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Abstract

Shaped by human movement, place connectivity is quantified by the strength of spatial
interactions among locations. For decades, spatial scientists have researched place connectivity,
applications, and metrics. The growing popularity of social media provides a new data stream
where spatial social interaction measures are largely devoid of privacy issues, easily assessable,
and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI)
based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-
continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US
county level, exhibits a strong positive association with SafeGraph population movement records
(10% penetration in the US population) and Facebook’s social connectedness index (SCI), a
popular connectivity index based on social networks. We found that PCI has a strong boundary
effect and that it generally follows the distance decay, although this force is weaker in more
urbanized counties with a denser population. Our investigation further suggests that PCI has
great potential in addressing real-world problems that require place connectivity knowledge,
exemplified with two applications: 1) modeling the spatial spread of COVID-19 during the early
stage of the pandemic and 2) modeling hurricane evacuation destination choice. The
methodological and contextual knowledge of PCI, together with the launched visualization
platform and open-sourced PCI datasets at various geographic levels, are expected to support

research fields requiring knowledge in human spatial interactions.
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Introduction

Since the proposal of “social physics” in 1948 by John Stewart, an astrophysicist who
first attempted to reveal spatial interaction based on the concept of the Newtonian gravitational
framework!, research on modeling, documenting, and understanding human spatial interaction
has been a research hotspot in geography and related fields. From a geographic perspective,
human movements form the spatial interactions among places, featured by both social
(population, land use, culture, etc.) and physical characteristics (climate, geology, landscape,
etc.)’. Relationships among places are shaped by constant human movement, and the intensity of
such movement further quantifies the connectivity strength among places. Thus, understanding
connectivity between two places provides fundamental knowledge regarding their interactive
gravity, benefiting various applications such as infectious disease modeling, transportation
planning, tourism management, evacuation modeling, and other fields requiring knowledge in

human spatial interactions.

However, measuring such interactions at various spatiotemporal scales is a challenging
task. Early efforts (widely adopted until now) to examine spatial interactions adopted survey
methods. Researchers used questionnaires to understand spatial interactions, aiming to gauge
both long-term spatial movement, such as migration patterns®~>, and short-term spatial
displacement, such as evacuation and traveling®!!. The well-documented spatial interactions
from these surveys contribute to our understanding of how people move across space and how
places are connected; however, such an approach suffers from limitations of small sample

sizes'?, limited temporal resolution'?, and resource demands'*.


https://en.wikipedia.org/wiki/Astrophysicist

The limitations of survey-based approaches largely preclude spatiotemporal-continuous
observations in spatial interactions, therefore inducing discrete place connectivity measurements.
However, place connectivity should not be considered as a fixed spatiotemporal property of
places. Instead, connectivity is ever-changing and evolving rapidly in modern society'>!7. As
argued by many, technological advances in the past decades have greatly facilitated connectivity
by weakening geographic limits'®. To capture the temporal nature of spatial interactions,
researchers have emphasized the importance of transportation data that detail people’s moving
patterns. Place connectivity has been measured using various transportation means that include

2223 and intercity bus networks®*. The rich

airline flows!*?°, highway traffic?!, railway flows
traffic information and the derived spatial networks greatly facilitate our understanding of how
places are connected via these transportation modes. However, transportation-based approaches
pose new challenges. First, such data are generally difficult to obtain, as they are often
confidential or collected by private companies. Second, the data themselves are mode-specific,
lacking the holistic views of the overall human spatial interactions and place connectivity, which
are often needed in fields such as infectious disease modeling. A notable effort to tackle the latter
issue is by Lin et al.>}, who constructed a combined inter-city connectivity measurement based
on multiple data sources for nine cities in China and demonstrated its advantage over the index
derived from a single data source. This study offers valuable insights in understanding how cities
are connected using a holistic approach. Due to data availability issues, however, it is
challenging to construct such a combined index that are spatiotemporal-continuous for a large

area (e.g., a country or the entire world) at various geographic settings and scales (e.g., urban,

suburb, or rural; county, state/province, or country).



The emerging concepts of “Web 2.0” 2° and “Citizen as Sensors” ?°, largely benefiting
from the advent of geo-positioning technologies, offer a new avenue to actively and passively

gather and collect the digital traces left by electronic device holders?’%. For example, passive

29,30 31,32

trace collection involves data obtained from mobile phone data"", smart cards’ >, or wireless
networks>?. The spatial interactions documented from these passively collected traces tend to
have high representativeness, given their high data penetration ratios. However, privacy and
confidentiality concerns have been raised for such approaches, as individuals do not intend to
actively share their locational information and are unaware of the usage of the generated

positions*+3?,

An approach less encumbered with privacy issues is based on spatial information from
social media, a digital platform aiming to facilitate information sharing that has been popularized
in recent years. Owing to their active sharing characteristics, social media data are less abundant
compared to passively collected GPS positions from mobile devices but are less intrusive’®7,
more accessible’®, and more harmonized®. The huge volume of user-generated content covering
extensive areas facilitates the timely need for summarizing human spatial interactions. Twitter,
for example, has quickly become the largest social media data source for geospatial research and

has been widely used in human mobility studies*®*

, given its free application programming
interface (API) that allows unrestricted access to about 1% of the total tweets*. We believe that

the enormous sensing network constituted by millions of Twitter users worldwide provides

unprecedented data to measure place connectivity at various spatiotemporal scales.

As an essential component in human interaction, social connections that involve online
searching, friendships, account following, news mentioning, and information reposting can also

contribute to place connectivity measurement. For example, the co-occurrences of toponyms on



massive web documents, news articles, or social media were extracted to measure city
relatedness and connectivity** . A recent effort from Facebook explores connectivity
measurement among places (called Social Connectedness Index, SCI) utilizing the social
networks constructed from massive friendship links on Facebook*’. However, whether or how
the place connectivity measured by social connections differs from the one measured by physical

connections is worth further investigation.

