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Abstract: Human mobility studies have become increasingly important and diverse 

in the past decade with the support of social media big data that enables human 

mobility to be measured in a harmonized and rapid manner. However, what is less 

explored in the current scholarship is episodic mobility as a special type of human 

mobility defined as the abnormal mobility triggered by episodic events excess to 

the normal range of mobility at large. Drawing on a large-scale systematic 

collection of 1.9 billion geotagged Twitter data from 2017 to 2020, this study 

contributes the first empirical study of episodic mobility by producing a daily 

Twitter census of visitors at the U.S. county level and proposing multiple statistical 

approaches to identify and quantify episodic mobility. It is followed by four case 

studies of episodic mobility in U.S. national wide to showcase the great potential 

of Twitter data and our proposed method to detect episodic mobility subject to 

episodic events that occur both regularly and sporadically. This study provides new 

insights on episodic mobility in terms of its conceptual and methodological 

framework and empirical knowledge, which enriches the current mobility research 

paradigm. 
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1. Introduction 

Following the movement of population across space has always been a challenge for 

governments, organizations, and researchers. The study of mobility across different 

spatial and temporal scales is fraught with difficulties fundamentally based on the paucity 

of reliable and comparable data, which has caused a bottleneck in researchers’ ability to 

analyze human behaviors and human-environment interactions (Laczko, 2015; Willekens 

et al., 2016). Tracking human mobility is now more important than ever, along with the 

evolution of globalization and formation of global transport networks reaching all 

segments of the society and allowing people to move flexibly with more travel options 

and lower cost (Weaver and Gahegan, 2007; Haklay, 2013; Coleman et al., 2009). The 

increasingly interconnected world where distances and time keep shrinking continues to 

surface new opportunities and challenges (Harvey 1990). Emerging opportunities lie in 

tourism, travel business, and sharing economy, connecting people and places around the 

world and advancing mutual economic and cultural bonds; while unprecedented 

challenges alongside increased human mobility in the past decade were widespread in 

transnational crimes, undocumented mass migration, or the uncontrollable spread of 

infectious diseases (e.g., the COVID-19 pandemic). In the face of these challenges, there 

is an urgent need for new mobility data and measures and analytical methods to be 

employed in mobility-related studies.  

What we have known in the current scholarship is that human mobility was 

usually measured by static snapshots that provided population estimates or small-scale 

observations and surveys (Santos et al., 2011; Barbosa et al., 2018; Olabarria et al., 2013). 

Travel statistics are also regularly used to record the number of people leaving or arriving 

at a particular location (Compares, 2003; Coburn, 2004). Even though research projects 

have been able to utilize these data sources, many researchers in the field advocate for a 



 

 

search of innovative data collection methods that permit a unified, comparable, and 

reliable analysis of current population movements (Bilsborrow, 2002). Recently, we have 

witnessed many attempts to find new sources of data to dynamically track population 

movements, both in regular situations (e.g., migration studies) (Kumar et al., 2011; 

Zagheni and Weber, 2012) and during and after extraordinary events such as mass 

evacuations caused by impending threats (Martín et al., 2017; Huang et al., 2020a). 

During the past years, many researchers interested in investigating phenomena, 

such as migration, tourism, evacuations, or displacement, have recurred to the use of 

geospatial digital trace data, also known as passive citizen sensor data. This sensor data, 

usually generated by digital devices (e.g., mobile phones and tablets) to reflect citizens’ 

daily activities, has been proved to be a rich resource for the study of human mobility. It 

allows the investigation of large groups of people at multiple spatiotemporal resolutions 

and has great potentials to produce near real-time results (Martín et al., 2020a; Huang et 

al., 2021; Wang et al., 2021). Some of the sources of passive citizen sensor data that have 

been explored are mobile telephone data, smart card data, WI-FI and Bluetooth data, and 

social media data (Camacho et al., 2021; Wei & Yao, 2021; Stange et al., 2011; Zhao et 

al., 2021; Zhong et al., 2015; Wu et al. 2014; Liu et al., 2021). However, while these new 

data sources offer new insights on human behaviors, they are inevitably subject to data 

limitations, including limited data access as the most common concern, as much of such 

data is privately owned and not freely disclosed for research purposes. Instead, large-

scale social media data that are publicly available, in particular Twitter data, has attracted 

the attention of many researchers as a possible avenue to study human mobility due to its 

open-data policy (Hawelka et al., 2014; Huang and Wong, 2015; Jiang et al., 2021; Luo 

et al., 2016; Jiang et al., 2019).  



 

 

A recent effort by Martín et al. (2021) examined the possibility of measuring the 

daily dynamics of population displacement following certain major events using Twitter 

data. However, what has been less explored in the study by Martín et al. (2021) and other 

existing mobility studies is episodic mobility as a special type of human mobility defined 

as the abnormal mobility triggered by episodic events excess to the normal range of 

mobility from both intra-year and inter-year perspectives. The significance of examining 

episodic mobility lies in tourism and health planning and policymaking for human 

adaptation to natural disasters and epidemic crises, particularly in the era of COVID-19.  

