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A b str a ct
I nt e ns e p h as e-l o c k e d t er a h ert z ( T H z) p uls es ar e t h e b e dr o c k of T H z li g ht w a v e el e ctr o ni cs,  w h er e t h e c arri er fi el d
cr e at es a tr a nsi e nt bi as t o c o ntr ol el e ctr o ns o n s u b- c y cl e ti m e s c al es. K e y a p pli c ati o ns s u c h as T H z s c a n ni n g t u n n elli n g
mi cr os c o p y or el e ctr o ni c d e vi c es o p er ati n g at o pti c al cl o c k r at es c all f or ulti m at el y s h ort, al m ost u ni p ol ar  w a v ef or ms, at
m e g a h ert z ( M H z) r e p etiti o n r at es.  H er e,  w e pr es e nt a fl e xi bl e a n d s c al a bl e s c h e m e f or t h e g e n er ati o n of str o n g p h as e-
l o c k e d T H z p uls es b as e d o n s hift c urr e nts i n t y p e-II- ali g n e d e pit a xi al s e mi c o n d u ct or h et er ostr u ct ur es. T h e  m e as ur e d
T H z  w a v ef or ms e x hi bit o nl y 0. 4 5 o pti c al c y cl es at t h eir c e ntr e fr e q u e n c y  wit hi n t h e f ull  wi dt h at h alf  m a xi m u m of t h e
i nt e nsit y e n v el o p e, p e a k fi el ds a b o v e 1. 1 k V c m − 1 a n d s p e ctr al c o m p o n e nts u p t o t h e  mi d-i nfr ar e d, at a r e p etiti o n r at e
of 4  M H z. T h e o nl y p ositi v e h alf- c y cl e of t his  w a v ef or m e x c e e ds all n e g ati v e h alf- c y cl es b y al m ost f o ur ti m es,  w hi c h is
u n e x p e ct e d fr o m s hift c urr e nts al o n e.  O ur d et ail e d a n al ysis r e v e als t h at l o c al c h ar gi n g d y n a mi cs i n d u c es t h e
pr o n o u n c e d p ositi v e T H z- e missi o n p e a k as el e ctr o ns a n d h ol es a p pr o a c h c h ar g e n e utr alit y aft er s e p ar ati o n b y t h e
o pti c al p u m p p uls e, als o e n a bli n g ultr a br o a d b a n d o p er ati o n.  O ur u ni p ol ar e mitt ers  m ar k a  mil est o n e f or fl e xi bl y
s c al a bl e, n e xt- g e n er ati o n hi g h-r e p etiti o n-r at e s o ur c es of i nt e ns e a n d str o n gl y as y m m etri c el e ctri c fi el d tr a nsi e nts.

I ntr o d u cti o n
Ultr as h ort p uls es i n t h e t er a h ert z ( T H z) s p e ctr al r a n g e

r e pr es e nt t h e  m ost dir e ct t o ols t o pr o b e a n d c o ntr ol l o w-
e n er g y el e m e nt ar y d y n a mi cs i n c o n d e ns e d  m att er 1 – 4 .
R e c e ntl y, i nt e ns e p h as e-l o c k e d  T H z  w a v ef or ms  wit h
o ct a v e-s p a n ni n g s p e ctr a a n d s u b- c y cl e d ur ati o ns h a v e
e n a bl e d t h e a d v e nt of  T H z li g ht w a v e el e ctr o ni cs,  w h er e
t h e str o n g c arri er fi el d s er v es as a tr a nsi e nt bi as t o dri v e
ultr af ast c urr e nts 5 – 1 2 .  T ail or e d  T H z fi el ds h a v e b e e n

e m pl o y e d t o o p e n s e q u e nti al t u n n elli n g c h a n n els i n st a-
ti o n ar y j u n cti o ns1 3 or o p er ati o n al s c a n ni n g t u n n elli n g
mi cr os c o p es, i n ti m e  wi n d o ws  m u c h s h ort er t h a n a si n gl e
os cill ati o n p eri o d of t h e c arri er  w a v e 1 4 – 1 9 . I n all t h es e
a p pli c ati o ns, u ni dir e cti o n al c urr e nts  w o ul d b e i d e all y
dri v e n b y h y p ot h eti c al stri ctl y u ni p ol ar  T H z  w a v ef or ms
m a d e of a si n gl e os cill ati o n h alf- c y cl e. Si n c e el e ctr o-
m a g n eti c  w a v es pr o p a g ati n g i n t h e f ar fi el d ar e e x p e ct e d
t o r e q uir e  A C fi el ds 2 0 , h o w e v er, t h e b est p ossi bl e  T H z
w a v ef or ms c o nsist of as y m m etri c bi p ol ar tr a nsi e nts i n
w hi c h a d o mi n a nt p ositi v e h alf- c y cl e dr a m ati c all y e x c e e ds
t h e str e n gt h of f e e bl e n e g ati v e e x c ursi o ns n e e d e d t o
c a n c el t h e t e m p or al i nt e gr al of t h e el e ctri c fi el d.  M or e-
o v er, pr a cti c al li g ht w a v e el e ctr o ni c e x p eri m e nts a n d
f ut ur e d e vi c e a p pli c ati o ns d e m a n d l ar g e a n d s c al a bl e fi el d
str e n gt hs (t y pi c all y 1 k V c m – 1 a n d hi g h er) c o m bi n e d  wit h
hi g h r e p etiti o n r at es of 1  M H z a n d a b o v e t o dri v e t h e
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required nonlinearities and guarantee competitive signal-
to-noise ratios.
Most sources aiming to meet these criteria are based on