In view of the existing studies, gaps still exist in 1) the effort to construct a global place
connectivity measurement that is harmonized, multi-scale, spatiotemporal-continuous based on
the physical movement of social media users, 2) examining the utility of the derived place
connectivity from a very large area and/or longer time period in solving some real-world
problems, and 3) applications to visualize place connectivity at various geographic levels with
downloadable and ready-to-use connectivity matrices to support a wider community research
needs. Taking advantage of big social media data and the advancement of high-performance
computing, we introduce a place connectivity index (PCI) and an array of PCI datastets based on
people’s movement among places captured from big Twitter data. Specifically, in this study, we
computed global PCI from billions of geotagged tweets aggregated at different geographic levels
to reveal place connectivity at multipe scales, including world country (inter-country
connectivity), world first-level subdivision (inter-state/province, and intra-country connectivity),
US metropolitan area (inter-unban area connectivity), US county (inter-city/county connectivity),
and US census tract (intra-city connectivity). We compared population movement derived from
Twitter data with the SafeGraph>® movement data in the US to evaluate how well geotagged
tweets captured population movement. We compared PCI with Facebook’s SCI, a popular

connectivity index based on social networks, to reveal the association between spatial



interactions and social interactions. We also investigated the spatial properties of PCI including

distane decay and boundary effect.

The utility of PCI is exemplified in two applications: 1) modeling the spatial spread of
COVID-19 during the early stage of the pandemic and 2) modeling hurricane evacuation
destination choice. The results demonstrate the great potential of PCI in addressing real-world
problems requiring place connectivity knowledge. Finally, we constructed massive PCI matrices
and launched an interactive portal for users to visualize the strength of connectivity among
geographic regions at various scales. The derived global PCI matrices at various geographic
scales are open-sourced to support research needs. Serving as a harmonized and understandable
connectivity metric, the multi-scale PCI data with the ability to “zoom in” and “zoom out” are
expected to benefit varied domains demanding place connectivity knowledge, such as disease

transmission modeling, transportation planning, evacuation simulation, and tourist prediction.

Place Connectivity Index

A Place Connectivity Index (PCI) between two places is defined as the normalized
number of shared persons (unique Twitter users) between the two places during a specified time
period (e.g., one year; Fig. 1). For example, if a user is observed at both places during the time
period, the user is considered a shared user between the two places. PCI can be computed at
various geographic scales. For example, a place can be a county, state, or country. PCI does not
aim to capture the real-time population movement between places (though it is derived from such
movement); rather, it provides a relatively stable measurement of how strong two places are
connected by spatial interactions. The strength of the connection between two places can be
determined by many factors, such as geographic distance (the first law of geography; Miller,

2004), transportation, administrative/regional limits (e.g., states), physical barriers (e.g., rivers



and mountains), social networks, demographic and socioeconomic similarities or differences.
The shared users among places derived from Twitter data can be considered as an observable
outcome of the combined force of these factors, and thus is modeless, with the understanding of
Twitter data limitations (e.g., population bias). In this sense, PCI should be calculated in a
relatively long time period (e.g., a year) to gather sufficient information to summarize the

general patterns.

Observed
Population Movement

Quantified
Connectivity (shared persons)

Fig. 1. Illustration of Place Connectivity Index based on shared social media users.

Following the general geometric average and normalization strategy®*#64°, the PCI

between place i and place j (denoted as PCIj) is computed by Eq. 1.

PCl; = ;_""S]_ i,j €[1,n] Eq. 1

where S; is the number of observed persons (unique social media users) in place i within time
period T; §; is the number of observed persons in place j within time period T; Sj; is the number
of shared persons between places i and j within time period 7; and # is the number of places in

the study area.



Places with a larger population size tend to have more social media users, and thus tend
to have more shared users among them. The denominator in Eq. 1 is used to normalize the metric
based on the relative populations in the two places. PCI ranges from 0 to 1. When no shared user
is observed between two places, PCI equals 0. If all users in place i visit place j (vice versa) and
the two places have the same number of users (or when i = ), PCI equals 1. PCI provides a
relative measurement of how strong places are connected through human spatial interactions
when assuming all places have the same population (social media users). This allows us to
compare PCI among different places to reveal potential spatial, population, and socioeconomic
structures. The PCI derived from Eq. 1 is non-directional. The discussion for a directional PCI

capturing the asymmetrical connection forces between two places can be found in Appendix A.

Results

Global PCI Datasets at Various Geographic Levels

The computation of PCI is data- and computing-intensive as it involves billions of
geotagged tweets and millions of place pairs at various geographic levels. To address this
challenge, the computation was performed in a high-performance computing environment*?. The
steps for computing the 2019 US county level PCI are detailed in Appendix C. With Eq. 1, PCI
was computed for the following five geographic levels in this study: 1) worldwide country level
for 2019, 2) worldwide first-level subdivision for 2019, 3) US metropolitan area for 2018 and
2019, 4) US county level for 2018 and 2019, and 5) US census tract level for the New York City
and Las Angeles County for 2018 and 2019. An interactive web portal was developed to
visualize a place’s connectivity (PCI) to other places at various geographic levels (Fig. 2,

http://gis.cas.sc.edu/GeoAnalytics/pci.html). The following sections report our findings of the



http://gis.cas.sc.edu/GeoAnalytics/pci.html

PCI properties and potential utility exemplified with the US county level PCI and the world first-

level subdivision PCI.

Fig. 2. Demonstration of PCI at four geographic levels computed with the 2019 global geotagged
tweets zoomed in from world country level to US census tract level. (a) World country level PCI for
Japan showing the inter-country connectivity; (b) World first-level subdivision PCI for Ile-de-France
(surrounding Paris), France showing the inter-country and intra-country connectivity at the state or
province level; (c) US county level PCI for Cook County (Chicago) showing the inter-county/city
connectivity; and (d) US census tract level PCI for Central Park, New York City showing the intra-city

connectivity.

