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Abstract 

Shaped by human movement, place connectivity is quantified by the strength of spatial 

interactions among locations. For decades, spatial scientists have researched place connectivity, 

applications, and metrics. The growing popularity of social media provides a new data stream 

where spatial social interaction measures are largely devoid of privacy issues, easily assessable, 

and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) 

based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-

continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US 

county level, exhibits a strong positive association with SafeGraph population movement records 

(10% penetration in the US population) and Facebook’s social connectedness index (SCI), a 

popular connectivity index based on social networks. We found that PCI has a strong boundary 

effect and that it generally follows the distance decay, although this force is weaker in more 

urbanized counties with a denser population. Our investigation further suggests that PCI has 

great potential in addressing real-world problems that require place connectivity knowledge, 

exemplified with two applications: 1) modeling the spatial spread of COVID-19 during the early 

stage of the pandemic and 2) modeling hurricane evacuation destination choice. The 

methodological and contextual knowledge of PCI, together with the launched visualization 

platform and open-sourced PCI datasets at various geographic levels, are expected to support 

research fields requiring knowledge in human spatial interactions. 
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Introduction 

Since the proposal of “social physics” in 1948 by John Stewart, an astrophysicist who 

first attempted to reveal spatial interaction based on the concept of the Newtonian gravitational 

framework1, research on modeling, documenting, and understanding human spatial interaction 

has been a research hotspot in geography and related fields. From a geographic perspective, 

human movements form the spatial interactions among places, featured by both social 

(population, land use, culture, etc.) and physical characteristics (climate, geology, landscape, 

etc.)2. Relationships among places are shaped by constant human movement, and the intensity of 

such movement further quantifies the connectivity strength among places. Thus, understanding 

connectivity between two places provides fundamental knowledge regarding their interactive 

gravity, benefiting various applications such as infectious disease modeling, transportation 

planning, tourism management, evacuation modeling, and other fields requiring knowledge in 

human spatial interactions. 

However, measuring such interactions at various spatiotemporal scales is a challenging 

task. Early efforts (widely adopted until now) to examine spatial interactions adopted survey 

methods. Researchers used questionnaires to understand spatial interactions, aiming to gauge 

both long-term spatial movement, such as migration patterns3–5, and short-term spatial 

displacement, such as evacuation and traveling6–11. The well-documented spatial interactions 

from these surveys contribute to our understanding of how people move across space and how 

places are connected; however, such an approach suffers from limitations of small sample 

sizes12, limited temporal resolution13, and resource demands14. 

https://en.wikipedia.org/wiki/Astrophysicist


The limitations of survey-based approaches largely preclude spatiotemporal-continuous 

observations in spatial interactions, therefore inducing discrete place connectivity measurements. 

However, place connectivity should not be considered as a fixed spatiotemporal property of 

places. Instead, connectivity is ever-changing and evolving rapidly in modern society15–17. As 

argued by many, technological advances in the past decades have greatly facilitated connectivity 

by weakening geographic limits18. To capture the temporal nature of spatial interactions, 

researchers have emphasized the importance of transportation data that detail people’s moving 

patterns. Place connectivity has been measured using various transportation means that include 

airline flows19,20, highway traffic21, railway flows22,23, and intercity bus networks24. The rich 

traffic information and the derived spatial networks greatly facilitate our understanding of how 

places are connected via these transportation modes. However, transportation-based approaches 

pose new challenges. First, such data are generally difficult to obtain, as they are often 

confidential or collected by private companies. Second, the data themselves are mode-specific, 

lacking the holistic views of the overall human spatial interactions and place connectivity, which 

are often needed in fields such as infectious disease modeling. A notable effort to tackle the latter 

issue is by Lin et al.23, who constructed a combined inter-city connectivity measurement based 

on multiple data sources for nine cities in China and demonstrated its advantage over the index 

derived from a single data source. This study offers valuable insights in understanding how cities 

are connected using a holistic approach. Due to data availability issues, however, it is 

challenging to construct such a combined index that are spatiotemporal-continuous for a large 

area (e.g., a country or the entire world) at various geographic settings and scales (e.g., urban, 

suburb, or rural; county, state/province, or country).  



The emerging concepts of “Web 2.0” 25 and “Citizen as Sensors” 26, largely benefiting 

from the advent of geo-positioning technologies, offer a new avenue to actively and passively 

gather and collect the digital traces left by electronic device holders27,28. For example, passive 

trace collection involves data obtained from mobile phone data29,30, smart cards31,32, or wireless 

networks33. The spatial interactions documented from these passively collected traces tend to 

have high representativeness, given their high data penetration ratios. However, privacy and 

confidentiality concerns have been raised for such approaches, as individuals do not intend to 

actively share their locational information and are unaware of the usage of the generated 

positions34,35.  

An approach less encumbered with privacy issues is based on spatial information from 

social media, a digital platform aiming to facilitate information sharing that has been popularized 

in recent years. Owing to their active sharing characteristics, social media data are less abundant 

compared to passively collected GPS positions from mobile devices but are less intrusive36,37, 

more accessible38, and more harmonized39. The huge volume of user-generated content covering 

extensive areas facilitates the timely need for summarizing human spatial interactions. Twitter, 

for example, has quickly become the largest social media data source for geospatial research and 

has been widely used in human mobility studies40–44, given its free application programming 

interface (API) that allows unrestricted access to about 1% of the total tweets45. We believe that 

the enormous sensing network constituted by millions of Twitter users worldwide provides 

unprecedented data to measure place connectivity at various spatiotemporal scales. 

As an essential component in human interaction, social connections that involve online 

searching, friendships, account following, news mentioning, and information reposting can also 

contribute to place connectivity measurement. For example, the co-occurrences of toponyms on 



massive web documents, news articles, or social media were extracted to measure city 

relatedness and connectivity46–48. A recent effort from Facebook explores connectivity 

measurement among places (called Social Connectedness Index, SCI) utilizing the social 

networks constructed from massive friendship links on Facebook49. However, whether or how 

the place connectivity measured by social connections differs from the one measured by physical 

connections is worth further investigation.  