frequency conversion of near-infrared (NIR) femtosecond
laser pulses. Difference frequency mixing via χ(2) non-
linearities in non-centrosymmetric media has provided
intense sub-cycle THz pulses21,22. However, upscaling
their field strength, e.g., by increasing the length of the
nonlinear crystal, limits the bandwidth. Photocurrents in
transient gas plasmas give rise to multi-octave-spanning
spectra23–25, but the necessary pump-pulse energies
exceeding 0.1 mJ limit this technique to relatively low-
repetition-rate lasers. Emitters based on spin-to-charge
current conversion via the inverse spin-Hall effect have
marked another important breakthrough as these metal-
based spintronic THz emitters generate octave-spanning,
sub-cycle THz waveforms26–29. The finite optical skin
depth of metals prevents the thickness scaling of these
emitters such that high THz field strengths have required
large pump-pulse energies. Recently, a promising alter-
native mechanism generating ultrashort THz transients
was observed in van der Waals heterostructures. After
optical excitation of electron–hole pairs in a heterobilayer
of transition metal dichalcogenides (TMDCs) featuring
type-II band alignment, charge separation by shift cur-
rents has given rise to a sub-cycle THz pulse30,31. How-
ever, the efficiency of this scheme is rather low as the
charge separation length is small. Furthermore, these
emitters are only as scalable as the delicate stacking of
TMDC monolayers permits. Lastly, the inherently fixed
resonances and the complicated simulation of the
microscopic processes causing charge separation make it
tough to optimise and custom-tailor the THz emission. In
contrast, band-gap engineering in semiconductor quan-
tum wells (QWs) allows matching electronic transition
energies to a pump source of choice. This has been
employed to generate few- and sub-cycle THz pulses via
photoexcitation of electron–hole pairs in DC-biased
QWs32,33 and intersubband transitions in asymmetric
QWs34, but has not been scaled to high-power pump
lasers.
Here we transfer the concept of shift-current-based

THz generation in type-II aligned nanostructures to epi-
taxial semiconductor heterostructures and introduce a
fully scalable THz source capable of generating strongly
asymmetric sub-cycle field transients. The key idea is to
engineer electronic wavefunctions in asymmetrically
coupled semiconductor QWs such that resonant inter-
band photoexcitation induces an ultrafast charge separa-
tion by shift currents over several nanometres even
without any bias. By fine-tuning the interband transitions
to the spectral range of state-of-the-art high-power
ytterbium fibre pump lasers, we generate strong THz
pulses featuring only 0.45 optical cycles at their centre

frequency within the full width at half maximum
(FWHM) of their intensity envelope at repetition rates up
to 4MHz. By tuning the pump-pulse spectrum and
duration, we can achieve a positive field maximum of up
to 1.1 kV cm–1, which exceeds the strongest negative
excursions by a factor of 3.7. Owing to the lattice-matched
unstrained growth, the emitter concept is scalable to yet
higher field strengths by straightforwardly increasing the
number of growth repetitions.

Results
The idea of the THz emitter is sketched in Fig. 1a. Two

semiconductor QWs with type-II band alignment are
embedded in potential barriers such that the lowest
conduction subband (black) can be populated via reso-
nant interband excitation (red arrow). Since the envelope
functions of the highest-energy valence subband (black)
and the lowest conduction subband are concentrated on
opposite halves of the confinement potential, optical
excitation induces an ultrafast charge separation. Unlike
in schemes exploiting in-plane currents35,36, carrier dif-
fusion plays no prominent role here because the out-of-
plane motion is fully quantised. Thus, in a simplistic
picture, where the photoexcited electrons and holes move
in a static potential landscape, femtosecond interband
excitation may then lead to an ultrashort unidirectional
shift-current burst, which emits THz radiation according
to Maxwell’s equations. Since the THz far field follows the
time derivative of the current, a strict single-cycle wave-
form with equally strong positive and negative peaks is
expected (see Fig. 1a, inset, and Supplementary Fig. S2).
We test the potential of this scenario with a suitable

