′}. These embeddings are then used to produce

{�xi
t′}1:N for time t′, and these new predictions are fed back into the model to produce output for the next time step t′ + 1,

and so on. Decoder attention is masked to maintain causality, i.e., embeddings representing a given time t are prevented from

attending to representations for future time steps t′ > t.

fLocOut, fPOut, and fvel are all 3-layer multilayer perceptrons with hidden sizes [512, 256] and ReLU activations. fAppOut is

a 3× 3 convolutional layer.

C. Agent-aware Attention

Due to their permutation-invarance with respect to their inputs, transformers do not have the inherent capacity to reason

about the identity of the entities corresponding to input trajectories. To address this problem, Yuan et al. [54] introduced

agent-aware attention. This approach allows transformers to encode the identity of its inputs within the model, which makes

it easier for these models to reason about the trajectories of individual entities and leads to better forecasting performance.

Let Xself ∈ R
M1×d and Xother ∈ R

M2×d of lengths M1 and M2, respectively, be the input sequences with embedding

dimension d. For self-attention, both input sequences are the same and represent the input trajectories of a number of agents,

while for cross-attention, the first input sequence corresponds to a future trajectory forecast and the second corresponds to

input trajectories. The agent-aware attention output Y ∈ R
M1×d is then computed as

Z = M» (QagentK
T
agent) + (1−M)» (QcontextK

T
context), (29)

Y = softmax
�
Z/

√
d
�
V, (30)

where » represents element-wise multiplication. Specifically, agent-aware attention first computes two sets of keys Kagent =
fK,agent(Xother), Kcontext = fK,context(Xother) and queries Qagent = fQ,agent(Xself), Qcontext = fQ,context(Xself) from the original

inputs. It then computes two sets of attention scores from the agent keys/queries and from the context keys/queries and selects

between them using mask M ∈ {0, 1}M1×M2 . This mask encodes identity information: Mij = 1 if entity i in the first input

sequence and entity j in the second input sequence correspond to the same agent, and Mij = 0 otherwise. In other words,

two sets of attention parameters are computed, and one set is used for input pairs corresponding to the same agent while the

other is used for all pairs corresponding to different agents, i.e., the context for this agent. Value aggregation proceeds as in

standard attention from this step.

We additionally use agent-aware attention within the difference attention module defined in Sec. 3.1. This is implemented

in a similar fashion, where separate attention parameters are computed for input pairs corresponding to the same agent and

for input pairs corresponding to different agents. We formally specify this as

Z = M»
�
QagentK

T
R,agent − 1M1×1diag

�
KB,agentK

T
R,agent

�T�
+ (31)

(1−M)»
�
QcontextK

T
R,context − 1M×1diag

�
KB,contextK

T
R,context

�T�
, (32)

Y = softmax
�
Z/

√
d
�
VO −VS , (33)

with KR,agent = fK,R,agent(Xother), KR,context = fK,R,context(Xother), KB,agent = fK,B,agent(Xother), KB,context =
fK,B,context(Xother), VO = fVO

(Xother), and VS = fVS
(Xself).

D. Losses for Foreground Forecasting

The loss used by the foreground forecasting model are

LFG = LLoc + LP + LApp + LVel. (34)

The location loss LLoc trains the bounding box predictions �xi
Box,t := [�x0,t, �y0,t, �x1,t, �y1,t] and depth predictions �dit to match

the target boxes x∗iBox,t and depths d∗t . This is specified as

LLoc :=
1

�N
i=1

�T+F
t=T+1 p

∗i
t

N�

i=1

T+F�

t=T+1

p∗it

�
λ1SmoothL1(�xiBox,t, x∗iBox,t) + λ2SmoothL1(�dit, di∗t) + λ3IoU(�xi

Box,t, x∗iBox,t)
�
,

(35)

where p∗it is ground-truth presence, i.e., equals 1 if instance i is present in frame t and 0 otherwise, IoU is bounding box

intersection-over-union, SmoothL1 is the function

SmoothL1(a,b) :=
�

j

SmoothL1Fn(aj , bj), (36)

SmoothL1Fn(a, b) :=

"
1
2 (a− b)2, if |a− b| < 1,

|a− b| − 1
2 otherwise

, (37)

and coefficients λ1 = 1, λ2 = 10, λ3 = 100 are used to balance the magnitudes of the losses.

