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ABSTRACT
Higher-order tensors have received increased attention across science and engineering. While most tensor
decomposition methods are developed for a single tensor observation, scientific studies often collect
side information, in the form of node features and interactions thereof, together with the tensor data.
Such data problems are common in neuroimaging, network analysis, and spatial-temporal modeling.
Identifying the relationship between a high-dimensional tensor and side information is important yet
challenging. Here, we develop a tensor decomposition method that incorporates multiple feature matrices
as side information. Unlike unsupervised tensor decomposition, our supervised decomposition captures
the effective dimension reduction of the data tensor confined to feature space of interest. An efficient
alternating optimization algorithm with provable spectral initialization is further developed. Our proposal
handles a broad range of data types, including continuous, count, and binary observations. We apply the
method to diffusion tensor imaging data from human connectome project and multi-relational political
network data. We identify the key global connectivity pattern and pinpoint the local regions that are
associated with available features. The package and data used are available at https://CRAN.R-project.org/
package=tensorregress. Supplementary materials for this article are available online.
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1. Introduction

Multi-dimensional arrays, known as tensors, are often collected
with side information on multiple modes in modern scien-
tific and engineering studies. A popular example is in neu-
roimaging (Zhou, Li, and Zhu 2013). The brain connectivity
networks are collected from a sample of individuals, accom-
panied by individual characteristics such as age, gender, and
diseases status (see Figure 1(a)). Another example is in network
analysis (Hoff 2005; Berthet and Baldin 2020). A typical social
network consists of nodes that represent people and edges that
represent friendships. Side information such as people’s demo-
graphic information and friendship types are often available.
In both examples, we are interested in identifying the variation
in the data tensor (e.g., brain connectivities, social community
patterns) that is affected by available features. These seemingly
different scenarios pose a common yet challenging problem for
tensor data modeling.

In addition to the aforementioned challenges, many tensor
datasets consist of non-Gaussian measurements. Examples
include the political interaction dataset (Nickel, Tresp, and
Kriegel 2011) which measures action counts between countries
under various relations, and the brain connectivity network
dataset (Zhou, Li, and Zhu 2013; Wang and Li 2020) which
is a collection of binary adjacency matrices. Classical tensor
decomposition methods are based on minimizing the Frobenius
norm of deviation, leading to suboptimal predictions for binary-
or count-valued response variables. A number of supervised
tensor methods have been proposed (Li and Zhang 2017; Sun
and Li 2017; Lock and Li 2018; Raskutti, Yuan, and Chen 2019;
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Hao et al. 2021) to address the tensor regression problem in
various forms, such as scalar-to-tensor regression and tensor-
response regression. These methods often assume Gaussian
distribution for the tensor entries, or impose random designs
for the feature matrices, both of which are less suitable for
applications of our interest. The gap between theory and
practice means a great opportunity to model paradigms and
better capture the complexity in tensor data.

We present a general model and associated method for
decomposing a data tensor whose entries are from exponential
family with side information. We formulate the learning task
as a structured regression problem, with tensor observation
serving as the response, and the multiple side information as
features. Figure 1(b) illustrates our model in the special case
of order-3 tensors. A low-rank structure is imposed to the
conditional mean of tensor observation, where unlike classical
decomposition, the tensor factors XkMk ∈ R

dk×rk belong to
the space spanned by features Xk ∈ R

dk×pk for k = 1, 2, 3. The
unknown matrices Mk ∈ R

pk×rk (referred to as “dimension
reduction matrices”) link the conditional mean to the feature
spaces, thereby allowing the identification of variations in the
tensor data attributable to the side information.

Our proposal blends the modeling power of generalized
linear model (GLM) and the exploratory capability of tensor
dimension reduction in order to take the best out of both worlds.
We leverage GLM to allow heteroscedacity due to the mean-
variance relationship in the non-Gaussian data. This flexibility
is important in practice. Furthermore, our low-rank model on
the (transformed) conditional mean tensor effectively mitigates
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Figure 1. Examples of supervised tensor decomposition with side information. (a) Network population model. (b) Spatio-temporal growth model.

the curse of high dimensionality. In classical GLM, the sample
size and feature dimension are well defined; however, in the
tensor data analysis, we observe only one realization of an order-
K tensor and up to K feature matrices. Both the number of
tensor entries and feature dimension grow exponentially in K.
Dimension reduction is therefore crucial for prediction and
interpretability. We establish the statistical and algorithmic con-
vergences of our estimator, and we quantify the gain in accuracy
through simulations and case studies.

Our work is closely related to but also clearly distinctive
from several lines of previous work. The first line is a class of
unsupervised tensor decomposition such as classical Tucker and
CP decomposition (De Lathauwer, De Moor, and Vandewalle
2000; Kolda and Bader 2009) and generalized decomposition
for non-Gaussian data (Chi and Kolda 2012; Tarzanagh and
Michailidis 2019; Hong, Kolda, and Duersch 2020; Li 2020).
Regardless of the implementation, the unsupervised methods
aim to find the best low-rank representation of a data tensor
alone. In contrast, our model is a supervised tensor learning,
which aims to identify the association between a data ten-
sor and multiple features. The low-rank factorization is deter-
mined jointly by the tensor data and feature matrices in our
model.

The second line of work studies the tensor-to-tensor
regression. This category is further divided into three scenarios,
depending on whether tensor is treated as predictors (Zhou, Li,
and Zhu 2013; Raskutti, Yuan, and Chen 2019; Han, Willett,
and Zhang 2020), as responses (Li and Zhang 2017; Sun and
Li 2017; Zhang, Sun, and Li 2018; Lock and Li 2018; Luo et al.
2018), or both (Lock 2018; Gahrooei et al. 2020). As we show
in Section 5, our supervised tensor decomposition falls into
this general category, and we provide a provable solution in
new settings that have broader practical significance. Earlier
work in this vein (Lock 2018; Lock and Li 2018; Gahrooei
et al. 2020; Li 2020) focuses on algorithm development, but
not on the statistical accuracy. Li and Zhang (2017) introduces
an envelope-based approach to identify sufficient dimension
reduction (Adragni and Cook 2009), but its theory is restricted
to Gaussian data with one-sided feature matrix only. Raskutti,
Yuan, and Chen (2019) establishes the statistical accuracy for
convex relaxed maximum likelihood estimator (MLE) of tensor
regression. However, convex relaxation for tensor optimizations
suffers from computational intractability and statistical sub-
optimality. Recent work has demonstrated the success of non-
convex approaches in various tensor problems (Sun and Li
2017; Zhang, Sun, and Li 2018; Raskutti, Yuan, and Chen

2019; Han, Willett, and Zhang 2020); we go step further
by allowing multiple feature matrices with either fixed or
random designs. In Sections 4.2, we show that incorporating
multiple feature matrices substantially improves the statistical
accuracy. We provide a detailed comparison in Section 5; see
Table 2.

The third line of work uses side information for various
tensor learning tasks, such as for completion (Song et al. 2019)
and for recommendation system (Farias and Li 2019). These
methods also study tensors with side information, but they take
data-mining approaches to penalize predictions that are distant
from side information. One important difference is that their
goal is prediction but not parameter estimation. The effects
of features and their interactions are not estimated in these
data-driven approaches. In contrast, our goal is interpretable
prediction, and we estimate the low-rank decomposition using a
model-based approach. The model-based approach benefits the
interpretability in prediction. In this regards, our method opens
up new opportunities for tensor data analysis in a wider range
of applications.

The remainder of the article is organized as follows. Section 2
introduces tensor preliminaries. Section 3 presents the main
model and three motivating examples for supervised tensor
decomposition. We describe the likelihood estimation and alter-
nating optimization algorithm with theoretical guarantees in
Section 4. Connection with related work is provided in Sec-
tion 5. In Section 6, we present numerical experiments and
assess the performance in comparison to alternative methods. In
Section 7, we apply the method to diffusion tensor imaging data
from human connectome project and multi-relational social
network data. We conclude in Section 8 with discussions about
our findings and avenues of future work. All proofs are deferred
to the supplementary notes.

2. Preliminaries

We introduce the basic tensor properties used in the paper. We
use lower-case letters (e.g., a, b, and c) for scalars and vectors,
upper-case boldface letters (e.g., A, B, and C) for matrices,
and calligraphy letters (e.g., A,B, and C) for tensors of order
three or greater. We use I to denote the identity matrix whose
dimension may vary from line by line given the contexts. Let
Y = [[yi1,...,iK ]] ∈ R

d1×···×dK denote an order-K (d1, . . . , dK)-
dimensional tensor, where K is the number of modes and also
called the order. The multilinear multiplication of a tensor Y ∈
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R
d1×···×dK by matrices Xk = [[x(k)

ik,jk]] ∈ R
pk×dk is defined as

Y ×1 X1 × · · · ×K XK = [[
∑

i1,...,iK

yi1,...,iK x(1)
j1,i1 · · · x(K)

jK ,iK ]],

which results in an order-K (p1, . . . , pK)-dimensional tensor.
For ease of presentation, we use the shorthandY×{X1, . . . , XK}
to denote the tensor-by-matrix product. For any two tensors
Y = [[yi1,...,iK ]],Y ′ = [[y′

i1,...,iK ]] of identical order and dimensions,
their inner product is defined as

〈Y , Y ′〉 =
∑

i1,...,iK

yi1,...,iK y′
i1,...,iK .

The tensor Frobenius norm and maximum norm are defined as

||Y||F = 〈Y , Y〉1/2, and ||Y||∞ = max
i1,...,iK

yi1,...,iK .

When a is a vector, we use ||a||2 = 〈a, a〉1/2 to denote the vector
2-norm. We use [d] to denote the d-set [d] = {1, . . . , d}, and
use O(d, r) to denote the collection of all d-by-r matrices with
orthonormal columns; that is, O(d, r) = {P ∈ R

d×r : PTP = I}.
A higher-order tensor can be reshaped into a lower-order

object. We use vec(·) to denote the operation that reshapes the
tensor into a vector, and Unfoldk(·) to denote the unfolding
operation that reshapes the tensor along mode k into a matrix
of size dk-by-

∏
i�=k di. We use rank(Y) = r to denote the

multilinear rank of an order-K tensor Y , where r = (r1, . . . , rK)

is a length-K vector and rk is the rank of matrix Unfoldk(Y) for
k ∈ [K]. For ease of notation, we allow the basic arithmetic
operators (e.g., +, −, ≥) and univariate functions f : R → R

to be applied to tensors in an element-wise manner. For two
positive sequences {an} and {bn}, we use an � bn or an = O(bn)
to denote the fact that an ≤ Cbn for some constant C > 0.

3. Motivation and Model

3.1. General Framework for Tensor Decomposition

We begin with a general framework for supervised tensor
decomposition and then discuss its implication in three concrete
examples. Let Y = [[yi1,...,iK ]] ∈ R

d1×···×dK denote an order-K
data tensor. Suppose the side information is available on each of
the K modes. Let Xk = [[xij]] ∈ R

dk×pk denote the feature matrix
on the mode k ∈ [K], where xij denotes the j-th feature value
for the i-th tensor entity, for (i, j) ∈ [dk] × [pk].