Comparing with SafeGraph Population Movement

One of the key concerns of using social media data (e.g., Twitter) for human mobility
studies is its low population penetration rate. For example, only 24% of US adults use Twitter

(Pew Research Center, 2019), and the public Twitter API only returns about 1% of the whole



Twitter streams. A more detailed descriptive statistics of the collected 2019 worldwide
geotagged tweets can be found in Appendix B. Also, Twitter data show bias in its
representativeness of population groups. This issue has been examined in a few studies >3, In
light of these issues, it is important to evaluate how well geotagged tweets capture population

movements (at the county level in this analysis) since PCI is computed from such movement.

For this purpose, we compared the US county-level population movement derived from
Twitter to the movement derived from SafeGraph (https://www.safegraph.com), a commercial
data company that aggregates anonymized location data from various sources. According to
SafeGraph®, the data are aggregated from about 10% of mobile devices (e.g., cellphones) in the
US, and the sampling correlates highly with the actual US Census populations, with a Pearson
correlation coefficient » of 0.97 at the county level. Specifically, the data we used in this study
are the publicly available SafeGraph’s Social Distancing Metrics (SDM)*°, a census block group
level daily mobility data product going back to January 1, 2019 covering the entire US. Since
these data only provide aggregated mobility information, deriving the shared users among
counties is not possible. Alternatively, we computed the total number of person-day movements
between all contiguous US county pairs in 2019 using the SDM (see Appendix D). To make it
comparable, we also computed the total number of person-day movements between all US
county pairs in 2019 using Twitter data (see Appendix E). We then compared, using Pearson’s r,

the two person-day movement datasets by county.
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Fig. 3. Distribution of the Pearson’s r between the log Twitter person-day movements and log

SafeGraph person-day movements for all counties (a) Spatial distribution; (b) histogram

The overall Pearson’s r for all county pairs (n = 1,516,210) between log Twitter person-
day movements and log SafeGraph person-day movements is 0.71. The rationale for using log
transformation (with base 10) is to address the highly skewed distribution of movements among
counties (see Appendix F). To reveal the spatial variations of the relationship for different areas,
we further evaluated the association between the two movement datasets for the county pairs
from each county to other counties. The spatial distribution of 7 illustrates lower values generally
clustering in less populated areas, such as the Great Plains portion of the US (Fig. 3a). This is as
expected, as Twitter data generally suffer in less populated areas due to insufficient tweets
collected using the public free API. The histogram (Fig. 3b) indicates the most repeated » ranges

between 0.65 and 0.75.



To further examine the associations between the two movement datasets and the impact
of county population size on the associations, we selected four counties with different
geographical contexts and populations ranging from 3,300 to 10,000,000 and plotted the Twitter-
derived person day movements and SafeGraph-derived person day movements in 2019 for each
county. The scatter plots (Fig. 4) reveal a quasi-linear positive pattern for all four counties.
Consistent with Fig. 3, the » value decreases as population decreases for the four counties of Los
Angeles County, CA (0.88), Harris County, TX (0.87), Horry County, SC (0.82), and Ford
County, KS (0.57). Notably, we observed only a slight drop in » (from 0.88 to 0.82) for Horry
County with a relatively small population of 354,081. The findings indicate that geotagged
Twitter-derived movement has a strong linear association with SafeGraph-derived population
movement and reinforce that geotagged tweets can well capture population movements among

places (counties in this analysis).
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Fig. 4. Scatter plots of log Twitter-derived person day movements and log SafeGraph-derived
person day movements in 2019 for the four selected counties with varying populations. (a) Los
Angeles County, California (CA), including Los Angeles metropolitan area. 2019 population: 10.04
million; (b) Harris County, Texas (TX), including Houston city. The most populous county in TX. 2019
population: 4.71 million; (¢) Horry County, South Carolina (SC), including the popular beach destination
Myrtle Beach. 2019 population: 354,081; and (d) Ford County, Kansas (KS), including the small Dodge
City. 2019 population: 33,619. Population data were derived from the American Community Survey

(ACS) 5-Year Data (2015-2019).



Comparing PCI with Facebook SCI

We contrasted the PCI for each of the US counties with the Facebook Social
Connectedness Index (SCI) data*®. This comparison allows us to evaluate the hypothesis that
places connected through (social media) friendship links are likely to have more physical
interactions (e.g., population movement). This hypothesis has already been suggested in recent
studies™ but not corroborated using SCI data. Thus, demonstrating this connection is relevant for
many reasons, such as understanding spatial behavior under normal circumstances (e.g., business
or commercial relationships, tourism, and migrations) or during extraordinary events such as a

pandemic (e.g., the spread of infectious diseases) or a natural hazard (e.g., evacuation corridors).

As a measure of social connectedness based on friendship links on Facebook, SCI
revealed that the majority of these links are found within 100 miles, showing an intense distance

decay effect®

. The hypothesis of a positive association between social and spatial connections
makes intuitive sense and helps understand population dynamics at different scales. To evaluate
this, we first analyzed the correlation between PCI and SCI using all county pairs that had both
PCI and SCI values (n = 1,702,531). Log transformation was used to address the highly skewed
distribution of the PCI and SCI values among counties. Note that PCI values were multiplied by

1000 before taking the log to avoid negative values. The overall » of 0.62 indicates a strong

positive linear association between social and spatial connections.
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Fig. 5. Scatter plots of log PCI and log PCI for the four counties

Fig. 5 shows the scatter plots of log PCI and log SCI in 2019 for the four counties used in
the previous section, further confirming the positive association of a measure of social
connectedness with an index of spatial connectivity. The scatter plots also reveal that the
association between SCI and PCI is not always stronger in more populated counties (e.g., » for
Harris County is 0.66 while for the less populated Horry County, it is 0.75). To further examine
the variations of such association among counties, we computed the Pearson’s » between PCI

and SCI for each county to other counties. Fig. 6 shows that strong correlations are generally



clustered in Midwest US, Texas, and Southeast Georgia (Fig. 6a) and the most repeated r ranges
between 0.70 and 0.75 (Fig. 6b). The strong association between PCI and SCI confirms the
hypothesis that regions connected through (social media) friendship links are likely to have more

physical interactions.
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Fig. 6. Distribution of the Pearson’s r between log PCI and log Facebook SCI for all counties (a)

