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Abstract

Modern approaches typically formulate semantic segmentation as a per-pixel classi-
fication task, while instance-level segmentation is handled with an alternative mask
classification. Our key insight: mask classification is sufficiently general to solve
both semantic- and instance-level segmentation tasks in a unified manner using
the exact same model, loss, and training procedure. Following this observation,
we propose MaskFormer, a simple mask classification model which predicts a
set of binary masks, each associated with a single global class label prediction.
Overall, the proposed mask classification-based method simplifies the landscape
of effective approaches to semantic and panoptic segmentation tasks and shows
excellent empirical results. In particular, we observe that MaskFormer outperforms
per-pixel classification baselines when the number of classes is large. Our mask
classification-based method outperforms both current state-of-the-art semantic
(55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.'

1 Introduction

The goal of semantic segmentation is to partition an image into regions with different semantic
categories. Starting from Fully Convolutional Networks (FCNs) work of Long et al. [30], most deep
learning-based semantic segmentation approaches formulate semantic segmentation as per-pixel
classification (Figure 1 left), applying a classification loss to each output pixel [9, 52]. Per-pixel
predictions in this formulation naturally partition an image into regions of different classes.

Mask classification is an alternative paradigm that disentangles the image partitioning and classifica-
tion aspects of segmentation. Instead of classifying each pixel, mask classification-based methods
predict a set of binary masks, each associated with a single class prediction (Figure 1 right). The
more flexible mask classification dominates the field of instance-level segmentation. Both Mask
R-CNN [21] and DETR [4] yield a single class prediction per segment for instance and panoptic
segmentation. In contrast, per-pixel classification assumes a static number of outputs and cannot
return a variable number of predicted regions/segments, which is required for instance-level tasks.

Our key observation: mask classification is sufficiently general to solve both semantic- and instance-
level segmentation tasks. In fact, before FCN [30], the best performing semantic segmentation
methods like O2P [5] and SDS [20] used a mask classification formulation. Given this perspective, a
natural question emerges: can a single mask classification model simplify the landscape of effective
approaches to semantic- and instance-level segmentation tasks? And can such a mask classification
model outperform existing per-pixel classification methods for semantic segmentation?

To address both questions we propose a simple MaskFormer approach that seamlessly converts any
existing per-pixel classification model into a mask classification. Using the set prediction mechanism
proposed in DETR [4], MaskFormer employs a Transformer decoder [41] to compute a set of pairs,
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Figure 1: Per-pixel classification vs. mask classification. (left) Semantic segmentation with per-
pixel classification applies the same classification loss to each location. (right) Mask classification
predicts a set of binary masks and assigns a single class to each mask. Each prediction is supervised
with a per-pixel binary mask loss and a classification loss. Matching between the set of predictions
and ground truth segments can be done either via bipartite matching similarly to DETR [4] or by
fixed matching via direct indexing if the number of predictions and classes match, i.e., if N = K.

each consisting of a class prediction and a mask embedding vector. The mask embedding vector is
used to get the binary mask prediction via a dot product with the per-pixel embedding obtained from
an underlying fully-convolutional network. The new model solves both semantic- and instance-level
segmentation tasks in a unified manner: no changes to the model, losses, and training procedure are
required. Specifically, for semantic and panoptic segmentation tasks alike, MaskFormer is supervised
with the same per-pixel binary mask loss and a single classification loss per mask. Finally, we design
a simple inference strategy to blend MaskFormer outputs into a task-dependent prediction format.

We evaluate MaskFormer on five semantic segmentation datasets with various numbers of categories:
Cityscapes [15] (19 classes), Mapillary Vistas [34] (65 classes), ADE20K [55] (150 classes), COCO-
Stuff-10K [3] (171 classes), and ADE20K-Full [55] (847 classes). While MaskFormer performs on
par with per-pixel classification models for Cityscapes, which has a few diverse classes, the new model
demonstrates superior performance for datasets with larger vocabulary. We hypothesize that a single
class prediction per mask models fine-grained recognition better than per-pixel class predictions.
MaskFormer achieves the new state-of-the-art on ADE20K (55.6 mIoU) with Swin-Transformer [29]
backbone, outperforming a per-pixel classification model [29] with the same backbone by 2.1 mloU,
while being more efficient (10% reduction in parameters and 40% reduction in FLOPs).

Finally, we study MaskFormer’s ability to solve instance-level tasks using two panoptic segmentation
datasets: COCO [28, 24] and ADE20K [55]. MaskFormer outperforms a more complex DETR
model [4] with the same backbone and the same post-processing. Moreover, MaskFormer achieves
the new state-of-the-art on COCO (52.7 PQ), outperforming prior state-of-the-art [42] by 1.6 PQ.
Our experiments highlight MaskFormer’s ability to unify instance- and semantic-level segmentation.

2 Related Works

Both per-pixel classification and mask classification have been extensively studied for semantic
segmentation. In early work, Konishi and Yuille [25] apply per-pixel Bayesian classifiers based on
local image statistics. Then, inspired by early works on non-semantic groupings [13, 36], mask
classification-based methods became popular demonstrating the best performance in PASCAL VOC
challenges [18]. Methods like O2P [5] and CFM [16] have achieved state-of-the-art results by
classifying mask proposals [6, 40, 2]. In 2015, FCN [30] extended the idea of per-pixel classification
to deep nets, significantly outperforming all prior methods on mIoU (a per-pixel evaluation metric
which particularly suits the per-pixel classification formulation of segmentation).

Per-pixel classification became the dominant way for deep-net-based semantic segmentation since
the seminal work of Fully Convolutional Networks (FCNs) [30]. Modern semantic segmentation
models focus on aggregating long-range context in the final feature map: ASPP [7, 8] uses atrous
convolutions with different atrous rates; PPM [52] uses pooling operators with different kernel sizes;
DANet [19], OCNet [51], and CCNet [23] use different variants of non-local blocks [43]. Recently,
SETR [53] and Segmenter [37] replace traditional convolutional backbones with Vision Transformers
(ViT) [17] that capture long-range context starting from the very first layer. However, these concur-
rent Transformer-based [41] semantic segmentation approaches still use a per-pixel classification



formulation. Note, that our MaskFormer module can convert any per-pixel classification model to the
mask classification setting, allowing seamless adoption of advances in per-pixel classification.