heterostructure based on InxGa1–xAs and GaAs1–xSbx
type-II-QWs with InxAl1–xAs potential barriers. By con-
trolling the material composition and the thickness of
QWs and barriers with atomic precision, the band gaps,
band offsets, confinement energy, subband energies, and
spatial distribution of the subband states are precisely set.
We tune the optical interband transitions into resonance
with the output spectrum of state-of-the-art commercial
ytterbium fibre pump lasers. The envelope functions of
the frontier valence and conduction subband states are
spatially separated by as much as six nanometres, allowing
for giant transient dipole moments upon photoexcitation
without any external bias. All elements of the hetero-
structure are fully lattice-matched, which allows for
stacking of multiple active QW units. Our QW emitter
(QWE) contains 100 repetitions of GaAs0.87Sb0.13(7 nm)/
In0.141Ga0.859As(7 nm) QWs separated by In0.124Al0.876As
barriers. As the expected photoinduced shift currents are
directed parallel to the growth direction, so is the polar-
isation of the emerging THz dipole radiation. In reflection
geometry, it constructively interferes along the direction
of the specular reflection of the pump beam (Fig. 1b). We
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c h o os e a p u m p a n gl e of i n ci d e n c e of 6 5°, cl os e t o  Br e w-
st er ’s a n gl e of t h e  NI R p u m p, t o si m ult a n e o usl y  m a xi mis e
t h e  T H z i nt e nsit y r etri e v e d fr o m t h e i n h er e nt di p ol e-li k e
r a di ati o n p att er n  w hil e  mi ni misi n g t h e r e fl e cti o n l oss es of
t h e  NI R p u m p p uls es a n d t h e g e n er at e d  T H z p uls es
e xiti n g t h e  Q W E.

I nt e ns e p u m p p uls es ar e r e c ei v e d fr o m a n ytt er bi u m
fi br e l as er ( c e ntr e  w a v el e n gt h 1 0 3 0 n m, p uls e d ur ati o n
1 4 0 fs, p uls e e n er g y 1 0 µJ, r e p etiti o n r at e 4  M H z).  Usi n g
s elf- p h as e  m o d ul ati o n i n f us e d sili c a pl a c e d i nsi d e a
m ulti- p ass c ell 3 7 ( Fi g. 1 d), t h e f u n d a m e nt al l as er s p e ctr u m
( Fi g. 1 c, r e d d as h e d li n e) c a n b e br o a d e n e d, c o m pr essi n g
t h e p uls e i n ti m e.  B y  m o vi n g t h e n o nli n e ar  m e di u m
r el ati v e t o t h e f o c al p ositi o n, t h e p uls e d ur ati o n c a n b e
c o nti n u o usl y t u n e d.  T h e br o a d est a c hi e v a bl e s p e ctr u m
( Fi g. 1 c, r e d s oli d li n e) c o nt ai ns p h ot o n e n er gi es (fr e-
q u e n ci es) b et w e e n 1. 1 3 e V ( 2 7 3  T H z) a n d 1. 2 8 e V
( 3 0 9  T H z), f e at ur es a F W H M of 5 0  m e V ( 1 2  T H z) a n d is
c e ntr e d at 1. 2 e V ( 2 9 1  T H z).  T h e n e arl y b a n d wi dt h-
li mit e d c o m pr ess e d l as er p uls e h as a d ur ati o n of 3 0 fs
( F W H M) a n d a p uls e e n er g y of 9 µJ.  W e s plit t h e c o m-
pr ess e d p uls e i nt o a str o n g er p u m p a n d a  w e a k er g at e.
W h e n t h e  Q W E is p u m p e d at a fl u e n c e of 1  mJ c m − 2 ,
i nt e ns e, p h as e-st a bl e  T H z fi el d tr a nsi e nts ar e g e n er at e d,

c olli m at e d b y a n off- a xis p ar a b oli c  mirr or ( 8 ” f o c al l e n gt h)
a n d r ef o c us e d b y a n ot h er p ar a b oli c  mirr or ( 2 ” f o c al
l e n gt h) i nt o a g alli u m s el e ni d e cr yst al (t hi c k n ess, 6 µ m)
a cti n g as el e ctr o- o pti c cr yst al 3 8 .  T h er e, t h e  T H z p uls es ar e
s p ati all y a n d t e m p or all y o v erl a p p e d  wit h t h e g at e p uls es
t o el e ctr o- o pti c all y r es ol v e t h e el e ctri c c arri er fi el d of t h e
T H z p uls e as a f u n cti o n of t h e d el a y ti m e t. I n o ur  m e a-
s ur e m e nts,  w e t a k e s p e ci al c ar e t o e ns ur e t h at t h e d et e ct or
is pl a c e d i n t h e  T H z f o c us t o a v oi d art ef a cts o wi n g t o t h e
G o u y p h as e s hift 3 9 (s e e S u p pl e m e nt ar y Fi g. S 5).