In order to fulfill the knowledge gaps, this study makes an initial attempt to 

examine episodic mobility by drawing on a large-scale systematic collection of 1.9 billion 

geotagged Twitter data from 2017 to 2020, producing a daily Twitter census of visitors 

at the U.S. county level and proposing multiple statistical approaches to identify and 

quantify episodic mobility. We design an automatic, statistically robust framework that 

considers both intra-year and inter-year visitation deviations for detecting abnormal 

visitation patterns triggered by episodic events at the U.S. county level. Four case studies 

are presented to showcase the great potential of Twitter data and our proposed method. 

The conceptual, methodological, and experimental knowledge provided by this study will 

enrich the current mobility research paradigm and benefit cross-disciplinary studies that 

demand knowledge of human mobility. 

The remaining paper is organized as follows. We first introduce the concept of 

“excess mobility” and how it is intertwined with modified Z-score and time-series 

decomposition approaches (Section 2). We then explain the method followed to produce 

the daily Twitter visitors from geotagged tweets (Section 3). Further, we describe our 

proposed statistical approaches that incorporate the concept of excess mobility, i.e., 

modified Z-score coupled with time-series decomposition (Section 4). We further 



 

 

validate the U.S. county-level daily visitor count derived from Twitter against the 

mobility records collected from 45 million mobile devices that cover 10% of the U.S. 

population, open-sourced by SafeGraph (https://www.safegraph.com/) (Section 5). 

Finally, we display some potential applications of the data (Section 6), discuss limitations 

and future steps (Section 7), and conclude the study (Section 8). 

2. Backgrounds 

2.1 Episodic mobility and excess mobility analyses 

Episodic mobility is a special kind of human mobility defined as the abnormal mobility 

triggered by episodic events excess to the normal range of mobility at large. Such episodic 

events can be natural disasters, medical emergencies, tourism events, and/or the spread 

of infectious diseases. They may trigger sharp changes in human mobility as proactive 

protective adaptations and reactions to the surrounding environment, including 

evacuation, resettlement, displacement and/or migration. Studies on episodic mobility 

enable researchers to detect and quantify abnormal human mobility and to understand the 

drivers of such mobility.  

Temporally sparse official statistics at the aggregated level, such as censuses or 

registries, have particularly struggled to reflect the temporal sequence of an episodic 

mobility event. Thus, researchers would often find it very challenging to assess the 

magnitude, direction and timeframe of episodic mobility (i.e., how many, when and 

where people moved to and from a place, and whether they returned). These official 

statistics are often released annually (in best-case scenarios), which makes it very 

challenging to establish the temporal sequence between the drivers of mobility and the 

consequences since there may be multiple mobilities occurring in a yearly timeframe, 



 

 

potentially triggered by multiple events and motivations. Thus, it is much needed to 

analyze episodic mobility at a fine level (e.g., by day or week).  

The coarse temporal resolution of official statistics data has made researchers seek 

alternative methods to study event-triggered mobility (Finch et al., 2010; Fussell et al., 

2014). In recent years, geospatial digital trace data seems to be the source of information 

that has gained more attention and where researchers are placing the emphasis. For 

instance, call detail records (CDR) were used to track human mobility in Haiti after the 

2011 earthquake (Bengtsson et al. 2011). More recently, other researchers have used 

social media data to determine the magnitude of evacuations and post-disaster 

displacement after hurricanes (Jiang et al., 2021; Martín et al., 2020b). The great 

advantage of geospatial digital trace data is the availability of spatiotemporal information 

that allows us to investigate short events that unfold in days or weeks. However, unlike 

other small-scale data such as travel surveys, where the researcher can directly ask survey 

participants about the nature and motivation of their mobility, researchers using large-

scale social media data have to assume that human mobility occurring in an emergency 

or in the aftermath of a disaster were motivated by that event. Weak explanations on the 

motivations of mobility have been one of the main critiques in mobility studies based on 

geospatial digital trace data — what this study aims to fulfill.  

2.2 Social media, modified Z score, and time series decomposition: a potential 

solution  

The concept of “excess mobility” is borrowed from “excess mortality”, a commonly used 

term in epidemiology and disaster studies, which provides the estimation of the additional 

number of mortality within a given time period in a geographical region (e.g., country), 

compared to the estimate of mortality had the events not occurred (Santos-Burgoa et al. 

2018; Fouillet et al., 2006). Essentially, excess analysis demands the establishment of 



 

 

references, i.e., previous mortality records for counterfactual estimation (Brodersen et al., 

2015). When applying this concept to mobility, we argue that excess episodic-mobility 

analysis refers to the analytical framework that derives mobility deviations by comparing 

mobility records at normal situations in an intra-year or inter-year manner. In intra-year 

analyses, episodic events drive mobility records in a certain region to deviate from their 

normal situations, usually reflected by sudden increases or decreases of mobility within 

that year. Inter-year analyses often compare mobility records in a given year to the 

mobility records reference year(s), often estimated using the same time period in the 

preceding year or averaged over several preceding years.  

As mobility data has increasingly grown in volume over the past decade, thanks 

to ubiquitous localization technologies for capturing human mobility flows, mobility 

records have been accumulated over the years, establishing a great venue where intra-

year and inter-year comparison of records can happen. The rising of social media 

platforms since the early 2010s has received much attention and offers a novel solution 

to document human mobility at fine temporal granularity in an easily accessible manner, 

thanks to the timely geographical information from global/national social sensing 

networks constituted by millions of social media users (Huang et al., 2020a; Liu et al., 

2021; Li et al., 2021a). After years of data accumulation, mobility records derived from 

social media platforms now feature a relatively long temporal coverage that enables year-

on-year comparison, greatly facilitating excess mobility analyses.  