Mask classification is commonly used for instance-level segmentation tasks [20, 24]. These tasks
require a dynamic number of predictions, making application of per-pixel classification challenging
as it assumes a static number of outputs. Omnipresent Mask R-CNN [21] uses a global classifier to
classify mask proposals for instance segmentation. DETR [4] further incorporates a Transformer [41]
design to handle thing and stuff segmentation simultaneously for panoptic segmentation [24]. How-
ever, these mask classification methods require predictions of bounding boxes, which may limit their
usage in semantic segmentation. The recently proposed Max-DeepLab [42] removes the dependence
on box predictions for panoptic segmentation with conditional convolutions [39, 44]. However, in
addition to the main mask classification losses it requires multiple auxiliary losses (i.e., instance
discrimination loss, mask-ID cross entropy loss, and the standard per-pixel classification loss).

3 From Per-Pixel to Mask Classification

In this section, we first describe how semantic segmentation can be formulated as either a per-pixel
classification or a mask classification problem. Then, we introduce our instantiation of the mask
classification model with the help of a Transformer decoder [41]. Finally, we describe simple
inference strategies to transform mask classification outputs into task-dependent prediction formats.

3.1 Per-pixel classification formulation

For per-pixel classification, a segmentation model aims to predict the probability distribution over all
possible K categories for every pixel of an H x W image: y = {p;|p; € AX YW Here A is the K-
dimensional probability simplex. Training a per-pixel classification model is straight-forward: given
ground truth category labels y& = {y%'|yf' € {1,..., K}}Z1V for every pixel, a per-pixel cross-
entropy (negative log-likelihood) loss is usually applied, i.e., Lyixel-cis (Y, ') = Zflzlw —log pi(y5).

3.2 Mask classification formulation

Mask classification splits the segmentation task into 1) partitioning/grouping the image into IV regions
(IV does not need to equal K), represented with binary masks {m;|m; € [0,1]7*W}N . and 2)
associating each region as a whole with some distribution over K categories. To jointly group and
classify a segment, i.e., to perform mask classification, we define the desired output z as a set of NV
probability-mask pairs, i.e., z = {(p;,m;)}},. In contrast to per-pixel class probability prediction,
for mask classification the probability distribution p; € AKX+ contains an auxiliary “no object” label
(2) in addition to the K category labels. The @ label is predicted for masks that do not correspond to
any of the K categories. Note, mask classification allows multiple mask predictions with the same

associated class, making it applicable to both semantic- and instance-level segmentation tasks.

To train a mask classification model, a matching o between the set of predictions z and the set of N&
ground truth segments 2& = {(c2,m$")|c2 € {1,..., K}, m € {0, 1}1*W}N* is required.” Here
cft is the ground truth class of the i" ground truth segment. Since the size of prediction set |z| = N
and ground truth set |28'| = N generally differ, we assume N > N and pad the set of ground truth
labels with “no object” tokens & to allow one-to-one matching.

For semantic segmentation, a trivial fixed matching is possible if the number of predictions /N matches
the number of category labels K. In this case, the i prediction is matched to a ground truth region
with class label 7 and to & if a region with class label ¢ is not present in the ground truth. In our
experiments, we found that a bipartite matching-based assignment demonstrates better results than
the fixed matching. Unlike DETR [4] that uses bounding boxes to compute the assignment costs
between prediction z; and ground truth zft for the matching problem, we directly use class and mask
gt

; ), where L, is a binary mask loss.

predictions, ie., —pi(c‘;’»t) + Loask(mi, m

To train model parameters, given a matching, the main mask classification 1oss £ p,sk-c1s 1S composed
of a cross-entropy classification loss and a binary mask loss Lk for each predicted segment:

N
£mask—cls(z7 th) = Zj:l [_ Ingo(j)(Cﬁt) + ]lc§‘¢g£mask(ma(j)7 m]gtﬂ . (D

Different mask classification methods utilize various matching rules. For instance, Mask R-CNN [21] uses
a heuristic procedure based on anchor boxes and DETR [4] optimizes a bipartite matching between z and z*'.
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Figure 2: MaskFormer overview. We use a backbone to extract image features F. A pixel decoder
gradually upsamples image features to extract per-pixel embeddings &yixe1. A transformer decoder
attends to image features and produces N per-segment embeddings Q. The embeddings independently
generate N class predictions with IV corresponding mask embeddings Enask. Then, the model predicts
N possibly overlapping binary mask predictions via a dot product between pixel embeddings Epixel
and mask embeddings a5k followed by a sigmoid activation. For semantic segmentation task we
can get the final prediction by combining /N binary masks with their class predictions using a simple
matrix multiplication (see Section 3.4). Note, the dimensions for multiplication (X) are shown in gray.

Note, that most existing mask classification models use auxiliary losses (e.g., a bounding box
loss [21, 4] or an instance discrimination loss [42]) in addition to Lae.cis- In the next section we
present a simple mask classification model that allows end-to-end training with L,sx.c1s alone.

3.3 MaskFormer

We now introduce MaskFormer, the new mask classification model, which computes N probability-
mask pairs z = {(p;,m;)}}Y,;. The model contains three modules (see Fig. 2): 1) a pixel-level
module that extracts per-pixel embeddings used to generate binary mask predictions; 2) a transformer
module, where a stack of Transformer decoder layers [41] computes N per-segment embeddings;
and 3) a segmentation module, which generates predictions {(p;, m;)}}¥, from these embeddings.
During inference, discussed in Sec. 3.4, p; and m; are assembled into the final prediction.

Pixel-level module takes an image of size H x W as input. A backbone generates a (typically)

low-resolution image feature map F € RC7* 5% where C 'r is the number of channels and S
is the stride of the feature map (C'r depends on the specific backbone and we use S = 32 in this
work). Then, a pixel decoder gradually upsamples the features to generate per-pixel embeddings
Epixel € REEXHAXW "where Cg is the embedding dimension. Note, that any per-pixel classification-
based segmentation model fits the pixel-level module design including recent Transformer-based
models [37, 53, 29]. MaskFormer seamlessly converts such a model to mask classification.

Transformer module uses the standard Transformer decoder [41] to compute from image features
F and N learnable positional embeddings (i.e., queries) its output, i.e., N per-segment embeddings
Q € RY*N of dimension Co that encode global information about each segment MaskFormer
predicts. Similarly to [4], the decoder yields all predictions in parallel.