T h e d et e ct e d  T H z tr a nsi e nt, g e n er at e d  wit h a p u m p-
p uls e d ur ati o n of 7 0 fs, a n d c orr e ct e d f or t h e d et e ct or
r es p o ns e (s e e S u p pl e m e nt ar y Fi g. S 3), f oll o ws a s ur prisi n g
w a v ef or m ( Fi g. 2 a, p ur pl e),  w hi c h diff ers q u alit ati v el y
fr o m t h e s h a p e a nti ci p at e d i n Fi g. 1 a: a n e xtr e m el y s h ar p
si n gl e  m a xi m u m at t = 0 ps r e a c hi n g a fi el d str e n gt h of
0. 7 7 k V c m − 1 d o mi n at es o v er t w o  w e a k n e g ati v e e x c ur-
si o ns at t = − 0. 1 6 ps ( el e ctri c fi el d, 0. 2 2 k V c m − 1 ) a n d t =
0. 1 7 ps ( el e ctri c fi el d, 0. 2 3 k V c m − 1 ).  C o m p ari n g t h e fi el d
str e n gt hs of t h e l ar g est h alf- c y cl es of o p p osit e si g ns,  w e
r e c ei v e a n as y m m etr y r ati o of 3. 4: 1.  D es pit e t h e e xtr e m e
as y m m etr y, t h e i nt e gr al o v er t h e el e ctri c fi el d s h o ul d
v a nis h f or a f ar- fi el d el e ctr o m a g n eti c  w a v e pr o p a g ati n g i n
fr e e s p a c e2 0 .  T his is e q ui v al e nt t o a v a nis hi n g v e ct or
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a n gl e of i n ci d e n c e of 6 5°. c S p e ctr al i nt e nsit y of t h e f u n d a m e nt al ( d ar k r e d d ott e d li n e) a n d c o m pr ess e d (r e d s oli d li n e) l as er p uls es. d F e mt os e c o n d

p uls es of a n ytt er bi u m fi br e l as er ar e s p e ctr all y br o a d e n e d a n d c o m pr ess e d t o 3 0 – 9 0 fs usi n g s elf- p h as e  m o d ul ati o n i n a f us e d sili c a  m e di u m ( χ ( 3)) i n a
m ulti- p ass c ell ( M P C). T h e p uls es a ct b ot h as a p u m p f or t h e q u a nt u m  w ell e mitt ers a n d as a g at e i n t h e el e ctr o- o pti c d et e cti o n usi n g a  G a S e cr yst al

wit h a t hi c k n ess of 6 µ m as el e ctr o- o pti c cr yst al ( E O X). B S b e a m s plitt er, τ E O S d el a y ti m e,  O A P off- a xis p ar a b oli c  mirr or, I T O f us e d sili c a  wi n d o w  wit h

o n e-si d e d i n di u m ti n o xi d e c o ati n g,  G e 5 0 0- µ m-t hi c k g er m a ni u m  wi n d o w, λ / 4 q u art er- w a v e pl at e,  W P  W oll ast o n pris m, P Ds b al a n c e d p h ot o di o d es
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p ot e nti al at i n fi nit e p ositi v e a n d n e g ati v e d el a y ti m es,
w hi c h  w e a ct u all y o bs er v e f or t h e  m e as ur e d fi el d tr a nsi e nt
( Fi g. 2 b).

At its c e ntr e fr e q u e n c y of 2. 4 7  T H z, t h e p uls e f e at ur es
o nl y 0. 4 5 o pti c al c y cl es  wit hi n t h e F W H M d ur ati o n of t h e
i nt e nsit y e n v el o p e of 1 8 3 fs ( Fi g. 2 a, d ott e d gr e y li n e, s e e
S u p pl e m e nt ar y  N ot e 4 f or d et ails).  M a n y li g ht w a v e-
el e ctr o ni cs e x p eri m e nts n e c essit at e e xtr e m el y s h ort
m ai n  m a xi m a; t y pi c all y, t h e t e m p or al  wi dt h Δ τ of t h e fi el d
cr est at 9 0 % of t h e  m a xi m u m fi el d str e n gt h is t h e  m ai n
fi g ur e of  m erit.  T his fi el d cr est c a n, e. g., o p e n a t u n n elli n g
ti m e  wi n d o w i n a s c a n ni n g t u n n elli n g  mi cr os c o p e1 5 . F or
o ur p uls es, t his  wi n d o w h as a d ur ati o n of o nl y Δ τ = 6 0 fs.
T h e s p e ctr al a m plit u d e r etri e v e d b y F o uri er tr a nsf or m
( Fi g. 2 c) c o v ers  m or e t h a n 2. 6 o pti c al o ct a v es  wit h its

F W H M r a n gi n g fr o m 0. 6 8 t o 4. 3  T H z. It p e a ks at
1. 3 6  T H z a n d f e at ur es s p e ctr al c o m p o n e nts u p t o 6  T H z.
T h e s p e ctr al p h as e is fl at o v er t h e e ntir e r a n g e  w h er e t h e
s p e ctr al a m plit u d e is l ar g er t h a n 1 0 % i n di c ati n g t h at t h e
p uls e is F o uri er-li mit e d ( Fi g. 2 d).