In this study, we document a large-scale collection of daily Twitter visitors at the 

county level in the United States. For intra-year comparison, to measure how visitor 

counts on a certain day deviate from yearly visitor count distribution, traditional Z score 

statistics that describe a value’s relationship to the mean can be implemented (e.g., Martín 

et al., 2021). However, considering the skewness of visitor distribution (see Figure A in 



 

 

the Appendix) and the existence of outliers (extreme values) evidenced by many existing 

studies (Martín et al., 2021; Jurdak et al., 2015), a more robust approach, i.e., modified Z 

score statistics, is preferred and has been adopted by many event detection studies (Huang 

et al., 2019; Seem, 2007). As for inter-year comparison, one of the most commonly 

adopted techniques to derive references against which records from other years can 

compare is time series decomposition, which has been widely implemented in various 

domains that include remote sensing (Lambert et al., 2013; Kong et al., 2015), travel 

analysis (Xu et al., 2016; Huo et al., 2019), economy (Zarnowitz and Ozyildirim, 2006; 

Beveridge and Nelson, 1981), to list a few. From the perspective of human mobility, 

visitor counts can exhibit a variety of yearly patterns; therefore, the extraction of the 

underlying trend components establishes valuable baselines that assist in the detection of 

systematic or unsystematic deviations caused by episodic events. For instance, Zhu and 

Guo (2017) decomposed the time series of taxi trips in Manhattan, New York City, into 

various components for urban event detection. Omkar and Kumar (2017) decomposed 

traffic volume data to investigate the hidden travel patterns with the ultimate goal of 

performing flow forecasting. More recent efforts have incorporated human mobility time-

series decomposition in tackling COVID-19 issues (da Silva et al., 2021; Singhal et al., 

2020).  

Thus, we argue that coupling the accumulated mobility records (number of 

visitors in this study) from social media platforms with techniques that involve modified 

Z score and time-series decomposition approach establishes a great venue where the 

impacts of episodic events on geospatial digital trace data can be thoroughly investigated 

in a rapid manner.  



 

 

3. Datasets 

3.1 Twitter data collection and preprocessing 

We collected over 1.9 billion geotagged Twitter posts (hereinafter termed as tweets) that 

cover the conterminous U.S. using the Twitter Streaming Application Programming 

Interface (API). These tweets were posted from January 1, 2017 to December 31, 2020 

(four-year coverage). We stored these tweets in a computing cluster and processed them 

with Apache Hive, Impala, and GIS Tools for Hadoop by Esri (Li et al., 2021). The 

locational accuracy of a tweet largely varies and depends on the specific users’ setting 

(Huang et al., 2020a). As our interest is to investigate the count of visitors at the county 

level, we only include geotagged tweets (tweets with locational information) that can be 

located and aggregated into a certain spatial scale, equal or finer than a county (e.g., exact 

coordinates, point of interests, cities, etc.). We further derived Twitter users’ home 

locations and used such information to calculate the daily number of visitors at the U.S. 

county level. We filtered out the non-human tweets, such as automated weather reports, 

job offers, and advertising, by exploring the tweet source from which application tweets 

are posted. For example, tweets automatically posted for job offers from the source 

TweetMyJOBS and CareerArc were removed. Other details regarding the preprocessing 

procedure and workflow of retrieving daily visitor count can be found in Martín et al. 

(2021). In addition, we excluded eight days (May 22 to May 29, 2019) from the analytical 

timeframe due to the missing data in this time period. 

3.2 Reference dataset (SafeGraph Social Distancing Metrics) 

To validate to what extent that our county-level Twitter data of daily visitors would be 

able to represent the mobility of the general population, we compared the daily visitor 

count calculated by Twitter data to that calculated from the Social Distancing Metrics, 



 

 

open-sourced by SafeGraph (https://www.safegraph.com/), a company that provides 

aggregated location information from anonymized digital devices via numerous 

applications. SafeGragh’s data are collected using a panel of Global Positioning System 

points from around 45 million anonymous mobile devices, covering around 10% of the 

U.S. population (Huang et al. 2020b; SafeGraph, 2020). Such a high penetration ratio of 

SafeGraph data makes it an ideal source to validate the representativeness of Twitter data. 

SafeGraph first determined the home locations of devices using their common nighttime 

locations over a six-week period and further reported their daily movement pattern at the 

Census Block Group (CBG) level. To protect users’ privacy, SafeGraph excludes CBG 

information if fewer than five devices visited an establishment in a month from a given 

CBG.  

For comparability, we derived visitor count using SafeGragh’s movement patterns 

and upscaled the statistics from the CBG level to the county level, making them consistent 

in spatial scales with our Twitter data. It is worth noting that SafeGragh’s Social 

Distancing Metrics has a limited temporal coverage from January 1, 2019, to April 16, 

2021 and it is no longer available after April 16, 2021.  