In view of the existing studies, gaps still exist in 1) the effort to construct a global place 

connectivity measurement that is harmonized, multi-scale, spatiotemporal-continuous based on 

the physical movement of social media users, 2) examining the utility of the derived place 

connectivity from a very large area and/or longer time period in solving some real-world 

problems, and 3) applications to visualize place connectivity at various geographic levels with 

downloadable and ready-to-use connectivity matrices to support a wider community research 

needs. Taking advantage of big social media data and the advancement of high-performance 

computing, we introduce a place connectivity index (PCI) and an array of PCI datastets based on 

people’s movement among places captured from big Twitter data. Specifically, in this study, we 

computed global PCI from billions of geotagged tweets aggregated at different geographic levels 

to reveal place connectivity at multipe scales, including world country (inter-country 

connectivity), world first-level subdivision (inter-state/province, and intra-country connectivity), 

US metropolitan area (inter-unban area connectivity), US county (inter-city/county connectivity), 

and US census tract (intra-city connectivity). We compared population movement derived from 

Twitter data with the SafeGraph50 movement data in the US to evaluate how well geotagged 

tweets captured population movement. We compared PCI with Facebook’s SCI, a popular 

connectivity index based on social networks, to reveal the association between spatial 



interactions and social interactions. We also investigated the spatial properties of PCI including 

distane decay and boundary effect.  

The utility of PCI is exemplified in two applications: 1) modeling the spatial spread of 

COVID-19 during the early stage of the pandemic and 2) modeling hurricane evacuation 

destination choice. The results demonstrate the great potential of PCI in addressing real-world 

problems requiring place connectivity knowledge. Finally, we constructed massive PCI matrices 

and launched an interactive portal for users to visualize the strength of connectivity among 

geographic regions at various scales. The derived global PCI matrices at various geographic 

scales are open-sourced to support research needs. Serving as a harmonized and understandable 

connectivity metric, the multi-scale PCI data with the ability to “zoom in” and “zoom out” are 

expected to benefit varied domains demanding place connectivity knowledge, such as disease 

transmission modeling, transportation planning, evacuation simulation, and tourist prediction. 

Place Connectivity Index 

A Place Connectivity Index (PCI) between two places is defined as the normalized 

number of shared persons (unique Twitter users) between the two places during a specified time 

period (e.g., one year; Fig. 1). For example, if a user is observed at both places during the time 

period, the user is considered a shared user between the two places. PCI can be computed at 

various geographic scales. For example, a place can be a county, state, or country. PCI does not 

aim to capture the real-time population movement between places (though it is derived from such 

movement); rather, it provides a relatively stable measurement of how strong two places are 

connected by spatial interactions. The strength of the connection between two places can be 

determined by many factors, such as geographic distance (the first law of geography; Miller, 

2004), transportation, administrative/regional limits (e.g., states), physical barriers (e.g., rivers 



and mountains), social networks, demographic and socioeconomic similarities or differences. 

The shared users among places derived from Twitter data can be considered as an observable 

outcome of the combined force of these factors, and thus is modeless, with the understanding of 

Twitter data limitations (e.g., population bias).  In this sense, PCI should be calculated in a 

relatively long time period (e.g., a year) to gather sufficient information to summarize the 

general patterns.  

 

 

Fig. 1. Illustration of Place Connectivity Index based on shared social media users. 

Following the general geometric average and normalization strategy23,46,49, the PCI 

between place i and place j (denoted as PCIij) is computed by Eq. 1. 

                                     𝑃𝐶𝐼𝑖𝑗 =  
 𝑺𝒊𝒋

√𝑺𝒊 𝑺𝒋
       𝑖, 𝑗 ∈ [1, 𝑛]                 Eq. 1 

where Si is the number of observed persons (unique social media users) in place i within time 

period T; Sj is the number of observed persons in place j within time period T; Sij is the number 

of shared persons between places i and j within time period T; and n is the number of places in 

the study area.  



Places with a larger population size tend to have more social media users, and thus tend 

to have more shared users among them. The denominator in Eq. 1 is used to normalize the metric 

based on the relative populations in the two places. PCI ranges from 0 to 1. When no shared user 

is observed between two places, PCI equals 0. If all users in place i visit place j (vice versa) and 

the two places have the same number of users (or when i = j ), PCI equals 1. PCI provides a 

relative measurement of how strong places are connected through human spatial interactions 

when assuming all places have the same population (social media users). This allows us to 

compare PCI among different places to reveal potential spatial, population, and socioeconomic 

structures. The PCI derived from Eq. 1 is non-directional. The discussion for a directional PCI 

capturing the asymmetrical connection forces between two places can be found in Appendix A.  

Results 

Global PCI Datasets at Various Geographic Levels 

The computation of PCI is data- and computing-intensive as it involves billions of 

geotagged tweets and millions of place pairs at various geographic levels. To address this 

challenge, the computation was performed in a high-performance computing environment42. The 

steps for computing the 2019 US county level PCI are detailed in Appendix C.  With Eq. 1, PCI 

was computed for the following five geographic levels in this study: 1) worldwide country level 

for 2019, 2) worldwide first-level subdivision for 2019, 3) US metropolitan area for 2018 and 

2019, 4) US county level for 2018 and 2019, and 5) US census tract level for the New York City 

and Las Angeles County for 2018 and 2019.  An interactive web portal was developed to 

visualize a place’s connectivity (PCI) to other places at various geographic levels (Fig. 2, 

http://gis.cas.sc.edu/GeoAnalytics/pci.html). The following sections report our findings of the 

http://gis.cas.sc.edu/GeoAnalytics/pci.html


PCI properties and potential utility exemplified with the US county level PCI and the world first-

level subdivision PCI.  

 

Fig. 2. Demonstration of PCI at four geographic levels computed with the 2019 global geotagged 

tweets zoomed in from world country level to US census tract level. (a) World country level PCI for 

Japan showing the inter-country connectivity; (b) World first-level subdivision PCI for Ile-de-France 

(surrounding Paris), France showing the inter-country and intra-country connectivity at the state or 

province level; (c) US county level PCI for Cook County (Chicago) showing the inter-county/city 

connectivity; and (d) US census tract level PCI for Central Park, New York City showing the intra-city 

connectivity.  