Segmentation module applies a linear classifier, followed by a softmax activation, on top of the
per-segment embeddings Q to yield class probability predictions {p; € AKT1}N | for each segment.
Note, that the classifier predicts an additional “no object” category (&) in case the embedding does
not correspond to any region. For mask prediction, a Multi-Layer Perceptron (MLP) with 2 hidden
layers converts the per-segment embeddings Q to N mask embeddings e € R <Y of dimension
C¢. Finally, we obtain each binary mask prediction m; € [0, 1]#*"W via a dot product between the
i™ mask embedding and per-pixel embeddings Epixel computed by the pixel-level module. The dot

product is followed by a sigmoid activation, i.e., m;[h, w] = sigmoid(Emask [t 1] - Epixel[:, by w]).

Note, we empirically find it is beneficial to not enforce mask predictions to be mutually exclusive to
each other by using a softmax activation. During training, the Lask.c1s 10SS combines a cross entropy
classification loss and a binary mask loss Ly,sk for each predicted segment. For simplicity we use the
same L,k as DETR [4], i.e., a linear combination of a focal loss [27] and a dice loss [33] multiplied
by hyper-parameters Agoca and Agice respectively.



3.4 Mask-classification inference

First, we present a simple general inference procedure that converts mask classification outputs
{(pi,m;)}; to either panoptic or semantic segmentation output formats. Then, we describe a
semantic inference procedure specifically designed for semantic segmentation. We note, that the
specific choice of inference strategy largely depends on the evaluation metric rather than the task.

General inference partitions an image into segments by assigning each pixel [h, w] to one of the N
predicted probability-mask pairs via arg max;. ... ¢ pi(c;) - ms[h, w]. Here c; is the most likely class
label ¢; = argmax,.cqy, . k o} pi(c) for each probability-mask pair ¢. Intuitively, this procedure
assigns a pixel at location [h, w] to probability-mask pair 4 only if both the most likely class probability
pi(c;) and the mask prediction probability m;[h, w] are high. Pixels assigned to the same probability-
mask pair ¢ form a segment where each pixel is labelled with ¢;. For semantic segmentation, segments
sharing the same category label are merged; whereas for instance-level segmentation tasks, the index
1 of the probability-mask pair helps to distinguish different instances of the same class. Finally, to
reduce false positive rates in panoptic segmentation we follow previous inference strategies [4, 24].
Specifically, we filter out low-confidence predictions prior to inference and remove predicted segments
that have large parts of their binary masks (m; > 0.5) occluded by other predictions.

Semantic inference is designed specifically for semantic segmentation and is done via a simple
matrix multiplication. We empirically find that marginalization over probability-mask pairs, i.e.,

argmaX,c(1 i} Zi\; pi(c) - m;[h,w], yields better results than the hard assignment of each pixel

to a probability-mask pair ¢ used in the general inference strategy. The argmax does not include the
“no object” category (&) as standard semantic segmentation requires each output pixel to take a label.

Note, this strategy returns a per-pixel class probability Zf;l pi(c) - m;[h, w]. However, we observe
that directly maximizing per-pixel class likelihood leads to poor performance. We hypothesize, that
gradients are evenly distributed to every query, which complicates training.

4 Experiments

We demonstrate that MaskFormer seamlessly unifies semantic- and instance-level segmentation
tasks by showing state-of-the-art results on both semantic segmentation and panoptic segmentation
datasets. Then, we ablate the MaskFormer design confirming that observed improvements in semantic
segmentation indeed stem from the shift from per-pixel classification to mask classification.

Datasets. We study MaskFormer using four widely used semantic segmentation datasets:
ADE20K [55] (150 classes) from the SceneParsel50 challenge [54], COCO-Stuff-10K [3] (171
classes), Cityscapes [15] (19 classes), and Mapillary Vistas [34] (65 classes). In addition, we use
the ADE20K-Full [55] dataset annotated in an open vocabulary setting (we keep 874 classes that are
present in both train and validation sets). For panotic segmenation evaluation we use COCO [28, 3, 24]
(80 “things” and 53 “stuff” categories) and ADE20K-Panoptic [55, 24] (100 “things” and 50 “stuff”
categories). Please see the appendix for detailed descriptions of all used datasets.

Evaluation metrics. For semantic segmentation the standard metric is mIoU (mean Intersection-over-
Union) [18], a per-pixel metric that directly corresponds to the per-pixel classification formulation.
To better illustrate the difference between segmentation approaches, in our ablations we supplement
mloU with PQS* (PQ stuff) [24], a per-region metric that treats all classes as “stuff”” and evaluates
each segment equally, irrespective of its size. We report the median of 3 runs for all datasets, except
for Cityscapes where we report the median of 5 runs. For panoptic segmentation, we use the standard
PQ (panoptic quality) metric [24] and report single run results due to prohibitive training costs.

Baseline models. On the right we . er-pixel

; . R per-pixel transformer per-p
sketch the used per-pixel classification loss decoder
baselines. The PerPixelBaseline uses
the pixel-level module of MaskFormer
and directly outputs per-pixel class
scores. For a fair comparison, we de- KXHXW CxXHXW  KxHXW
sign PerPixelBaseline+ which adds
the transformer module and mask em-
bedding MLP to the PerPixelBaseline. Thus, PerPixelBaseline+ and MaskFormer differ only in the
formulation: per-pixel vs. mask classification. Note that these baselines are for ablation and we
compare MaskFormer with state-of-the-art per-pixel classification models as well.

backbone

backbone

(a) PerPixelBaseline (b) PerPixelBaseline+



4.1 Implementation details

Backbone. MaskFormer is compatible with any backbone architecture. In our work we use the stan-
dard convolution-based ResNet [22] backbones (R50 and R101 with 50 and 101 layers respectively)
and recently proposed Transformer-based Swin-Transformer [29] backbones. In addition, we use the
R101c model [7] which replaces the first 7 x 7 convolution layer of R101 with 3 consecutive 3 x 3
convolutions and which is popular in the semantic segmentation community [52, 8, 9, 23, 50, 11].

Pixel decoder. The pixel decoder in Figure 2 can be implemented using any semantic segmentation
decoder (e.g., [9—-11]). Many per-pixel classification methods use modules like ASPP [7] or PSP [52]
to collect and distribute context across locations. The Transformer module attends to all image
features, collecting global information to generate class predictions. This setup reduces the need
of the per-pixel module for heavy context aggregation. Therefore, for MaskFormer, we design a
light-weight pixel decoder based on the popular FPN [26] architecture.