Spatial distribution; (b) histogram

Another interesting observation from Fig. 5 is that the slope of the best-fit line is higher
in more populated counties (e.g., Los Angeles County) than in lowly populated areas (e.g., Ford
County), which leads to another hypothesis that the same amount of change in friendships (SCI)
is associated with a larger change in people’s movement (PCI) in more populated counties, and
vice versa. To test this hypothesis, we conducted a linear regression analysis for each county
using SCI as the independent variable and PCI as the dependent variable. The slope for each

county was then derived from the regression models. The county level slope map suggests that



larger slopes are in general observed in more populated urban areas (Fig. 7a). To quantify this,
we further associated the slope with the log county population, resulting in a strong positive
linear relationship with » = 0.83 (Fig. 7b). This result suggests the relationship is not only valid
in the four counties but is also valid at the US county level in general, confirming our hypothesis.
One potential reason behind this pattern might be explained by the nature of urban areas and
their style of life, particularly in the US, where urban sprawl means that much of the daily
mobility in these areas is intercounty, and therefore reflected in PCI. In addition, the proximity to
airports in the more populated areas allows for a much more rapid connectivity with the rest of

the country.
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Fig. 7. (a) Distribution of the regression slope between log PCI and log Facebook SCI. (b)
Association between regression slope and log county population for all counties. Population data

were derived from ACS 5-Year Data (2015-2019).

Our findings also suggest caution about the relationship between these two variables.
Although PCI and SCI are associated, one cannot substitute one for the other, as they represent
different phenomena: social versus spatial behavior. Although same amount of change in
friendships (SCI) is associated with a larger change in people’s movement (PCI) in more

populated counties, more studies are needed to better understand the driving forces (e.g., urban-



rural, demographic, and socioeconomic factors) behind such associations. We believe PCI is an
important addition, as it involves a new standardized measure of spatial connectivity based on

population movement.
Distance Decay Effect

Our analysis revealed that PCI expresses a clear distance decay effect. In other words, the
spatial connectivity between two distant places is likely to be lower than that observed between
two near counties. However, there are some nuances in this broad assertion. Fig. 8 illustrates the
association between log PCI and the log distance for each county to all other counties. The map
(Fig. 8a) shows that less populated (rural) areas of the Midwest, Pacific Northwest, or Texas
have a stronger negative association between PCI and distance, meaning that these communities
are more tightly knit with surrounding areas than with more distant communities (stronger
distance decay effect). This phenomenon is also reflected in Fig. 9, where R’ values of the
power-law function decrease dramatically from lowly populated Ford County (0.494) to Harris
County (0.154) to highly populated Los Angeles County (0.065). Pearson’s » was not used as the
scatter plot, as the relationship is nonlinear. It should be noted that population size is likely a

compounding factor that goes along with urban centers (e.g., metropolis) with large airports.
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Fig. 9. Scatter plots of PCI and distance for the four counties.

The maps in Fig. 10 depict how the selected four counties are connected to other counties
based on the PCI, which agrees with the above observations. On the other hand, Fig. 10 also
shows that highly populated and touristy urban areas (well connected through airports), such as
New York City, Miami, Orlando, Chicago, or Las Vegas, act as poles of attraction for people
from distant locations. This is clear in Fig. 10a, where we can see how Los Angeles County, for
instance, is more closely linked through spatial interactions with the New York City metropolitan
area than with some California or Nevada counties. This behavior is also easily detected in Fig. 9

through the outliers of the point distributions in Los Angeles County.
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Fig. 10. The selected four counties (highlighted with yellow boundaries in the maps) and their PCIs
with other counties in the contiguous US. Population data were derived from ACS 5-Year Data (2015-

2019).



Boundary Effect

1.4, we also considered the effect of administrative borders

Inspired by Bailey et a
shaping spatial connectivity. A higher PCI between a county pair indicates a strong relationship
geographically. In a general sense, people tend to travel to their adjacent counties more
frequently than non-adjacent counties. However, do the residents near the state border prefer the
in-state counties as their destinations rather than the adjacent county across the state border? Or
are the out-of-state counties more attractive? If state borders have a role in explaining spatial

connectivity, people will tend to travel more within their home states than in neighboring states,

even when the distance is fixed.

To evaluate the state boundary effect for each of the four counties, we first ran a linear
regression with the following variables: the distance between the county and all other counties in
the contiguous US (distance), a categorical variable (same_state), and PCI (as the dependent
variable). The result indicates that the same_state variable shows a strong positive effect (p <
.001) on PCI even after controlling for distance (Table 1). This implies that these four counties
are more tightly (spatially) connected with other counties within the same state, even when

compared to nearby counties in other states.



Table 1 Regression Results for the Four Counties using the same_state as an independent variable and

PCI as the dependent variable, controlling for the distance between counties.

Los Angeles County Harris County Horry County Ford County

Coefficient SE Coefficient SE Coefficient SE Coefficient S.E.
Intercept 0.0059™"" 0.0008 | -0.0075™"" 0.0007 | 0.0078"" 0.0003 -0.0073™ 0.0003
Same state 0.0495™" 0.0017 | 0.0170™ 0.0010 | 0.0273™ 0.0010 0.0170™" 0.0006
Distance -8.3E-07 -4.5E-07 | -3.6E-06"" 6.9E-07 | -4.5E-06""  2.5E-07 | -4.9E-06""" 3.7E-07
Adjusted R?  0.24 0.16 0.33 0.45
Observations 3008 2932 2446 1788

Note: 'p<0.1 “p<0.05 "p<0.01. The county centroid was used for the distance calculation

between two counties (distance unit: mile).