Comparing with SafeGraph Population Movement 

One of the key concerns of using social media data (e.g., Twitter) for human mobility 

studies is its low population penetration rate. For example, only 24% of US adults use Twitter 

(Pew Research Center, 2019), and the public Twitter API only returns about 1% of the whole 

      

      



Twitter streams. A more detailed descriptive statistics of the collected 2019 worldwide 

geotagged tweets can be found in Appendix B. Also, Twitter data show bias in its 

representativeness of population groups. This issue has been examined in a few studies 51–53. In 

light of these issues, it is important to evaluate how well geotagged tweets capture population 

movements (at the county level in this analysis) since PCI is computed from such movement.  

For this purpose, we compared the US county-level population movement derived from 

Twitter to the movement derived from SafeGraph (https://www.safegraph.com), a commercial 

data company that aggregates anonymized location data from various sources. According to 

SafeGraph54, the data are aggregated from about 10% of mobile devices (e.g., cellphones) in the 

US, and the sampling correlates highly with the actual US Census populations, with a Pearson 

correlation coefficient r of 0.97 at the county level. Specifically, the data we used in this study 

are the publicly available SafeGraph’s Social Distancing Metrics (SDM)50, a census block group 

level daily mobility data product going back to January 1, 2019 covering the entire US. Since 

these data only provide aggregated mobility information, deriving the shared users among 

counties is not possible. Alternatively, we computed the total number of person-day movements 

between all contiguous US county pairs in 2019 using the SDM (see Appendix D). To make it 

comparable, we also computed the total number of person-day movements between all US 

county pairs in 2019 using Twitter data (see Appendix E). We then compared, using Pearson’s r, 

the two person-day movement datasets by county.  



 

Fig. 3. Distribution of the Pearson’s r between the log Twitter person-day movements and log 

SafeGraph person-day movements for all counties (a) Spatial distribution; (b) histogram 

The overall Pearson’s r for all county pairs (n = 1,516,210) between log Twitter person-

day movements and log SafeGraph person-day movements is 0.71. The rationale for using log 

transformation (with base 10) is to address the highly skewed distribution of movements among 

counties (see Appendix F). To reveal the spatial variations of the relationship for different areas, 

we further evaluated the association between the two movement datasets for the county pairs 

from each county to other counties. The spatial distribution of r illustrates lower values generally 

clustering in less populated areas, such as the Great Plains portion of the US (Fig. 3a). This is as 

expected, as Twitter data generally suffer in less populated areas due to insufficient tweets 

collected using the public free API. The histogram (Fig. 3b) indicates the most repeated r ranges 

between 0.65 and 0.75.  



To further examine the associations between the two movement datasets and the impact 

of county population size on the associations, we selected four counties with different 

geographical contexts and populations ranging from 3,300 to 10,000,000 and plotted the Twitter-

derived person day movements and SafeGraph-derived person day movements in 2019 for each 

county. The scatter plots (Fig. 4) reveal a quasi-linear positive pattern for all four counties. 

Consistent with Fig. 3, the r value decreases as population decreases for the four counties of Los 

Angeles County, CA (0.88), Harris County, TX (0.87), Horry County, SC (0.82), and Ford 

County, KS (0.57). Notably, we observed only a slight drop in r (from 0.88 to 0.82) for Horry 

County with a relatively small population of 354,081. The findings indicate that geotagged 

Twitter-derived movement has a strong linear association with SafeGraph-derived population 

movement and reinforce that geotagged tweets can well capture population movements among 

places (counties in this analysis). 



 

Fig. 4. Scatter plots of log Twitter-derived person day movements and log SafeGraph-derived 

person day movements in 2019 for the four selected counties with varying populations. (a) Los 

Angeles County, California (CA), including Los Angeles metropolitan area. 2019 population: 10.04 

million; (b) Harris County, Texas (TX), including Houston city. The most populous county in TX. 2019 

population: 4.71 million; (c) Horry County, South Carolina (SC), including the popular beach destination 

Myrtle Beach. 2019 population: 354,081; and (d) Ford County, Kansas (KS), including the small Dodge 

City. 2019 population: 33,619. Population data were derived from the American Community Survey 

(ACS) 5-Year Data (2015–2019).  

 



Comparing PCI with Facebook SCI 

We contrasted the PCI for each of the US counties with the Facebook Social 

Connectedness Index (SCI) data49. This comparison allows us to evaluate the hypothesis that 

places connected through (social media) friendship links are likely to have more physical 

interactions (e.g., population movement). This hypothesis has already been suggested in recent 

studies55 but not corroborated using SCI data. Thus, demonstrating this connection is relevant for 

many reasons, such as understanding spatial behavior under normal circumstances (e.g., business 

or commercial relationships, tourism, and migrations) or during extraordinary events such as a 

pandemic (e.g., the spread of infectious diseases) or a natural hazard (e.g., evacuation corridors). 

As a measure of social connectedness based on friendship links on Facebook, SCI 

revealed that the majority of these links are found within 100 miles, showing an intense distance 

decay effect49. The hypothesis of a positive association between social and spatial connections 

makes intuitive sense and helps understand population dynamics at different scales. To evaluate 

this, we first analyzed the correlation between PCI and SCI using all county pairs that had both 

PCI and SCI values (n = 1,702,531). Log transformation was used to address the highly skewed 

distribution of the PCI and SCI values among counties. Note that PCI values were multiplied by 

1000 before taking the log to avoid negative values. The overall r of 0.62 indicates a strong 

positive linear association between social and spatial connections. 

 

 



 

Fig. 5. Scatter plots of log PCI and log PCI for the four counties 

Fig. 5 shows the scatter plots of log PCI and log SCI in 2019 for the four counties used in 

the previous section, further confirming the positive association of a measure of social 

connectedness with an index of spatial connectivity. The scatter plots also reveal that the 

association between SCI and PCI is not always stronger in more populated counties (e.g., r for 

Harris County is 0.66 while for the less populated Horry County, it is 0.75). To further examine 

the variations of such association among counties, we computed the Pearson’s r between PCI 

and SCI for each county to other counties. Fig. 6 shows that strong correlations are generally 



clustered in Midwest US, Texas, and Southeast Georgia (Fig. 6a) and the most repeated r ranges 

between 0.70 and 0.75 (Fig. 6b). The strong association between PCI and SCI confirms the 

hypothesis that regions connected through (social media) friendship links are likely to have more 

physical interactions.  