4. Methods 

4.1 Modified Z score (intra-year comparison) 

For a certain county in a given year, its daily visitor count is represented by 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑛}  ( 𝑛 = 365  in ordinary years and 𝑛 = 366   in leap years). Given the 

distribution pattern of 𝑉, we aim to measure the degree of how the visitor count on a 

certain day deviates from its yearly visitor count distribution. We applied the modified Z 

score, an improved and more robust standardization approach compared to the traditional 

Z score, thanks to its capability in anomaly tolerance. The calculation of modified Z score 



 

 

for a given day 𝑖 (𝑧𝑖
𝑚𝑜𝑑) is calculated following: 

𝑧𝑖
𝑚𝑜𝑑 =  

𝛼1(𝑣𝑖 −𝑣̃)

𝑀𝐴𝐷
                                                   (1) 

where 𝑍𝑖
𝑚𝑜𝑑 denotes the modified Z score of the visitor count on day 𝑖, 𝛼1 is a constant 

of 0.6745 (Huang et al., 2019; Iglewicz and Hoaglin, 1993), 𝑣𝑖 denotes the visitor count 

of a certain county on day 𝑖. 𝑣̃ denotes the median value of 𝑉. MAD, suggesting median 

absolute deviation, is further calculated by taking the median of the absolute deviations 

from the median: 

𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛{|𝑣𝑖  −  𝑣̃|}                                          (2) 

When 𝑀𝐴𝐷 = 0, 𝑧𝑖
𝑚𝑜𝑑 is modified as:  

𝑧𝑖
𝑚𝑜𝑑 =  

𝛼2(𝑣𝑖 −𝑣̃)

𝑀𝑒𝑎𝑛𝐴𝐷
                                                  (3) 

where 𝛼2 is a constant of 0.7966 (Iglewicz and Hoaglin, 1993) and 𝑀𝑒𝑎𝑛𝐴𝐷, suggesting 

mean absolute deviation, is calculated by taking the mean of the absolute deviations from 

the median: 

𝑀𝑒𝑎𝑛𝐴𝐷 =  𝑚𝑒𝑎𝑛{|𝑣𝑖  −  𝑣̃|}                                        (4) 

4.2 Time series decomposition (inter-year comparison) 

After the construction of the time series of 𝑍𝑚𝑜𝑑 = {𝑧1
𝑚𝑜𝑑, 𝑧1

𝑚𝑜𝑑 , . . . , 𝑧𝑛
𝑚𝑜𝑑} from 𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑛}, we further decompose 𝑍𝑚𝑜𝑑  using seasonal-trend decomposition with 

locally estimated scatterplot smoothing (STL) (Cleveland et al., 1990), a versatile and 

robust time series decomposing method the considers non-linear relationships with a high 

tolerance to outliers. The STL algorithm decomposes the time series 𝑍  into a trend 

component (𝑇) that suggests the long-term progression of a time series, including the 

upward, downward, or periodic tendency, a seasonal component (𝑆) that summaries 



 

 

seasonality with repetitive patterns over time, and an irregular component (𝑒) (i.e., noises) 

that describes random, irregular influences, suggesting the remainder of the time series 

after other trend and seasonal components have been removed. In a selected reference 

year (or the average from multiple reference years), the modified Z score on day 𝑖, i.e., 

𝑍𝑖
𝑚𝑜𝑑, can be decomposed following (Cleveland et al., 1990): 

𝑍𝑖
𝑚𝑜𝑑 = 𝑇𝑖 + 𝑆𝑖 + 𝑒𝑖                                              (5) 

where 𝑇𝑖, 𝑆𝑖, and 𝑒𝑖 denote the trend, seasonal, and irregular components, respectively, 

on day 𝑖.  

The STL decomposition procedure follows the three major steps: 

Step 1: Initializing trend component 𝑇𝑖
(0)

 and irregular component 𝑒𝑖
(0)

. 

Step 2 (Outer Loop): Calculating robustness weights. Run 𝑛(0) times: 

• Calculating 𝑒𝑖 

• Calculating robustness weight 𝑝𝑖 = (1 − (
|𝑒𝑖|

ℎ
)

2

)
2

 if 0 ≤
|𝑒𝑖|

ℎ
≤ 1. For 

other 
|𝑒𝑖|

ℎ
, 𝑝𝑖 = 0. Note that ℎ = 6 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑒𝑖|) and 𝑝𝑖 = 1 in the 

initial loop. 

Step 3 (Inner Loop): calculating trend and seasonal components in an iterative 

manner. Run 𝑛(𝑖) times: 

• Detrending: 𝑍𝑖
𝑚𝑜𝑑 − 𝑇𝑖

(𝑚)
, where 𝑚 denotes the loop number.  

• Smoothing subseries: given the user-defined periodicity 𝑘 (𝑘 = 12 in 

this study, reflecting the 12 months in a year), the detrended time 

series is divided into 𝑘 subseries, with each subseries loess smoothed, 

producing a temporary seasonal time series 𝐶𝑚+1. 



 

 

• Low-pass filtering: A low pass filter is applied to 𝐶𝑚+1 to derive 

𝐿𝑚+1.  

• Detrending of subseries: 𝑆𝑚+1 = 𝐶𝑚+1 − 𝐿𝑚+1, where 𝑆𝑚+1 

suggests the (𝑚 + 1)𝑡ℎ estimation of the seasonal component.  