We propose a multilinear conditional mean model between
the data tensor and feature matrices. Assume that, conditional
on the features Xk, the entries of tensor Y are independent
realizations from an exponential family distribution. Further,
the conditional mean tensor admits the rank-r model with r =
(r1, . . . , rK),

E(Y|X1, . . . , XK) = f (C × {X1M1, . . . , XKMK}) ,
with MT

k Mk = Irk , Mk ∈ R
pk×rk

for all k = 1, . . . , K, (1)

where C ∈ R
r1×···×rK is an unknown full-rank core tensor,

Mk ∈ R
pk×rk are unknown factor matrices for all k ∈ [K], f (·)

is a known link function whose form depending on the data

type of Y , and × denotes the tensor-by-matrix product. The
choice of link function is based on the assumed distribution
family of tensor entries. Common choices of link functions
include identity link for Gaussian distribution, logistic link for
Bernoulli distribution, and exponential link for Poisson distri-
bution. In general, dispersion parameters can also be included in
the model. Because our main focus is the tensor decomposition
under the mean model, we suppress the dispersion parameter in
this section for ease of presentation.

Figure 1(b) provides a schematic illustration of our model.
The features Xk affect the distribution of tensor entries in Y
through the reduced features XkMk, which are rk linear com-
binations of features on mode k. We call Mk the “dimension
reduction matrix” or “tensor factors.” The core tensor C collects
the interaction effects between reduced features across K modes.
We call B = C × {M1, . . . , MK} the coefficient tensor, and
� = B × {X1, . . . , XK} the linear predictor. By the definition
of multilinear rank, the model (1) implies the linear predictor
� and coefficient tensor B are of rank-r. The conditional mean
tensor E(Y|X1, . . . , XK) is however often high rank, due to the
nonlinearity of the link function (Lee and Wang 2021).

Our goal is to estimate the low-rank tensor B, or equiva-
lently, the core tensor and factors (C, M1, . . . , MK), from our
model (1). We make several remarks about model identifiability.
First, the identifiability of B requires the feature matrices Xk are
of full column rank with pk ≤ dk. We impose this rank non-
deficiency assumption to Xk; this is a mild condition common in
literature (Li and Zhang 2017; Lock and Li 2018; Li 2020). In the
presence of rank deficiency, we recommend to remove redun-
dant features from Xk before applying our method. Second, the
decomposition B = C × {M1, . . . , MK} are non-unique, as in
standard tensor decomposition (Kolda and Bader 2009). For any
invertible matrices Ok ∈ R

rk×rk , B = C × {M1, . . . , MK} =
C′ × {M1O1, . . . , MKOK} are two equivalent parameterizations
with C′ = C × {O−1

1 , . . . , O−1
K } . To resolve this ambiguity, we

impose orthonormality to Mk ∈ O(pk, rk) and assess the esti-
mation error of Mk using angle distance. The angle distance is
invariant to orthogonal rotations due to its geometric definition.
See Section 4.2 for more details. The orthonormality of Mk is
imposed purely for technical convenience. This normalization
incurs no impacts in our statistical inference, but may help with
numerical stability in empirical optimization (De Lathauwer,
De Moor, and Vandewalle 2000; Kolda and Bader 2009). Finally,
the problem size is quantified by pk and dk, where pk specifies
the number of features and dk the number of samples at mode
k ∈ [K]. Our theory treats the rank rk as known and fixed,
whereas both pk and dk are allowed to increase. The adaptation
to unknown rank in practice will be addressed in Section 4.3.

3.2. Three Examples

We give three seemingly different examples that can all be
formulated as our supervised tensor decomposition model (1).

Example 1 (Spatio-temporal growth model). The growth curve
model (Gabriel 1998; Srivastava, von Rosen, and Von Rosen
2008) was originally proposed as an example of bilinear model
for matrix data, and we adopt its higher-order extension here.
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Let Y = [[yijk]] ∈ R
d×m×n denote the pH measurements of

d lakes at m levels of depth and for n time points. Suppose
the sampled lakes belong to q types, with p lakes in each type.
Let {�j}j∈[m] denote the sampled depth levels and {tk}k∈[n] the
time points. Assume that the expected pH trend in depth is a
polynomial of order at most r and that the expected trend in time
is a polynomial of order s. Then, the conditional mean model for
the spatio-temporal growth can be represented as follows:

E(Y|X1, X2, X3) = C × {X1M1, X2M2, X3M3}, (2)

where X1 = blockdiag{1p, . . . , 1p} ∈ {0, 1}d×q is the design
matrix for lake types, and

X2 =

⎛
⎜⎜⎜⎝

1 �1 · · · �r
1

1 �2 · · · �r
2

...
...

. . .
...

1 �m · · · �r
m

⎞
⎟⎟⎟⎠ , X3 =

⎛
⎜⎜⎜⎝

1 t1 · · · ts
1

1 t2 · · · ts
2

...
...

. . .
...

1 tn · · · ts
n

⎞
⎟⎟⎟⎠

are the design matrices for spatial and temporal effects, respec-
tively, C ∈ R

r1×r2×r3 is the unknown core tensor, and Mk are
unknown dimension reduction matrices on each mode. The
factors XkMk are reduced features in the mean model (2). The
spatial-temporal model is a special case of our supervised tensor
decomposition model (1), with features available on each of the
three modes.

Example 2 (Network population model). Network response
model (Rabusseau and Kadri 2016) is recently developed for
neuroimaging analysis. The goal is to study the relationship
between brain network connectivity pattern and features of
individuals. Suppose we have a sample of n observations,
{(Y i, xi) : i = 1, . . . , n}, where for each individual i ∈ [n],
Y i ∈ {0, 1}d×d is the undirected adjacency matrix whose entries
indicate presences/absences of connectivities between d brain
nodes, and xi ∈ R

p is the individual’s feature such as age,
gender, cognition score, etc. The network-response model has
the conditional mean

logit(E(Y i|xi)) = B ×3 xi, for i = 1, . . . , n, (3)

where B ∈ R
d×d×p is a rank-(r1, r1, r2) coefficient tensor, and B

is assumed to be symmetric in the first two modes.
The model (3) is a special case of our supervised tensor

decomposition, with feature matrix on the last mode of the ten-
sor. Specifically, we stack the network observations {Y i} together
and obtain an order-3 response tensorY ∈ {0, 1}d×d×n. Define a
feature matrix X = [x1, . . . , xn]T ∈ R

n×p. Then, the model (3)
has the equivalent representation of supervised tensor decom-
position,

logit(E(Y|X)) = C × {M, M, XM′},

where C ∈ R
r1×r1×r2 is the core tensor, M ∈ R

d×r1 is the
dimension reduction matrix on the first two modes, and M′ ∈
R

p×r2 is for the last mode.

Example 3 (Dyadic data with node attributes). Dyadic dataset
consists of measurements on pairs of objects. Common exam-
ples include graphs and networks. Let G = (V , E) denote a
graph, where V = [d] is the node set of the graph, and E ⊂
V×V is the edge set. Suppose that we also observe feature vector

xi ∈ R
p associated to each node i ∈ V . A probabilistic model

on the graph G = (V , E) can be described by the following
matrix regression. The edge connects the two vertices i and j
independently of other pairs, and the probability of connection
is modeled as

logit
(
P

(
(i, j) ∈ E

)) = xT
i Bxj = 〈B, xT

i xj〉, (4)

where B ∈ R
p×p is a symmetric rank-r matrix. The low-

rankness in B has demonstrated its success in modeling tran-
sitivity, balance, and communities in networks (Hoff 2005). We
show that our supervised tensor decompostion (1) also incorpo-
rates the graph model as a special case. Let Y = [[yij]] be a binary
matrix where yij = 1(i,j)∈E. Define X = [x1, . . . , xn]T ∈ R

n×p.
Then, the graph model (4) can be expressed as

logit(E(Y|X)) = C × {XM, XM},

where C ∈ R
r×r , M ∈ R

p×r are from the singular value
decomposition of B = MCMT .

In the above three examples and many other studies,
researchers are interested in uncovering the variation in the data
tensor that can be explained by features. Our supervised tensor
decomposition (1) allows arbitrary numbers of feature matrices.
When certain mode k has no side information, we set Xk = I in
the model (1). In particular, our model (1) reduces to classical
unsupervised tensor decomposition (De Lathauwer, De Moor,
and Vandewalle 2000; Hong, Kolda, and Duersch 2020) when
no side information is available; that is, Xk = I for all k ∈ [K].

4. Estimation

4.1. Rank-Constrained MLE

We develop a likelihood-based procedure to estimate C and Mk
in (1). We adopt the exponential family as a flexible framework
for different data types. In a classical generalized linear model
with a scalar response y and feature x, the density is expressed
as

p(y|x, β) = c(y, φ) exp
(

yθ − b(θ)

φ

)
with θ = βTx,

where b(·) is a known function, θ is the linear predictor, φ > 0
is the dispersion parameter, and c(·) is a known normalizing
function. The choice of link functions depends on the data types
and on the observation domain of y, denotedY. For example, the
observation domain is Y = R for continuous data, Y = N for
count data, and Y = {0, 1} for binary data. The canonical link
function f is chosen to be f (·) = b′(·), the first-order derivative
of b(·). Table 1 summarizes the canonical link functions for
common types of distributions.

In our context, we model the entries in data tensor Y , con-
ditional on linear predictor �, as independent draws from an

Table 1. Canonical links for common distributions.

Data type Gaussian Poisson Bernoulli

Domain Y R N {0, 1}
b(θ) θ2/2 exp(θ) log(1 + exp(θ))

link f (θ) θ exp(θ) (1 + exp(−θ))−1
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exponential family. Ignoring constants that do not depend on
�, the quasi log-likelihood of Equation (1) is equal to Bregman
distance between Y and b′(�)

LY (C, M1, . . . , MK) = 〈Y , �〉 −
∑

i1,...,iK

b(θi1,...,iK ),

where � = C × {X1M1, . . . , XKMK}. (5)

We propose the constrained maximum quasi-likelihood esti-
mate (MLE),

(ĈMLE, M̂1,MLE, . . . , M̂K,MLE)

= arg max(C,M1,...,MK )∈P(r) LY (C, M1, . . . , MK), (6)

where the parameter space P(r) is defined by

P(r) =
{
(C, M1, . . . , MK)

∣∣∣ Mk ∈ O(pk, rk) for all k ∈ [K],
||�||∞ ≤ α

}
, (7)

with a large constant α > 0. Recall that B = C × {X1, . . . , MK}
by definition. Correspondingly, we estimate the coefficient ten-
sor B by

B̂MLE = ĈMLE × {M̂1,MLE, . . . , M̂K,MLE}.

The maximum norm constraint on the linear predictor � is
a technical condition to ensures the existence (boundedness)
of MLE. The condition precludes the ill-defined MLE when
the optimizer of (6) diverges to ±∞; this phenomenon may
happen in logistic regression when the Bernoulli responses {0, 1}
are perfectly separable by covariates (Wang and Li 2020). For
Gaussian models, no maximum norm constraint is needed. In
Section 4.2, we show that setting α to an extremely large constant
does not compromise the statistical rate in quantities of inter-
est. In practice, the unbounded search is often indistinguish-
able from the bounded search, since the boundary constraint
‖�‖∞ ≤ α would likely never be active. Similar techniques
are commonly used in high-dimensional non-Gaussian prob-
lems (Wang and Li 2020; Han, Willett, and Zhang 2020).

The optimization (6) is a non-convex problem with possi-
bly local optimizers. We propose an alternating optimization
algorithm to approximately solve Equation (6). The decision
variables in the objective function (6) consist of K + 1 blocks of
variables, one for the core tensor C and K for the factor matrices
Mk. We notice that, if any K out of the K + 1 blocks of variables
are known, then the optimization reduces to a simple GLM with
respect to the last block of variables. This observation leads to an
iterative updating scheme for one block at a time while keeping
others fixed. Given an initialization (Ĉ(0), M̂(0)

1 , . . . , M̂(0)

K ) to
be described in the next paragraph, the tth iterate from the
algorithm is denoted (Ĉ(t), M̂(t)

1 , . . . , M̂(t)
K ) for t = 1, 2, 3, . . .