Following FPN, we 2 x upsample the low-resolution feature map in the decoder and sum it with the
projected feature map of corresponding resolution from the backbone; Projection is done to match
channel dimensions of the feature maps with a 1 x 1 convolution layer followed by GroupNorm
(GN) [45]. Next, we fuse the summed features with an additional 3 x 3 convolution layer followed
by GN and ReL.U activation. We repeat this process starting with the stride 32 feature map until we
obtain a final feature map of stride 4. Finally, we apply a single 1 x 1 convolution layer to get the
per-pixel embeddings. All feature maps in the pixel decoder have a dimension of 256 channels.

Transformer decoder. We use the same Transformer decoder design as DETR [4]. The N query
embeddings are initialized as zero vectors, and we associate each query with a learnable positional
encoding. We use 6 Transformer decoder layers with 100 queries by default, and, following DETR,
we apply the same loss after each decoder. In our experiments we observe that MaskFormer is
competitive for semantic segmentation with a single decoder layer too, whereas for instance-level
segmentation multiple layers are necessary to remove duplicates from the final predictions.

Segmentation module. The multi-layer perceptron (MLP) in Figure 2 has 2 hidden layers of 256
channels to predict the mask embeddings &5k, analogously to the box head in DETR. Both per-pixel
Epixel and mask Epagk embeddings have 256 channels.

Loss weights. We use focal loss [27] and dice loss [33] for our mask loss: Ly, (m, m&) =
Aocal Local (11, M) + Adice Ldice (1, M), and set the hyper-parameters to Ageal = 20.0 and Agice =
1.0. Following DETR [4], the weight for the “no object” (&) in the classification loss is set to 0.1.

4.2 Training settings

Semantic segmentation. We use Detectron2 [46] and follow the commonly used training settings
for each dataset. More specifically, we use AdamW [31] and the poly [7] learning rate schedule
with an initial learning rate of 10~* and a weight decay of 10~ for ResNet [22] backbones, and an
initial learning rate of 6 - 10~° and a weight decay of 10~2 for Swin-Transformer [29] backbones.
Backbones are pre-trained on ImageNet-1K [35] if not stated otherwise. A learning rate multiplier of
0.1 is applied to CNN backbones and 1.0 is applied to Transformer backbones. The standard random
scale jittering between 0.5 and 2.0, random horizontal flipping, random cropping as well as random
color jittering are used as data augmentation [14]. For the ADE20K dataset, if not stated otherwise,
we use a crop size of 512 x 512, a batch size of 16 and train all models for 160k iterations. For the
ADE20K-Full dataset, we use the same setting as ADE20K except that we train all models for 200k
iterations. For the COCO-Stuff-10k dataset, we use a crop size of 640 x 640, a batch size of 32
and train all models for 60k iterations. All models are trained with 8 V100 GPUs. We report both
performance of single scale (s.s.) inference and multi-scale (m.s.) inference with horizontal flip and
scales of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75. See appendix for Cityscapes and Mapillary Vistas settings.

Panoptic segmentation. We follow exactly the same architecture, loss, and training procedure as
we use for semantic segmentation. The only difference is supervision: i.e., category region masks
in semantic segmentation vs. object instance masks in panoptic segmentation. We strictly follow
the DETR [4] setting to train our model on the COCO panoptic segmentation dataset [24] for a fair
comparison. On the ADE20K panoptic segmentation dataset, we follow the semantic segmentation
setting but train for longer (720k iterations) and use a larger crop size (640 x 640). COCO models
are trained using 64 V100 GPUs and ADE20K experiments are trained with 8 V100 GPUs. We use



Table 1: Semantic segmentation on ADE20K val with 150 categories. Mask classification-based
MaskFormer outperforms the best per-pixel classification approaches while using fewer parameters
and less computation. We report both single-scale (s.s.) and multi-scale (m.s.) inference results with
+std. FLOPs are computed for the given crop size. Frames-per-second (fps) is measured on a V100
GPU with a batch size of 1.> Backbones pre-trained on ImageNet-22K are marked with .

method backbone crop size mloU (s.s.) mloU (m.s.) #params. FLOPs fps

3 OCRNet [50] R101c 520 x 520 - 453 - - -
_§ DeepLabV3+ [9] R50c 512 x 512 44.0 449 44M 177G 21.0
4 R101c 512 x 512 455 46.4 63M 255G 14.2
2 R50 512 x 512 44.5 +0.5 46.7 £0.6 41M 53G 24.5
% MaskFormer (ours) R101 512 x 512 45.5 405 472 £0.2 60M 73G 19.5
© R101c 512 x 512 46.0 0.1 48.1 +0.2 60M 80G 19.0

SETR [53] ViT-L' 512 x 512 - 50.3 308M - -
3 Swin-T 512 x 512 - 46.1 60M 236G 18.5
E Swin-UperNet [29, 49] SWAm-ST 512 x 512 - 49.3 8IM 259G 15.2
S Swin-B 640 x 640 - 51.6 121M 471G 8.7
2 Swin-l! 640 x 640 - 535 234M 647G 62
é Swin-T 512 x 512 46.7 £0.7 48.8 +0.6 42M 55G 22.1
] Swin-S 512 x 512 49.8 £04 51.0 £0.4 63M 79G 19.6
§ MaskFormer (ours) Swin-B 640 x 640 51.1 £0.2 523 £0.4 102M 195G 12.6
& Swin-Bf 640 x 640 52.7 £0.4 539 £0.2 102M 195G 12.6
Swin-L™ 640 x 640 54.1 £0.2 55.6 0.1 212M 375G 79

Table 2: MaskFormer vs. per-pixel classification baselines on 4 semantic segmentation datasets.
MaskFormer improvement is larger when the number of classes is larger. We use a ResNet-50
backbone and report single scale mIoU and PQ®! for ADE20K, COCO-Stuff and ADE20K-Full,
whereas for higher-resolution Cityscapes we use a deeper ResNet-101 backbone following [8, 9].

Cityscapes (19 classes) ADE20K (150 classes) COCO-Stuff (171 classes) | ADE20K-Full (847 classes)
mloU PQS mloU pPQS mloU pPQSt mloU PQS
PerPixelBaseline 774 58.9 39.2 21.6 324 15.5 12.4 5.8
PerPixelBaseline+ 78.5 60.2 41.9 28.3 34.2 24.6 139 9.0
MaskFormer (ours)| 78.5 (+0.0)  63.1(+2.9) | 44.5(+2.6) 33.4(+5.1) | 37.1(+2.9) 289 (+4.3) | 174 (+3.5) 119 (+2.9)

the general inference (Section 3.4) with the following parameters: we filter out masks with class
confidence below 0.8 and set masks whose contribution to the final panoptic segmentation is less
than 80% of its mask area to VOID. We report performance of single scale inference.