Di s c u s si o n
T h e e xtr e m el y as y m m etri c s h a p e of t h e  m e as ur e d  T H z

tr a nsi e nt ( Fi g. 2 a) st a n ds i n st ar k c o ntr ast t o t h e si m plisti c
m o d el tr a nsi e nt of Fi g. 1 a.  T o r es ol v e t his dis cr e p a n c y,  w e
s elf- c o nsist e ntl y s ol v e t h e  w a v e e q u ati o n, t h e s e mi-
c o n d u ct or  Bl o c h e q u ati o ns 4 0 , a n d l o c al c h ar gi n g d y n a mi cs
( L C D).  T his all o ws us t o s yst e m ati c all y d es cri b e  T H z
e missi o n, o pti c al e x cit ati o ns, s hift c urr e nts, a n d  C o ul o m bi c
m a n y- b o d y d y n a mi cs a m o n g p h ot o e x cit e d el e ctr o ns a n d
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Fi g. 2  U ni p ol ar T H z tr a n si e nt s a n d f ull q u a nt u m t h e or y – e x p eri m e nt c o m p ari s o n. a T H z el e ctri c fi el d  w a v ef or m ( p ur pl e) d et e ct e d vi a el e ctr o-
o pti c s a m pli n g i n a 6- µ m-t hi c k  G a S e cr yst al a n d c orr e ct e d f or t h e d et e ct or r es p o ns e. T h e i nt e nsit y e n v el o p e ( gr e y d ott e d li n e) h as a F W H M d ur ati o n

of 1 8 3 fs,  w hi c h c orr es p o n ds t o 0. 4 5 o pti c al c y cl es at t h e c e ntr e fr e q u e n c y of 2. 4 7 T H z. T h e  w a v ef or m f e at ur es a n e xtr e m e as y m m etr y r ati o of 3. 4: 1

wit h a p e a k el e ctri c fi el d str e n gt h of 0. 7 7 k V c m – 1 . b T h e v e ct or p ot e nti al v a nis h es at l ar g e n e g ati v e a n d p ositi v e d el a y ti m es. c O ct a v e-s p a n ni n g

s p e ctr u m of t h e T H z p uls e i n cl u di n g s p e ctr al c o m p o n e nts u p t o 6 T H z. d Fl at s p e ctr al p h as e a cr oss all s p e ctr al c o m p o n e nts  wit h a r el ati v e a m plit u d e
of 1 0 % or  m or e. e C o m p ut e d i niti al  Q W c o n fi n e m e nt ( gr e y ar e a) a n d c arri er d e nsit y (r e d d as h e d li n es) t = – 6 0 0 fs b ef or e t h e p u m p p uls e  wit h a

d ur ati o n of 1 3 0 fs. L o c al c h ar gi n g d y n a mi cs ( L C D) is f ull y i n cl u d e d t o pr o d u c e t h e a ct u al p ot e nti al at t = 2 0 0 fs aft er t h e p u m p p uls e ( bl a c k li n es) a n d

t h e c orr es p o n di n g c arri er d e nsit y (r e d s h a d e d ar e as). f C ol o ur- c o d e d pl ot of t h e c o m p ut e d el e ctr o n d e nsit y as a f u n cti o n of ti m e al o n g t h e gr o wt h
dir e cti o n. R e d s oli d ( d ott e d) li n e i d e nti fi es t h e  m e a n el e ctr o n ( h ol e) p ositi o n as a f u n cti o n of d el a y ti m e; h ori z o nt al gr e y d ott e d li n es d e n ot e t h e  Q W

i nt erf a c es a n d t h e v erti c al gr e y d ott e d li n e t h e ti m e of t h e u ni p ol ar e missi o n p e a k. g P u m p fi el d a m plit u d e (r e d s h a d e d ar e a), a n d t h e or eti c all y

pr e di ct e d T H z  w a v ef or m  wit h (s oli d p ur pl e) a n d  wit h o ut ( d as h e d- bl a c k li n e) L C D
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h ol es as  w ell as s p ati all y s e p ar at e d c h ar g es f or t h e e x p eri-
m e nt al  Q W s yst e m.  B y g e n er alisi n g t h e a p pr o a c h of r ef. 4 1

f or q u a nt u m- c o nfi n e d s yst e ms,  w e n ot o nl y s ol v e h o w s hift
c urr e nts alt er t h e  Q W c o n fi n e m e nt l e v els b ut als o d et er-
mi n e t h e r es ulti n g L C D eff e cts. Fi g ur e 2 e c o m p ar es i niti al
(t = − 6 0 0 fs, gr e y-s h a d e d ar e as) a n d fi n al ( t = 2 0 0 fs, bl a c k
li n es) c o nfi n e m e nt p ot e nti als f or t h e l o w est el e ctr o n (t o p)
a n d h ol e ( b ott o m) s u b b a n ds aft er o pti c al e x cit ati o n b y a
p uls e  wit h a d ur ati o n of 1 3 0 fs; als o t h e c orr es p o n di n g
i niti al (r e d d as h e d li n es) a n d fi n al (r e d s h a d e d ar e as) c arri er
c o n fi n e m e nt f u n cti o ns ar e s h o w n.