To test whether existing state borders are similar to the borders formed when we grouped

together the US counties into communities (clusters) based on their spatial connectivity (i.e.,

PCI), we used a hierarchical agglomerative linkage clustering method following Bailey et al.

(2018b) to create such homogenic spatial connectivity communities and compare them with the

state administrative division of the US. Hierarchical agglomerative clustering groups county

pairs based on their distance in feature space. In our experiment, the “distance” is defined as the
inverse of PCI, which means a low PCI in a county pair has a long distance, and vice versa. In
the beginning, every county is viewed as a separate community, and the two closest communities

are combined into a new community. Distances of combined communities will be updated by the

average of distances between county pairs of community pairs. The clustering stops when all

counties are combined into a target number of communities. We chose 75, 48, and 20 clusters as

the targeted number of communities.



[ state boundary
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Fig. 11. Results of the hierarchical agglomerative clustering of PCI with three different targeted
numbers of communities for the contiguous US. Each unique color depicts a community. Counties of

less than five Twitter users in our dataset are ignored (white areas).

As shown in Fig. 11, most resulting distinct communities in the three maps are spatially
contiguous, revealing the strong spatial connectivity of neighboring counties, an obvious
consequence of spatial proximity. However, the resemblance of these three maps with state
boundaries is quite remarkable across many areas, supporting the assertion that state boundaries
do play a decisive role in shaping the spatial behavior of the population. For example, we can see
how several clusters in the southwest US are essentially the state boundaries. Also, many other
smaller clusters also respect the actual state boundaries. This pattern holds in the three maps with
different cluster sizes. When clustering to a relatively small number of communities (i.e., the 20-
community map), spatial proximity still plays a role. Some adjacent states are merged into large
contiguous regions. For example, Fig 11 shows that there is a large cluster in the middle US.
When clustering to a relatively large number of communities (i.e., the 75-community map), some
connected large regions split into states such as California and Nevada. It is worth noting that
PCI may be skewed due to low Twitter user numbers. For example, PCIs of less populated
counties may be higher if a few active Twitter users happen to live there. This might, to some
extent, explain the large number of spatially disconnected counties merged into the same cluster

in the north-central US. We believe that further geographic and socioeconomic studies are



needed to better explain the connectivity of the clustering results. For example, the Rocky
Mountains hinder the travel from the central US to the west, and the modern ground
transportation systems in the Great Plains may facilitate travels in the central US, so that the
states in the middle US have more connectivity (see the 20-community map). There may be
other causal factors that determine individuals’ travel associations, such as families,
political/religious, agricultural community and state allegiance, and some may be more or less
important in different regions of the country. Identifying drivers of social behaviors in such a

large region is beyond the research scope of this paper.

Fig. 12 shows the hierarchical agglomerative clustering of 2019 PCI for the worldwide
first-level subdivisions with two different numbers (25 and 100) of targeted communities (the
clustering results for 50 and 200 targeted communities can be found in Appendix F). The country
boundaries could be clearly observed in both maps. The results also reveal that the groupings
with the 25 communities are consistent with what many people perceive as connected regions
(e.g., US with Canada and Europe). However, once into the 100 level, the divisions between east
and west start to emerge. Another interesting finding is how unconnected the regions in Africa
are, though the country boundary effect is still observable. However, it should be cautious that
whether such disconnection resulted from the sparsity of Twitter data in Africa countries

(elaborated in the Discussion section) needs further investigation.
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Fig. 12. Results of the hierarchical agglomerative clustering of PCI with two 25 and 100 targeted
numbers of communities for the worldwide country first-level subdivisions. Each color depicts a

community. Boundary data was retrieved from GADM?®,

In summary, the different regions identified in the US and the world using the
agglomerative clustering not only demonstrate the boundary effect of PCI, but also suggest that

PCI can potentially be used as a tool in regionalization analysis to reveal how places are



connected and regions are formed at different geographic scales. In addition, a strong state
boundary effect was also observed in social connectivity with Facebook SCI*. These two
findings are likely related. Using PCI or SCI as a proxy for travel behavior is a first step at
understanding causal factors for travel or social connectivity. We do not know which one drives
the other or if there are other variables conditioning this behavior (e.g., socio-spatial factors
based on institutional or administrative circumstances). Further studies are needed to better

understand the boundary effect of PCI and its connections with SCI.
Applications

PCI can potentially be applied in various fields that can benefit from a better
understanding of human movement at varying spatial scales, such as infectious disease spread,
transportation, tourism, evacuation, and economics. Two examples are provided to exemplify
how PCI can be used to analyze and predict infectious disease spreading and hurricane

evacuation destination choice.
Spatial Spread of COVID-19 During the Early Stage

Westchester County was an early (March 2020) hotspot of COVID-19 in the US”’. Early
confirmed cases and a high infection rate to family and friends increased social tension that
residents from Westchester and surrounding areas were reportedly fleeing away>®. On the global
scale, Lombardy, Italy was an epicenter of the COVID-19, with the first cluster of cases detected
on February 21, 2020%°. The travel restrictions between the US and Europe were not in place
until March 12, 2020%°. In this application example, we explored the relationship between the
spread of COVID-19 and PClIs of the two epicenters at the US county level on a regional scale

(Westchester County, NY) as well as the state level on a global scale (Lombardy, Italy).



Given that the incubation period of COVID-19 is about two to three weeks®!, the number
of cases confirmed before the end of March was used in the later calculation to capture the
spread of COVID-19 in early and mid-March for the US county level analysis. Fig. 13 shows the
county-level infection rate (number of confirmed cases per 10,000 people) as of March 31, 2020.
The number of confirmed cases is based on the New York Times®? database, and the total county
population is based on the ACS five-year estimation®. Dark red spots show the hotspots of
COVID-19 confirmed cases. Westchester County and surrounding New York City areas were the

main hotspots at the end of March.