4.3 Main results

Semantic segmentation. In Table 1, we compare MaskFormer with state-of-the-art per-pixel classi-
fication models for semantic segmentation on the ADE20K val set. With the same standard CNN
backbones (e.g., ResNet [22]), MaskFormer outperforms DeepLabV3+ [9] by 1.7 mloU. MaskFormer
is also compatible with recent Vision Transformer [17] backbones (e.g., the Swin Transformer [29]),
achieving a new state-of-the-art of 55.6 mloU, which is 2.1 mlIoU better than the prior state-of-the-
art [29]. Observe that MaskFormer outperforms the best per-pixel classification-based models while
having fewer parameters and faster inference time. This result suggests that the mask classification
formulation has significant potential for semantic segmentation. See appendix for results on test set.

Beyond ADE20K, we further compare MaskFormer with our baselines on COCO-Stuff-10K,
ADE20K-Full as well as Cityscapes in Table 2 and we refer to the appendix for comparison with
state-of-the-art methods on these datasets. The improvement of MaskFormer over PerPixelBase-
line+ is larger when the number of classes is larger: For Cityscapes, which has only 19 categories,
MaskFormer performs similarly well as PerPixelBaseline+; While for ADE20K-Full, which has 847
classes, MaskFormer outperforms PerPixelBaseline+ by 3.5 mloU.

Although MaskFormer shows no improvement in mloU for Cityscapes, the PQS' metric increases
by 2.9 PQS'. We find MaskFormer performs better in terms of recognition quality (RQ3") while
lagging in per-pixel segmentation quality (SQS') (we refer to the appendix for detailed numbers).
This observation suggests that on datasets where class recognition is relatively easy to solve, the main
challenge for mask classification-based approaches is pixel-level accuracy (i.e., mask quality).

31t isn’t recommended to compare fps from different papers: speed is measured in different environments.
DeepLabV3+ fps are from MMSegmentation [14], and Swin-UperNet fps are from the original paper [29].



Table 3: Panoptic segmentation on COCO panoptic val with 133 categories. MaskFormer seam-
lessly unifies semantic- and instance-level segmentation without modifying the model architecture
or loss. Our model, which achieves better results, can be regarded as a box-free simplification of
DETR [4]. The major improvement comes from “stuff” classes (PQS") which are ambiguous to
represent with bounding boxes. For MaskFormer (DETR) we use the exact same post-processing
as DETR. Note, that in this setting MaskFormer performance is still better than DETR (+2.2 PQ).
Our model also outperforms recently proposed Max-DeepLab [42] without the need of sophisticated
auxiliary losses, while being more efficient. FLOPs are computed as the average FLOPs over 100
validation images (COCO images have varying sizes). Frames-per-second (fps) is measured on a
V100 GPU with a batch size of 1 by taking the average runtime on the entire val set including
post-processing time. Backbones pre-trained on ImageNet-22K are marked with .

method backbone PQ pQ™ PQ" SQ RQ | #params. FLOPs  fps
§ DETR [4] R50 + 6 Enc 43.4 48.2 36.3 79.3 53.8
é MaskFormer (DETR) R50 + 6 Enc 45.6 50.0 (+1.8) 39.0 (+2.7) 80.2 55.8 - - -
§ MaskFormer (ours) R50 + 6 Enc 46.5 51.0 (+2.8) 39.8 (+3.5) 80.4 56.8 45M 181G 17.6
Z | DETR [4] R101 + 6 Enc 45.1 50.5 37.0 79.9 55.5 - - -
% MaskFormer (ours) R101 + 6 Enc 47.6 52.5 (+2.0) 40.3 (+3.3) 80.7 58.0 64M 248G 14.0
g Max-DeepLab [42] Max-S 48.4 53.0 41.5 - - 62M 324G 7.6
2 Max-L 51.1 57.0 422 - - 451M 3692G -
§ Swin-T 47.7 51.7 41.7 80.4 58.3 42M 179G 17.0
5 Swin-S 49.7 54.4 42.6 80.9 60.4 63M 259G 124
g MaskFormer (ours) Swin-B 51.1 56.3 432 81.4 61.8 102M 411G 8.4
E Swin-B* 51.8 56.9 44.1 81.4 62.6 102M 411G 8.4
E Swin-L" 52.7 58.5 44.0 81.8 63.5 212M 792G 5.2

Panoptic segmentation. In Table 3, we compare the same exact MaskFormer model with DETR [4]
on the COCO panoptic val set. To match the standard DETR design, we add 6 additional Transformer
encoder layers after the CNN backbone. Unlike DETR, our model does not predict bounding boxes
but instead predicts masks directly. MaskFormer achieves better results while being simpler than
DETR. To disentangle the improvements from the model itself and our post-processing inference
strategy we run our model following DETR post-processing (MaskFormer (DETR)) and observe that
this setup outperforms DETR by 2.2 PQ. Overall, we observe a larger improvement in PQS' compared
to PQ™. This suggests that detecting “stuff” with bounding boxes is suboptimal, and therefore, box-
based segmentation models (e.g., Mask R-CNN [21]) do not suit semantic segmentation. MaskFormer
also outperforms recently proposed Max-DeepLab [42] without the need of special network design
as well as sophisticated auxiliary losses (i.e., instance discrimination loss, mask-ID cross entropy
loss, and per-pixel classification loss in [42]). MaskFormer; for the first time, unifies semantic- and
instance-level segmentation with the exact same model, loss, and training pipeline.

We further evaluate our model on the panoptic segmentation version of the ADE20K dataset. Our
model also achieves state-of-the-art performance. We refer to the appendix for detailed results.

4.4 Ablation studies

We perform a series of ablation studies of MaskFormer using a single ResNet-50 backbone [22].