The iteration scheme is detailed in Algorithm 1.
We provide two initialization schemes, one with QR-

adjusted spectral initialization (warm initialization), and the
other with random initialization (cold initialization). The
warm initialization is an extension of unsupervised spectral
initialization (Zhang and Xia 2018) to supervised setting with
multiple feature matrices. Specifically, we project normalized
data tensor Ȳ to the normalized multilinear feature space and

Algorithm 1 Supervised Tensor Decomposition with Side Infor-
mation
Input: Response tensor Y ∈ R

d1×···×dK , feature matrices Xk ∈
R

dk×pk for k = 1, . . . , K, target rank r = (r1, . . . , rK), link
function f , initialization (Ĉ(0), M̂(0)

1 , . . . , M̂(0)

K ).
1: for t = 1, 2, 3, . . . do
2: for k = 1 to K do
3: Obtain the factor matrix M̂(t)

k ∈ R
pk×rk by a GLM

with link function f .
4: Perform QR factorization M̂(t)

k = QkRk, where
Qk ∈ O(pk, rk).

5: Update M̂(t)
k ← Qk and core tensor Ĉ(t) ← Ĉ(t) ×k

Rk.
6: end for
7: Update the core tensor C by solving a GLM with vec(Y)

as response, ⊗K
k=1[XkMk] as features, and f as link function.

Here ⊗ denotes the Kronecker product of matrices.
8: end for

Output: factor estimate (Ĉ(t), M̂(t)
1 , . . . , M̂(t)

K ) from the t-th
iterate, and coefficient tensor estimate B̂(t) = Ĉ(t) ×
{M̂(t)

1 , . . . , M̂(t)
K }.

Algorithm 2 QR-adjusted spectral initialization
Input: Response tensor Y ∈ R

d1×···×dK , feature matrices Xk ∈
R

dk×pk , Tucker rank r.
1: Normalize date tensor Ȳ ← Y for Gaussian model, Ȳ ←

2Y − 1 for Bernoulli model, and Ȳ ← log(Y + 0.5) for
Poisson model.

2: Normalize feature matrices via QR factorization Xk =
QkRk for all k ∈ [K].

3: Obtain B̄ ← Ȳ × {QT
1 , . . . , QT

K} by projecting Ȳ to the
multilinear feature space.

4: Obtain B̂(0) ← HOSVD(B̄, r).
5: Normalize representation {Ĉ(0), M̂(0)

1 , . . . , M̂(0)

K } such that
Ĉ(0) × {M̂(0)

1 , . . . , M̂(1)

K } = B̂(0) × {R−1
1 , . . . , R−1

K } and
M̂(0)

k ∈ O(p, r) for all k ∈ [K].
Output: Core tensor Ĉ(0) and factors M̂(0)

k for all k ∈ [K].

obtain an unconstrained coefficient tensor B̂(0). We perform
a rank-r higher-order SVD (HOSVD) on B̄, which yields the
rank-constrained B̂(0). The desired initialization is obtained by
re-normalizing B̂(0) back to the original scales of features. The
initialization scheme is described in Algorithm 2.

The warm initialization enjoys provable accuracy guarantees
at a cost of extra technical assumptions (see Section 4.2). The
cold initialization, on the other hand, shows robust in practice
but its theoretical guarantee remains an open challenge (Luo
and Zhang 2021). We incorporate both options in our software
package to provide flexibility to practitioners.

4.2. Statistical Accuracy

This section presents the accuracy guarantees for both global
and local optimizers of Equation (6). We first provide the sta-
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tistical accuracy for the global MLE (6). Then, we provide
the convergence rate for the local optimizer from Algorithm 1
with warm initialization. The rate reveals an interesting inter-
play between statistical and computational efficiency. We show
that a polynomial number of iterations suffices to reach the
desired accuracy under certain assumptions. The empirical per-
formance for cold initialization is also investigated.

For cleaner exposition, we present the results for balanced
setting in this section, that is, p1 = · · · = pK = p, r1 = · · · =
rK = r, and d1 = · · · = dK = d. The general setting follows
exactly the same framework and incurs only notational com-
plexity. We are particularly interested in the high-dimensional
regime in which both d and p grows while p ≤ d. The require-
ment p ≤ d is necessary to ensure rank nondeficiency of feature
matrices Xk. The classical MLE theory is not directly applicable,
because the number of unknown parameters grows with the size
of data tensor. We leverage the recent development in random
tensor theory and high-dimensional statistics to establish the
error bounds of the estimation.

Assumption 1. We make the following assumptions:

A1. There exist two positive constants c1, c2 > 0 such that c1 ≤
σmin(Xk) ≤ σmax(Xk) ≤ c2 for all k ∈ [K]. Here σmin(·)
and σmax(·) denote the smallest and largest matrix singular
values.

A1′. The feature matrices Xk are Gaussian designs with iid
N(0, 1) entries.

A2. There exist two positive constants L, U > 0, such that
min|θ |≤α b′′(θ) ≥ φL and supθ∈R b′′(θ) ≤ φU. Here, α

is the upper bound of the linear predictor in Equation (6),
and b′′(·) denotes the second-order derivative.

The assumptions are fairly mild. Assumptions A1 and
A1’ consider two separate scenarios about feature matri-
ces. Assumption A1 is applicable when feature matrix is
asymptotically nonsingular and has bounded spectral norm,
whereas Assumption A1’ imposes the commonly-used Gaussian
design (Raskutti, Yuan, and Chen 2019). The Assumption 2 is
essentially imposed to the response variance because of the
identity Var(y|θ) = φb′′(θ) (McCullagh and Nelder 1989). The
lower bound ensures the non-degeneracy of the variance in
the feasible domain of θ , whereas the upper bound ensures the
finiteness of the variance in the entire family. In fact, except for
Poisson responses, most members in the exponential family, for
example, Gaussian, Bernoulli, and binomial responses, satisfy
this condition.

4.2.1. Statistical Accuracy for Global Optimizers
We need some extra notation to state the results in full general-
ity. Recall that the factor matrices Mk are identifiable only up to
orthogonal rotations. Therefore, we choose to use angle distance
to assess the estimation accuracy of Mk. For any two column-
orthonormal matrices A, B ∈ O(d, r) of same dimension, the
angle distance is defined as

sin �(A, B) = max
{ 〈x, y〉
||x||2||y||2 : x ∈ Span(A), y ∈ Span(B⊥)

}
,

where Span(·) represents the column space of the matrix. We
use the superscript “true” to denote the true parameters from

generic decision variables in optimization. For instance, Btrue
denotes the true coefficient tensor, whereasB denotes a decision
variable in (5).

Define the signal level λ as the minimal singular value of the
unfolded matrices obtained from Btrue,

λ = min
k∈[K]

σr(Unfoldk(Btrue)).

Intuitively, λ quantifies the level of rank non-degeneracy for the
true coefficient tensor Btrue.

Theorem 4.1 (Statistical rate for global optimizers). Consider
generalized tensor models with multiple feature matrices. Under
Assumptions A1 and A2 with scaled feature matrices X̄k =√

dXk, or Assumptions A1’ and A2 with original feature matri-
ces, we have

max
k∈[K]

sin2 �(Mk,true, M̂k,MLE) � φ(rK + Kpr)
λ2dK ,

||Btrue − B̂MLE||2F � φ(rK + Kpr)
dK , (8)

with probability at least 1 − exp(−p).

Theorem 4.1 establishes the statistical convergence for the
global MLE (6). The result in (8) implies that the estimation has
a convergence rate O(Kp/dK) as (p, d) → ∞. This rate agrees
with intuition, since in our setting, the number of parameters
with K feature matrices is of order O(Kp), whereas the number
of tensor entries O(dK) corresponds to the total sample size.
Because p ≤ d, our rate is faster than O(d−(K−1)) obtained by
tensor decomposition without features (Wang and Li 2020).

Inspection of our proof (Supplementary Notes) shows that
the desired convergence rate holds not only for the MLE, but
also for all local optimizers satisfying LY (C, M1, . . . , MK) ≥
LY (Ctrue, M1,true, . . . , MK,true). The observation indicates the
global optimality is not necessarily a serious concern in our
context, as long as the convergent objective is large enough. In
next section, we will provide the statistical accuracy for local
optimizer with provable convergence guarantee, at a cost of
extra signal requirement.

4.2.2. Empirical Accuracy for Local Optimizers
The optimization (6) is a non-convex problem due to the low-
rank constraint in the feasible set P . Under mild conditions,
our warm initialization enjoys stable performance, and the sub-
sequent iterations further improve the accuracy via linear con-
vergence; i.e. sequence of iterates generated by Algorithm 1
converges to optimal solutions at a linear rate.

Proposition 4.1 (Polynomial-time angle estimation). Consider
Gaussian tensor models with b(θ) = θ2/2 in the objective func-
tion (5). Suppose the signal-to-noise ratio λ2/φ ≥ CpK/2d−K

for some sufficiently large universal constant C > 0. Under
Assumption A1 with scaled feature matrices X̄k = √

dXk, or
Assumption A1’ with original feature matrices, the outputs from
initialization Algorithm 2 and iteration Algorithm 1 satisfy the
following two properties.

1. With probability at least 1 − exp(−p).

max
k∈[K]

sin2 �(Mk,true, M̂(0)

k ) ≤ 1
4

. (9)
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2. Let t = 1, 2, 3, . . . , denote the iteration. There exists a
contraction parameter ρ ∈ (0, 1), such that, with probability
at least 1 − exp(−p),

max
k∈[K]

sin2�(Mk,true, M̂(t)
k )

� φp
λ2dK︸ ︷︷ ︸

statistical error

+ ρt max
k∈[K]

sin�2(Mk,true, M̂(0)

k )

︸ ︷︷ ︸
algorithmic error

. (10)

Proposition 4.1 provides the estimation errors for algorithm
outputs at initialization and at each of the subsequent iterations.
The initialization bound (9) demonstrates the stability of warm
initialization under a mild SNR requirement λ2/φ � pK/2d−K .
We can think of d as the sample size while p the number of
parameters at mode K. This threshold is less stringent than dK/2

required for unsupervised tensor decomposition features (Han,
Willett, and Zhang 2020; Zhang and Xia 2018). The condition
confirms that a higher sample size mitigates the required signal
level. The iteration bound (10) consists of two terms: the first
term is the statistical error, and the second is the algorithmic
error. The algorithmic error decays exponentially with the num-
ber of iterations, whereas the statistical error remains the same
as t grows. The statistical error is unavoidable and also appears
in the global MLE; see Theorem 4.1.

As a direct consequence, we find the optimal iteration t after
which the algorithmic error is negligible compared to statistical
error.

Theorem 4.2 (Statistical rate for local optimizers). Consider
the same condition as in Proposition 4.1 and the outputs by
combining algorithms 1 and 2. There exists a constant C > 0,
such that, after t � K log1/ρ p iterations, our algorithm outputs
satisfies

max
k∈[K]

sin2�(Mk,true, M̂(t)
k ) � φp

λ2dK ,

||Btrue − B̂(t)||2F � φ(rK + Kpr)
dK .

In practice, the signal level λ is unknown, so the assump-
tion in Theorem 4.2 is challenging to verify in practice. We
supply the theory by providing an alternative scheme—random
initialization—and investigate its empirical performance. Fig-
ure 2 shows the trajectories of objective function for order-3
tensors based on model (1), where d ∈ {25, 30}, p = 0.4d, r ∈
{3, 6} at all three modes. We consider data tensors with Gaus-
sian, Bernoulli, and Poisson entries. Under all combinations of
the dimension d, rank r, and type of the entries, Algorithm 1
converges quickly in a few iterations upon random initialization,
and the objective values at convergent points are close to or
larger than the value at true parameters. In the experiment we
conduct, we find little difference in the final estimation errors
between the two initialization schemes. Random initialization
appears good enough for Algorithm 1 to find a convergent point
with desired statistical guarantees. In practice, we recommend
to run both warm and cold initializations, and choose the one
with better convergent objective values.