 

Fig. 6. Distribution of the Pearson’s r between log PCI and log Facebook SCI for all counties (a) 

Spatial distribution; (b) histogram 

Another interesting observation from Fig. 5 is that the slope of the best-fit line is higher 

in more populated counties (e.g., Los Angeles County) than in lowly populated areas (e.g., Ford 

County), which leads to another hypothesis that the same amount of change in friendships (SCI) 

is associated with a larger change in people’s movement (PCI) in more populated counties, and 

vice versa. To test this hypothesis, we conducted a linear regression analysis for each county 

using SCI as the independent variable and PCI as the dependent variable. The slope for each 

county was then derived from the regression models. The county level slope map suggests that 



larger slopes are in general observed in more populated urban areas (Fig. 7a). To quantify this, 

we further associated the slope with the log county population, resulting in a strong positive 

linear relationship with r = 0.83 (Fig. 7b). This result suggests the relationship is not only valid 

in the four counties but is also valid at the US county level in general, confirming our hypothesis. 

One potential reason behind this pattern might be explained by the nature of urban areas and 

their style of life, particularly in the US, where urban sprawl means that much of the daily 

mobility in these areas is intercounty, and therefore reflected in PCI. In addition, the proximity to 

airports in the more populated areas allows for a much more rapid connectivity with the rest of 

the country. 

 

Fig. 7.  (a) Distribution of the regression slope between log PCI and log Facebook SCI. (b) 

Association between regression slope and log county population for all counties. Population data 

were derived from ACS 5-Year Data (2015–2019). 

Our findings also suggest caution about the relationship between these two variables. 

Although PCI and SCI are associated, one cannot substitute one for the other, as they represent 

different phenomena: social versus spatial behavior. Although same amount of change in 

friendships (SCI) is associated with a larger change in people’s movement (PCI) in more 

populated counties, more studies are needed to better understand the driving forces (e.g., urban-



rural, demographic, and socioeconomic factors) behind such associations. We believe PCI is an 

important addition, as it involves a new standardized measure of spatial connectivity based on 

population movement. 

Distance Decay Effect 

Our analysis revealed that PCI expresses a clear distance decay effect. In other words, the 

spatial connectivity between two distant places is likely to be lower than that observed between 

two near counties. However, there are some nuances in this broad assertion. Fig. 8 illustrates the 

association between log PCI and the log distance for each county to all other counties. The map 

(Fig. 8a) shows that less populated (rural) areas of the Midwest, Pacific Northwest, or Texas 

have a stronger negative association between PCI and distance, meaning that these communities 

are more tightly knit with surrounding areas than with more distant communities (stronger 

distance decay effect). This phenomenon is also reflected in Fig. 9, where R2 values of the 

power-law function decrease dramatically from lowly populated Ford County (0.494) to Harris 

County (0.154) to highly populated Los Angeles County (0.065). Pearson’s r was not used as the 

scatter plot, as the relationship is nonlinear. It should be noted that population size is likely a 

compounding factor that goes along with urban centers (e.g., metropolis) with large airports. 



 

Fig. 8. Distribution of the Pearson’s r between log PCI and log distance for all counties (a) Spatial 

distribution, (b) histogram  

 



Fig. 9. Scatter plots of PCI and distance for the four counties.  

The maps in Fig. 10 depict how the selected four counties are connected to other counties 

based on the PCI, which agrees with the above observations. On the other hand, Fig. 10 also 

shows that highly populated and touristy urban areas (well connected through airports), such as 

New York City, Miami, Orlando, Chicago, or Las Vegas, act as poles of attraction for people 

from distant locations. This is clear in Fig. 10a, where we can see how Los Angeles County, for 

instance, is more closely linked through spatial interactions with the New York City metropolitan 

area than with some California or Nevada counties. This behavior is also easily detected in Fig. 9 

through the outliers of the point distributions in Los Angeles County. 

 

Fig. 10. The selected four counties (highlighted with yellow boundaries in the maps) and their PCIs 

with other counties in the contiguous US.  Population data were derived from ACS 5-Year Data (2015–

2019). 

 



Boundary Effect 

Inspired by Bailey et al.49, we also considered the effect of administrative borders 

shaping spatial connectivity. A higher PCI between a county pair indicates a strong relationship 

geographically. In a general sense, people tend to travel to their adjacent counties more 

frequently than non-adjacent counties. However, do the residents near the state border prefer the 

in-state counties as their destinations rather than the adjacent county across the state border? Or 

are the out-of-state counties more attractive? If state borders have a role in explaining spatial 

connectivity, people will tend to travel more within their home states than in neighboring states, 

even when the distance is fixed. 

To evaluate the state boundary effect for each of the four counties, we first ran a linear 

regression with the following variables: the distance between the county and all other counties in 

the contiguous US (distance), a categorical variable (same_state), and PCI (as the dependent 

variable). The result indicates that the same_state variable shows a strong positive effect (p < 

.001) on PCI even after controlling for distance (Table 1). This implies that these four counties 

are more tightly (spatially) connected with other counties within the same state, even when 

compared to nearby counties in other states.  

 

 

 

 

 



Table 1 Regression Results for the Four Counties using the same_state as an independent variable and 

PCI as the dependent variable, controlling for the distance between counties. 

  Los Angeles County Harris County Horry County Ford County 

  Coefficient SE Coefficient SE Coefficient SE Coefficient S.E. 

Intercept 0.0059*** 0.0008 -0.0075*** 0.0007 0.0078*** 0.0003 -0.0073*** 0.0003 

Same state 0.0495*** 0.0017 0.0170*** 0.0010 0.0273*** 0.0010 0.0170*** 0.0006 

Distance -8.3E-07  -4.5E-07 -3.6E-06*** 6.9E-07 -4.5E-06 *** 2.5E-07 -4.9E-06 *** 3.7E-07 

Adjusted R2 0.24 0.16 0.33 0.45 

Observations 3008 2932 2446 1788 

Note:  *p < 0.1   **p < 0.05   ***p < 0.01. The county centroid was used for the distance calculation 

between two counties (distance unit: mile). 