• Deseasonalizing: 𝑍𝑚𝑜𝑑 − 𝑆𝑚+1 

• Trend smoothing: the deseasonalized time series, i.e., 𝑍𝑚𝑜𝑑 − 𝑆𝑚+1, 

is further loess smoothed, yielding the (𝑚 + 1)𝑡ℎ estimation of the 

trend component, i.e., 𝑇𝑚+1. 

After these three steps, the trend component, i.e., 𝑇 = {𝑇1, 𝑇2, . . . , 𝑇𝑛} is derived. 

Here, we denote the trend component from the reference year(s) and the trend component 

from the target year as 𝑇𝑟𝑒𝑓  and 𝑇𝑡𝑎𝑟 , respectively. Note that a short period of data 

missing occurred from May 22 to May 29 in 2019. When deriving the 𝑇𝑟𝑒𝑓, these missing 

days were discarded, if 𝑇2019 was involved in the 𝑇𝑟𝑒𝑓 calculation. We further calculate 

the difference between these two trend components, i.e., 𝑇𝑑𝑖𝑓𝑓 = 𝑇𝑡𝑎𝑟 − 𝑇𝑟𝑒𝑓, and define 

anomalies caused by episodic events as: |𝑇𝑑𝑖𝑓𝑓| > 𝛼 , where 𝛼  is a user-defined 

threshold. Days that satisfy the condition of 𝑇𝑑𝑖𝑓𝑓 > 𝛼 experience a significant increase 

in visitors in the target year compared to the reference year(s). On the contrary, days that 

satisfy the condition of 𝑇𝑑𝑖𝑓𝑓 < −𝛼 experience a significant decrease in visitors in the 

target year compared to the reference year(s). The choice of 𝛼 is empirical, as a larger 𝛼 

denotes a stricter detection criterion while a smaller 𝛼 denotes otherwise. In this study, 

we set 𝛼 = 1. 

5. Validation against SafeGraph 

Given the high penetration rate of SafeGraph data (though not a perfect representation of 

the entire population), we regard the visitor counts by SafeGraph as a ground truth. 



 

 

SafeGraph serves as a great reference to validate our Twitter-derived visitor counts. The 

temporal coverage of Twitter and SafeGraph data overlaps in the years 2019 and 2020. 

We selected the year 2019 as the baseline for the comparison study, as the mobility 

patterns in 2020 were greatly affected by the COVID-19 pandemic. Due to the sparseness 

of geotagged Twitter data, we further selected counties with a median daily visitor count 

larger than 30, leading to a total of 324 counties included in the validation. These counties 

are generally heavily populated (or located nearby densely populated counties) with 

sufficient Twitter-derived visitor records that would ensure the statistical robustness and 

scientific soundness of the validation process. 

Figure 1 shows the comparison between the monthly median of visitors derived 

from Twitter and SafeGraph at different months in the year 2019. In the monthly 

scatterplots (Figure 1), we note that there is a strong positive linear relationship between 

visitors documented by Twitter and SafeGraph, evidenced by the high Pearson correlation 

coefficient (Pearson’s 𝑟 ) values in all months. The highest correlation coefficient 

occurred in January (𝑟 = 0.896) and the lowest in April (𝑟 = 0.846). In general, we 

observe that the correlation of visitors from Twitter and SafeGraph maintains at a high 

and stable level across the entire year of 2019. Figure 2 is an integrated plot by showing 

median monthly visitor counts from these two sources from all months in 2019. The 

annual statistics in Figure 2, again, proves the strong correlation between Twitter and 

SafeGraph data (𝑟 = 0.860). 

 While we are aware that SafeGraph data do not fully represent the human 

mobility patterns of the general population, its high penetration ratio and observed strong 

positive correlation with Twitter data confirm the feasibility of using Twitter data as a 

proxy to mobility patterns from heavily sampled records. In addition, the limited 

availability of SafeGraph data (Social Distancing Metrics is only freely available during 



 

 

the COVID-19 pandemic till April 16, 2021) demonstrates the necessity of seeking 

geotagged social media as the alternative data source to supplement the scarcity of current 

mobility datasets.  

---- Figure 1 near here ---- 

---- Figure 2 near here ---- 

6. Case Studies 

6.1 Case 1: Yellowstone National Park and Grand Teton National Park (Teton 

County, Wyoming) 

Teton County is located northwest of Wyoming (Figure 3a). It contains two most popular 

national parks in the United States: the Yellowstone National Park (2020 U.S. national 

park rank: 2; 3.8 million visitors) and part of the Grand Teton National Park (2020 U.S. 

national park rank: 5; 3.3 million visitors) (National Park Service, 2021a). Though Teton 

county has a small number of permanent residents, it welcomed 1,837,000 overnight 

visitors in 2018 (Jackson Hole Travel & Tourism Board, 2020). Tourism is also one of 

Teton County’s biggest industries that travelers support 27% of the county’s total private-

industry employment (Jackson Hole Travel & Tourism Board, 2020). These two parks 

are popular destinations for tourists year-round, especially from June to September 

(National Park Service, 2021b). The visitation derived from Twitter confirms the above 

statement, as the trends of modified Z scores increased dramatically from June to 

September in all the selected years from 2017 to 2020 (Figure 3b). 