COVID-19 cases
per 10,000 as of
03/31/2020
O1-3
ma4-7
8- 15
M 16 - 36
M 37 - 103

Fig. 13. US county level COVID-19 cases per 10,000 people as of March 31, 2020. COVID-19 case
data were downloaded from NYT Github®2. The county population was retrieved from the ACS five-year

estimates (2014-2018).



To explore whether outbreaks of COVID-19 in the US are related to people who fled
away from New York City in early March®, we used a linear regression model to examine the
relationship between COVID-19 infection rate (as a dependent variable) and the connectivity
between a given county and Westchester County using four measurements, including PCI
computed with 2018 and 2019 Twitter data, respectively, Facebook SCI as of August 2020, and
2020 SafeGraph movement data (the person-day movements computed with the method in
Appendix D using data from January to March, 2020). Note that PCI was scaled by 1000 in the
regression models to ease the result presentation. Table 2 shows the results of the four linear
regression models. For all four measurements, positive relationships are significant at the 0.01
level. Among these four measurements, PCI for both 2018 and 2019 showed the highest adjusted
R? of 0.24 for both years. In other words, 24% of the variance of COVID-19 infection rate in
each observed county can be explained by PCI alone. SafeGraph movement results in an
adjusted R? of 0.13. Facebook-based SCI shows the lowest adjusted R’ of 0.08, though the

coefficient is still significant (p < 0.01).

Table 2 Regression Result Using COVID-19 Infection Rate as the Dependent Variable, and PCI, SCI, or

SafeGraph as the Predictor Variable.

2019 2018 Facebook (2020) SafeGraph (2020)

PCI PCI SCl Person-day movement

Coefficients  SE Coefficients  SE Coefficients  SE Coefficients  SE
Intercept 1.63496™" 0.11603 1.60351™" 0.12215 2.26827"" 0.12262 2.47287°" 0.13615

PCI/SCl/SafeGraph ~ 0.22505™"" 0.00931 0.211127" 0.00901 0.00013™"" 0.00001 0.00040™ 0.00003
Adjusted R? 0.24 0.24 0.08 0.13

Observations 1847 1755 1847 1497




p<0.1 "p<0.05 p<0.01

Regression models controlling for the effect of geographic distance were also conducted
with the four human mobility measurements. Results show that all four measurements still show
significant positive correlations with the COVID-19 infection rate (p < 0.01; Table 3). The
adjusted R’ for SafeGraph-derived movement and Facebook SCI remain unchanged, and the
coefficient of the distance variable is not significant (p > 0.1). The adjusted R’ for both 2018 and
2019 PCIs only slightly increased by 0.01, from 0.24 to 0.25. While the distance variable is
significant in these two models, its impact on the infectious rate is relatively weak given the
small coefficient values (f = 0.00087 for 2019 PCI and = 0.00091 for 2018 PCI). We remark
that PCI calculated with historical Twitter data of either 2018 or 2019 exhibits similar

performance in the two models, suggesting the stability of place connectivity measured by PCI.

Table 3 Regression Result Using COVID-19 Infection Rate as the Dependent Variable, and PCI, SCI, or

SafeGraph as the Predictor Variable Controlling for Distance

2019 2018 Facebook (2020) SafeGraph (2020)

PCI PCI SCI Person-day movement

Coefficients  SE Coefficients  SE Coefficients  SE Coefficients  SE
Intercept 0.73883™"" 0.22272 0.67638"" 0.23186 2.19947"" 0.23329 2.43267°" 0.24346
PCI/SCl/SafeGraph  0.23706™"" 0.00960 0.22307"" 0.00931 0.00013™ 0.00001  0.00040""" 0.00003
Distance 0.00087°"" 0.00019 0.00091"" 0.00019 0.00007 0.00020 0.00004 0.00022
Adjusted R? 0.25 0.25 0.08 0.13
Observations 1847 1755 1847 1497

p<0.1 "p<0.05 “p<0.01



In the global scale analysis, we examined the association between the 2019 US state level
PCI with Lombardy, Italy and US state level COVID-19 infection rate (number of cases per
100,000 people) as of March 25, 2020, two weeks after the US placed travel restrictions with
Europe. The state level PCI indicates the connectivity strength between each of the 50 US states
and Lombardy, Italy (Fig. 14a). As shown in Fig. 14b, PCI with Lombardy exhibited a strong

positive association with the US state level COVID-19 infection rate at the early stage of the

pandemic (= 0.48, n =50, p <0.01).
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Fig. 14 Global scale analysis of PCI and COVID-19 infection rate. (a) Map showing the 2019 world
first-level subdivision PCI between Lombardy, Italy and US states (and other parts of the world); (b)
Correlation between the log US state level PCI with Lombardy, Italy and log US state level COVID-19

infection rate (number of cases per 100,000 people) as of March 25, 2020. COVID-19 case data were



downloaded from NYT Github®2. The state population was retrieved from the ACS five-year estimates

(2014-2018). World first-level subdivision boundary data was retrieved from GADM?¢.

Findings in this application suggest that the multi-scale PCI, computed from historical
Twitter data, is a promising indicator in predicting the spatial spread of COVID-19 during the
early stage, outperforming more current Facebook SCI (data as of August 2020) and SafeGraph-

derived person-day movement data (from January 1 to March 31, 2020) at the US county level.
Hurricane Evacuation Destination Choices

Evacuation of coastal residents has been an effective and important protective action
before the arrival of a hurricane®. Understanding where coastal residents are evacuating helps in
evacuation route planning and resource allocations®. Residents of a county are likely to evacuate
to a county where they have established relationships (friends, colleagues, familiar lodging stays,
etc.). The preexisting relationships would be expressed by the PCI or SCI. In this section, we
examined the association between PCI (computed using the 2019 Twitter data) and people’s
evacuation destination choice using Hurricane Matthew in 2016 as a case study. We hypothesize
that people are more likely to evacuate to a county that has a high PCI with the evacuation
county (the county being evacuated). For comparison, we also tested the hypothesis that people

are more likely to evacuate to a county that has a high SCI with the evacuation county.