To test whether existing state borders are similar to the borders formed when we grouped 

together the US counties into communities (clusters) based on their spatial connectivity (i.e., 

PCI), we used a hierarchical agglomerative linkage clustering method following Bailey et al. 

(2018b) to create such homogenic spatial connectivity communities and compare them with the 

state administrative division of the US. Hierarchical agglomerative clustering groups county 

pairs based on their distance in feature space. In our experiment, the “distance” is defined as the 

inverse of PCI, which means a low PCI in a county pair has a long distance, and vice versa. In 

the beginning, every county is viewed as a separate community, and the two closest communities 

are combined into a new community. Distances of combined communities will be updated by the 

average of distances between county pairs of community pairs. The clustering stops when all 

counties are combined into a target number of communities. We chose 75, 48, and 20 clusters as 

the targeted number of communities.  



 

Fig. 11. Results of the hierarchical agglomerative clustering of PCI with three different targeted 

numbers of communities for the contiguous US. Each unique color depicts a community. Counties of 

less than five Twitter users in our dataset are ignored (white areas). 

As shown in Fig. 11, most resulting distinct communities in the three maps are spatially 

contiguous, revealing the strong spatial connectivity of neighboring counties, an obvious 

consequence of spatial proximity. However, the resemblance of these three maps with state 

boundaries is quite remarkable across many areas, supporting the assertion that state boundaries 

do play a decisive role in shaping the spatial behavior of the population. For example, we can see 

how several clusters in the southwest US are essentially the state boundaries. Also, many other 

smaller clusters also respect the actual state boundaries. This pattern holds in the three maps with 

different cluster sizes. When clustering to a relatively small number of communities (i.e., the 20-

community map), spatial proximity still plays a role. Some adjacent states are merged into large 

contiguous regions. For example, Fig 11 shows that there is a large cluster in the middle US. 

When clustering to a relatively large number of communities (i.e., the 75-community map), some 

connected large regions split into states such as California and Nevada. It is worth noting that 

PCI may be skewed due to low Twitter user numbers. For example, PCIs of less populated 

counties may be higher if a few active Twitter users happen to live there. This might, to some 

extent, explain the large number of spatially disconnected counties merged into the same cluster 

in the north-central US. We believe that further geographic and socioeconomic studies are 



needed to better explain the connectivity of the clustering results. For example, the Rocky 

Mountains hinder the travel from the central US to the west, and the modern ground 

transportation systems in the Great Plains may facilitate travels in the central US, so that the 

states in the middle US have more connectivity (see the 20-community map).  There may be 

other causal factors that determine individuals’ travel associations, such as families, 

political/religious, agricultural community and state allegiance, and some may be more or less 

important in different regions of the country.  Identifying drivers of social behaviors in such a 

large region is beyond the research scope of this paper. 

 Fig. 12 shows the hierarchical agglomerative clustering of 2019 PCI for the worldwide 

first-level subdivisions with two different numbers (25 and 100) of targeted communities (the 

clustering results for 50 and 200 targeted communities can be found in Appendix F). The country 

boundaries could be clearly observed in both maps. The results also reveal that the groupings 

with the 25 communities are consistent with what many people perceive as connected regions 

(e.g., US with Canada and Europe).  However, once into the 100 level, the divisions between east 

and west start to emerge.  Another interesting finding is how unconnected the regions in Africa 

are, though the country boundary effect is still observable. However, it should be cautious that 

whether such disconnection resulted from the sparsity of Twitter data in Africa countries 

(elaborated in the Discussion section) needs further investigation.  

 



 

Fig. 12. Results of the hierarchical agglomerative clustering of PCI with two 25 and 100 targeted 

numbers of communities for the worldwide country first-level subdivisions. Each color depicts a 

community. Boundary data was retrieved from GADM56. 

In summary, the different regions identified in the US and the world using the 

agglomerative clustering not only demonstrate the boundary effect of PCI, but also suggest that 

PCI can potentially be used as a tool in regionalization analysis to reveal how places are 



connected and regions are formed at different geographic scales. In addition, a strong state 

boundary effect was also observed in social connectivity with Facebook SCI49. These two 

findings are likely related. Using PCI or SCI as a proxy for travel behavior is a first step at 

understanding causal factors for travel or social connectivity. We do not know which one drives 

the other or if there are other variables conditioning this behavior (e.g., socio-spatial factors 

based on institutional or administrative circumstances). Further studies are needed to better 

understand the boundary effect of PCI and its connections with SCI. 

Applications 

PCI can potentially be applied in various fields that can benefit from a better 

understanding of human movement at varying spatial scales, such as infectious disease spread, 

transportation, tourism, evacuation, and economics. Two examples are provided to exemplify 

how PCI can be used to analyze and predict infectious disease spreading and hurricane 

evacuation destination choice.  

Spatial Spread of COVID-19 During the Early Stage  

Westchester County was an early (March 2020) hotspot of COVID-19 in the US57. Early 

confirmed cases and a high infection rate to family and friends increased social tension that 

residents from Westchester and surrounding areas were reportedly fleeing away58. On the global 

scale, Lombardy, Italy was an epicenter of the COVID-19, with the first cluster of cases detected 

on February 21, 202059. The travel restrictions between the US and Europe were not in place 

until March 12, 202060. In this application example, we explored the relationship between the 

spread of COVID-19 and PCIs of the two epicenters at the US county level on a regional scale 

(Westchester County, NY) as well as the state level on a global scale (Lombardy, Italy).  



Given that the incubation period of COVID-19 is about two to three weeks61, the number 

of cases confirmed before the end of March was used in the later calculation to capture the 

spread of COVID-19 in early and mid-March for the US county level analysis. Fig. 13 shows the 

county-level infection rate (number of confirmed cases per 10,000 people) as of March 31, 2020. 

The number of confirmed cases is based on the New York Times62 database, and the total county 

population is based on the ACS five-year estimation63. Dark red spots show the hotspots of 

COVID-19 confirmed cases. Westchester County and surrounding New York City areas were the 

main hotspots at the end of March.  