We conclude this section by revisiting the three examples
mentioned in Section 3.

Example 1 (Spatio-temporal growth model). The estimated
type-by-time-by-space coefficient tensor converges at the rate
O

(
(p + r + s)/(dmn)

)
with (p, r, s) ≤ (d, m, n). The estimation

achieves consistency as the dimension grows along either of the
three modes.

Example 2 (Network population model). The estimated node-
by-node-by-feature tensor converges at the rate O

(
(2d + p)/

(d2n)
)

with p ≤ n. The estimation achieves consistency as the
number of individuals or the number of nodes grows.

Example 3 (Dyadic data with node attributes). The estimated
feature-by-feature matrix converges at the rate O

(
p/d2) with

p ≤ d. Again, our estimation achieves consistency as the
number of nodes grows.

4.3. Rank Selection and Computational Complexity

Our algorithm assumes the rank r is given. In practice, the rank
is often unknown and must be determined from the data. We
propose to use Bayesian information criterion (BIC) and choose
the rank that minimizes BIC, where

BIC(r) = −2LY (Ĉ, M̂1, . . . , M̂K) + pe(r) log(
∏

k
dk). (11)

Here, pe(r) def= ∑
k(pk − rk)rk + ∏

k rk is the effective number
of parameters in the model. We choose r̂ that minimizes BIC(r)
via grid search. Our choice of BIC aims to balance between the
goodness-of-fit for the data and the degree of freedom in the
population model. We evaluate the empirical performance of
BIC in Section 6.

The computational complexity of our Algorithm is
O

(
d

∑
k p3

k
)

for each iteration, where d = ∏
k dk is the total

size of the data tensor. The update of K factor matrices is
O(d

∑
k r3

kp3
k) via standard GLM routines. Furthermore, we

demonstrate that, under certain SNR conditions, a polynomial
number of iterations suffices to reach the desired statistical
accuracy. Therefore, the total computational cost is polynomial
in p and d.

5. Connection to Other Tensor Regression Methods

We compare our supervised tensor decomposition (STD) with
recent 12 tensor methods in the literature. Table 2 summarizes
these methods with their properties from four aspects: i) model
specification, ii) number of feature matrices allowed, (iii) capa-
bility of addressing non-Gaussian response, and (iv) capability
of addressing non-independent noise. The four closet methods
to our are SupCP (Lock and Li 2018), Envelope (Li and Zhang
2017), mRRR (Luo et al. 2018) and GLSNet (Zhang, Sun, and Li
2018); these methods all relate a data tensor to feature matrices
with low-rank structure on the coefficients. As seen from the
table, our method is the only one that allows multiple feature
matrices among the five. Envelope and SupCP are developed
for Gaussian data, and the Gaussianity facilities flexible exten-
sion to non-independent noise. In particular, Envelope allows
noise correlation in Kronecker structured form, whereas SupCP
allows noise correlation implicitly through decomposing the
latent factors into fixed effects (related to features) and random
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Figure 2. Trajectory of the objective function with various dimension d and rank r under (a) Gaussian, (b) Bernoulli, and (c) Poisson models. The dashed line represents the
objective value at true parameters.

Table 2. Comparison of tensor regression/factorization methods.

Method Model No. of features non-Gaussianity Non-independence

STD (Ours) EY = f (B × {X1, X2, X3}), B = C × {M1, M2, M3} 3
√ ×

GCP, CP-ARP, CORALS EY = f ([[A1, A2, A3]]) 0
√ ×

DCOT EY = f ((C1 + C2) × {M1, M2, M3}) 0
√ ×

LRT, CRT yn = 〈B, Xn〉 + εn , various structure on B 0 × ×
STAR yn = ∑

m〈Bm ,Fm(Xijk)〉 + εn , sparse-CP Bm 0 × ×
SupCP Y = [[A1, A2, A3]] + E , A1 = XB + E ′ , E ⊥ E ′ 1 × √
mRRR EY = f (XB), low-rank B 1

√ ×
Envelope Y = B ×3 X + E , B = C × {M1, M2, I}, E ∼ T N (�1, �2, I) 1 × √
GLSNet EY = f (1 ⊗ � + B ×3 X), low-rank �, sparse B 1

√ ×
STORE Y = B ×3 X + E , sparse-CP B 1 × ×

NOTES: We focus on order-3 tensors for illustration. Calligraphic letters denote tensors, bold capital letters denote matrices, and little letters denote scalars. The dimension
of tensors and matrices can be identified from the contexts.
– Data: tensor response Y , feature matrices X, Xk , predictor tensor Xn , scalar response yn , sample index n, tensor mode k = 1, 2, 3.
– Parameter: Tuckor factors Mk , CP factors Ak , CP decomposition [[A1, A2, A3]], coefficient tensor and matrix B,Bm , �, B.
– Function: a known link function f (·), a known basis function Fm(·).
– Noise: Gaussian tensor with iid entries E ,E ′, Gaussian tensor with Kronecker covariance E ∼ T N (�1, �2, I), meaning cov(vec(E)) = �1 ⊗ �2 ⊗ I.
– GCP: Generalized canonical polyadic tensor decomposition (Hong, Kolda, and Duersch 2020);
– CP-APR: CP alternating Poisson regression (Chi and Kolda 2012);
– CORALS: Generalized co-clustering method (Li 2020);
– DCOT: Double core tensor decomposition (Tarzanagh and Michailidis 2019);
– SupCP: Supervised PARAFAC/CANDECOMP factorization (Lock and Li 2018);
– mRRR: Mixed-response reduced-rank regression (Luo et al. 2018);
– Envelope: Parsimonious tensor response regression (Li and Zhang 2017);
– GLSNet: Generalized connectivity matrix response regression (Zhang, Sun, and Li 2018);
– STORE: Sparse tensor response regression (Sun and Li 2017);
– LTR: Low-rank tensor regression (Han, Willett, and Zhang 2020);
– CRT: Convex regularized multiresponse tensor regression (Raskutti, Yuan, and Chen 2019);
– STAR: Sparse tensor additive regression (Hao et al. 2021).

effects (unrelated to features). On the other hand, the other three
methods (mRRR, GLSNet, and STD) are developed for expo-
nential family distribution with possibly non-additive noise.
The generality makes the full modeling of noise correlation
computationally challenging. We will compare the numerical
performance of these methods in Section 6.

Our model also has a close connection to higher-order inter-
action model (Hao, Zhang, and Cheng 2020) and tensor-to-
tensor regression (Lock 2018). Model (1) can be viewed as a
regression model with across-mode interactions in the reduced

feature space. We take an order-3 tensor under the Gaussian
model for illustration. Let X, Z, W denote the feature matrix on
mode k = 1, 2, and 3, respectively. Suppose that each mode has
two-dimensional reduced features, denoted M1X = [x1, x2],
M2Z = [z1, z2], M3W = [w1, w2]. Here x1, x2, . . . , w1, w2 are
column vectors. Then the model (1) is equivalent to a regression
model with across-mode interactions

E(yijk|X, Z, W) = c111x1iz1jw1k + c121xi1zj2wk1 + · · ·
+ c221x2iz2jw1k + c222x2iz2jw2k,
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where [[cijk]] ∈ R
2×2×3 are unknown interaction effects, x1i

denotes the i-th entry in the feature vector x1, and similar
notations apply to other features. Note that lower-order inter-
actions are naturally incorporated if we include an intercept
column in the reduced feature matrices. The above example
shows the connection of our supervised tensor decomposition
to multivariate regressions.

6. Numerical Experiments

We evaluate the empirical performance of our supervised
tensor decomposition (STD) through simulations. We consider
order-3 tensors with a range of distribution types. Unless
otherwise specified, the conditional mean tensor is generated
form model (1), where the core tensor entries are iid drawn
from Uniform[-1,1], the factor matrix Mk is uniformly
sampled with respect to Haar measure from matrices with
orthonormal columns. The feature matrix Xk is either an
identity matrix (i.e., no feature available) or Gaussian random
matrix with iid entries from N(0, 1). The linear predictor
� = C × {M1X1, M2X2, M3X3} is scaled such that ||�||∞ = 1.
Conditional on the linear predictor � = [[θijk]], the entries in the
tensor Y = [[yijk]] are drawn independently according to three
probabilistic models:

(a) Gaussian model: continuous tensor entries yijk ∼
N

(
αθijk, 1

)
.

(b) Poisson model: count tensor entries yijk ∼ Poisson
(
eαθijk

)
.

(c) Bernoulli model: binary tensor entries yijk ∼ Bernoulli(
eαθijk

1+eαθijk

)
.

Here α > 0 controls the magnitude of the effect size, which is
also the maximum norm of coefficient tensor as in (7). In each
experiment, we report the summary statistics averaged across 30
simulation replications.

6.1. Finite-Sample Performance

The first experiment assesses the selection accuracy of our BIC
criterion (11). We consider the balanced situation where dk = d,
pk = 0.4dk for k = 1, 2, 3. We set α = 4 and consider
various combinations of dimension d and rank r = (r1, r2, r3).
For each combination, we minimize BIC using a grid search
from (r1 − 3, r2 − 3, r3 − 3) to (r1 + 3, r2 + 3, r3 + 3). We
remove invalid rank such as r2

max ≥ ∏3
k=1 rk and use parallel

search to reduce the computational cost. Table 3 reports the
selected rank averaged over nsim = 30 replicates. We find that
in the high-rank setting with d = 20, the selected rank slightly

Table 3. Rank selection via BIC. The estimated ranks are averaged across 30 simu-
lation.

True rank d = 20 d = 40 d = 20 d = 40
r (Gaussian) (Gaussian) (Poisson) (Poisson)

(3, 3, 3) (3.0, 3.0, 3.0) (3.0, 3.0, 3.0) (3.0, 3.0, 3.0) (3.0, 3.0, 3.0)
(4, 4, 6) (3.0, 3.0, 4.6) (4.0, 4.0, 5.3) (3.0, 3.0, 5.3) (4.0, 4.0, 5.6)
(6, 8, 8) (5.0, 5.0, 5.0) (6.0, 8.0, 8.0) (5.0, 5.0, 6.7) (6.0, 8.0, 8.0)

NOTE: Bold number indicates the ground truth is within two standard deviations of
the estimate.

underestimates the true rank, and the accuracy immediately
improves when either the dimension increases to d = 40 or the
rank reduces to r = (3, 3, 3). This agrees with our expectation,
because in the tensor decomposition, the sample size is related to
the number of tensor entries. A larger d implies a larger sample
size, so the BIC selection becomes more accurate.

The second experiment evaluates the accuracy when features
are available on all modes. We set α = 10, dk = d, pk =
0.4dk, rk = r ∈ {2, 4, 6} and increase d from 30 to 60. Our theo-
retical analysis suggests that B̂ has a convergence rate O(d−2)
in this setting. Figure 3 plots the mean squared error (MSE)
||B̂ − Btrue||2F versus the effective sample size d2 under three
different distribution models. We find that the empirical MSE
decreases roughly at the rate of 1/d2, which is consistent with
our theoretical results. We also observe that, tensors with higher
rank tend to yield higher estimation errors, as reflected by the
upward shift of the curves as r increases. Indeed, a larger r
implies a higher model complexity and thus greater difficulty
in the estimation.