As the solar eclipse passed over the U.S. on August 21, 2017, both parks were 

popular observation points (Figure 3a), which set tourism records in both parks in August 

2017. The total solar eclipse can be viewed in the Grand Teton National Park. Therefore, 

there was about a 40% increase in park visits surrounding August 21, 2017, compared to 

the previous visitation record at the same time in 2015 and 2016 (Moen, 2017). The most 



 

 

significant increase appeared during the days around the solar eclipse. This historical 

moment was well captured by our Twitter visitation, as the trend component of modified 

Z scores almost reached 3 in mid-August 2017 (Figure 3b). We compare trend 

components of modified Z scores by setting the year 2017 as the target year (𝑇𝑡𝑎𝑟) and 

years 2018, 2019, and 2020 as the reference years (𝑇𝑟𝑒𝑓) (Figure 3c). The red color 

marked in the x-axis indicates that the target year had notably higher modified Z scores 

compared with the reference years (𝑇𝑑𝑖𝑓𝑓 > 𝛼), which suggests that a significant increase 

in visitation occurred in mid-August 2017, compared with the following years (Figure 

3c). 

---- Figure 3 near here ---- 

 

6.2 Case 2: Myrtle Beach (Horry County, South Carolina) 

Horry County is the easternmost county of South Carolina, with Myrtle Beach its largest 

city with 60 miles of the coastline of the Atlantic Ocean (Figure 4a). Myrtle Beach is also 

one of the most popular East Coast family vacation destinations in the U.S. Summertime, 

from June to August, is the most popular time to visit Myrtle Beach. Though the monthly 

tourist data is not available to the public, this trend was captured by the trend components 

of modified Z scores generated using Twitter’s data. We identified a significantly 

increased modified Z score between June and August in the city in all the selected years 

(Figure 4b). These numbers peaked in July, suggesting the highest tourism volume 

appeared in July (Figure 4b). The COVID-19 pandemic heavily impacted the city’s 

tourism industry, as the city experienced a significant drop in hotel reservations in July 

and August in 2020 compared to the same period in 2019 (Karacostas, 2020). We then 

visualize the impact of the COVID-19 pandemic by comparing the trend component of 

modified Z scores in 2020 (𝑇𝑡𝑎𝑟) with the one in 2017, 2018, and 2019 (𝑇𝑟𝑒𝑓) (Figure 

https://en.wikipedia.org/wiki/County_(United_States)
https://en.wikipedia.org/wiki/South_Carolina


 

 

4c). The blue color marked in the x-axis indicates that the target year had lower modified 

Z scores compared with the reference years (𝑇𝑑𝑖𝑓𝑓 > 𝛼), suggesting a notable decrease 

in tourism volume between June and August in 2020 compared with the previous years, 

due to the impact of the COVID-19 pandemic (Figure 4c). The above results indicate that 

Twitter-derived visitation patterns revealed by our proposed excess mobility analytics can 

accurately reflect tourism volumes in a timely manner. Stakeholders and researchers are 

suggested to use this resource to understand tourists' preferences and to improve business 

planning and performance.  

---- Figure 4 near here ---- 

6.3 Case 3:  Southern 500 NASCAR race (Darlington County, South Carolina) 

The Southern 500 is a National Association for Stock Car Auto Racing (NASCAR) Cup 

Series stock car race in Darlington, South Carolina, US (Figure 5a). From 1950 to 2003, 

and again since 2015, this race has been held on Labor Day weekend (around the first 

week of September). Darlington is a local county that normally has a low visitation during 

the year (Figure 5b); however, a sharp increase of visitors is depicted during the first week 

of September in 2017-2019 (modified Z score around 10.3, 14.0 and 16.0 in 2017, 2018, 

and 2019 respectively) that are highly likely to associate with the Southern 500. In 2020, 

the magnitude of such an increase of visitors had been reduced largely (modified Z score 

around 2.5 in 2020) compared to 2017-2019, as detected by the dark blue in the bottom 

bar of Figure 5c, indicating a sharp reduction of visitors in 2020 possibly due to the 

COVID-19 restrictions. It is also noteworthy that another increase of visitors is observed 

in the mid of May 2020, with the possible reason awaiting further exploration. The 

detection of such sport or recreational events by Twitter data can be implemented in other 

counties where similar epidotic events occurred. For example, in our experiments, 



 

 

Summit County in Utah has observed an increase in visitors in the last week of January 

in tandem with the commencement of the Sundance Film Festival in Park City as one of 

the largest independent film festivals in the US. Orlean County in Louisiana is detected 

with a sharp increase of visitors in the last week of February as the Mardi Gras carnival 

took place in New Orleans each year. Pershing County in Nevada is another typical 

example that a sharp increase of visitors is detected by Twitter data during the end of 

August and the first week of September when the Burning Man Festival as an iconic 

counterculture event takes place in the Black Rock Desert of northern Nevada each year. 

During this festival, a temporary city in the desert is built as a utopia, drawing visitors 

from around the globe. 