 

Fig. 13. US county level COVID-19 cases per 10,000 people as of March 31, 2020. COVID-19 case 

data were downloaded from NYT Github62. The county population was retrieved from the ACS five-year 

estimates (2014–2018).  



To explore whether outbreaks of COVID-19 in the US are related to people who fled 

away from New York City in early March64, we used a linear regression model to examine the 

relationship between COVID-19 infection rate (as a dependent variable) and the connectivity 

between a given county and Westchester County using four measurements, including PCI 

computed with 2018 and 2019 Twitter data, respectively, Facebook SCI as of August 2020, and 

2020 SafeGraph movement data (the person-day movements computed with the method in 

Appendix D using data from January to March, 2020). Note that PCI was scaled by 1000 in the 

regression models to ease the result presentation. Table 2 shows the results of the four linear 

regression models. For all four measurements, positive relationships are significant at the 0.01 

level. Among these four measurements, PCI for both 2018 and 2019 showed the highest adjusted 

R2 of 0.24 for both years. In other words, 24% of the variance of COVID-19 infection rate in 

each observed county can be explained by PCI alone. SafeGraph movement results in an 

adjusted R2 of 0.13. Facebook-based SCI shows the lowest adjusted R2 of 0.08, though the 

coefficient is still significant (p < 0.01).  

Table 2 Regression Result Using COVID-19 Infection Rate as the Dependent Variable, and PCI, SCI, or 

SafeGraph as the Predictor Variable.  

  

2019 

PCI 

2018 

PCI 

Facebook (2020) 

SCI 

SafeGraph (2020) 

Person-day movement 

  Coefficients SE Coefficients SE Coefficients SE Coefficients SE 

Intercept 1.63496*** 0.11603 1.60351*** 0.12215 2.26827*** 0.12262 2.47287*** 0.13615 

PCI/SCI/SafeGraph 0.22505*** 0.00931 0.21112*** 0.00901 0.00013*** 0.00001 0.00040*** 0.00003 

Adjusted R2 0.24 0.24 0.08 0.13 

Observations 1847 1755 1847 1497 



*p < 0.1    **p < 0.05    ***p < 0.01 

Regression models controlling for the effect of geographic distance were also conducted 

with the four human mobility measurements. Results show that all four measurements still show 

significant positive correlations with the COVID-19 infection rate (p < 0.01; Table 3). The 

adjusted R2 for SafeGraph-derived movement and Facebook SCI remain unchanged, and the 

coefficient of the distance variable is not significant (p > 0.1). The adjusted R2 for both 2018 and 

2019 PCIs only slightly increased by 0.01, from 0.24 to 0.25. While the distance variable is 

significant in these two models, its impact on the infectious rate is relatively weak given the 

small coefficient values (β = 0.00087 for 2019 PCI and β = 0.00091 for 2018 PCI). We remark 

that PCI calculated with historical Twitter data of either 2018 or 2019 exhibits similar 

performance in the two models, suggesting the stability of place connectivity measured by PCI. 

Table 3 Regression Result Using COVID-19 Infection Rate as the Dependent Variable, and PCI, SCI, or 

SafeGraph as the Predictor Variable Controlling for Distance  

  

2019 

PCI 

2018 

PCI 

Facebook (2020) 

SCI 

SafeGraph (2020) 

Person-day movement 

  Coefficients SE Coefficients SE Coefficients SE Coefficients SE 

Intercept 0.73883*** 0.22272 0.67638*** 0.23186 2.19947*** 0.23329 2.43267*** 0.24346 

PCI/SCI/SafeGraph 0.23706*** 0.00960 0.22307*** 0.00931 0.00013*** 0.00001 0.00040*** 0.00003 

Distance 0.00087*** 0.00019 0.00091*** 0.00019 0.00007 0.00020 0.00004 0.00022 

Adjusted R2 0.25 0.25 0.08 0.13 

Observations 1847 1755 1847 1497 

*p < 0.1    **p < 0.05   ***p < 0.01 



In the global scale analysis, we examined the association between the 2019 US state level 

PCI with Lombardy, Italy and US state level COVID-19 infection rate (number of cases per 

100,000 people) as of March 25, 2020, two weeks after the US placed travel restrictions with 

Europe. The state level PCI indicates the connectivity strength between each of the 50 US states 

and Lombardy, Italy (Fig. 14a). As shown in Fig. 14b, PCI with Lombardy exhibited a strong 

positive association with the US state level COVID-19 infection rate at the early stage of the 

pandemic (r = 0.48, n = 50, p < 0.01).  

 

 

Fig. 14 Global scale analysis of PCI and COVID-19 infection rate. (a) Map showing the 2019 world 

first-level subdivision PCI between Lombardy, Italy and US states (and other parts of the world); (b) 

Correlation between the log US state level PCI with Lombardy, Italy and log US state level COVID-19 

infection rate (number of cases per 100,000 people) as of March 25, 2020. COVID-19 case data were 

       
       

 

   

 

   

 

   

                       

  
  
  
 
 
  
  
  
  
  
  
 
 
  
 
  
 

        

                                                                       
                                                 

   

   



downloaded from NYT Github62. The state population was retrieved from the ACS five-year estimates 

(2014–2018). World first-level subdivision boundary data was retrieved from GADM56. 

Findings in this application suggest that the multi-scale PCI, computed from historical 

Twitter data, is a promising indicator in predicting the spatial spread of COVID-19 during the 

early stage, outperforming more current Facebook SCI (data as of August 2020) and SafeGraph-

derived person-day movement data (from January 1 to March 31, 2020) at the US county level.  

Hurricane Evacuation Destination Choices   

Evacuation of coastal residents has been an effective and important protective action 

before the arrival of a hurricane65. Understanding where coastal residents are evacuating helps in 

evacuation route planning and resource allocations66. Residents of a county are likely to evacuate 

to a county where they have established relationships (friends, colleagues, familiar lodging stays, 

etc.). The preexisting relationships would be expressed by the PCI or SCI. In this section, we 

examined the association between PCI (computed using the 2019 Twitter data) and people’s 

evacuation destination choice using Hurricane Matthew in 2016 as a case study. We hypothesize 

that people are more likely to evacuate to a county that has a high PCI with the evacuation 

county (the county being evacuated). For comparison, we also tested the hypothesis that people 

are more likely to evacuate to a county that has a high SCI with the evacuation county. 