The presence loss LP trains the presence predictions �pit ∈ R to correctly indicate whether a given instance i is present in

frame t, and is computed as

LP :=
λ4

NF

N�

i=1

T+F�

t=T+1

p∗it log σ(�pit) + (1− p∗it) log(1− σ(�pit)), (38)

where σ is the sigmoid function and λ4 = 10.

The appearance loss LApp trains the appearance predictions �rit for instance i at frame t to match the target features r∗it
extracted for this instance at frame t, and consists of the mean-squared error of the features for all valid instance/time pairs,

i.e.,

LApp :=
λ5�N

i=1

�T+F
t=T+1 Jp

∗i
t

N�

i=1

T+F�

t=T+1

J�

j=1

p∗it (�rij,t − r∗ij,t)
2, (39)

where j indexes over all spatial dimensions of the feature tensors, J = 256× 14× 14 is the total number of elements of the

feature tensors, and λ5 = 10 .

The encoder velocity loss LVel trains the velocity predictions �viE,t ∈ R
4 to match the ground-truth velocities v∗it :=

x∗it+1 − x∗it , and is computed as

LVel :=
λ6�N

i=1

�T
t=1 p

∗i
t p∗it+1

N�

i=1

T�

t=1

p∗it p∗it+1SmoothL1(�viE,t, v∗it), (40)

where λ6 = 1.

E. Depth Completion Model

The depth completion model operates on noisy and incomplete reprojected background depth d̃B along with depth mask

Q and background class probabilities �mProb and produces depth maps �dB
Fill and �dBBias. This model can be formally represented

using the following components:

d1 = fdc1([d̃
B , Q, �mProb]), (41)

d2 = d1 + Upsample(fdc2(Downsample(d1)), (42)

�dBFill = ffill(d2), (43)

�dBBias = fBias(d2). (44)

First, reprojected background depth d̃B , depth mask Q, and predicted background class probabilities �mProb are concatenated

together and processed with convolutional layer fdc1 which uses a kernel size of 3 and has output channel dimension 32. The

output of this, d1, is downsampled by a factor of 2 using bilinear interpolation, fed into convolutional network fdc2, upsampled

to the original resolution using bilinear interpolation, and added with d1 to produce the second intermediate output d2. fdc2

contains 2 convolutional layers with a kernel size of 3, output channel dimension of 32, and a ReLU activation between them.

The outputs �dB
Fill and �dBBias are then obtained from d2 using convolutional networks ffill and fbias, respectively. Both of these

networks contain two convolutional layers with a ReLU activation between them, where the first layer uses a kernel size of

3 and an output channel size of 32 and the second layer uses a kernel size of 1. The final background depth estimate �dB is

obtained from outputs �dB
Fill and �dBBias as specified in Eq. (13).

F. Additional Implementation Details

The overall approach is trained in two stages: first, the foreground prediction model is trained; afterwards, the correspond-

ing parameters are frozen, and the refinement model is trained.

The foreground model is trained for 48000 steps using the ADAM optimizer; the initial learning rate is set to 10−4, and it

is lowered to 10−5 after 36000 optimization steps. All odometries ot are normalized by subtracting the training data set mean

and then dividing by training data set standard deviation before being used as input. All location inputs xi
t are normalized

to lie within [−1, 1]; furthermore, location outputs �xi
t are made at this normalized scale and unnormalized before being used

at later stages. During training and inference, forecasts are only predicted for instances present in the most recent input

frame, i.e., for instances i such that piT = 1. During training of the foreground model, ground-truth future odometry is used.