Per-pixel vs. mask classification. In Table 4, we verify that the gains demonstrated by MaskFromer
come from shifting the paradigm to mask classification. We start by comparing PerPixelBaseline+
and MaskFormer. The models are very similar and there are only 3 differences: 1) per-pixel vs.
mask classification used by the models, 2) MaskFormer uses bipartite matching, and 3) the new
model uses a combination of focal and dice losses as a mask loss, whereas PerPixelBaseline+
utilizes per-pixel cross entropy loss. First, we rule out the influence of loss differences by training
PerPixelBaseline+ with exactly the same losses and observing no improvement. Next, in Table 4a, we
compare PerPixelBaseline+ with MaskFormer trained using a fixed matching (MaskFormer-fixed), i.e.,
N = K and assignment done based on category label indices identically to the per-pixel classification
setup. We observe that MaskFormer-fixed is 1.8 mloU better than the baseline, suggesting that
shifting from per-pixel classification to mask classification is indeed the main reason for the gains of
MaskFormer. In Table 4b, we further compare MaskFormer-fixed with MaskFormer trained with
bipartite matching (MaskFormer-bipartite) and find bipartite matching is not only more flexible
(allowing to predict less masks than the total number of categories) but also produces better results.






Table 5: Matching with masks vs. boxes. We compare DETR [4] which uses box-based matching
with two MaskFormer models trained with box- and mask-based matching respectively. To use
box-based matching in MaskFormer we add to the model an additional box prediction head as in
DETR. Note, that with box-based matching MaskFormer performs on par with DETR, whereas with
mask-based matching it shows better results. The evaluation is done on COCO panoptic val set.

method backbone matching PQ pQ™ PQ™
DETR [4] R50 + 6 Enc by box 43.4 48.2 36.3
MaskFormer (ours) R50 + 6 Enc by box 43.7 49.2 35.3

R50+ 6 Enc by mask 46.5 51.0 39.8

In this section, we discuss in detail the differences between MaskFormer and DETR and show how
these changes are required to ensure that mask classification performs well. First, to achieve a
pure mask classification setting we remove the box prediction head and perform matching between
prediction and ground truth segments with masks instead of boxes. Secondly, we replace the compute-
heavy per-query mask head used in DETR with a more efficient per-image FPN-based head to make
end-to-end training without box supervision feasible.

Matching with masks is superior to matching with boxes. We compare MaskFormer models
trained using matching with boxes or masks in Table 5. To do box-based matching, we add to
MaskFormer an additional box prediction head as in DETR [4]. Observe that MaskFormer, which
directly matches with mask predictions, has a clear advantage. We hypothesize that matching with
boxes is more ambiguous than matching with masks, especially for stuff categories where completely
different masks can have similar boxes as stuff regions often spread over a large area in an image.

MaskFormer mask head reduces computation. Results in Table 5 also show that MaskFormer
performs on par with DETR when the same matching strategy is used. This suggests that the difference
in mask head designs between the models does not significantly influence the prediction quality. The
new head, however, has significantly lower computational and memory costs in comparison with the
original mask head used in DETR. In MaskFormer, we first upsample image features to get high-
resolution per-pixel embeddings and directly generate binary mask predictions at a high-resolution.
Note, that the per-pixel embeddings from the upsampling module (i.e., pixel decoder) are shared
among all queries. In contrast, DETR first generates low-resolution attention maps and applies an
independent upsampling module to each query. Thus, the mask head in DETR is N times more
computationally expensive than the mask head in MaskFormer (where NNV is the number of queries).

6 Conclusion

The paradigm discrepancy between semantic- and instance-level segmentation results in entirely
different models for each task, hindering development of image segmentation as a whole. We show
that a simple mask classification model can outperform state-of-the-art per-pixel classification models,
especially in the presence of large number of categories. Our model also remains competitive for
panoptic segmentation, without a need to change model architecture, losses, or training procedure.
We hope this unification spurs a joint effort across semantic- and instance-level segmentation tasks.
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Appendix

We first provide more information regarding the datasets used in our experimental evaluation of
MaskFormer (Appendix A). Then, we provide detailed results of our model on more semantic
(Appendix B) and panoptic (Appendix C) segmentation datasets. Finally, we provide additional
ablation studies (Appendix D) and visualization (Appendix E).
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A Datasets description

We study MaskFormer using five semantic segmentation datasets and two panoptic segmentation
datasets. Here, we provide more detailed information about these datasets.

A.1 Semantic segmentation datasets

ADE20K [55] contains 20k images for training and 2k images for validation. The data comes from
the ADE20K-Full dataset where 150 semantic categories are selected to be included in evaluation
from the SceneParse150 challenge [54]. The images are resized such that the shortest side is no
greater than 512 pixels. During inference, we resize the shorter side of the image to the corresponding
crop size.

COCO-Stuff-10K [3] has 171 semantic-level categories. There are 9k images for training and 1k
images for testing. Images in the COCO-Stuff-10K datasets are a subset of the COCO dataset [28].
During inference, we resize the shorter side of the image to the corresponding crop size.

ADE20K-Full [55] contains 25k images for training and 2k images for validation. The ADE20K-Full
dataset is annotated in an open-vocabulary setting with more than 3000 semantic categories. We filter
these categories by selecting those that are present in both training and validation sets, resulting in a
total of 847 categories. We follow the same process as ADE20K-SceneParse150 to resize images
such that the shortest side is no greater than 512 pixels. During inference, we resize the shorter side
of the image to the corresponding crop size.

Cityscapes [15] is an urban egocentric street-view dataset with high-resolution images (1024 x 2048
pixels). It contains 2975 images for training, 500 images for validation, and 1525 images for testing
with a total of 19 classes. During training, we use a crop size of 512 x 1024, a batch size of 16 and
train all models for 90k iterations. During inference, we operate on the whole image (1024 x 2048).

Mapillary Vistas [34] is a large-scale urban street-view dataset with 65 categories. It contains 18k,
2k, and 5k images for training, validation and testing with a variety of image resolutions, ranging
from 1024 x 768 to 4000 x 6000. During training, we resize the short side of images to 2048 before
applying scale augmentation. We use a crop size of 1280 x 1280, a batch size of 16 and train all
models for 300k iterations. During inference, we resize the longer side of the image to 2048 and only
use three scales (0.5, 1.0 and 1.5) for multi-scale testing due to GPU memory constraints.

A.2 Panoptic segmentation datasets

COCO panoptic [24] is one of the most commonly used datasets for panoptic segmentation. It has
133 categories (80 “thing” categories with instance-level annotation and 53 “stuff” categories) in
118k images for training and Sk images for validation. All images are from the COCO dataset [28].