---- Figure 5 near here ---- 

6.4 Case 4:  Spatial distribution of modified Z score on Christmas Day 

Here, we further examine the spatial distribution of modified Z scores at the national level 

on Christmas day (December 25) (Figure 6). A blue theme (light to dark blue) indicates 

a decrease of visitors (modified Z score smaller than -0.5), while a red theme (light to 

dark red) indicates an increase of visitors (modified Z score larger than 0.5). On Christmas 

Day, in the years of 2017-2019, counties with increased visitors (red with modified Z 

score larger than 1.5) are observed to spread out in the whole US mainland, while a 

number of large counties in Arizona, Utah, Nevada, Nebraska, Colorado, and New 

Mexico experience a reduction of visitors (Figure 6a-c). However, the number of counties 

with increased visitors in 2020 is much less than that in 2017-2019, while the number of 

counties with decreased visitors in 2020 is much more than that in 2017-2019 (Figure 6d), 

which can be possibly explained by the dampened travel willingness due to the COVID-

19 pandemic. The above results indicate that visitation patterns captured by Twitter data 

using the proposed method in this study have the capability to reflect the episodic events 



 

 

that occur regularly in each year or happen sporadically on a particular date. 

---- Figure 6 near here --- 

7. Limitations and future steps 

It is necessary to acknowledge several limitations of this work and provide guidelines for 

future studies. First, while the correlation between visitors derived from Twitter and 

SafeGraph (a highly sampled human mobility dataset) reveals a Pearson’s 𝑟 of 0.860 in 

2019, whether human mobility patterns derived from Twitter can be generalized to the 

entire population deserves further investigation. The representativeness issue of Twitter 

has been noted by many studies, as it may not ideally reflect the characteristics of the 

general population as a whole and is undersampled towards the elderly, the poor, and 

those who do not have access to digital devices and are not willing to share information 

online (Jiang et al., 2019; Martín et al., 2017; Hu et al., 2021). Acknowledging this 

representativeness shortcoming from Twitter data, we believe the human mobility 

dynamics with a fine spatiotemporal granularity from Twitter contributes to a wide range 

of studies that require rapid and large-scale human mobility monitoring. Future studies 

can explore the possibility of fusing Twitter data with other mobility sources, aiming to 

derive improved visitor counts captured from a wider population spectrum.  

Second, despite its “Big Data” nature, the available geotagged tweets that can be 

used for visitor counts are still insufficient to derive stable time series of visitors in 

sparsely populated counties at a temporal resolution of daily, posing further challenges to 

the time-series decomposition approach and leading to indecipherable patterns from their 

trend components. Such data sparsity results from the active data collection mechanism 

from Twitter (i.e., users need to post information before his/her locations can be 

captured), which unavoidably leads to a diluted amount of trajectory data from both 

spatial and temporal perspectives (Huang et al. 2020a). In addition, depending on users’ 



 

 

specific settings, the locational accuracy of geotagged tweets varies. For instance, the 

Twitter data used in this study consists of about 80% of tweets that can be located to the 

place level (city, neighborhood, and point of interest), while the remaining tweets are with 

coordinates (latitude and longitude) (Li et al. 2021b; Martín et al., 2021). In light of the 

small proportion of tweets that can be geotagged, further efforts can incorporate 

geoparsing, a process of converting text descriptions of places to unambiguous 

geographic identifiers (Cheng et al., 2010), to better derive Twitter users’ location. In 

certain cases, users’ profiles can also provide locational information with sufficient 

accuracy that supports the localization of users’ home locations.  

Third, we involve the modified Z score coupled with time-series decomposition 

techniques to investigate visitation patterns driven by episodic events. Although modified 

Z score with strong robustness is an improved version of the traditional Z score, its 

limitation should not be ignored. For rural counties with no documentation of visitors 

most time of the year, the 𝑀𝐴𝐷  (see Equation 1), i.e., the median of the absolute 

deviations from the median, tends to be 0. Consequently, the calculation of modified Z 

score for these counties is transitioned to the utilization of 𝑀𝑒𝑎𝑛𝐴𝐷 (see Equations 3 and 

4), i.e., the mean of the absolute deviations from the median. Such a calculation transition 

introduces uncertainties when cross-comparing modified Z scores from different 

counties. In addition, a county’s yearly modified Z scores time series is subject to its 

yearly distribution of visitor counts. Thus, a multi-year comparison of derived trend 

components of the modified Z score is valid when a county’s yearly distributions of 

visitor counts (in terms of median and mean values) do not differ in a significant manner. 

Further efforts can be made towards the investigation of other supervised/unsupervised 

time-series handling approaches for better identification of mobility anomalies caused by 

episodic events. 



 

 

In terms of future developments, we plan to apply the proposed methods to regions 

beyond the U.S. and further extend our designed cyberinfrastructure to a global scale, 

taking better advantage of the global coverage of Twitter data. We also plan to open-

source our Twitter-based mobility dataset and develop an interactive online tool that 

allows the visualization of visitors at various geographic levels with downloadable and 

ready-to-use multi-scale visitor counts to support wider community needs. We believe 

rapid, large-scale monitoring of visitors from social media has the potential to benefit a 

variety of fields that demand knowledge of human movement with fine spatiotemporal 

granularity, including disease monitoring and modeling, transportation planning, disaster 

management, tourism, and migration. Given the capability of geotagged Twitter data in 

generating Origin-Destination matrices, we plan to further explore the spatiotemporal 

dynamics of users’ origins, hoping to better understand the mechanism behind the 

detected episodic events. In addition, we plan to involve the contextual knowledge that 

can be derived from Twitter posts via text mining and image processing techniques, 

aiming to provide better situational awareness that facilitates our understanding of the 

reasons behind observed visitation anomalies due to episodic events.  