During evaluation, unless otherwise noted, the egomotion estimation module described by Graber et al. [14] was used to

obtain future odometry which was used as input. We use the same odometry representation as Graber et al. [14] consisting of

a five-dimensional vector containing speed and yaw rate of the ego-vehicle at time t as well its top-down displacement and

angular displacement between steps t and t− 1.

Ablation 4 in this work uses odometry during inference that was obtained using ORB-SLAM3 [2]. This was run using

stereo images, where each sequence of 30 frames was treated as its own SLAM session providing 6-dof poses for all frames

in the sequence.

The refinement model is trained for 24000 steps using the ADAM optimizer; the initial learning rate is set to 10−4, and it

is lowered to 10−5 after 18000 optimization steps. During training, the inputs are scaled to a spatial resolution of H
4 × W

4 ,

and the loss is additionally computed at this scale. During inference, inputs are scaled to the final spatial resolution, i.e.,

H ×W .

To process a Cityscapes sequence, the model needs 560 ms on average using an NVIDIA A6000, which is on par with the

700 ms required by Graber et al. [14]. This can be significantly reduced by further engineering effort.

G. Additional AIODrive Details

The AIODrive sequences are annotated using 23 object classes. To facilitate comparison against results on the Cityscapes

dataset, we only train and evaluate using background classes which are also present in Cityscapes. This leaves 11 background

“stuff” classes and 2 foreground “things” classes (the only annotated “things” instances in AIODrive are “vehicles” and

“pedestrians”). As annotations are only provided for the trainval dataset, we split this into a training dataset containing all

annotated sequences for towns 1 through 5 and a validation dataset containing all annotated sequences for town 6. We use 5
frames as input and forecast the 5th frame into the future, corresponding to 0.5 seconds of input and a 0.5 second forecast

(which is comparable to the Cityscapes mid-term setting).

During both training and evaluation, we only consider instances whose masks have an area of at least 400 pixels in an

attempt to filter out distant, imperceptible instances. For evaluation, we use non-overlapping sequences of 10 frames from

each validation sequence. Additionally, the data contains some periods of time with little to no motion, which skews the

evaluation metrics artificially high. To ensure that the metrics properly capture the ability of the models to anticipate motion,

we filter out validation sequences where the recording vehicle is moving less than 1 m/s at all points in the input sequence

and where at least half of the instance mask centers move less than 10 pixels. This leaves 814 sequences with motion for

evaluation purposes. To ensure that the tracking-based metrics can be computed, we use ground-truth instance bounding

boxes and ids as input to the forecasting models.

The base semantic and instance segmentation models are the same as that used for Cityscapes, i.e., MaskRCNN [16]

for instance segmentation and Panoptic Deeplab [3] for semantic segmentation. For both, we initialize from the Cityscapes

pre-trained model and finetune on AIODrive. For the models that use predicted depth, we use Cascade-Stereo [15] on the

stereo input images. We do not finetune the depth model on this dataset.

H. Cityscapes Instance Segmentation

We also evaluate our Cityscapes-trained model on instance segmentation. Here, we consider only ‘things’ instances during

evaluation, and hence we disregard the pixels corresponding to the ‘stuff’ classes.

Metrics. We evaluate instance segmentation using the standard metrics [7]: 1) Average Precision (AP) computes true posi-

tives using a number of overlap thresholds, averages over these thresholds, and then averages over classes; 2) AP50 computes

average precision with an overlap threshold of 0.5 and then averages across classes.

Baselines. We compare against the baselines presented by Graber et al. [14]. F2F is introduced by Luc et al. [27] and

predicts the features of a future scene using a convolutional model. It then obtains instances by passing these features through

MaskRCNN heads. IndRNN-Stack is the independent RNN and stacking model by Graber et al. [14]. PFA, introduced by

Lin et al. [25], compresses input feature pyramids into a low-resolution feature map for forecasting.