6.2. Comparison With Other Tensor Methods

We compare our supervised tensor decomposition with three
other tensor methods:

• Supervised PARAFAC/CANDECOMP factorization
(SupCP, (Lock and Li 2018)).

• Parsimonious tensor response regression (Envelope, (Li and
Zhang 2017));

• Mixed-response reduced-rank regression (mRRR, (Luo et al.
2018));

• Generalized connectivity matrix response regression
(GLSNet, (Zhang, Sun, and Li 2018));

These four methods are the closest methods to ours, in
that they all relate a data tensor to feature matrices with low-
rank structure on the coefficients. We consider Gaussian and
Bernoulli tensors in experiments. For methods not applicable
for Bernoulli data (SupCP and Envelope), we provide the algo-
rithm {−1, 1}-valued tensors as inputs. Because mRRR allows
matrix response only, we provide the algorithm the unfolded
matrix of response tensor as inputs. We measure the accuracy
using the response error defined as 1 − Cor(Ŷ , f (�true)), where
Ŷ is the fitted tensor from each method, and f (�true) is the true
conditional mean of the tensor. Note that the response error is
a scale-insensitive metric; a smaller error implies a better fit of
the model.

The comparison is assessed from three aspects: (i) benefit
of incorporating features from multiple modes; (ii) prediction
error with respect to sample size; (iii) robustness of model
misspecification. We use similar simulation setups as in our
first experiment in last section. We consider rank r = (3, 3, 3)

(low) vs. (4, 5, 6) (high), effect size α = 3 (low) vs. 6 (high),
dimension d ranging from 20 to 100 for modes with features,
and d = 20 for modes without features. The method Envelope
and mRRR require the tensor rank as inputs, respectively. For
fairness, we provide both algorithms the true rank. The methods
SupCP and GLSNet use different notions of model rank, and
GLSNet takes sparsity as an input. We use a grid search to set
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Figure 3. Estimation error against effective sample size. The three panels plot the MSE when the response tensors are generated from (i) Gaussian, (ii) Poisson, and (iii)
Bernoulli models. The dashed curves correspond to O(1/d2).

Figure 4. Comparison between tensor methods with Gaussian data. Panels (a) and (b) plot estimation error versus the number of modes with available features. Panels (c)
and (d) plot ME versus the effective sample size d2. We consider rank r = (3, 3, 3) (low), r = (4, 5, 6) (high), and effect size α = 3 (low), α = 6 (high).

the hyperparameters in SupCP and GLSNet that give the best
performance.

Figures 4(a) and (b) show the impact of features to esti-
mation error. We see that our STD outperforms others, espe-
cially in the low-effect high-rank setting. As the number of
informative modes increases, the STD exhibits a reduction in
error whereas others remain unchanged. The accuracy gain in
Figure 4 demonstrates the benefit of incorporating informative
features from multiple modes. In addition, we find that the
relative performance among the competing methods reveals the

benefits of low-rankness. The second best method is SupCP
which imposes low-rankness on three modes; the next one is
Envelope which imposes low-rankness on two modes; the less
favorable one is mRRR which imposes low-rank structure on
one mode only; the worst one is GLSNet which imposes sparsity
but no low-rankness on the feature effects.

Figures 4(c) and (d) compare the prediction error with
respect to effective sample size d2. For fair comparison, we
consider the setting with feature matrix on one mode only. We
find that our STD method has similar performance as Envelope
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Figure 5. Comparison between tensor methods with Binary data. The panel legends are the same as in Figure 4.

and SupCP in the high-effect low-rank regime, whereas the
improvement becomes more pronounced in the low-effect high-
rank regime. The latter setting is notably harder, and our STD
method shows advantage in addressing this challenge. Among
other methods, Envelope, SupCP, and mRRR show decreasing
errors as d increases, implying the benefits of low-rankness
methods. In contrast, GLSNet suffers from nondecreasing error
and indicates the poor fit of sparsity methods in addressing
low-rank data.

We also evaluate the performance comparison with Bernoulli
tensors. Figure 5 indicates the necessarity of generalized model
in addressing non-Gaussian data. Indeed, methods that assume
Gaussiannity (Envelope and SucCP) perform less favorably in
Bernoulli setting (Figure 5(c)) compared to Gaussian setting
(Figure 4(c)). Our method shows improved accuracy as the
number of informative features increases (Figures 5(a) and (b)).
In the absence of multiple features, our method still performs
favorably compared to others (Figures 5(c) and (d)), for the same
reasons we have argued in Gaussian data.

Finally, we assess the performance of our method STD under
model misspecification. We consider two aspects: (i) non-
independent noise, and (ii) sparse feature effects. Note that
our method STD imposes neither of these two assumptions,
so the experiment allows us to assess the robustness. We select
competing methods from Table 2 that specifically addresses
these two aspects. We use Envelope and SupCP as benchmark

for noise correlation experiment, and GLSNet for sparsity
experiment.

Figures 6(a) and (b) assesss the impact of noise corre-
lation to the estimation accuracy. The data are simulated
from Envelope model with envelope dimensions r = (3, 3)

(low) and (4, 5) (high). The noise is generated from a zero-
mean Gaussian tensor with Kronecker structured covariance;
see Supplementary Notes for details. As expected, Envelope
shows the best performance in the high correlation setting.
Remarkably, we find that our method STD has comparable
and sometimes better performance when noise correlation is
moderate-to-low. In contrast, SupCP appears less suitable in
this setting. Although SupCP allows noise correlation implicitly
through latent random factors, the induced correlation may
not belong to the Kronecker covariance structure in the
simulation.

Figures 6(c) and (d) assess the impact of sparsity to estima-
tion performance. We generate data from GLSNet model, except
that we modify the coefficient tensor to be joint sparse and low-
rank (the original GLSNet model assumes full-rankness on the
coefficient tensor). The sparsity level (x-axis in Figures 6(c) and
(d)) quantifies the proportion of zero entries in the coefficient
tensor. Since neither our method STD nor GLSNet follow the
simulated model, this setting allows a fair comparison. We find
that our method outperforms GLSNet in the low-rank setting,
whereas GLSNet shows a better performance in the high-rank
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Figure 6. Comparison between tensor methods under model misspecification. Panels (a) and (b) assess the noise correlation, and panels (c)-(d) assess the sparsity.

setting. This observation suggests the robustness of our method
to sparsity when the tensor of interest is simultaneously low-
rank and sparse. When sparsity is the only salient structure,
then methods specifically addressing sparsity would provide a
better fit.

7. Data Applications

We apply our supervised tensor decomposition to two datasets.
The first application studies the brain networks in response to
individual attributes (i.e., feature on one mode), and the second
application focuses on multi-relational network analysis with
dyadic attributes (i.e., features on two modes).

7.1. Application to Human Brain Connection Data

The Human Connectome Project (HCP) aims to build a net-
work map that characterizes the anatomical and functional
connectivity within healthy human brains (Van Essen et al.
2013). We follow the preprocessing procedure as in (Desikan
et al. 2006) and parcellate the brain into 68 regions of interest.
The dataset consists of 136 brain structural networks, one for
each individual. Each brain network is represented as a 68-
by-68 binary matrix, where the entries encode the presence
or absence of fiber connections between the 68 brain regions.

We consider four individual features: gender (65 females vs. 71
males), age 22-25 (n = 35), age 26-30 (n = 58), and age 31+
(n = 43). The preprocessed dataset is released in our R package
tensorregress. The goal is to identify the connection edges
that are affected by individual features. A key challenge in brain
network is that the edges are correlated; for example, the nodes
in edges may be from a same brain region, and it is of importance
to take into account the within-dyad dependence.

We perform the supervised tensor decomposition to the HCP
data. The BIC selection suggests a rank r = (10, 10, 4) with quasi
log-likelihood LY = −174654.7. We utilize the sum-to-zero
contrasts in coding the feature effects, and depict only the top 3%
edges whose connections are non-constant across the sample.
Figure 7 shows the top edges with high effect size, overlaid on
the Desikan atlas brain template (Desikan et al. 2006). We find
that the global connection exhibits clear spatial separation, and
that the nodes within each hemisphere are more densely con-
nected with each other (Figure 7(a)). In particular, the superior-
temproal (SupT), middle-temporal (MT) and Insula are the top
three popular nodes in the network. Interestingly, female brains
display higher inter-hemispheric connectivity, especially in the
frontal, parental, and temporal lobes (Figure 7(b)). This is in
agreement with a recent study showing that female brains are
optimized for inter-hemispheric communication (Ingalhalikar
et al. 2014). We find several edges with declined connection in
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Figure 7. Top edges with large effects. (a) Global effect; (b) Female effect; (c) Aged 22–25; (d) Aged 31+. Red edges represent positive effects and blue edges represent
negative effects. The edge-width is proportional to the magnitude of the effect size.

Figure 8. Estimated feature effects in the Nations data analysis. Panels (a)–(d) represent the estimated effects of country-level attributes toward the connection probability,
for relations warning, violentactions, treaties, and aidenemy, respectively.

the group Age 31+. Those edges involve Frontal-pole (Fploe),
superior-frontal (SupF) and Cuneus nodes. The Frontal-pole
region is known for its importance in memory and cognition,
and the detected decline with age further highlights its biological
importance.

7.2. Application to Political Relation Data

The second application studies the multi-relational networks
with node-level attributes. We consider Nations dataset (Nickel,
Tresp, and Kriegel 2011) which records 56 relations among 14
countries between 1950 and 1965. The multi-relational net-
works can be organized into a 14 × 14 × 56 binary tensor, with
each entry indicating the presence or absence of an action, such
as “sending tourist to,” “export,” “import,” between countries.
The 56 relations span the fields of politics, economics, military,
religion, etc. In addition, country-level attributes are also avail-
able, and we focus on the following six features: constitutional,
catholics, law ngo, political leadership, geography, and medicine
ngo. The goal is to identify the variation in connections due to
country-level attributes and their interactions.

We apply our tensor model to the Nations data. The multi-
relational network Y is a binary data tensor, and the country
attributes X ∈ R

14×6 are features on both the 1st and 2nd modes.
We use BIC as guidance to select the rank of coefficient tensor
B. Since several rank configurations give similar BIC values, we
present here the most interpretable results with r = (4, 4, 4).
Detailed rank selection procedure is in Supplementary Notes.
We perform the supervised tensor decomposition and obtain
the dimension reduction matrices M̂k from the model. Then
we apply K-mean clustering to dimension reduction matrix on
each of the modes. Table S6 in Supplementary Notes shows the
K-means clustering of the 56 relations based on the dimension
reduction matrix on the 3rd mode. We find that the relations

reflecting the similar aspects of actions are grouped together.
In particular, Cluster I consists of military relations such as
violentactions, warnings and militaryactions; Clusters II and III
capture the economic relations such as economicaid, booktrans-
lations, tourism; and Cluster IV represents the political alliance
and territory relations.

To investigate the effects of dyadic attributes toward
connections, we depict the estimated coefficients B̂ = [[b̂ijk]]
for several relation types (Figure 8). The entry b̂ijk estimates
the contribution, at the logit scale, of feature pair (i, j) (ith
feature for the “sender” country and jth feature for the “receiver”
country) toward the connection of relation k. Several interesting
findings emerge from the observation. We find that relations
belonging to a same cluster tend to have similar feature effects.
For example, the relations “warning” and ”violentactions” are
classified into Cluster I, and both exhibit similar effect patterns
(Figures 8(a) and (b)). Moreover, the feature constitutional has
a strong effect in the relation “violentactions” and “warning,”
whereas the effect is weaker in the relation “treaties.” The result
is plausible because the constitutional attributes affect political
actions more often than economical actions. The entries in B
are useful for revealing interaction effects in a context-specific
way. From Figure 8, we find a strong interaction between
geography and political leadership in the relation “warning”,
and a strong interaction between geogrphy and medicine ngo
in the relation “aidenemy”. The relation-specific effect pattern
showcases the applicability of our method in revealing complex
interactions.