ADE20K panoptic [55] combines the ADE20K semantic segmentation annotation for semantic
segmentation from the SceneParse150 challenge [54] and ADE20K instance annotation from the
COCO+Places challenge [1]. Among the 150 categories, there are 100 “thing” categories with
instance-level annotation. We find filtering masks with a lower threshold (we use 0.7 for ADE20K)
than COCO (which uses 0.8) gives slightly better performance.

Table I: Semantic segmentation on ADE20K test with 150 categories. MaskFormer outperforms
previous state-of-the-art methods on all three metrics: pixel accuracy (P.A.), mloU, as well as the
final test score (average of P.A. and mIoU). We train our model on the union of ADE20K train and
val set with ImageNet-22K pre-trained checkpoint following [29] and use multi-scale inference.

method backbone PA. mloU score
SETR [53] ViT-L 78.35 45.03 61.69
Swin-UperNet [29,49]  Swin-L 78.42 47.07 62.75
MaskFormer (ours) Swin-L 79.36 49.67 64.51
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Table II: Semantic segmentation on COCO-Stuff-10K test with 171 categories and ADE20K-
Full val with 847 categories. Table I1a: MaskFormer is competitive on COCO-Stuff-10K, showing
the generality of mask-classification. Table IIb: MaskFormer results on the harder large-vocabulary
semantic segmentation. MaskFormer performs better than per-pixel classification and requires less
memory during training, thanks to decoupling the number of masks from the number of classes.
mloU (s.s.) and mloU (m.s.) are the mloU of single-scale and multi-scale inference with £std.

(a) COCO-Stuft-10K. (b) ADE20K-Full.
method backbone mloU (s.s.) mloU (m.s.) mloU (s.s.) training memory
OCRNet [50] R101c - 39.5 - -
PerPixelBaseline R50 324 40.2 344 404 124 +£0.2 8030M
PerPixelBaseline+ R50 342 £0.2 358 £0.4 13.9 £0.1 26698M

R50 37.1 £0.4 38.9 £0.2 16.0 0.3 6529M
MaskFormer (ours) R101 38.1 £0.3 39.8 +0.6 16.8 £0.2 6894M
R101c 38.0 £0.3 39.3 £0.4 17.4 +0.4 6904M

Table III: Semantic segmentation on Cityscapes val with 19 categories. IIla: MaskFormer is
on-par with state-of-the-art methods on Cityscapes which has fewer categories than other considered
datasets. We report multi-scale (m.s.) inference results with +std for a fair comparison across
methods. ITTb: We analyze MaskFormer with a complimentary PQS! metric, by treating all categories
as “stuff.” The breakdown of PQS' suggests mask classification-based MaskFormer is better at
recognizing regions (RQ®') while slightly lagging in generation of high-quality masks (SQ5!).

(a) Cityscapes standard mIoU metric. (b) Cityscapes analysis with PQS' metric suit.
method backbone | mloU (m.s.) PQS (m.s.) SQ™ (m.s.) RQ% (m.s.)
Panoptic-DeepLab [11]  X71[12] 81.5 66.6 82.9 79.4
OCRNet [50] R10Ic 82.0 66.1 82.6 79.1
MaskFormer (ours) R101 80.3 £0.1 65.9 81.5 79.7

R101c 81.4 £0.2 66.9 82.0 80.5

Table IV: Semantic segmentation on Mapillary Vistas val with 65 categories. MaskFormer
outperforms per-pixel classification methods on high-resolution images without the need of multi-
scale inference, thanks to global context captured by the Transformer decoder. mloU (s.s.) and mIoU
(m.s.) are the mIoU of single-scale and multi-scale inference.

method backbone mloU (s.s.) mloU (m.s.)
DeepLabV3+ [9] R50 47.7 494
HMSANet [38] R50 - 522
MaskFormer (ours) R50 53.1 554

B Semantic segmentation results

ADE20K test. Table I compares MaskFormer with previous state-of-the-art methods on the
ADE20K test set. Following [29], we train MaskFormer on the union of ADE20K train and
val set with ImageNet-22K pre-trained checkpoint and use multi-scale inference. MaskFormer
outperforms previous state-of-the-art methods on all three metrics with a large margin.

COCO-Stuff-10K. Table Ila compares MaskFormer with our baselines as well as the state-of-the-art
OCRNet model [50] on the COCO-Stuff-10K [3] dataset. MaskFormer outperforms our per-pixel
classification baselines by a large margin and achieves competitive performances compared to
OCRNet. These results demonstrate the generality of the MaskFormer model.

ADE20K-Full. We further demonstrate the benefits in large-vocabulary semantic segmentation in
Table IIb. Since we are the first to report performance on this dataset, we only compare MaskFormer
with our per-pixel classification baselines. MaskFormer not only achieves better performance, but is
also more memory efficient on the ADE20K-Full dataset with 847 categories, thanks to decoupling
the number of masks from the number of classes. These results show that our MaskFormer has the
potential to deal with real-world segmentation problems with thousands of categories.

Cityscapes. In Table I1la, we report MaskFormer performance on Cityscapes, the standard testbed
for modern semantic segmentation methods. The dataset has only 19 categories and therefore,
the recognition aspect of the dataset is less challenging than in other considered datasets. We
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Table V: Panoptic segmentation on COCO panoptic test-dev with 133 categories. MaskFormer
outperforms previous state-of-the-art Max-DeepLab [42] on the test-dev set as well. We only train
our model on the COCO train2017 set with ImageNet-22K pre-trained checkpoint.

method backbone PQ pQ™ pPQ% SQ RQ
Max-DeepLab [42] Max-L 51.3 57.2 42.4 82.5 61.3
MaskFormer (ours)  Swin-L 533 59.1 44.5 82.0 64.1

Table VI: Panoptic segmentation on ADE20K panoptic val with 150 categories. Following
DETR [4], we add 6 additional Transformer encoders when using ResNet [22] (R50 + 6 Enc and
R101 + 6 Enc) backbones. MaskFormer achieves competitive results on ADE20K panotic, showing
the generality of our model for panoptic segmentation.

method backbone PQ pQ™ pQ™ SQ RQ

BGRNet [47] R50 31.8 - -

Auto-Panoptic [48] ShuffleNetV2 [32] 324 - - - -

MaskFormer (ours) R50 + 6 Enc 34.7 322 39.7 76.7 428
R101 + 6 Enc 357 345 38.0 77.4 438

observe that MaskFormer performs on par with the best per-pixel classification methods. To better
analyze MaskFormer, in Table IIIb, we further report PQ3'. We find MaskFormer performs better
in terms of recognition quality (RQS') while lagging in per-pixel segmentation quality (SQ5). This
suggests that on datasets, where recognition is relatively easy to solve, the main challenge for mask
classification-based approaches is pixel-level accuracy.