Results. The results for this task are presented in Tab. 4. We outperform F2F and IndRNN-Stack in the mid-term setting but

PFA performs better. This is to be expected because PFA was directly trained on instance segmentation while we directly

apply the model trained on panoptic segmentation, i.e., we don’t retrain our model specifically for instance segmentation.

I. Cityscapes Semantic Segmentation

Following prior work [14], we also evaluate our model on semantic segmentation forecasting. In this context, we do not

care about specific instances. Hence, for each pixel, we discard all predicted identity information.

Metrics. Semantic segmentation forecasting is evaluated using the standard intersection over union (IoU) metric computed

between predictions and ground truth per class and averaged over classes. IoU (MO), meanwhile, computes an average IoU

over ‘things’ classes only.

Short term: ∆t = 3 Mid term: ∆t = 9
AP AP50 AP AP50

Oracle 34.6 57.4 34.6 57.4
Last seen frame 8.9 21.3 1.7 6.6

F2F [27] 19.4 39.9 7.7 19.4
IndRNN-Stack [14] 17.8 38.4 10.0 22.3
PFA [25] 24.9 48.7 14.8 30.5

Ours 19.9 39.9 11.2 25.2

Table 4. Instance segmentation forecasting on the Cityscapes Validation dataset. Higher is better for all metrics.

Short term: ∆t = 3 Mid term: ∆t = 9
Accuracy (mIoU) All MO All MO

Oracle 80.6 81.7 80.6 81.7

Copy last 59.1 55.0 42.4 33.4
Bayesian S2S [1] 65.1 / 51.2 /

DeformF2F [36] 65.5 63.8 53.6 49.9
LSTM M2M [40] 67.1 65.1 51.5 46.3
F2MF [37] 69.6 67.7 57.9 54.6
IndRNN-Stack [14] 67.6 60.8 58.1 52.1
PFA [25] 71.1 69.2 60.3 56.7

Ours 67.9 61.2 58.1 51.7

Table 5. Semantic forecasting results on the Cityscapes validation dataset. Baseline numbers, besides oracle and copy last, are

from [37]. Higher is better for all metrics. Our model exploits stereo and odometry, which are provided by typical autonomous vehicle

setups and are included in Cityscapes.

Baselines. Many of the baselines operate by predicting the features of a future scene [1, 25, 36, 37]. LSTM M2M [40] warps

input semantics using a predicted optical flow between the most recent frame and the target frame. Note that these approaches

do not use depth inputs, and all except Bayesian S2S [1] do not use egomotion as input.

Results. The results for this task are given in Tab. 5. We outperform IndRNN-Stack by a small margin in the short-term

setting, and have comparable results in the mid-term setting. We additionally outperform most other baselines. Note that

this metric does not care about the boundaries between individual instances and hence weights some types of errors differ-

ently than the other metrics we use. These other metrics more properly evaluate whether specific instances are localized in

the correct places, which we argue better captures the goals of forecasting. Note that PFA is directly trained on semantic

segmentation forecasting while our approach was trained on forecasting of panoptic segmentations.

J. Additional Cityscapes Visualizations

Fig. 6 presents a visual comparison between our approach and IndRNN-Stack for the short-term setting for the sequences

which were shown for the mid-term setting in Fig. 3. We present additional visualizations for the mid-term setting in Fig. 7

and for the short term setting in Fig. 8.

K. Additional Cityscapes Metrics

Tabs. 6 to 8 present metrics computed for the Cityscapes test dataset using the mid-term setting for panoptic, instance, and

semantic segmentation forecasting, respectively. We outperform all other approaches for panoptic and instance segmentation

forecasting on the test data. On semantic segmentation, we outperform IndRNN-Stack on the test data, whereas F2MF [37]

outperforms our approach. However, note that the F2MF model used for test evaluation was trained on both the training and

validation datasets, while the other models were trained only on the training data.