8. Discussion and Future Work

We have developed a supervised tensor decomposition method
with side information on multiple modes. One important
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challenge of tensor data analysis is the complex interdependence
among tensor entries and between multiple features. Our
approach incorporates side information as feature matrices in
the conditional mean tensor. The empirical results demonstrate
the improved interpretability and accuracy over previous
approaches. Applications to the brain connection and political
relationship datasets yield conclusions with sensible interpreta-
tions, suggesting the practical utility of the proposed approach.

There are several possible extensions from the work. We
have provided accuracy guarantees for parameter estimation
in the supervised tensor model. Statistical inference based on
tensor decomposition is an important future direction. Mea-
sures of uncertainty, such as confidence envelope for space
estimation, would be useful. One possible approach would be
performing parametric bootstrap (Efron and Tibshirani 1994)
to assess the uncertainty in the estimation. For example, one
can simulate tensors from the fitted low-rank model based on
the estimates, and then assess the empirical distribution of the
estimates. While being simple, bootstrap approach is often com-
putationally expensive for large-scale data. Another possibility
is to leverage recent development in debiased inference with
distributional characterization (Chen et al. 2019). This approach
has led to fruitful results for matrix data analysis. Uncertainly
quantification involving tensors are generally harder, and estab-
lishing distribution theory for tensor estimation remains an
open problem.

One assumption made by our method is that tensor entries
are conditionally independent given the linear predictor �. This
assumption can be extended by introducing a more general
mixed-effect tensor model. For example, in the special case of
Gaussian model, we can model the first two moments of data
tensor using

E(Y|X1, . . . , XK) = C × {X1M1, · · · , XKMK},
var(Y|X1, . . . , XK) = �1 ⊗ · · · ⊗ �K ,

where �k ∈ R
dk×dk is the unknown covariance matrix on the

mode k ∈ [K]. For general exponential family, an additional
mean-variance relationship should also be considered. The joint
estimation of mean model � and variance model �k will lead
to more efficient estimation in the presence of unmeasured
confounding effects. However, the introduction of unknown
covariance matrices �k dramatically increases the number of
parameters in the problem. Suitable regularization such as
graphical lasso or specially-structured covariance (Li and Zhang
2017; Lock and Li 2018) should be considered. The extension
of tensor modeling with heterogeneous mixed-effects will be an
important future direction.

Although we have presented the data applications in the
context of order-3 data tensors, the framework of the super-
vised tensor decomposition applies to a variety of multi-way
datasets. One possible application is the integrative analysis of
omics data, in which multiple types of omics measurements
(gene expression, DNA methylation, microRNA) are collected
in the same set of individuals (Lock et al. 2013; Wang, Fischer,
and Song 2019). Other applications include time-series tensor
data with multiple side information. Exploiting the benefits and
properties of supervised tensor decomposition in specialized
task will boost scientific discoveries.
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The supplementary note consists of proofs (Section A), additional simulation results

(Section B), and data applications (Section C).

A Proofs

A.1 Proof of Theorem 4.1

We denote several quantities:

γ =
∏
k∈[K]

σmin(Xk), γ̄ =
∏
k∈[K]

σmax(Xk), λ = min
k∈[K]

σrk(Unfoldk(Btrue)), (1)

where γ quantifies the rank non-deficiency of feature matrices, γ̄ quantifies the magni-

tude of feature matrices, and λ is the smallest singular value of mode-k unfolded matrices

Unfoldk(Btrue) for all possible k ∈ [K]. For notational convenience, we drop the sub-

script Y from the objective LY(·) and simply write as L(·). We write L(B) in place of

L(C,M1, . . . ,MK) when we want to emphasize the role of B.

Proposition A.1 (sub-Gaussian residuals). Define the residual tensor E = �εi1,...,iK� =

Y − b′(Θ) ∈ R
d1×···×dK . Under the Assumption A2, εi1,...,iK is a sub-Gaussian random

variable with sub-Gaussian parameter bounded by φU , for all (i1, . . . , iK) ∈ [d1]×· · ·×[dK ].

Proposition A.2 (Properties of tensor GLM). Consider tensor GLMs under Assumption

A2.

(a) (Strong convexity) For all B and all realized data tensor Y ,

L(Btrue) ≥ L(B) + 〈∇L(Btrue),Btrue − B〉+ 1

2
γ2L‖Btrue − B‖2F ,

1



where ∇L(·) denotes the derivative of L with respect to B.

(b) (Model complexity) Suppose Y follows generalized tensor model with parameter Btrue.

Then, with probability at least 1− exp(−p),

Errideal(r) := sup
‖B‖F=1,B∈P(r)

〈∇L(Btrue),B〉 � γ̄
√

φU(rK +Kpr). (2)

The proofs of Propositions A.1-A.2 are in Section A.3.

Proof of Theorem 4.1. First we prove the error bound for B̂MLE. By the definition of B̂MLE,

LY(Btrue)− LY(B̂MLE) ≤ 0. By the strong convexity in Proposition A.2,

0 ≥ LY(Btrue)− LY(B̂MLE) ≥ 〈∇L(Btrue),Btrue − B̂MLE〉+
1

2
γ2L‖Btrue − B̂MLE‖2F . (3)

Rearranging (3) gives

‖B̂MLE − Btrue‖F ≤ 2

γ2L

〈
∇L(Btrue),

B̂MLE − Btrue

‖B̂MLE − Btrue‖F

〉
≤ 2

γ2L
Errideal(2r),

where the last inequality comes from the definition of Errideal(2r) and the fact that rank(B̂MLE−

Btrue) ≤ rank(B̂MLE) + rank(Btrue) ≤ 2r. By (2) in Proposition A.2, we have

‖B̂MLE − Btrue‖F � γ̄
√
φU

γ2L

√
rK +Kpr, (4)

with probability at least 1− exp(−p).

Now, we specialize γ̄/γ2 in the following two cases of assumptions on feature matrices.

[Case 1] Under Assumption A1 with scaled feature matrices, we have

γ̄

γ2
≤ cK2 d

K/2

c2K1 dK
�

√
1

dK
. (5)

[Case 2] Under Assumption A1’ with original feature matrices, the asymptotic behavior of

2



extreme singular values (Rudelson and Vershynin, 2010) are

σmin(Xk) �
√
d−√

p and σmax(Xk) �
√
d+

√
p, for all k ∈ [K].

In this case, we obtain

γ̄

γ2
�

(
√
d+

√
p)K

(
√
d−√

p)2K
�

√
1

dK
. (6)

Combining (4) with either (5) or (6), in both cases we obtain the same conclusion

‖B̂MLE − Btrue‖2F � φ(rK +Kpr)

dK
. (7)

Now we prove the bound for sinΘ distance. We unfold tensors Btrue and B̂MLE along the

mode k and obtain Unfoldk(Btrue) and Unfoldk(B̂MLE). Notice that Mk,true and M̂k,MLE

span the top-r left singular spaces of Unfoldk(Btrue) and Unfoldk(B̂MLE), respectively. Ap-

plying Proposition A.2 to this setting gives

sinΘ(Mk,true,M̂k,MLE) ≤
‖Unfoldk(B̂MLE)− Unfoldk(Btrue)‖F

σrk(Unfoldk(Btrue))
=

‖B̂MLE − Btrue‖F
λ

. (8)

The proof is complete by combining (7) and (8).

A.2 Proofs of Proposition 4.1 and Theorem 4.2

Proof of Proposition 4.1. We express the Gaussian model as

Y = Btrue × {X1, . . . ,XK}+ E ,

where E is a noise tensor consisting of i.i.d. entries from N(0,
√
φ). By QR decomposition

on feature matrices, Xk = QkRk for all k ∈ [K], we have

Ȳ = Btrue × {R1, . . .RK}+ Ē , (9)

where Ȳ = Y×{Q1, . . . ,QK} and Ē = E×{Q1, . . . ,QK}. Notice that entries of Ē ∈ R
p×···×p

are i.i.d drawn from N(0,
√
φ) by the orthonormality of {Qk}Kk=1. Reparameterize the signal

3



in (9) as

Strue := Btrue × {R1, . . .RK} = Ctrue × {R1M1,true, . . .RKMK,true}

= C ′
true × {U1,true, . . . ,UK,true}, (10)

where Uk.true ∈ O(pk, rk) are orthonormal matrices and C ′
true ∈ R

r×···×r is a full rank core

tensor. By definition of quantities in (1), we have

λ′ := min
k∈[K]

σmin(Unfoldk(Strue)) ∈ [λγ, λγ̄]. (11)

Now our setup shares the same setting as in Zhang and Xia (2018, Theorem 1). We

summarize the relationships between our algorithm outputs and the ones in Zhang and Xia

(2018). For all k ∈ [K],

1. Mk,true = SVDrk

(
R−1

k Uk,true

)
:= the first rk left singular vectors of R−1

k Uk,true;

2. M̂
(t)
k = SVDrk

(
R−1

k Û
(t)
k

)
for all t = 0, 1, 2, . . .;

where Û
(t)
k denotes the t-th iteration output of Higher Order Orthogonal Iteration (HOOI)

algorithm (Zhang and Xia, 2018) with inputs Ȳ . The first relationship is from (10), and

second relationship is from induction by t. Briefly, t = 0 holds because of the definition

M̂
(0)
k based on lines 4-5 of our initialization Algorithm 2. For t ≥ 1, . . ., notice that M̂

(t)
k

is an optimizer of the objective

‖Ȳ − Ĉ(t−1) × {R1M̂
(t)
1 , . . . ,Rk−1M̂

(t)
k−1,RkM ,Rk+1M̂

(t−1)
k+1 , . . . ,RKM̂

(t−1)
K }‖2F ,

from the line 3 of Algorithm 1. By unfolding along the mode k, the optimizer M
(t)
k must

satisfy

Unfoldk

(
Ȳ ×

{
(M̂

(t)
1 )TR−1

1 , . . . , (M̂
(t)
k−1)

TR−1
k−1, Ipk , (M̂

(t−1)
k+1 )TR−1

k+1, . . . , (M̂
(t−1)
K )TR−1

K

})

= RkM̂
(t)
k Unfoldk

(
Ĉ(t−1)

) (
IrK ⊗ · · · ⊗ Irk+1

⊗ Irk−1
⊗ Ir1

)
. (12)

Notice that the first rk left singular vectors of the left side of (12) is Û
(t)
k in HOOI algorithm.

4



Therefore, we prove the the second relationship by induction.

Combination of Lemma A.4 and the relationships between our algorithm outputs and

the ones in Zhang and Xia (2018) gives us

(
γ

γ̄

)2

max
k∈[K]

sinΘ(Uk,true, Û
(t)
k ) ≤ max

k∈[K]
sinΘ(Mk,true,M̂

(t)
k ) ≤

(
γ̄

γ

)2

max
k∈[K]

sinΘ(Uk,true, Û
(t)
k ).