I n cl u di n g L C D yi el ds  m assi v e c h a n g es t o t h e
el e ctr o n – h ol e distri b uti o n.  T his is p arti c ul arl y cl e ar i n
Fi g. 2 f,  w hi c h pr es e nts t h e f ull e v ol uti o n of t h e t ot al
el e ctr o n d e nsit y ( c ol o ur  m a p) t o g et h er  wit h t h e  m e a n
el e ctr o n (r e d s oli d li n e) a n d h ol e (r e d d as h e d li n e) p osi-
ti o ns al o n g t h e c o nfi n e m e nt dir e cti o n.  W hil e t h e p h ot o-
e x cit e d el e ctr o ns a n d h ol es ar e i niti all y s e p ar at e d b y 5 n m,
as ass u m e d i n t h e si m pli fi e d a n al ysis of Fi g. 1 a, t h e L C D
p ulls t h e el e ctr o ns a n d h ol es b a c k t o g et h er, yi el di n g a n
a br u pt d e cr e as e i n t h e el e ctr o n – h ol e s e p ar ati o n, ar o u n d
t = 0. Fi g ur e 2 g c o m p ar es t his s u d d e n di p ol e s wit c hi n g
( v erti c al li n es i n Fi g. 2 f, g)  wit h  T H z e missi o n f or a 1 3 0 fs
e x cit ati o n p uls e (s h a d e d ar e a). S p e ci fi c all y, o nl y t h e
c o m p ut ati o n  wit h L C D ( bl u e-s oli d li n e) pr o d u c es a pr o-
n o u n c e d u ni p ol ar  T H z- e missi o n p e a k s y n c hr o nis e d  wit h
di p ol e s wit c hi n g,  w h er e as t h e c o m p ut ati o n  wit h o ut L C D
( d as h e d li n e) r es ults i n t h e s a m e bi p ol ar e missi o n as
pr e di ct e d i n Fi g. 1 a.  W e fi n d t h at t h e l ar g e p ositi v e p e a k

e m er g es  w h e n t h e el e ctr o n – h ol e p airs tr a nsi e ntl y
a p pr o a c h c h ar g e n e utr alit y,  w hil e t h e n e g ati v e e missi o n
p e a ks r es ult fr o m r el a x ati o n os cill ati o ns ar o u n d t h e
c h ar g e- n e utr al q u asi- e q uili bri u m.  H e n c e, t h e  m e as ur e d
as y m m etri c  w a v ef or m ori gi n at es fr o m a n e w  m e c h a nis m
w h er e a n i ntri g ui n g i nt er pl a y of s hift c urr e nts a n d L C D
s wit c h es t h e di p ol e t o c o m p e ns at e o pti c all y g e n er at e d
l o c al c h ar gi n g.

I m p ort a ntl y, u nli k e i n c o u pl e d  Q Ws s e p ar at e d b y a
fi nit e t u n n elli n g b arri er 4 2 , t his  m e c h a nis m d o es n ot
r e q uir e i n h er e ntl y b a n d wi dt h-li miti n g s c att eri n g pr o-
c ess es t o s p ati all y s e p ar at e p h ot o e x cit e d el e ctr o ns a n d
h ol es.  T h er ef or e, o ur  T H z p uls es s h o ul d b e fl e xi bl y
a dj ust a bl e b y t h e p u m p d ur ati o n.  T o t est t his e x p eri-
m e nt all y,  w e gr a d u all y i n cr e as e t h e p u m p s p e ctr al b a n d-
wi dt h fr o m 3. 6  T H z (f ull  wi dt h at t e nt h  m a xi m u m
[ F W T M]) u p t o 2 2. 3  T H z F W T M ( Fi g. 3 b) a n d si m ult a-
n e o usl y r e d u c e t h e d ur ati o n of o ur p u m p p uls es fr o m
1 4 0 fs d o w n t o 3 0 fs.  T h e p u m p fl u e n c e r e m ai ns fi x e d at
1 mJ  c m − 2 . Fi g ur e 3 a s h o ws t h e d et e ct e d  T H z  w a v ef or ms
aft er c orr e cti o n f or t h e d et e ct or r es p o ns e. Irr es p e cti v e of
t h e p u m p s p e ctr u m, all tr a nsi e nts  m ai nt ai n a str o n gl y
as y m m etri c s h a p e  w h er e t h e as y m m etr y r ati o i n cr e as es
fr o m 2. 8 (l o w est, r e d tr a nsi e nt) at t h e n arr o w est p u m p
s p e ctr u m t o 3. 7 ( hi g h est, bl u e tr a nsi e nt) at t h e  m ost
br o a d b a n d p u m p s p e ctr u m, e v e n e x c e e di n g t h e as y m-
m etr y of t h e  w a v ef or m s h o w n i n Fi g. 2 a.  T his r es ult a gr e es
wit h o ur  mi cr os c o pi c t h e or y,  w h er e d e cr e asi n g t h e p u m p-
p uls e d ur ati o n a c c el er at es t h e L C D,  w hi c h c a us es t h e
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3. 7: 1