Hurricane Matthew was a Category 5 hurricane that visited the east coast of the US at
Category 1 in early October 2016. Evacuation orders for coastal counties under potential impact
were placed by the governors of Georgia, South Carolina, and North Carolina on October 4,
2016. Twitter users were selected as individual evacuees for testing our hypothesis. The

evacuation identification procedure followed the study area and evacuation timeline determined



by Martin et al.*” and Jiang et al.*’. In this study, we identified 272 evacuated individual Twitter
users from Chatham County, GA, and 241 evacuated users from Charleston County, SC. All
selected users had evacuated more than 50 miles away from their original coastal counties, and
all of their destinations were not in the potential impact zone. The 272 evacuated individuals
leaving Chatham County ended up in 120 destination counties, and the 241 Charleston County

evacuees ended up in 118 destination counties (Fig. 15).
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Fig. 15 Hurricane Matthew Evacuation Estimation Using Geotagged Tweets. Red dots indicate user

locations during the pre-evacuation period (October 2—4, 2016). Blue dots show user locations during the

post-evacuation period (October 7-9, 2016).

To test our hypotheses and the potential of PCI in predicting evacuation destination
choice, we used linear regression to model the relationship between the number of evacuated

users in the destination counties (dependent variable) and PCI of the county pairs between



Charleston County (origin) and each of the destination counties (z = 118). Note that PCI was

scaled by 1000 in the regression models to ease the result presentation. Distance between the

evacuation county and each of the destination counties were used in the regression model as

controls. SCI was tested by replacing PCI in the regression model for comparison. The same

model configuration was used for Chatham County (n = 120). Table 4 shows the regression

results for the four models.

Table 4 Regression Results for the Number of Evacuated Users in the Destination Counties (Dependent

Variable) and PCI (or SCI) of the County Pairs Between Evacuation County and Each of the Destination

Counties

Charleston County

PCI

Charleston County

SCl

Chatham County

PCI

Chatham County

SCl

Coefficients SE

Coefficients SE

Coefficients SE

Coefficients SE

Intercept
PCI/SCl
Distance
Adjusted R?

Observations

0.28676 0.23274
0.09611""" 0.00606
0.00019 0.00030
0.71
118

1.632007"" 0.32877
0.00003"" 0.00000
-0.00047 0.00047
0.29
118

-1.66645™ 0.63781
0.19071™ 0.01927
0.00115 0.00083
0.47

120

Kk

2.57697 0.69610
0.00001 0.00001
-0.00155 0.00112
0.04
120

p<0.1 "p<0.05 "p<0.01

For both counties, PCI shows a significant positive association with evacuee counts (p <

0.01). SCI shows a significant positive association with evacuee counts for Charleston County (p

<0.01), but the coefficient is not significant for Chatham County (p > 0.1). The distance variable

is not significant for all four models (p > 0.1). The PCI model for Charleston County has an

adjusted R’ of 0.71, indicating 71% variance can be explained by PCI. However, the adjusted R’



value for SCI has a much lower value of 0.29. For Chatham County, the PCI model has an
adjusted R’ of 0.47, while the adjusted R’ value for the SCI model is only 0.04. This application
demonstrates the potential of using PCI as a factor in modeling hurricane evacuation destination
choice. The comparison of PCI and SCI shows that PCI outperforms SCI in this application

scenario.

Discussions

The evidence of spatial inter-dependency is increasingly apparent across scales, captured
by the digital records of growing human mobility and socioeconomic activities. Geotagged social
media data records many space-time social contexts where people perceive, act, and interact with
each other, allowing researchers to quantify how specific locations are mentioned and related in
physical, virtual, and perceived worlds. As a popular social networking platform, Twitter records
a substantial portion of human communication and events at various space-time scales. The
geotagged tweets can reveal where people visit, with a much larger sample size than

conventional surveys*®.

This research employs global geotagged Twitter data to delineate the spatial interactions
between places by developing PCI. The results show that geotagged tweets can be used to reveal
global place connectivity at various geographic levels. At the US county level, PCI has strong
correlations with other data streams such as SafeGraph and Facebook. Compared to the latter
two data sources, Twitter data are more openly available overtime at the individual level. The
open-sourced global PCI datasets at various geographic levels can thus provide invaluable

opportunities to explore human behavior and social phenomena. As demonstrated by the two



application examples, PCI can be used for research in infectious disease and hurricane

evacuation that benefit from a better understanding of human movement.

The world should be portrayed as networks instead of the mosaic of cities®®. As a
classical and fundamental research topic, the interactions between locations convey the urban or
regional spatial structure. The PCI computed from billions of tweets offers promising
opportunities to measure and compare intra- and inter-city connections and flows. Also, PCI can
be linked to other large geotagged data, such as Yelp and Transportation Network Company
data, to reveal a more completed picture of spatial structure dynamics. Combined with PCI, the
place hierarchy and spatial clusters can be revealed based on both virtual and physical
interactions. As place connectivity changes over time, we plan to update the PCI on a yearly
basis if Twitter continues to provide a free API for geotagged tweet access. Researchers can also
compute their own PCI of interested geographic scales and time periods following the steps
provided in this paper. Besides PCI, the person-day movement derived from geotagged tweets is
able to capture the frequencies a twitter user appeared in both places during a year, which can
subsequently be used to indicate the potential purpose of users’ spatial activities and further infer

the types of place connectivity.