(13)

Now, we prove the property (a) in Proposition 4.1. Based on Lemma A.3(a), whenever

λ′/
√
φ ≥ Cgapp

K/4, we have

max
k∈[K]

sinΘ(Uk,true, Û
(0)
k ) ≤ c

(
pK/2

(λγ)2/φ

)
, (14)

with probability at least 1− exp(−p). Notice that

λ′
(11)

≥ λγ � λdK/2 ≥ Cgap

√
φpK/4,

where the second inequality uses [Case 1] and [Case 2] in the proof of Theorem 4.1. The

condition λ/
√
φ ≥ CpK/4d−K/2 guarantees a sufficiently large Cgap that satisfies λ′/

√
φ ≥

Cgapp
K/4. Thus combining (13) and (14) yields

max
k∈[K]

sinΘ(Mk,true,M̂
(0)
k ) ≤

(
γ̄

γ

)2 (√
φpK/4

λγ

)2

≤ 1

2
,

where the last inequality uses the fact that γ � dK/2 and γ̄/γ is bounded by a constant in

[Case 1] and [Case 2], and the condition λ/
√
φ ≥ CpK/4d−K/2.

Now, we prove the property (b) in Proposition 4.1. Based on Lemma A.3(b), we have

max
k∈[K]

sinΘ(Uk,true, Û
(t)
k ) �

√
pφ

λγ
+

(
1

2

)t

max
k∈[K]

sinΘ(Uk,true, Û
(0)
k ),
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with probability at least 1− exp(−p). Combining (13) with the above inequality yields

max
k∈[K]

sinΘ(Mk,true,M̂
(t)
k ) � max

k∈[K]
sinΘ(Uk,true, Û

(t)
k )

�
√
pφ

λγ
+

(
1

2

)t

max
k∈[K]

sinΘ(Uk,true, Û
(0)
k )

�
√
pφ

λγ
+

(
1

2

)t

max
k∈[K]

sinΘ(Mk,true,M̂
(0)
k ).

Finally, the proof is completed applying γ � dK/2 from [Case 1] and [Case 2].

Proof of Theorem 4.2. Combining Proposition 4.1(b) and (14), we obtain

max
k∈[K]

sinΘ(Uk,true, Û
(t)
k ) �

√
pφ

λγ
+

(
1

2

)t (
pK/2

(λγ)2/φ

)
,

with probability at least 1 − exp(−p). We set t � log p(K−1)/2

λγ
to make the second term

negligible. Therefore, the first part of proof is completed by noticing that

p(K−1)/2

λγ
� log

p(K−1)/2

λdK/2
� K log p,

where the first inequality uses γ � dK/2 from [Case 1] and [Case 2], and the last inequality

is from the condition λ/
√
φ ≥ CpK/4d−K/2.

For the estimation error with respect to Frobenius norm, direct application of Lemma A.3(c)

with t � K log p � log p(K−1)/2

λγ
yields

‖Ŝ(t) − Strue‖2F � φ(rK +Kpr), (15)

with probability at least 1− exp(−p). Notice that

‖Ŝ(t) − Strue‖2F = ‖
(
B̂(t) − Btrue

)
× {R1, . . .RK}‖2F

≥ γ2‖B̂(t) − Btrue‖2F

� dK‖B̂(t) − Btrue‖2F , from [Case 1] and [Case 2]. (16)
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Combining (15) and (16) completes the proof.

A.3 Auxiliary Lemmas

Proof of Proposition A.1. For ease of presentation, we drop the subscript (i1, . . . , iK) and

simply write ε (= y − b′(θ)). For any given t ∈ R, we have

E(exp(tε|θ)) =
∫

c(x) exp

(
θx− b(θ)

φ

)
exp (t(x− b′(θ))) dx

=

∫
c(x) exp

(
(θ + φt)x− b(θ + φt) + b(θ + φt)− b(θ)− φtb′(θ)

φ

)
dx

= exp

(
b(θ + φt)− b(θ)− φtb′(θ)

φ

)

≤ exp

(
φUt2

2

)
,

where c(·) and b(·) are known functions in the exponential family corresponding to y, and

the last line uses the fact that supθ∈R b′′(θ) ≤ U . Therefore, ε is sub-Gaussian-(φU).

Definition A.1 (α-convexity). A real-valued function f : S → R is called α-convex, if

f(x1) ≥ f(x2) + 〈∇xf(x2), x1 − x2〉+ α‖x1 − x2‖2F , for all x1, x2 ∈ S.

Lemma A.1 (Convexity under linear transformation). Suppose f : R
d×···×d → R is a α-

convex function. Define a function g : R
p×···×p → R by g(B) = f(B × {X1, . . . ,XK}) for

all B ∈ R
p×···×p. Then, g is a (γ2α)-convex function.

Proof of Lemma A.1. By the definition of α-convexity, we have

f(Θ1) ≥ f(Θ2) + 〈∇Θf(Θ2),Θ1 −Θ2〉+ α‖Θ1 −Θ2‖2F , for all Θ1,Θ2 ∈ R
d×···×d, (17)

where ∇Θf(·) denotes the derivative of f with respect to Θ ∈ R
d×···×d. For any B1,B2 ∈

R
p×···×p, we notice that Bi × {X1, . . . ,XK} ∈ R

d×···×d for i = 1, 2. Applying (17) to this

setting gives

f(B1 × {X1, . . . ,XK})
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≥ f(B2 × {X1, . . . ,XK}) + 〈∇Θf(B2 × {X1, . . . ,XK}), (B1 − B2)× {X1, . . . ,XK}〉

+ α‖(B1 − B2)× {X1, . . . ,XK}‖2F

≥ f(B2 × {X1, . . . ,XK}) + 〈∇Θf(B2 × {X1, . . . ,XK})× {XT
1 , . . . ,X

T
K}, (B1 − B2)〉

+ αγ2‖B1 − B2‖2F . (18)

By the definition of g and the linearity from B to Θ, we have

∇gB(B2) = ∇fΘ(B2 × {X1, . . . ,XK})× {XT
1 , . . . ,X

T
K}. (19)

The convexity of g directly follows by plugging (19) into (18),

g(B1) ≥ g(B2) + 〈∇gB(B2),B1 − B2〉+ αγ2‖B1 − B2‖2F .

Proof of Proposition A.2. We first prove the strong concavity by viewing the log-likelihood

as a function of the linear predictor Θ. Write

L̄(Θ) = 〈Y ,Θ〉 −
∑

i1,...,iK

b(θi1,...,iK ).

Direct calculation shows that the Hession of L̄(Θ) can be expressed as

∂L̄(Θ)

∂θi1,...,iK∂θj1,...,jK
=




−b′′(θi1,...,iK ) < −L < 0, if (i1, . . . , iK) = (j1, . . . , jK),

0, otherwise,

Therefore, the Hession matrix of L̄(Θ) is strictly negative definite with eigenvalues upper

bounded by −L < 0. By Taylor expansion, −L̄(Θ) is L/2-convex with respect to Θ.

Note that L̄(Θ) = L(B) via the linear mapping Θ = B × {X1, . . . ,XK}. Therefore, by

Lemma A.1, L(B) is (γ2L/2)-convex with respect to B.
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To prove the second part of Proposition A.2, we note

〈∇L(Btrue),B〉 = 〈∇L̄(Θtrue)× {XT
1 , . . . ,X

T
K}, B〉 = 〈Y − b′(Θtrue), B × {X1, . . . ,XK}〉.

By Proposition A.1, Y − b′(Θtrue) is a random tensor consisting of i.i.d. sub-Gaussian-(Uφ)

entries under Assumption 2. We write E = Y − b′(Θtrue) and consider the sub-Gaussian

maxima

Errideal(r) = sup
‖B‖F=1,B∈P(r)

〈E ,B × {X1, . . . ,XK}〉.

The quantity Errideal(r) is closely related to the localized Gaussian width (Chen et al.,

2019; Han et al., 2020) that measures the model complexity of P(r). By adapting Han

et al. (2020, Lemma E.5) in our context, we have

Errideal(r) �
√
φU(rK +Kpr)

∏
k∈[K]

σmax(Xk) ≤ γ̄
√
φU(rK +Kpr),

with probability at least 1− exp(−p).

The following Lemma is adopted from Wang and Song (2017, Theorem 6.1) in our

contexts.

Lemma A.2 (Wedin’s sinΘ Theorem). Let B and B̂ be two m × n real matrix SVDs

B = UΣV T and B̂ = ÛΣ̂V̂ T . If σmin(B) > 0 and ‖B̂ −B‖F � σmin(B), then

sinΘ(U , Û ) ≤ σmax(B̂ −B)

σmin(B)
≤ ‖B̂ −B‖F

σmin(B)
.

The following theorem Zhang and Xia (2018) provides the statistical guarantees for

unsupervised tensor decomposition based on alternating least square algorithm. For sim-

plicity, we consider the balanced dimension p1 = · · · = pK = p and r1 = · · · = rK = r.

Lemma A.3 (Theorem 1 in Zhang and Xia (2018)). Consider the Gaussian tensor model

Y = Strue + E ,

9



where Strue = Ctrue × {U1,true, . . . ,UK,true} is an unknown signal tensor, Ctrue ∈ R
r×···×r is

a full rank core tensor, Uk,true ∈ O(p, r) are orthornomal matrices, and E ∈ R
p×···×p is a

Gaussian noise tensor consisting of i.i.d entries from N(0, σ). Let λ denote the smallest

singular value of matrices Unfoldk(Strue) over all possible k,

λ′ = min
k∈[K]

σmin(Unfoldk(Strue)).

Then, the following two properties hold whenever λ′/σ ≥ Cgapp
K/4 for some universal

constant Cgap > 0.

(a) With probability at least 1− exp(−p), the spectral initialization Û
(0)
k has

max
k∈[K]

sinΘ(Uk,true, Û
(0)
k ) ≤ c

pK/2

λ′2/σ2
,

for some constant c > 0.

(b) Let t = 1, 2, . . . , denote the iteration in HOOI algorithm. With probability at least

1− exp(−p), the alternating optimization Û
(t)
k satisfies

max
k∈[K]

sinΘ(Uk,true, Û
(t)
k ) �

√
p

λ′/σ
+

(
1

2

)t

max
k∈[K]

sinΘ(Uk,true, Û
(0)
k ),

(c) When t � log p(K−1)/2

λ′ , the tensor estimate Ŝ(t) from HOOI satisfies

‖Ŝ(t) − Strue‖2F � σ2(rK +Kpr),

with probability at least 1− exp(−p).

Lemma A.4 (Angle distance under linear transformation). Let U and Û be two m × n

real matrices where m > n. Let R be an m×m invertible matrix. If sinΘ(U , Û ) ≤ L for

some constant L ∈ [0, 1], then

sinΘ(RU ,RÛ ) ≤
(
σmax(R)

σmin(R)

)2

L.
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Proof. Suppose that orthonormal basis of Span(U ) and Span(Û⊥) are {µ1, . . . , µn} and

{νn+1, . . . , νm} respectively. By definition,

sinΘ(U , Û ) = max∑n
i=1 a

2
i=

∑m
j=n+1 b

2
j=1

〈
n∑

i=1

aiµi,

m∑
j=n+1

bjνj

〉
≤ L.

We write x = R
∑n

i=1 aiµi and y = R
∑m

j=n+1 bjνj for any x ∈ Span(RU ) and y ∈

Span((RÛ )⊥). Then,

〈x,y〉
‖x‖2‖y‖2

=
〈R

∑n
i=1 aiµi,R

∑m
j=n+1 bjνj〉

‖R
∑n

i=1 aiµi‖2‖R
∑m

j=n+1 bjνj‖2

≤
σmax(R

TR)〈
∑n

i=1 aiµi,
∑m

j=n+1 bjνj〉

σ2
min(R)

√∑n
i=1 a

2
i

√∑m
j=n+1 b

2
j

≤
(
σmax(R)

σmin(R)

)2

sinΘ(U , Û ).

B Additional simulation results

B.1 Detailed simulation setup for Figure 6a-b

We generate data from Envelope model (Li and Zhang, 2017) with slight modification.