Tabs. 9 to 14 contain the per-class breakdown of all panoptic segmentation metrics shown in Tab. 1. The results shown in

Tab. 1 consist of the average of these metrics taken over the values obtained for each individual class. Our model is better

All Things Stuff

PQ SQ RQ PQ SQ RQ PQ SQ RQ

Flow 25.6 70.1 34.0 12.4 66.3 18.1 35.3 72.9 45.5
Hybrid [40] (bg) and [27] (fg) 29.4 69.8 38.5 18.0 67.2 25.7 37.6 71.6 47.8
IndRNN-Stack 35.7 72.0 46.5 24.0 69.0 33.7 44.2 74.2 55.8
Ours 36.9 72.7 48.0 26.7 70.3 37.0 44.4 74.4 55.9

Table 6. Panoptic segmentation forecasting evaluated on the Cityscapes test set, mid-term. Higher is better for all metrics.

AP AP50

F2F [27] 6.7 17.5
IndRNN-Stack 8.4 19.8
Ours 9.9 20.7

Table 7. Instance segmentation forecasting on the Cityscapes

Test dataset, mid-term. Higher is better for all metrics.

Accuracy (mIoU) All MO

F2MF [37]∗ 59.1 56.3
IndRNN-Stack 57.7 48.8
Ours 58.3 50.0

Table 8. Semantic segmentation forecasting results on the

Cityscapes test dataset. Baseline numbers, are from [37]; the

* indicates training on both train and validation data. Higher is

better for all metrics.

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

tr
af

fi
c

li
g

h
t

tr
af

fi
c

si
g

n

v
eg

et
at

io
n

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
o

to
rc

y
cl

e

b
ic

y
cl

e

m
ea

n

Deeplab (Oracle) 97.9 78.2 88.5 29.4 38.9 60.0 55.6 74.5 89.5 36.1 87.9 50.8 46.4 67.3 51.5 66.6 37.8 44.2 44.1 60.3

Deeplab (Last seen frame) 94.3 52.4 71.1 11.3 19.4 6.1 12.9 15.0 72.1 16.9 72.7 10.3 8.0 29.6 35.1 51.7 24.2 9.8 7.9 32.7
Flow 95.6 61.5 79.8 17.3 28.6 8.7 26.2 36.8 80.7 26.9 79.7 21.0 14.0 43.4 40.6 56.8 26.7 23.2 18.7 41.4
Hybrid [40] (bg) and [27] (fg) 96.2 63.4 81.4 23.1 23.7 7.1 19.1 36.9 82.3 20.3 79.8 26.8 21.8 46.4 42.2 60.0 41.4 25.6 22.5 43.2
IndRNN-Stack 96.2 66.1 83.5 26.1 27.4 31.7 37.0 49.9 84.8 26.1 82.0 31.8 31.5 48.8 42.2 61.2 47.0 31.4 27.3 49.0
Ours 96.2 66.3 83.8 25.9 27.4 34.4 37.0 50.3 84.8 26.5 82.1 34.9 36.7 51.2 41.2 63.1 47.6 32.4 32.0 50.2

Table 9. Per-class results for Panoptic Quality on Cityscapes validation dataset (short-term).

on average for every metric than all other approaches, and it is additionally better than prior approaches for every metric for

most classes.

L. Code Details

All models are implemented using PyTorch v. 1.10.0 2, which is made available for use with a custom BSD-style license.3

We additionally use the Detectron2 framework (version 0.4.1)4, which is released under the Apache 2.0 license.5 Code

implementing our models and experiments can be found at https://github.com/cgraber/psf-diffattn.