Although the outcome of the behavior of PCI largely matches our expectations and with
the results of other big social data sources, using social media data to identify spatial interaction
has the following limitations. We caution that studies using the open-sourced PCI datasets should
be aware of such limitations when interpreting the results. First, research using social media has
been criticized for being biased for representing specific population groups. For example, young
adults are more likely to use Twitter, compared to their older counterparts'?>!->2. Second, the

correlation between PCI and other indicators from social networking platforms in the US is



largely relevant to the cultural and policy context. Hence, the results may not be readily
generalized or used for prediction in other areas. Further studies are needed to evaluate the PCI
for geographic areas other than the US. Third, episodic events, such as holidays and hurricanes,
would largely attract/hinder users' movement to specific places. It might distort the connectivity
if data is only collected for short periods, and thus affect the accuracy and consistency of
measurement results. This issue can be addressed by computing PCI over a relatively long period
(e.g., one year or longer) or filtering out the data during the affected time period. Lastly,
geotagged tweets are unevenly distributed across space and time, which also affects the
reliability of such measurements. The data sparsity issue is caused by a variety of factors such as
population density, Internet accessibility, and governmental policies on social media. More
studies are needed to evaluate the performance of PCI at different geographic areas and scales by
associating and comparing it with other data sources and testing it with other applications; and

ideally, mitigating for the effects of the spatial variation in geotagged tweets.

Despite these limitations, to the best of our knowledge, Twitter data is the most
accessible dataset offering the opportunity to extract worldwide human movement at various
spatiotemporal scales for a relatively long time period. By open-sourcing the global PCI datasets
at various geographic scales, we call for more efforts to tackle these issues and further validate

PCI following the suggested future studies and beyond.

Conclusions

The relationships among places are shaped by dynamic human movement, whose
intensity further quantifies the connectivity (strength of the linkages) among places. With the

advances in technologies in the past decades, the connectivity among places is ever-evolving



dynamically, thus demanding spatiotemporal-continuous observations with harmonized
approaches. Fortunately, the emergence of big social media data, benefiting from the advent of
geo-positioning techniques and the popularity of social media platforms, offers a new venue
where collecting human spatial interactions becomes less-privacy concerning, easily assessable,

and harmonized.

In this study, we introduced a global multi-scale place connectivity index based on
people’s spatial interactions among places revealed from worldwide geotagged Twitter posts.
Defined as the normalized number of Twitter users who shared spatial interactions during a
specified time period, the proposed PCI is a harmonized and spatiotemporal-continuous place
connectivity metric, expected to benefit various domains requiring knowledge in human spatial
interactions. The interactive web portal aims to facilitate place connectivity visualization and

provide downloadable connectivity matrices to support research needs.

To better understand the characteristics of PCI, we conducted a series of experiments
using PCI and other data sources. An overall Pearson’s » of 0.71 between the population
movement derived from Twitter and SafeGraph (10% penetration in the US population) reveals
that geotagged tweets can well capture the population movement at the US county level. The
comparison between PCI and Facebook SCI (a popular connectivity index based on social
networks) with an overall » = 0.62 suggests a strong connection between spatial interactions and
social interactions, confirming the hypothesis that “regions connected through many friendship
links are likely to have more physical interactions between their residents™*>. Like many
connectivity measurements that are bounded by the first law of geography, we found that PCI
generally follows distance decay form tested at the county level, while the distance decay effect

is found weaker in more urbanized counties with a denser population. This phenomenon can be



explained by the existence of long-distance transportation facilitates (e.g., airports, railways, and
bus stations) that, to some extent, express a hierarchical diffusion relationship rather than a
contagious diffusion. We further observed a strong boundary effect in PCI, indicating that
counties in the same state and states/provinces in the same country are more connected,
evidenced by their higher PCI values. The different regions identified in the US and the world by
using the hierarchical agglomerative clustering suggests that PCI can be used as a tool in
regionalization analysis to reveal how places are connected at different geographic levels and

scales.

We demonstrated that PCI could address real-world problems requiring place
connectivity knowledge using two applications: 1) modeling the spatial spread of COVID-19
during the early stage and 2) modeling hurricane evacuation destination choices. In the first
application, we found that the PCI for Westchester County, NY, an early hotspot of COVID-19
in the US, could explain 22% of the variance in COVID-19 cases among US counties at the early
outbreak, which was much higher than Facebook SCI (8%) and the population movement
derived from SafeGraph (13%). In the global scale analysis, we found that PCI for Lombardy, an
early epicenter in Italy, had a strong association with the infection rate at the US state level at the
early stage of the pandemic (r = 0.48, n =50, p <0.01). In the second application, we found that
PCI explains a considerably higher percentage of variance in local residents’ choices of
destination county during 2016 Hurricane Matthew compared with Facebook’s SCI, suggesting

the superiority of spatial interactions in modeling evacuation choices than social interactions.

With the effects of geographic distance being weakened by technological advances, place
connectivity quantified by human spatial interactions has been evolving since the very first day

of modern society and will continue to evolve at an accelerating pace in the future. Taking



advantage of the growing popularity of social media, the PCI proposed in this study contributes
to a multi-scale, spatiotemporal-continuous measurement of global place connectivity, with the
potential to benefit numerous applications such as infectious disease modeling, transportation
planning, evacuation modeling, tourism management, to list a few. The methodological and
contextual knowledge of PCI, together with the launched visualization platform and open-
sourced PCI datasets at various geographic scales, are expected to support research fields in need

of prior knowledge in human spatial interactions.

Data sharing and availability statement: The following datasets are made available to
the public: US census tract level PCI for Los Angeles County and New York City for 2018 and
2019, US county level PCI for 2018 and 2019, world first-level subdivision PCI for 2019, and
world country level PCI for 2019. The number of shared users between each place pairs and total
number of users for each place are also included in the PCI datasets. The aggregated county-
level person-day movements derived from Twitter for 2019 and aggregated county-level person-
day movements derived from SafeGraph data for 2019 used in this study are also included. Data

download links can be found at https://github.com/GIBDUSC/Place-Connectivity-Index.

Facebook SCI data can be downloaded at https://data.humdata.org/dataset/social-connectedness-

index. The interactive web portal for visualizing PCI and relevant datasets can be accessed at

http://gis.cas.sc.edu/GeoAnalytics/pci.html. Geotagged tweets were retrieved from Twitter using

the public free Twitter API (https://developer.twitter.com/en/docs/twitter-api).
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