We simulate response tensor Y ∈ R
d×d×d from the following model with envelope dimension

(u1, u2),

Y|X = B ×3 X + E = C × {Γ1,Γ2,X}+ E ,

with E ∼ T N (Σ1,Σ2, I), Σk = ΓkΩkΓ
T
k + Γ0kΩ0kΓ

T
0k + I, k = 1, 2, (20)

whereX ∈ R
d×p is the feature matrix, B = C×{Γ1,Γ2, I} ∈ R

d×d×p is the coefficient tensor,

C ∈ R
µ1×µ2×p is a full-rank core tensor, T N (·, ·, ·) represents zero-mean tensor normal

distribution with Kronecker structured covariance, Γk ∈ O(d, uk) consists of orthogonal

columns, Γ0k ∈ O(d, d− uk) is the orthogonal complement of Γk, and Ωk = AkA
T
k , Ω0k =

Ak0A
T
k0 with Ak ∈ R

uk×uk , Ak0 ∈ R
(d−uk)×(d−uk).
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The entries of X are i.i.d. drawn from N (0, 1), the entries of Ak, Ak0 are i.i.d. drawn

from Uniform[−γ, γ], and the entries of core tensor C are i.i.d. drawn from Uniform[−3, 3].

We call γ the correlation level. Note that the only distinction between model (20) and

standard Envelope model is the additional identity matrix I in the expression of Σk.

When γ = 0, the model (20) reduces to our STD model with rank r = (u1, u2, p). We set

d = 20, p = 5 in our simulation.

B.2 Detailed simulation setup for Figure 6c-d

We generate the data from GLSNet model (Zhang et al., 2018) with slight modification.

We simulate the binary response tensor Y ∈ {0, 1}d×d×d from the following model

E[Y|X] = f(1⊗Θ+ B ×3 X),

where f(·) is the logistic link, X ∈ O(d, p) is the feature matrix with orthonormal columns,

Θ = AAT ∈ R
d×d is a rank-R intercept matrix, where the entries of A ∈ R

d×R are

simulated from i.i.d. standard normal. Unlike original GLSNet model, we generate joint

sparse and low-rank structure to the coefficient tensor B as follows.

To generate B, we firstly generate a low-rank tensor B0 as

B0 = C ×M1 ×M2 ×M3,

where C ∈ R
R×R×R is a full-rank core tensor,M1,M2 ∈ R

d×R andM3 ∈ R
p×R are the factor

matrices with orthonormal columns. We simulate i.i.d. uniform entries in C and rescale the

tensor B0 such that ‖B0‖max = 2. Last, we obtain a sparse B by randomly setting sd2p

entries in B0 to zero. We call s the sparsity level which quantifies the proportion of zero’s

in B. Hence, the generated tensor B is of sparsity level s and of low-rank (R,R,R). We

set d = 20, p = 5 and consider the combination of rank R = 2 (low), 4 (high) and sparsity

level s = {0, 0.3, 0.5} in the simulation.

12



B.3 Comparison with GLMs under stochastic block models

We investigate the performance of our model under correlated feature effects. We mimic

the scenario of brain imaging analysis. A sample of d3 = 50 networks are simulated, one

for each individual. Each network measures the connections between d1 = d2 = 20 brain

nodes. We simulate p = 5 features for the each of the 50 individuals. These features may

represent, for example, age, gender, cognitive score, etc. Recent study has suggested that

brain connectivity networks often exhibit community structure represented as a collection

of subnetworks, and each subnetwork is comprised of a set of spatially distributed brain

nodes. To accommodate this structure, we utilize the stochastic block model (Abbe, 2017)

to generate the effect size. Specifically, we partition the nodes into r blocks by assigning

each node to a block with uniform probability. Edges within a same block are assumed

to share the same feature effects, where the effects are i.i.d. drawn from N(0, 1). We then

apply our tensor regression model to the network data using the BIC-selected rank. Note

that in this case, the true model rank is unknown; the rank of a r-block network is not

necessarily equal to matrix rank r (Wang and Zeng, 2019).

Figure S1: Performance comparison under stochastic block models. The three panels plot
the MSE when the response tensors are generated from (a) Gaussian (b) Poisson and (c)
Bernoulli models. The x-axis represents the number of blocks in the networks.

Figure S1 compares the MSE of our method with a multiple-response GLM approach.

The multiple-response GLM is to regress the dyadic edges, one at a time, on the features,

and this model is repeatedly fitted for each edge. As we find in Figure S1, our tensor

regression method achieves significant error reduction in all three data types considered.
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The outperformance is substantial in the presence of large communities; even in the less

structured case (∼ 20/15 = 1.33 nodes per block), our method still outer-performs GLM.

The possible reason is that the multiple-response GLM approach does not account for the

correlation among the edges, and suffers from overfitting. In contrast, the low-rankness in

our modeling incorporates the shared information across entries. By selecting the rank in

a data-driven way, our method achieves accurate estimation in a wide range of settings.

C Additional results on data application

C.1 Rank selection for Nations data

Table S1 summarizes the BIC results in the grid search r ∈ {3, 4, 5}3. We set r1 = r2 due

to the symmetry in the dataset. Table S1 shows that (r1, r2) = (4, 4) consistently provides

the minimal BIC under a range of r3. Because multiple values of r3 give similar BIC, we

choose r3 based on the interpretability of the results. Tables S2-S4 compare the clustering

results for r3 = 3, 4, 5. For ease of visualisation, we list only the subset of relations for

which the three configurations yield incoherent clustering. We find that the clustering with

r3 = 4 (Table S3) provides the cleanest results. Table S2 with r3 = 3 mixes the categories

Economics with Organization and Military. Table S4 with r3 = 5 mixes Economics with

Organization, while splitting Military and Territory into different clusters. Therefore, we

choose the rank r = (4, 4, 4) in the main paper. The running time for the rank selection

via grid search is 95 secs in total, on an iMac macOS High Sierra 10.13.6 with Intel Core i5

3.8 GHz CPU and 8 GB RAM. This indicates the BIC is feasible in the considered setting.

r3 r3 = 3 r3 = 4 r3 = 5
(r1, r2) (3, 3) (4, 4) (5, 5) (3, 3) (4, 4) (5, 5) (3, 3) (4, 4) (5, 5)

BIC 11364 11194 11701 12275 11897 12365 17652 12666 18146

Table S1: BIC results for Nations data under different tensor rank. Bold number indicates
the minimal BIC with a certain r3.
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Cluster Relations

I
exportbooks, relexportbooks, protests, tourism, reltourism, relintergovorgs
relngo, intergovorgs3, ngoorgs3, militaryalliance,commonbloc1

II
militaryactions, severdiplomatic,expeldiplomats, commonbloc0, aidenemy
attackembassy, lostterritory, blockpositionindex

III
tourism3, exports, relexports, exports3, intergovorgs,
ngo ,embassy, reldiplomacy, commonbloc2

Economics Military Organization Territory

Table S2: K-mean relations clustering with r3 = 3. For visualization purpose, only a subset
of relations are presented. See texts for details.

Cluster Relations
I aidenemy, attackembassy, lostterritory

II
militaryactions, severdiplomatic, expeldiplomats, protests,
commonbloc0, blockpositionindex, commonbloc1

III relintergovorgs, relngo, intergovorgs3, ngoorgs3, militaryalliance, commonbloc2

IV
exportbooks, relexportbooks, tourism, reltourism, tourism3
exports, relexports, exports3, intergovorgs, ngo, embassy, reldiplomacy

Economics Military Organization Territory

Table S3: K-mean relations clustering with r3 = 4. For visualization purpose, only a subset
of relations are presented. See texts for details.

Cluster Relations

I
exportbooks, relexportbooks, tourism, reltourism, tourism3, exports, relexports, exports3
intergovorgs, relintergovorgs, ngo, relngo, intergovorgs3, ngoorgs3, embassy, reldiplomacy

II attackembassy
III commonbloc0, blockpositionindex
IV militaryalliance, commonbloc2

V
militaryactions, severdiplomatic, expeldiplomats, aidenemy, lostterritory,
protests, commonbloc1

Economics Military Organization Territory

Table S4: K-mean relations clustering with r3 = 5. For visualization purpose, only a subset
of relations are presented. See texts for details.

C.2 Comparison with unsupervised decomposition

We compare the supervised vs. unsupervised decomposition in the Nations data analysis.

Table S5 shows the clustering results based on classical unsupervised Tucker decomposition

without the feature matrices. Table S6 shows the clustering results based on supervised

tensor decomposition (STD). Compared with supervised decomposition, the unsupervised
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clustering loses some interpretation. Similar relations exports and relexports, ngo and relngo

are separated into different clusters.

Cluster Relations

I
economicaid, releconomicaid, exportbooks, relexportbooks, weightedunvote, unweightedunvote,
tourism, reltourism, tourism3, exports, intergovorgs, ngo, militaryalliance

II
warning, violentactions, militaryactions, duration, severdiplomatic, expeldiplomats, boycottembargo, aidenemy,
negativecomm, accusation, protests, unoffialacts, attackembassy, relemigrants, timesincewar, lostterritory, dependent

III timesinceally, independence, commonbloc0, blockpositionindex

IV
treaties, reltreaties, officialvisits, conferences, booktranslations, relbooktranslations
negativebehavior, nonviolentbehavior, emigrants, emigrants3, students, relstudents, relexports, exports3
relintergovorgs, relngo, intergovorgs3, ngoorgs3, embassy, reldiplomacy, commonbloc1, commonbloc2

Economics Military Organization Territory

Table S5: Clustering of relations based on unsupervised tensor decomposition.

Category Relations

I
warning, violentactions, militaryactions, duration, negativebehavior, protests, severdiplomatic
timesincewar, commonbloc0, commonbloc1, blockpositionindex, expeldiplomats

II
emigrants, emigrants3, relemigrants, accusation, nonviolentbehavior, ngoorgs3, commonbloc2, intergovorgs3
releconomicaid, relintergovorgs, relngo, students, relstudents, economicaid, negativecomm, militaryalliance

III
treaties, reltreaties, officialvisits, exportbooks, relexportbooks, booktranslations, relbooktranslations
boycottembargo, weightedunvote, unweightedunvote, reltourism, tourism, tourism3, exports, exports3
relexports, intergovorgs, ngo, embassy, reldiplomacy, timesinceally, independence, conferences, dependent

IV aidenemy, lostterritory, unoffialacts, attackembassy

Economics Military Organization Territory

Table S6: Clustering of relations based on supervised tensor decomposition.

C.3 How different are supervised vs. unsupervised factors in gen-

eral?

It is helpful to realize that the unsupervised and methods address different aspects of the

problem. The unsupervised decomposition identifies factors that explain most variation

in the tensor, whereas the supervised decomposition identifies factors that are most at-

tributable to side features.

We provide a simple example here for illustration.

Example C.1. Consider the following data tensor Y and one-sided feature matrix X,

Y = e1 ⊗ e1 ⊗ e1 + 10e2 ⊗ e2 ⊗ e2, X = e1,

where ei = (0, . . . , 0, 1, 0, . . . , 0)T is the ith canonical basis vector in R
d for i = 1, 2. Now,

consider the unsupervised vs. supervised decomposition of Y with rank r = (1, 1, 1). Then,
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the top supervised and unsupervised factors are perpendicular to each other,

Msup,k ⊥ Munsup,k, for all k = 1, 2, 3,

where Msup,k, Munsup,k denote the mode-k factors from supervised and unsupervised de-

compositions, respectively.

Remark C.1. This example shows complementary information between factors from su-

pervised vs. unsupervised decompositions. In general, one could construct examples such

that these two methods return arbitrarily different factors.
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