Hurricane Matthew was a Category 5 hurricane that visited the east coast of the US at 

Category 1 in early October 2016. Evacuation orders for coastal counties under potential impact 

were placed by the governors of Georgia, South Carolina, and North Carolina on October 4, 

2016. Twitter users were selected as individual evacuees for testing our hypothesis. The 

evacuation identification procedure followed the study area and evacuation timeline determined 



by Martin et al.67 and Jiang et al.37. In this study, we identified 272 evacuated individual Twitter 

users from Chatham County, GA, and 241 evacuated users from Charleston County, SC. All 

selected users had evacuated more than 50 miles away from their original coastal counties, and 

all of their destinations were not in the potential impact zone. The 272 evacuated individuals 

leaving Chatham County ended up in 120 destination counties, and the 241 Charleston County 

evacuees ended up in 118 destination counties (Fig. 15). 

 

Fig. 15 Hurricane Matthew Evacuation Estimation Using Geotagged Tweets. Red dots indicate user 

locations during the pre-evacuation period (October 2–4, 2016). Blue dots show user locations during the 

post-evacuation period (October 7–9, 2016).  

To test our hypotheses and the potential of PCI in predicting evacuation destination 

choice, we used linear regression to model the relationship between the number of evacuated 

users in the destination counties (dependent variable) and PCI of the county pairs between 



Charleston County (origin) and each of the destination counties (n = 118). Note that PCI was 

scaled by 1000 in the regression models to ease the result presentation. Distance between the 

evacuation county and each of the destination counties were used in the regression model as 

controls. SCI was tested by replacing PCI in the regression model for comparison. The same 

model configuration was used for Chatham County (n = 120). Table 4 shows the regression 

results for the four models.  

Table 4  Regression Results for the Number of Evacuated Users in the Destination Counties (Dependent 

Variable) and PCI (or SCI) of the County Pairs Between Evacuation County and Each of the Destination 

Counties 

  

Charleston County 

PCI 

Charleston County 

SCI 

Chatham County  

PCI 

Chatham County 

SCI 

  Coefficients SE Coefficients SE Coefficients SE Coefficients SE 

Intercept 0.28676 0.23274 1.63200*** 0.32877 -1.66645** 0.63781 2.57697*** 0.69610 

PCI/SCI 0.09611*** 0.00606 0.00003*** 0.00000 0.19071*** 0.01927 0.00001 0.00001 

Distance 0.00019 0.00030 -0.00047 0.00047 0.00115 0.00083 -0.00155 0.00112 

Adjusted R2 0.71 0.29 0.47 0.04 

Observations 118 118 120 120 

*p < 0.1   **p < 0.05   ***p < 0.01 

For both counties, PCI shows a significant positive association with evacuee counts (p < 

0.01). SCI shows a significant positive association with evacuee counts for Charleston County (p 

< 0.01), but the coefficient is not significant for Chatham County (p > 0.1). The distance variable 

is not significant for all four models (p > 0.1). The PCI model for Charleston County has an 

adjusted R2 of 0.71, indicating 71% variance can be explained by PCI. However, the adjusted R2 



value for SCI has a much lower value of 0.29. For Chatham County, the PCI model has an 

adjusted R2 of 0.47, while the adjusted R2 value for the SCI model is only 0.04. This application 

demonstrates the potential of using PCI as a factor in modeling hurricane evacuation destination 

choice. The comparison of PCI and SCI shows that PCI outperforms SCI in this application 

scenario. 

Discussions 

The evidence of spatial inter-dependency is increasingly apparent across scales, captured 

by the digital records of growing human mobility and socioeconomic activities. Geotagged social 

media data records many space-time social contexts where people perceive, act, and interact with 

each other, allowing researchers to quantify how specific locations are mentioned and related in 

physical, virtual, and perceived worlds. As a popular social networking platform, Twitter records 

a substantial portion of human communication and events at various space-time scales. The 

geotagged tweets can reveal where people visit, with a much larger sample size than 

conventional surveys38. 

This research employs global geotagged Twitter data to delineate the spatial interactions 

between places by developing PCI. The results show that geotagged tweets can be used to reveal 

global place connectivity at various geographic levels. At the US county level, PCI has strong 

correlations with other data streams such as SafeGraph and Facebook. Compared to the latter 

two data sources, Twitter data are more openly available overtime at the individual level. The 

open-sourced global PCI datasets at various geographic levels can thus provide invaluable 

opportunities to explore human behavior and social phenomena. As demonstrated by the two 



application examples, PCI can be used for research in infectious disease and hurricane 

evacuation that benefit from a better understanding of human movement.  

The world should be portrayed as networks instead of the mosaic of cities68. As a 

classical and fundamental research topic, the interactions between locations convey the urban or 

regional spatial structure. The PCI computed from billions of tweets offers promising 

opportunities to measure and compare intra- and inter-city connections and flows. Also, PCI can 

be linked to other large geotagged data, such as Yelp and Transportation Network Company 

data, to reveal a more completed picture of spatial structure dynamics. Combined with PCI, the 

place hierarchy and spatial clusters can be revealed based on both virtual and physical 

interactions. As place connectivity changes over time, we plan to update the PCI on a yearly 

basis if Twitter continues to provide a free API for geotagged tweet access. Researchers can also 

compute their own PCI of interested geographic scales and time periods following the steps 

provided in this paper. Besides PCI, the person-day movement derived from geotagged tweets is 

able to capture the frequencies a twitter user appeared in both places during a year, which can 

subsequently be used to indicate the potential purpose of users’ spatial activities and further infer 

the types of place connectivity. 