M. Potential Negative Societal Impact

One of the primary applications of this work is to better enhance the ability of autonomous agents to anticipate the future

and respond appropriately to a dynamic environment. In this context, problems can arise if an agent makes a decision based

on a faulty prediction – for example, if a self-driving car does not anticipate a pedestrian stepping into the street, it could

unintentionally hurt the pedestrian if they step out in front of the car. For such a system, the consequence of prediction errors

can be injury or death. It is thus critical that appropriate care be taken before deployment of such a system to ensure that not

only are prediction errors sufficiently low across a variety of environments but also that proper failsafes are put in place to

minimize the negative consequences of acting upon a misprediction.

2https://pytorch.org/
3https://github.com/pytorch/pytorch/blob/v1.10.0/LICENSE
4https://github.com/facebookresearch/detectron2
5https://github.com/facebookresearch/detectron2/blob/v0.4.1/LICENSE

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

tr
af

fi
c

li
g

h
t

tr
af

fi
c

si
g

n

v
eg

et
at

io
n

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
o

to
rc

y
cl

e

b
ic

y
cl

e

m
ea

n

Deeplab (Oracle) 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.9 73.4 90.2 17.3 29.7 9.1 18.9 22.2 92.7 25.0 87.6 16.0 13.2 42.8 47.0 67.4 32.0 15.6 12.4 42.7
Flow 99.9 81.0 95.9 25.2 41.9 13.4 39.7 54.7 96.8 39.0 92.0 32.1 22.8 57.3 52.4 71.0 36.0 35.1 29.0 53.4
Hybrid [40] (bg) and [27] (fg) 99.9 82.1 95.8 33.0 34.4 11.9 30.0 56.0 97.3 28.8 92.2 40.1 35.3 60.2 52.6 72.2 51.4 39.1 35.3 55.1
IndRNN-Stack 99.9 85.8 96.7 36.7 39.4 51.6 56.6 70.7 97.9 36.6 92.9 47.0 49.3 62.9 51.9 75.2 62.9 46.3 41.5 63.3
Ours 99.9 86.0 97.0 36.2 39.3 55.7 56.6 71.1 97.9 37.4 92.9 50.3 55.3 64.9 50.4 75.0 61.1 47.5 47.6 64.3

Table 13. Per-class results for Recognition Quality on Cityscapes validation dataset (short-term).

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

tr
af

fi
c

li
g

h
t

tr
af

fi
c

si
g

n

v
eg

et
at

io
n

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
o

to
rc

y
cl

e

b
ic

y
cl

e

m
ea

n
Deeplab (Oracle) 99.9 91.3 97.8 39.5 52.1 86.1 75.6 93.0 98.5 47.7 94.9 66.9 65.5 80.0 58.2 73.4 43.1 59.9 61.2 72.9

Deeplab (Last seen frame) 99.7 47.6 79.3 12.1 17.0 7.0 12.2 10.1 77.4 13.7 74.1 8.3 4.2 19.8 30.6 38.5 13.6 8.3 4.7 30.4
Flow 99.7 52.2 87.1 11.7 23.4 7.2 17.3 16.5 87.4 18.0 82.1 9.2 4.2 27.5 30.6 37.3 17.8 19.6 8.4 34.6
Hybrid [40] (bg) and [27] (fg) 99.9 64.5 90.4 18.7 22.7 2.1 12.7 17.4 90.5 21.4 84.4 12.5 7.7 38.2 46.2 57.9 37.8 13.4 10.1 39.4
IndRNN-Stack 99.7 71.2 93.7 26.6 29.8 14.7 29.2 43.8 95.1 27.3 87.6 25.2 19.5 45.4 47.0 69.6 40.0 22.6 20.0 47.8
Ours 99.7 71.1 93.7 26.2 31.4 15.5 29.3 43.5 95.1 27.1 87.6 30.8 23.9 52.9 50.7 71.7 38.7 29.2 22.4 49.5

Table 14. Per-class results for Recognition Quality on Cityscapes validation dataset (mid-term).