Fi g. 3 S c ali n g t h e T H z b a n d wi dt h. a T H z  w a v ef or ms f or diff er e nt p u m p- p uls e d ur ati o ns a n d s p e ctr a. Fr o m r e d t o bl u e t h e p u m p- p uls e d ur ati o n
c h a n g es fr o m 1 4 0 t o 3 0 fs. b C orr es p o n di n g p u m p s p e ctr a. c N or m alis e d T H z s p e ctr al a m plit u d e of t h e r es p e cti v e  w a v ef or ms s h o w n i n p a n el a . T h e

hi g h est  m e as ur e d T H z fr e q u e n ci es ( 1 0 % of t h e  m a xi m u m s p e ctr al a m plit u d e) ar e i n di c at e d b y bl a c k arr o ws
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str o n g p ositi v e os cill ati o n h alf- c y cl e of t h e  T H z fi el d.
T h us, usi n g s h ort er p u m p p uls es d e fi n es a n eff e cti v e
str at e g y t o  m a xi mis e t h e as y m m etr y of o ur  T H z tr a nsi e nts
(s e e als o S u p pl e m e nt ar y  N ot e 5).

F urt h er m or e, r e d u ci n g t h e p u m p- p uls e d ur ati o n
m o n ot o ni c all y i n cr e as es t h e p e a k fi el d of t h e  T H z tr a n-
si e nts ( Fi g. 3 a) fr o m 0. 5 1 u p t o 1. 1 k V c m − 1 ,  w hil e t h e
wi dt h of t h e fi el d cr est Δ τ is r e d u c e d fr o m 7 0 fs d o w n t o
o nl y 2 0 fs.  T h e si g ni fi c a nt d e cr e as e of Δ τ c a n b e attri b ut e d
t o hi g h  T H z fr e q u e n c y c o m p o n e nts t h at e m er g e at l ar g e
p u m p b a n d wi dt hs.  T h e c orr es p o n di n g  T H z s p e ctr a ar e
s h o w n i n Fi g. 3 c.  W e s e e t h at  w h e n t h e p u m p- p uls e
b a n d wi dt h is i n cr e as e d, s o is t h e hi g h est  T H z F o uri er
c o m p o n e nt.  Alt h o u g h t h e  T H z s p e ctr a ar e  m ar k e d b y
p h o n o n a bs or pti o n i n t h e e mitt er str u ct ur e ar o u n d 8  T H z,
n ot a bl y, t h e F W T M of t h e p u m p s p e ctr u m str o n gl y c or-
r el at es  wit h t h e hi g h est  m e as ur e d  T H z fr e q u e n c y: p u m p
F W T Ms of 7. 3, 1 3. 2, 1 7. 4, 1 8. 8, a n d 2 2. 3  T H z ( Fi g. 3 b)
l e a d t o s p e ctr al  T H z c o m p o n e nts of u p t o 5, 1 1. 2, 1 2. 2,
1 7. 9, a n d 2 1. 4  T H z ( Fi g. 3 c, bl a c k arr o ws), r es p e cti v el y.
T his c orr el ati o n i n di c at es t h at t h e  T H z b a n d wi dt h of o ur
Q W Es c a n b e c o ntr oll e d vi a t h e p u m p- p uls e d ur ati o n a n d
c o ul d e v e n b e f urt h er i n cr e as e d b y p u m pi n g  wit h s h ort er
NI R p uls es.

B e y o n d t h e al m ost fr e el y e xt e n d a bl e b a n d wi dt h of o ur
Q W E g e n er ati o n s c h e m e, t h e  T H z p o w er s h o ul d b e
s c al a bl e as  w ell.  T o ass ess t h e s c al a bilit y of t h e fi el d
str e n gt h of t h e  Q W Es,  w e c o m p ar e t h e fi el d tr a nsi e nts
fr o m  Q W Es c o nsisti n g of 2 0 a n d 1 0 0  Q Ws, r es p e cti v el y.
At a p u m p- p uls e d ur ati o n of 7 0 fs,  w e o bs er v e a n i n cr e as e
of t h e p e a k el e ctri c fi el d b y a f a ct or of 4. 7,  w h e n t h e
n u m b er of  Q Ws is i n cr e as e d fr o m 2 0 t o 1 0 0 ( Fi g. 4 a).  T h e
g e n er al s h a p e of t h e  w a v ef or m r e m ai ns u n c h a n g e d.  Wit h
1 0 0  Q Ws, a p e a k fi el d of 0. 7 7 k V c m – 1 w as r e a c h e d at a
p uls e-r e p etiti o n r at e of 4  M H z, e v e n s ur p assi n g t h e fi el d
str e n gt h of 0. 5 3 k V c m – 1 g e n er at e d i n a b e n c h m ar k