Although the outcome of the behavior of PCI largely matches our expectations and with 

the results of other big social data sources, using social media data to identify spatial interaction 

has the following limitations. We caution that studies using the open-sourced PCI datasets should 

be aware of such limitations when interpreting the results. First, research using social media has 

been criticized for being biased for representing specific population groups. For example, young 

adults are more likely to use Twitter, compared to their older counterparts12,51,52. Second, the 

correlation between PCI and other indicators from social networking platforms in the US is 



largely relevant to the cultural and policy context. Hence, the results may not be readily 

generalized or used for prediction in other areas. Further studies are needed to evaluate the PCI 

for geographic areas other than the US. Third, episodic events, such as holidays and hurricanes, 

would largely attract/hinder users' movement to specific places. It might distort the connectivity 

if data is only collected for short periods, and thus affect the accuracy and consistency of 

measurement results. This issue can be addressed by computing PCI over a relatively long period 

(e.g., one year or longer) or filtering out the data during the affected time period. Lastly, 

geotagged tweets are unevenly distributed across space and time, which also affects the 

reliability of such measurements. The data sparsity issue is caused by a variety of factors such as 

population density, Internet accessibility, and governmental policies on social media. More 

studies are needed to evaluate the performance of PCI at different geographic areas and scales by 

associating and comparing it with other data sources and testing it with other applications; and 

ideally, mitigating for the effects of the spatial variation in geotagged tweets.  

Despite these limitations, to the best of our knowledge, Twitter data is the most 

accessible dataset offering the opportunity to extract worldwide human movement at various 

spatiotemporal scales for a relatively long time period. By open-sourcing the global PCI datasets 

at various geographic scales, we call for more efforts to tackle these issues and further validate 

PCI following the suggested future studies and beyond.  

Conclusions 

The relationships among places are shaped by dynamic human movement, whose 

intensity further quantifies the connectivity (strength of the linkages) among places. With the 

advances in technologies in the past decades, the connectivity among places is ever-evolving 



dynamically, thus demanding spatiotemporal-continuous observations with harmonized 

approaches. Fortunately, the emergence of big social media data, benefiting from the advent of 

geo-positioning techniques and the popularity of social media platforms, offers a new venue 

where collecting human spatial interactions becomes less-privacy concerning, easily assessable, 

and harmonized.  

In this study, we introduced a global multi-scale place connectivity index based on 

people’s spatial interactions among places revealed from worldwide geotagged Twitter posts. 

Defined as the normalized number of Twitter users who shared spatial interactions during a 

specified time period, the proposed PCI is a harmonized and spatiotemporal-continuous place 

connectivity metric, expected to benefit various domains requiring knowledge in human spatial 

interactions. The interactive web portal aims to facilitate place connectivity visualization and 

provide downloadable connectivity matrices to support research needs. 

To better understand the characteristics of PCI, we conducted a series of experiments 

using PCI and other data sources. An overall Pearson’s r of 0.71 between the population 

movement derived from Twitter and SafeGraph (10% penetration in the US population) reveals 

that geotagged tweets can well capture the population movement at the US county level. The 

comparison between PCI and Facebook SCI (a popular connectivity index based on social 

networks) with an overall r = 0.62 suggests a strong connection between spatial interactions and 

social interactions, confirming the hypothesis that “regions connected through many friendship 

links are likely to have more physical interactions between their residents”55. Like many 

connectivity measurements that are bounded by the first law of geography, we found that PCI 

generally follows distance decay form tested at the county level, while the distance decay effect 

is found weaker in more urbanized counties with a denser population. This phenomenon can be 



explained by the existence of long-distance transportation facilitates (e.g., airports, railways, and 

bus stations) that, to some extent, express a hierarchical diffusion relationship rather than a 

contagious diffusion. We further observed a strong boundary effect in PCI, indicating that 

counties in the same state and states/provinces in the same country are more connected, 

evidenced by their higher PCI values. The different regions identified in the US and the world by 

using the hierarchical agglomerative clustering suggests that PCI can be used as a tool in 

regionalization analysis to reveal how places are connected at different geographic levels and 

scales.  

We demonstrated that PCI could address real-world problems requiring place 

connectivity knowledge using two applications: 1) modeling the spatial spread of COVID-19 

during the early stage and 2) modeling hurricane evacuation destination choices. In the first 

application, we found that the PCI for Westchester County, NY, an early hotspot of COVID-19 

in the US, could explain 22% of the variance in COVID-19 cases among US counties at the early 

outbreak, which was much higher than Facebook SCI (8%) and the population movement 

derived from SafeGraph (13%). In the global scale analysis, we found that PCI for Lombardy, an 

early epicenter in Italy, had a strong association with the infection rate at the US state level at the 

early stage of the pandemic (r = 0.48, n = 50, p < 0.01). In the second application, we found that 

PCI explains a considerably higher percentage of variance in local residents’ choices of 

destination county during 2016 Hurricane Matthew compared with Facebook’s SCI, suggesting 

the superiority of spatial interactions in modeling evacuation choices than social interactions. 

With the effects of geographic distance being weakened by technological advances, place 

connectivity quantified by human spatial interactions has been evolving since the very first day 

of modern society and will continue to evolve at an accelerating pace in the future. Taking 



advantage of the growing popularity of social media, the PCI proposed in this study contributes 

to a multi-scale, spatiotemporal-continuous measurement of global place connectivity, with the 

potential to benefit numerous applications such as infectious disease modeling, transportation 

planning, evacuation modeling, tourism management, to list a few. The methodological and 

contextual knowledge of PCI, together with the launched visualization platform and open-

sourced PCI datasets at various geographic scales, are expected to support research fields in need 

of prior knowledge in human spatial interactions. 

Data sharing and availability statement: The following datasets are made available to 

the public: US census tract level PCI for Los Angeles County and New York City for 2018 and 

2019, US county level PCI for 2018 and 2019, world first-level subdivision PCI for 2019, and 

world country level PCI for 2019. The number of shared users between each place pairs and total 

number of users for each place are also included in the PCI datasets.  The aggregated county-

level person-day movements derived from Twitter for 2019 and aggregated county-level person-

day movements derived from SafeGraph data for 2019 used in this study are also included. Data 

download links can be found at https://github.com/GIBDUSC/Place-Connectivity-Index. 

Facebook SCI data can be downloaded at https://data.humdata.org/dataset/social-connectedness-

index. The interactive web portal for visualizing PCI and relevant datasets can be accessed at 
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