8. Conclusion 

Monitoring human mobility across space triggered by episodic events has always been a 

challenge for governments, organizations, and researchers. The growing popularity of 

social media provides a great venue where human mobility can be measured in a 

harmonized, less privacy-concerning, and rapid manner by taking advantage of the digital 

trace data from this unique crowdsourcing platform.  

This study contributes an empirical study of a special type of human mobility 

which has been rarely explored in the current scholarship — episodic mobility, defined 

as the abnormal mobility triggered by episodic events excess to the normal range of 



 

 

mobility at large. Drawing on a large-scale systematic collection of Twitter data from 

2017 to 2020, we produce a daily Twitter census of visitors at the U.S. county level and 

propose multiple statistical approaches, including modified Z score statistics and a time-

series decomposition technique, to identify and quantify episodic mobility. It is followed 

by four case studies of episodic mobility in U.S. national wide to showcase the great 

potential of Twitter data and our proposed method to detect episodic mobility.  

For intra-year comparison, modified Z score statistics are used to measure how 

visitor counts on a certain day deviate from yearly visitor count distribution. As for inter-

year comparison, a versatile and robust time series decomposing method, i.e., seasonal-

trend decomposition with locally estimated scatterplot smoothing (STL), is applied to 

derive the yearly trend components, thus setting up baselines that facilitate the detection 

of systematic or unsystematic cross-year deviations. By validating Twitter-derived visitor 

counts against the SafeGraph mobility records collected from 45 million mobile devices, 

we illustrate the feasibility of using Twitter mobility patterns as a proxy to mobility 

patterns from heavily sampled mobile records, evidenced by their strong positive 

correlation with a Pearson’s 𝑟  reaching 0.860. We further described our developed 

interactive visualization portal that currently allows interactive exploration of the U.S. 

county-level Twitter-derived daily visitor counts in years 2017, 2018, 2019, and 2020. 

We further present four case studies to demonstrate how mobility patterns driven by 

episodic events can be measured, including 1) Teton County, Wyoming (Yellowstone 

National Park and Grand Teton National Park); 2) Horry County, South Carolina (Myrtle 

Beach); 3) Darlington County, South Carolina (the Southern 500 NASCAR race); and 4) 

Christmas days from 2017 to 2020. These demonstrations indicate that visitation patterns 

captured by Twitter data using the proposed method have the capability to reflect the 

episodic events that occur regularly or sporadically.  



 

 

For future developments, we intend to take better advantage of the global 

coverage of Twitter data by applying the proposed methods and extending our designed 

cyberinfrastructure to a global scale. We also plan to open-source our Twitter-derived 

visitation dataset with an interactive online tool that allows multi-scale visualization 

downloadable options to support wider community needs. We believe conceptual, 

methodological, and experimental knowledge provided by this study is expected to 

benefit a wide range of studies that demand knowledge of human movement with fine 

spatiotemporal granularity. 
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Figure 1. Monthly scatterplot of the monthly median of Twitter visitors and SafeGraph 

in 2019. [two-column] 

Figure 2. Integrated scatterplot of the monthly median of Twitter visitors and 

SafeGraph visitors in 2019. [two-column] 

Figure 3. The pattern of visitors from Twitter in Teton County, Wyoming. a) The 

location of Teton County, Wyoming; b) The modified Z score trend components for 

years 2017 (𝑇2017), 2018 (𝑇2018), 2019 (𝑇2019), and 2020 (𝑇2020); c) Detected events 

by comparing modified Z score trend components from the target year (2017) and 

reference years (2018, 2019, 2020). Note that a short period of data missing occurred 

from May 22 to May 29 in 2019. When deriving the 𝑇𝑟𝑒𝑓, these missing days were 

discarded if 𝑇2019 was involved in the 𝑇𝑟𝑒𝑓 calculation. [two-column] 

Figure 4. The pattern of visitors from Twitter in Horry County, South Carolina. a) The 

location of Horry County, South Carolina; b) The modified Z score trend components for 

years 2017 (𝑇2017), 2018 (𝑇2018), 2019 (𝑇2019), and 2020 (𝑇2020); c) Detected events by 

comparing modified Z score trend components from the target year (2020) and reference 

years (2017, 2018, 2019). Note that a short period of data missing occurred from May 22 

to May 29 in 2019. When deriving the 𝑇𝑟𝑒𝑓, these missing days were discarded if 𝑇2019 

was involved in the 𝑇𝑟𝑒𝑓 calculation. [two-column] 

Figure 5. The pattern of visitors from Twitter in Darlington County, South Carolina. a) 

The location of Darlington County, South Carolina; b) The modified Z score trend 

components for years 2017 (𝑇2017), 2018 (𝑇2018), 2019 (𝑇2019), and 2020 (𝑇2020); c) 

Detected events by comparing modified Z score trend components from the target year 

(2020) and reference years (2017, 2018, 2019). Note that a short period of data missing 

occurred from May 22 to May 29 in 2019.  When deriving the 𝑇𝑟𝑒𝑓, the missing days 

were discarded, if 𝑇2019was involved in the 𝑇𝑟𝑒𝑓 calculation. [two-column] 



 

 

Figure 6. The spatial distribution of modified Z score of Twitter visitors on December 

25 in years a) 2017, b) 2018, c) 2019, and d) 2020. [two-column] 

Figure A. The histogram of county-level total visits from Twitter in 2019. [one-

column] 

 