s pi ntr o ni c e mitt er 2 7 , c o m p os e d of a  W( 2 n m)/
C o 4 0 F e 4 0 B 2 0 ( 1. 8 n m)/ Pt( 2 n m) tril a y er, u n d er i d e nti c al
c o n diti o ns.  B y f urt h er i n cr e asi n g t h e n u m b er of  Q Ws,
e v e n hi g h er fi el d str e n gt hs c o ul d c o m e i nt o r e a c h. F ur-
t h er m or e, t h e hi g h er as y m m etr y r ati o of 3. 4: 1 c o m p ar e d
t o 2. 3: 1 of s pi ntr o ni c e mitt ers  m a k es t h es e p uls es p arti-
c ul arl y attr a cti v e f or  m a n y a p pli c ati o ns 1 3 – 1 9 . E xt e n di n g
t his s c h e m e t o hi g h er p u m p- p uls e e n er gi es c o ul d f urt h er
e n h a n c e t h e e mitt e d  T H z p e a k fi el d.  As s h o w n i n Fi g. 4 b,
t h e p e a k fi el d s c al es li n e arl y  wit h t h e p u m p- p uls e e n er g y.
A b o v e a p u m p- p uls e e n er g y of 7 µJ, fi rst si g ns of s at ur a-
ti o n ar e visi bl e,  w hi c h c a n b e o v er c o m e b y i n cr e asi n g t h e
p u m p- b e a m di a m et er t o r e d u c e t h e p u m p fl u e n c e.  O wi n g
t o t h e hi g h t h er m al c o n d u cti vit y of  G a As, t h es e e mitt ers
pr o mis e f u n cti o n alit y at e v e n hi g h er p uls e-r e p etiti o n r at es
a n d p u m p- p uls e e n er gi es.

I n c o n cl usi o n,  w e h a v e d e v el o p e d a n o v el s c al a bl e  T H z-
e mitt er c o n c e pt b as e d o n a n ultr af ast i nt er pl a y of s hift
c urr e nts a n d L C D i n s e mi c o n d u ct or  Q W h et er ostr u ct ur es.
El e ctr o ni c  w a v ef u n cti o ns i n t y p e-II ali g n e d  Q Ws ar e t ai-
l or e d s u c h t h at r es o n a nt i nt er b a n d p h ot o e x cit ati o n b y a
st at e- of-t h e- art, hi g h- p o w er f e mt os e c o n d l as er dri v es
ultr af ast s hift c urr e nts g e n er ati n g 0. 4 5- c y cl e  T H z  w a v e-
f or ms.  T h e o utst a n di n g as y m m etr y r ati o of u p t o 3. 7: 1
ori gi n at es fr o m a n e w  m e c h a nis m  w h er e t h e s hift- c urr e nt-
i n d u c e d di p ol e is a br u ptl y q u e n c h e d b y L C D. E x pl oiti n g
t h e s c al a bilit y of t his s c h e m e,  w e g e n er at e d  T H z  w a v e-
f or ms  wit h s p e ctr al c o m p o n e nts r a n gi n g fr o m 0. 2 t o
2 1. 4  T H z a n d p e a k fi el ds e x c e e di n g 1. 1 k V c m – 1 .  O wi n g t o
t h e l atti c e- m at c h e d e pit a xi al gr o wt h, e v e n str o n g er fi el ds
c a n b e r e alis e d b y i n cr e asi n g t h e n u m b er of  Q Ws.  T h e
f u n cti o n alit y of o ur e mitt er s c h e m e d o es n ot r e q uir e
e xt er n al el e ctri c or  m a g n eti c bi asi n g,  m a ki n g it e as y t o us e.
T h e t ail or a bl e i nt er b a n d r es o n a n c es  m a k e t his a p pr o a c h
c o m p ati bl e  wit h a br o a d r a n g e of p u m p l as ers.  W e als o s e e
a l ar g e p ot e nti al f or f urt h er d e v el o p m e nt of o ur e mitt ers,
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e.g., by employing non-polar materials, such as silicon and
germanium, to avoid lattice absorption, by optimising
energy landscapes, and by increasing the in- and out-
coupling efficiency via index-matched prisms. Owing to
the versatility of the emitter scheme, waveforms, spectra,
and field strengths can be adjusted to many applications,
such as nonlinear light–matter interaction, ultrabroad-
band spectroscopy, and femtosecond nanoscopy.

Materials and methods
Sample growth
The samples were grown on a semi-insulating (100)

GaAs substrate by molecular beam epitaxy. To overcome
the lattice-mismatch of 1% between the GaAs substrate
and the active layers, an InxAl1–xAs step-graded buffer
was utilised. In this buffer, the indium content was
increased from x= 0 to 0.15 in three 50 nm steps (x=
0.05, 0.10 and 0.15) and a 50 nm step back to x= 0.124.
The following 100 nm thick constant composition
In0.124Al0.876As layer then serves as a lattice-matched
virtual substrate for the following active layers. The buffer
was grown at a substrate temperature T= 335 °C, while
the active layers were grown at T= 450–470 °C. The
active layers are composed as follows: as described in the
main text, InAlAs provides the QW potential walls, while
the type-II heterostructure QW is built from a suitable
combination of InGaAs and GaAsSb. Each QW was
embedded into 30 nm In0.124Al0.876As on each side. The
QW is formed with 7 nm In0.141Ga0.859As and 7 nm
GaAs0.87Sb0.13. The heterostructures were capped with
2 nm In0.141Ga0.859As to prevent oxidation damage.
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