Mapillary Vistas. Table IV compares MaskFormer with state-of-the-art per-pixel classification
models on the high-resolution Mapillary Vistas dataset which contains images up to 4000 x 6000
resolution. We observe: (1) MaskFormer is able to handle high-resolution images, and (2) Mask-
Former outperforms mulit-scale per-pixel classification models even without the need of mult-scale
inference. We believe the Transformer decoder in MaskFormer is able to capture global context even
for high-resolution images.

C Panoptic segmentation results

COCO panoptic test-dev. Table V compares MaskFormer with previous state-of-the-art methods
on the COCO panoptic test-dev set. We only train our model on the COCO train2017 set with
ImageNet-22K pre-trained checkpoint and outperforms previos state-of-the-art by 2 PQ.

ADE20K panoptic. We demonstrate the generality of our model for panoptic segmentation on the
ADE20K panoptic dataset in Table VI, where MaskFormer is competitive with the state-of-the-art
methods.

D Additional ablation studies

We perform additional ablation studies of MaskFormer for semantic segmentation using the same
setting as that in the main paper: a single ResNet-50 backbone [22], and we report both the mIoU and
the PQS'. The default setting of our MaskFormer is: 100 queries and 6 Transformer decoder layers.

Inference strategies. In Table VII, we ablate inference strategies for mask classification-based
models performing semantic segmentation (discussed in Section 3.4). We compare our default
semantic inference strategy and the general inference strategy which first filters out low-confidence
masks (a threshold of 0.3 is used) and assigns the class labels to the remaining masks. We observe
1) general inference is only slightly better than the PerPixelBaseline+ in terms of the mIoU metric,
and 2) on multiple datasets the general inference strategy performs worse in terms of the mloU
metric than the default semantic inference. However, the general inference has higher PQSt, due
to better recognition quality (RQS!). We hypothesize that the filtering step removes false positives
which increases the RQS!. In contrast, the semantic inference aggregates mask predictions from
multiple queries thus it has better mask quality (SQS"). This observation suggests that semantic and
instance-level segmentation can be unified with a single inference strategy (i.e., our general inference)
and the choice of inference strategy largely depends on the evaluation metric instead of the task.
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Table VII: Inference strategies for semantic segmentation. general: general inference (Section 3.4)
which first filters low-confidence masks (using a threshold of 0.3) and assigns labels to the remaining
ones. semantic: the default semantic inference (Section 3.4) for semantic segmentation.

ADE20K (150 classes) COCO-Stuff (171 classes) ADE20K-Full (847 classes)
inference mloU  PQY  SQ% RQ%™ | mloU PQ%  SQ RQY | mloU PQY  SQ%  RQ™
PerPixelBaseline+ 419 28.3 71.9 36.2 34.2 24.6 62.6 31.2 13.9 9.0 24.5 12.0
general 424 34.2 74.4 43.5 355 29.7 66.3 37.0 15.1 11.6 28.3 15.3
semantic 44.5 334 75.4 424 371 28.9 66.3 359 16.0 11.9 28.6 15.7

Table VIII: Ablation on number of Transformer decoder layers in MaskFormer. We find that

MaskFormer with only one Transformer decoder layer is already able to achieve reasonable semantic

segmentation performance. Stacking more decoder layers mainly improves the recognition quality.

ADE20K-Semantic ADE20K-Panoptic

#of decoder layers | mloU ~ PQ%  sQ%  RQ™ PQ pQ™  pQ™ SQ RQ

6 (PerPixelBaseline+) 41.9 28.3 71.9 36.2 - -
1 430 311 743 397 | 319 296 366 766  39.6
6 445 334 754 424 | 347 322 397 767 428

6 (no self-attention) | 44.6 328 745 415 | 326 299 382 756 404

MaskFormer trained for semantic segmentation

MaskFormer trained for panoptic segmentation

e ——
prediction anoptic query prediction

Figure I: Visualization of “semantic” queries and ‘“panoptic” queries. Unlike the behavior in
a MaskFormer model trained for panoptic segmentation (right), a single query is used to capture
multiple instances in a MaskFormer model trained for semantic segmentation (left). Our model has
the capacity to adapt to different types of tasks given different ground truth annotations.

Number of Transformer decoder layers. In Table VIII, we ablate the effect of the number of
Transformer decoder layers on ADE20K [55] for both semantic and panoptic segmentation. Sur-
prisingly, we find a MaskFormer with even a single Transformer decoder layer already performs
reasonably well for semantic segmentation and achieves better performance than our 6-layer-decoder
per-pixel classification baseline PerPixelBaseline+. Whereas, for panoptic segmentation, the number
of decoder layers is more important. We hypothesize that stacking more decoder layers is helpful to
de-duplicate predictions which is required by the panoptic segmentation task.

To verify this hypothesis, we train MaskFormer models without self-attention in all 6 Transformer
decoder layers. On semantic segmentation, we observe MaskFormer without self-attention performs
similarly well in terms of the mIoU metric, however, the per-mask metric PQ® is slightly worse. On
panoptic segmentation, MaskFormer models without self-attention performs worse across all metrics.

“Semantic” queries vs. “panoptic” queries. In Figure [ we visualize predictions for the “car”
category from MaskFormer trained with semantic-level and instance-level ground truth data. In
the case of semantic-level data, the matching cost and loss used for mask prediction force a single
query to predict one mask that combines all cars together. In contrast, with instance-level ground
truth, MaskFormer uses different queries to make mask predictions for each car. This observation
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ground truth prediction ground truth prediction
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Figure II: Visualization of MaskFormer semantic segmentation predictions on the ADE20K dataset.
We visualize the MaskFormer with Swin-L backbone which achieves 55.6 mloU (multi-scale) on the
validation set. First and third columns: ground truth. Second and fourth columns: prediction.

suggests that our model has the capacity to adapt to different types of tasks given different ground
truth annotations.

E Visualization

We visualize sample semantic segmentation predictions of the MaskFormer model with Swin-L [29]
backbone (55.6 mIoU) on the ADE20K validation set in Figure II.
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